
Copyright © PROMISE Consortium 2004-2008

DELIVERABLE NO DA5.6: Implementation of the PLM Process model for the

Demonstrator

DISSEMINATION LEVEL CONFIDENTIAL

DATE 02.06.2008

WORK PACKAGE NO WP A5: PROMISE MOL information management for heavy vehicle
lifespan estimation

VERSION NO. V9.4

ELECTRONIC FILE CODE DA5 6 v9_4.doc

CONTRACT NO 507100 PROMISE
A Project of the 6th Framework Programme Information Society
Technologies (IST)

ABSTRACT This deliverable (DA5.6) summarises the implementation of the PLM
process model for the demonstrator, in terms of scenes, PROMISE
components and technology implemented, as described in DA5.3 and
DA5.4. The motivation for eventual discrepancies is given, together
with the detailed results of the activities performed for the
implementation.

STATUS OF DELIVERABLE

ACTION BY DATE (dd.mm.yyyy)

SUBMITTED (author(s)) Cécile Corcelle 02.06.2008

VU (WP Leader) Cécile Corcelle 30.05.2008

APPROVED (QIM) Dimitris Kiritsis 03.06.2008

Written by:
Cécile Corcelle, Jaime Krull (Caterpillar)

Daniel Barisic (INFINEON)
Youngseok Kim (EPFL)

Falk Brauer, Anja Klein (SAP)

DA5.6: Implementation of the PLM Process model
for the Demonstrator

Copyright © PROMISE Consortium 2004-2008 Page ii

@

Revision History

Date
(dd.mm.yyyy)

Version Author Comments

10.04.2008 V4 Cécile Corcelle, Daniel Barisic With Infineon inputs & scenes’ descriptions by CAT

14.04.2008 V5 Cécile Corcelle, Youngseok Kim With EPFL inputs

15.04.2008 V6 Falk Brauer Complement of MW-related sections (SAP inputs)

09.05.2008 V8 Jaime Krull Editing and Modifications

16.05.2008 V9 Cécile Corcelle Reorganising the technical content of data flow
mechanisms and actual demonstration steps

19.05.2008 V9.2 Falk Brauer Update on data flow mechanisms

27.05.2008 V9.3 Cécile Corcelle Refinement and adding of DSS GUI sections from
SAP

30.05.2008 V9.4 Falk Brauer, Anja Klein, Daniel
Barisic, Cécile Corcelle, Jaime Krull Final version

Author(s)’ contact information

Name Organisation E-mail Tel Fax
Cecile Corcelle Caterpillar Corcelle_Cecile@cat.com +33 47 62 38 213
Jaime Krull Caterpillar Krull_Jaime_A@cat.com 1-309-578-5774
Falk Brauer SAP falk.brauer@sap.com +49 351 4811 6138
Anja Klein SAP anja.klein@sap.com
Daniel Barisic Infineon Technologies Daniel.Barisic@infineon.com +49 89 234 2069 +49 89 234 955 5390
Youngseok Kim EPFL youngseok.kim@epfl.ch

Copyright © PROMISE Consortium 2004-2008 Page 1

@

Table of Contents
1 INTRODUCTION..3

1.1 PURPOSE OF THIS DELIVERABLE ..3
1.2 OBJECTIVE OF DEMONSTRATOR...3

2 TECHNICAL DESCRIPTION OF THE DEMONSTRATOR..3
2.1 SYSTEM ARCHITECTURE OF THE DEMONSTRATOR ...3
2.2 INTEGRATION OF CUSTOMIZED PEID ..5

2.2.1 “Crack First” PEID integration to the A5 architecture ..5
2.2.2 Other PEID integration to the A5 architecture..6

2.3 PDKM DATA MODEL...6
2.4 SCENES INCLUDED IN THE PLM MODEL...7
2.5 BOL DATA FLOW MECHANISMS...8

2.5.1 Initialization using DHL (Bottom-Up-Initialization) ...8
2.5.2 Initialization using PDKM (Top-Down-Initialization) ..9

2.6 MOL DATA FLOW MECHANISMS..10
2.6.1 MOL data update in the PDKM...10
2.6.2 MOL data transfer from PEID to PDKM ..10
2.6.3 Run the DSS with PDKM data ...10

3 IMPLEMENTATION OF THE DEMONSTRATOR ..11
3.1 IMPLEMENTATION STEP 1: CAT MACHINE INSTRUMENTED WITH COMPLETE PEID AT BOL11

3.1.1 General description ...11
3.1.2 PROMISE components used ..11
3.1.3 Functionalities demonstrated...12
3.1.4 Current and future refinement ...13

3.2 IMPLEMENTATION STEP 2: BOL AND MOL DATA UP-DATE BETWEEN PDKM AND PEID14
3.2.1 General description ...14
3.2.2 PROMISE components used ..15
3.2.3 Functionalities demonstrated...15
3.2.4 Current and future refinement ...18

3.3 IMPLEMENTATION STEP 3: DSS USE FOR MAINTENANCE DECISION..18
3.3.1 General description ...18
3.3.2 PROMISE components used ..18
3.3.3 Functionalities demonstrated...20
3.3.4 Current and future refinement ...24

4 CONCLUSION...24

5 REFERENCES...25

6 ANNEX ...25
6.1 ALTERNATE INITIALISATION PROCESSES OF PEID AND PDKM...25

6.1.1 Prerequisite..25
6.1.2 Bottom-Up-Initialization..26
6.1.3 Top-Down-Initialization ..31

6.2 MANUAL UPDATE OF MOL DATA USING THE SAP-BACKEND ...31
6.3 DSS ALGORITHM ..34

List of figures
FIGURE 1: CONFIGURATION OF PROMISE COMPONENTS FOR THE A5 APPLICATION SCENARIO4
FIGURE 2: PROMISE ARCHITECHTURE AS IMPLEMENTED FOR A5 DEMONSTRATOR...5
FIGURE 3: A5 PDKM / DSS DATA STRUCTURE ..6
FIGURE 4: BOTTOM-UP-INITIALIZATION ..8
FIGURE 5: TOP-DOWN-INITIALIZATION ..9
FIGURE 6: BOOM EXCAVATOR EQUIPPED WITH FOUR COMPLETE FATIGUE DEVICES (FEB-07) ...11
FIGURE 7: DEDICATED GUI TO INITIALIZE AND READ ”CRACKFIRST” IN FIRST PHASE IMPLEMENTATION (FEB-07)........12
FIGURE 8: DHL-USER INTERFACE – WRITE INITIAL DATA...13

Copyright © PROMISE Consortium 2004-2008 Page 2

@

FIGURE 9: PDKM DATA STRUCTURE (SCREENSHOT) ..15
FIGURE 10: SUBSCRIPTION FOR FATIGUE DATA (SCREENSHOT)...16
FIGURE 11: DATAFLOW MONITORED IN SAP’S MOMA-CONSOLE ..17
FIGURE 12: READ REQUEST ANSWERED BY DHL..17
FIGURE 13: DATA RECEIVED BY THE PDKM ..17
FIGURE 14: DATA FLOW AMONG DSS MODULE, PDKM, AND WEB GUI. ..19
FIGURE 15: DSS GUI, FUNCTION SELECTION..21
FIGURE 16: DSS GUI, MACHINE SELECTION ...21
FIGURE 17: DSS GUI, PARAMETERS ENTRIES ...22
FIGURE 18: DSS GUI, MACHINE VIEW ..22
FIGURE 19: DSS GUI, MAINTENANCE ALTERNATIVES ..23
FIGURE 20: EXAMPLE DATA STRUCTURE IN SAP-BACKEND...25
FIGURE 21: SHELL OF EXAMPLE PEID..26
FIGURE 22: DHL WITH RECOGNIZED PEID...26
FIGURE 23: PEID'S CONTENT-SERVICE (FOR WRITING INITIAL DATA)...27
FIGURE 24: WRITING DATA TO PEID USING THE DHL ...28
FIGURE 25: PDKM LOG-IN ...28
FIGURE 26: BOL-FUNCTIONS OF PDKM ..29
FIGURE 27: DEFINITION OF MAPPING PARAMETERS ..29
FIGURE 28: CREATION OF A SUBSCRIPTION...30
FIGURE 29: WRITE REQUEST FROM PDKM TO BACKEND AND PEID..30
FIGURE 30: DATA-FLOW BETWEEN PEID AND PDKM ...31
FIGURE 31: SAP-BACKEND ..32
FIGURE 32: SELECTION OF MEASURING POINT IN SAP-BACKEND...33
FIGURE 33: CREATION OF NEW MEASUREMENT DOCUMENT ..33

Abbreviations
BC Board Computer
BOL Beginning Of Life
BOM Bill Of Material (parts identification list)
CAN Control Area Network
CorePAC Core PEID Access Container
DSS Decision Support System
ECP Embedded Core PEID
ECU Electronic Control Unit
EOL
ET
GUI

End Of Life
Electronic Technician (CAT tool to extract ECU data)
Graphical User Interface

ID Identifier
IT Information Technology
MOL
NWA
PC
PCB

Middle Of Life
?
Portable Computer
Printed Circuitry Board

PDKM Product Data Knowledge Management
PEID Product Embedded Information Device
PLM
PMI

Product Lifecycle Management
Promise Middleware Interface

P/N Part Number
RFID Radio Frequency Identification
R&W Read & Write
S/N
UPI

Serial Number
Unique Product Identifier

UPnP Universal Plug and Play

Copyright © PROMISE Consortium 2004-2008 Page 3

@

1 Introduction

1.1 Purpose of this deliverable
Aim of this deliverable is to describe the PROMISE customized solution for the A5 application in
term of developed technologies and functionalities demonstrated.

Based on previous scenes described in DA5.3, demonstration activities have been conducted and
performed to demonstrate information flow between PROMISE components and therefore, the
ability of the IT customized system to support the A5 PLM objectives, which is the
implementation of predictive maintenance on structures of heavy machinery.

From what has been demonstrated in Sections 2 & 3, we will then be able to specify in DA5.7
remaining technical and business challenges for further implementation steps, from demonstrator
scale to large-scale products.

1.2 Objective of demonstrator
Main objective of our demonstrator is the automation of the fatigue monitoring of machine’s
structural parts. The customized PROMISE architecture allowing the estimation of fatigue status
and possible maintenance plan of a structure is composed of physical machine with PEID, Core
PAC and PMI interfaces, back-end database called PDKM and Decision support system.

The predictive maintenance plan calculated by the DSS uses both field data sent by the PEID and
manual inputs entered in the PDKM to propose maintenance plan for one machine.

2 Technical description of the demonstrator
First the technical solution will be depicted in term of IT system architecture and data flow
mechanisms between PROMISE components to demonstrate the ability to perform the scenes of
the demonstrator as explained in deliverables DA5.3 and DA5.4.

Then the implementation steps will be described that were conducted with A5 and A0 partners to
effectively validate portions of the PLM model built for the A5 application case.

2.1 System architecture of the demonstrator
All PROMISE components are used in the A5 demonstrator, and full PROMISE compliance is
created by satisfying all PROMISE interfaces (figure 1).

Main components of the A5 architecture are the Product Embedded Information Device (PEID),
the Device Controller (DC) consisting of SAP’s Device Handling Layer (DHL), the Request
Handling Layer (RHL) also referred to as Data Services, the Product Data and Knowledge
Management (PDKM) System and the Decision Support System (DSS).

Interfaces utilised in the configuration are the Core PEID Access Container (Core PAC), the
PROMISE Messaging Interface (PMI) and Standard Query Language (SQL).

Copyright © PROMISE Consortium 2004-2008 Page 4

@

FIGURE 1: CONFIGURATION OF PROMISE COMPONENTS FOR THE A5 APPLICATION SCENARIO

In addition to the PROMISE standard components (RHL, DHL, PMI & Core PAC applications,
PDKM back end, PDKM GUI), other pieces of soft ware were specifically developed for the A5
demonstrator (PEID hard and soft ware, Core PAC, DSS, DSS GUI, DSS mapping table, PDKM
data model)

Finally, the system solution customized for the A5 demonstrator includes customized PEID (see
§2.2) and PDKM data model (see §2.3) with customized soft ware to enable necessary dataflow
mechanisms (see §2.5 and §2.6).

As shown in figure 2, items of the A5 system architecture is composed of:

Physical components / hard wares

- CAT machine including structural parts equipped with fatigue devices
- Embedded Core PEID (ECP) chips wirily connected to each fatigue device
- Proxy application to read fatigue data (executed on a PC/Laptop)
- Electronic Control Units of the CAT machine linked to the board of the machine

Soft ware
- SAP Middleware

o Device Handling Layer (on local PC/Notebook)
o Request Handling Layer (deployed on server in Karlsruhe)

- PDKM (database server in Karlsruhe)
- DSS (java program integrated to PDKM using SQL statement)
- Interfaces

o CorePAC
o PMI

- Graphical User Interfaces:
o PDKM GUI
o DSS GUI
o DHL GUI

- Electronic Technician tool (executed on a PC/Laptop)

Copyright © PROMISE Consortium 2004-2008 Page 5

@

FIGURE 2: PROMISE ARCHITECHTURE AS IMPLEMENTED FOR A5 DEMONSTRATOR

2.2 Integration of customized PEID

2.2.1 “Crack First” PEID integration to the A5 architecture
For the demonstrator we employ two types of PEIDs. First, we use a “Crack first” sensor that is
able to physically measure the fatigue status and a corresponding printed circuitry board (PCB),
which allows interrogation of the sensor values in a wired fashion (using RS232). Both sensor and
PCB have been developed outside of the PROMISE consortium. Second, a customized version of
the Embedded Core PEID (ECP) that has been developed in WP R4 is employed. The ECP is able
to acquire the fatigue data from the “crack first” assembly via RS 232 and to store part specific
information. Read and write access to this information is given via a wireless link.

PROMISE compliant access to the ECP and “crack first” information is created by a proxy
application that is executed on a PC/Laptop. The task of the proxy application is to implement the
Core PAC interface, which will allow interaction with the PROMISE middleware. Further, it uses
the NWA (developed in R4) to communicate to the ECP over the wireless link in order to
read/write information.

The interface between ECP and PROMISE middleware is the CorePAC interface, which has been
specified at month 18 in deliverable DR 4.3: “Specification of the Embedded Core PEID”. An
update version of the CorePAC interface was delivered at month 36 (DR4.5: Assessment and
refinement of ECP specification), but has not been considered for the tests documented in this
deliverable. This is not critical, since the CorePAC specification will only undergo minor changes.
The amended specification will specifically remain backwards compatible, so that no integration
problems need to be expected.

The interface between Middleware and PDKM is the Promise Middleware Interface (PMI). The
version 1.0 of PMI has been specified in DR 6.5: “Interface definition and design of enterprise
communication infrastructure” at M24. All updates of this specification will be documented in the
architectural series. The PMI version 2.0 is now available (M33) and substantially extends v1.0

Copyright © PROMISE Consortium 2004-2008 Page 6

@

with improvements and enhancements obtained from the first implementation and integration
experiences with the PROMISE demonstrators. All PROMISE demonstrators are currently being
realized with PMI v2.0. In PMI v3.0 additionally elements for subscribing to events like PLM-
events, device management events or system management events will be added.

2.2.2 Other PEID integration to the A5 architecture
For data collection about the machine use, a record of ECU information shall be transferred to the
PDKM, for further use of the DSS to calculate estimated remaining lifetime of the machine
structure. Alternate solutions have been investigated. First is to reuse the A2 PEID with use of the
CAT Electronic Technician software and a specific PMI script to translate the ECU data to the
“xml” PDKM readable format.

The second alternative is to directly read the MOL data on board the machine (number of running
hours of the machine, total fuel consumption of the machine) to subsequently manually enter this
information in the PDKM.

Not to duplicate customisation effort, this last solution was implemented for the A5.

2.3 PDKM data model
The following figure 3 shows the PDKM data structure built for the A5 DSS. Foreign key for the
relationship among tables are omitted.

FIGURE 3: A5 PDKM / DSS DATA STRUCTURE

A5 data in PDKM for the DSS has three types of information: machine/part list, static information
of part, and historical information of part.

In the machine list and the part list, ID distinguishes each machine and part, and each has static
information:

- Machine: machine breakdown cost and additional delay time
- Part: class of weld, average inspection cost, designed target lifetime, and part change cost.

Each measuring point of a part has time series data. For each time stamp, “crack first” data, fuel
consumption rate, and part attachment are stored in the PDKM.

Measuring points are field data that are either captured throughout the PROMISE A5 architecture
(“Crack first” data, possibly fuel consumption rate and number of running hours) or manually
entered by the DSS end-user (part attachment) during use of the CAT machine (MOL scenes).

Whereas static information is entered in PDKM back end during the set up of the machine/ part
information, corresponding to scenes where information is first initialised (BOL scene) or

Copyright © PROMISE Consortium 2004-2008 Page 7

@

modified following a maintenance event (MOL scene after machine repair with BOL information
reset in PDKM backend)

A more complete PDKM data structure with additional static data was defined (DA5.4),
considering supplementary information about the physical components than the ones used by the
predictive maintenance DSS (example is “built date of the machine”, “supplier code” of each
structure).
In addition to the predictive maintenance DSS use, this BOL information recorded for the
PROMISE compliant heavy machines would enable the capture of design efficiency information
of segmented machine fleet, and lastly the development of a “DSS for design efficiency” module.

Due to the PDKM / DSS framework progress, the A5 implementation focused on our main
objective, with a PDKM data structure built that matches DSS needs only.

2.4 Scenes included in the PLM model
Considering the 2 objectives of the A5 application described in DA5.4, the predictive
maintenance on a structure and the design efficiency analysis on a structure, the following
demonstration activities were required:

1. At BOL or during MOL in case of part replacement, initialisation of the PEID information
on the PDKM and on the PEID itself;

2. During MOL, MOL data up-dated on the PDKM with data retrieved from the PEID, such
as fatigue data, and with manual inputs entered in PDKM

3. During MOL, in case of repair or BOL information change (change owner, change
lifetime design target), up-date ECP chips data and PDKM

4. During MOL, at any time, use the DSS to schedule maintenance operation on a PROMISE
compliant machine and with the possibility to consider various application type (by
entering either fuel consumption rate or attachment type) using DSS GUI

5. During MOL, historical information on a PROMISE compliant machine should be
recorded onto the PDKM via the DSS

6. At any time, using the PDKM GUI, review the status of PROMISE compliant machines
fleet

From these scenes, we can extract functionalities that need to be implemented and validated using
the Promise architecture:

1. Initialise PEID data (DHL GUI)
2. Data transfer from PEID to PDKM (via CorePAC, DHL, RHL)
3. Data transfer from PDKM to PEID (via RHL, DHL, ECP)
4. Data capture in PDKM
5. Data capture from Fatigue Sensor (ECP, CorePAC)
6. Capture machine information in PDKM (PDKM GUI)
7. Update data into PDKM (PDKM GUI, PMI)
8. Transfer updated PDKM data to PEID (via RHL, DHL, CorePAC)
9. Read ECU Data (ET tool & PMI script, or directly on the machine board)
10. Read data from PDKM (SQL)
11. Enter DSS parameters (DSS GUI)
12. Run the DSS (PDKM)
13. View DSS results (DSS GUI)
14. View MOL historical information recorded onto PDKM (PDKM GUI)
15. View machines status for fleet management (PDKM GUI)

Copyright © PROMISE Consortium 2004-2008 Page 8

@

2.5 BOL data flow mechanisms
Two options can be used to initialize both the PDKM back-end and the ECP chips of the PEID
with BOL data.
Prerequisite for both options are:

• PDKM data-structure for a new equipment is available
• Initial data that is not acquired from PEID is entered (or imported) using the SAP-

Backend-System
• The PEID is write able

Steps by step processes with screenshots captured are detailed in annex 6.1.

Both options have as result that the PDKM sends a subscription-request to the middleware (RHL).
The middleware schedules a subscription with the given subscription-interval. The middleware
creates, from this time, periodical requests via the DHL to retrieve the adequate information from
the proxy application (PEID). The Middleware retrieves the PEID’s data and finally sends the
data-result to the PDKM via a call back-address of the PDKM.

2.5.1 Initialization using DHL (Bottom-Up-Initialization)
First option is to use the DHL interface to initialize the PEID first, and then transfer the PEID data
to the PDKM later on (Figure 4). This initialization procedure is preferred in the case that no
Internet connection is available. Therefore the data is written to the PEID. Meanwhile a mapping
from the PEID’s info items is created at the first time the PEID connects to the PROMISE-
infrastructure.

FIGURE 4: BOTTOM-UP-INITIALIZATION

In detail following initialization steps have to be applied:

a) PEID initialization:

• Navigate in DHLs service-structure to the content-service (urn:upnp-
org:serviceId:content:1)

• Select the write-method of the PEID
• Enter the UPI’s and PEID’s ID and the desired data to be written

Copyright © PROMISE Consortium 2004-2008 Page 9

@

b) PDKM initialization:
• Log in to PDKM
• Navigate to ‘MOL’-functions
• Check option: ‘Enter Mapping Data’
• Search for the desired product instance
• Navigate to your equipment’s measuring point
• Create a mapping between measuring point and info item
• Create a subscription by selecting the desired MW-node

2.5.2 Initialization using PDKM (Top-Down-Initialization)
Second option is to initialize the PDKM first with BOL data entered using PDKM GUI, and
transfer this data to the ECP chips. This is the preferred technique if an internet-connection is
available. Therefore, first, the mapping to the desired equipment’s measuring-point to a PEID’s
info-item is created and next the write-method of the PDKM is used for writing initial data to the
PEID and in parallel to the PDKM.

FIGURE 5: TOP-DOWN-INITIALIZATION

In detail following initialization steps have to be applied:

• Log in to PDKM
• Navigate to ‘MOL’-functions
• Check option: ‘Enter Mapping Data’
• Search for the desired product instance
• Navigate to your equipment’s measuring point
• Create a mapping between measuring point and info item
• Create a subscription by selecting the desired MW-node
• Enter initial data to be written to the info item

Copyright © PROMISE Consortium 2004-2008 Page 10

@

2.6 MOL data flow mechanisms

2.6.1 MOL data update in the PDKM
The information about the structural part shall be read and written from the PDKM to the local
storage of the part. For this, the PDKM will issue requests to the PROMISE middleware, which
will finally create requests of its own, which will be directed towards the adequate PEID. This
process is similar to that one described in previous section.

2.6.2 MOL data transfer from PEID to PDKM
The demonstrator requires the acquisition of the fatigue status of structural parts as well as storage
of part specific information, such as a serial number, locally on the part. During MOL, the sensor
information shall be recorded and stored in the PDKM. As result of the initialization process the
middleware schedules a subscription with the given subscription-interval. As the proxy
application is executed on a laptop it does not know the current fatigue status of the structural part
and thus has to query the ECP over the wireless link. The ECP will then interrogate the “crack
first” assembly in order to fetch the information and send it back to the proxy. The proxy will
forward the information to the Middleware, which will finally give the requested information back
to the PDKM via a call back-address of the PDKM, which was defined in the subscription.

2.6.3 Run the DSS with PDKM data
There are two types of input data for the DSS. First, the user can modify administrative
parameters guiding the DSS algorithm. This data is valid for one DSS session. The permanent
storage was not implemented in the prototype.
Second, the data stored permanently in the PDKM (e.g. PEID data) can be used as basis for the
A5 DSS algorithm. During the DSS development there was a strict distinction between the GUI
design (data representation, navigation, etc.) and the business logic implementation (DSS
algorithms). The DSS modules GUI and Logic are connected via a web service interface, provided
by the Logic-side. The start of the demonstrator calls the first web service of the Logic module,
which extracts all available machines (see Figure 16) via JDBC from the PDKM database. After a
machine is selected in the Maintenance part, a second web service provides the machine
component details again via JDBC from the PDKM database (see Figure 18).
The modified admin parameters as well as the extracted PDKM data are shown to the user and
build the base for the last web service, the DSS algorithm execution. This web service returns the
DSS results, which describe recommended maintenance alternatives for the selected machine
component (see Figure 19).

Copyright © PROMISE Consortium 2004-2008 Page 11

@

3 Implementation of the demonstrator

3.1 Implementation step 1: CAT machine instrumented with complete PEID at BOL

3.1.1 General description
Structural parts were first manufactured and the excavator boom equipped with four fatigue
devices on critical areas. The excavator was then assembled and configured with attachments as
requested by the final customer (standard bucket size). After assembly, as the machine was built,
BOL data was recorded in CAT systems (machine serial number, attachment part number, built
date, dealer code…). Other BOL data about the boom structure (critical locations, class of weld,
design lifetime of each location) were identified for later entry in the DSS as parameters for
determining remaining lifetime of the boom during its service life.

EPFL partner as recommended during PDKM training by the R9 team, built the PDKM data
structure required by the DSS and entered a complete dataset, including these BOL data and
estimated historical MOL data, in the PDKM backend.

3.1.2 PROMISE components used
Complete PEID composed of all physical components required to capture information necessary
for DSS calculation of estimated remaining lifetime of the boom were used: boom structure
equipped with fatigue mechanical devices with electronic units and ECP chips, on-board engine
ECU recording engine totalised values and machine board displaying ECU totalised values.

Each fatigue device is made of 6 components (see figure 6)

(1) “CrackFirst” mechanical device
(2) “CrackFirst” electronic unit
(3) Metallic protective box of the “CrackFirst”
(4) Electronic cable between the “CrackFirst” device to the “ECP” Radio Frequency device
(5) “ECP” Radio Frequency device
(6) Plastic protective box of the “ECP”

FIGURE 6: BOOM EXCAVATOR EQUIPPED WITH FOUR COMPLETE FATIGUE DEVICES (FEB-07)

“CrackFirst”
device

“ECP” chip
Radio Frequency

“CrackFirst”
device

“ECP” device

Copyright © PROMISE Consortium 2004-2008 Page 12

@

In the first phase of implementation the focus was on the physical realization of the crack-
first/ECP combination on a machine. Figure 6 shows the actual field deployment of the set-up
which has proven itself to be technically stable enough to be deployed on a machine under real
working conditions (10 month deployment). Besides the physical set-up also the stability of
wireless communication was tested. At this phase an off board laptop was used to initialise the
ECP chips data with ID and to validate the read out of the fatigue data from each mechanical
sensor over Radio Frequency. The laptop was situated in a central place in the service garage and
was able to access the ECP thus proving to be suitable for real-life adoption. At this point in time
the ECP was accessed via proprietary means over a simple GUI as functional tests rather than
integration tests have been performed.

In a second implementation step, software has been implemented that allowed the “crack first “
information to be available via the CorePAC interface. Further tests showed full integration of the
“crack first” PEID with the PROMISE middleware (SAP implementation) and finally the PDKM,
thus showing full PROMISE integration and compatibility.

3.1.3 Functionalities demonstrated
BOL initialisation processes have been demonstrated with the use of all PROMISE components
(PEID, CorePAC, DHL, RHL, PDKM) to initialise the ECP chips with BOL data as well as to
record BOL data in the PDKM back end.

For the first step implementation of the “crack first” and ECP hardware, a graphical user interface
was developed (see figure 7). It is a simple Java application that can be executed on a PC. One
can choose the IP address of the ECP that is to be queried. Afterwards static information like the
time can be set via the GUI. Further the current fatigue sensor status or the complete status log
(shown in figure 7) can be downloaded from the crack first/ECP combination. The broken cracks
of the sensor are visualized as '-' and non-broken cracks by '+'. The GUI is simple yet powerful for
field deployments with no connection to the PROMISE systems.

FIGURE 7: DEDICATED GUI TO INITIALIZE AND READ ”CRACKFIRST” IN FIRST PHASE IMPLEMENTATION (FEB-07)

Copyright © PROMISE Consortium 2004-2008 Page 13

@

In addition to the unique identification of the PEID’s (crack first/ECP chips), additional structural
part information need to be written on both the ECP chips (PEID) and the PDKM back end,
following these two steps sequentially:

1. Initialize PEID’s data (Bottom-Up-Initialization using DHL GUI)
2. Data transfer from PEID to PDKM (via CorePAC, DHL, RHL, PDKM)

During initialisation, the information is acquired by the DHL-user interface (See Figure 8) in
order to initialise a PEID without network-connection. As described in §2.5.1 the acquisition of
information and storage in the PDKM is then facilitated.

FIGURE 8: DHL-USER INTERFACE – WRITE INITIAL DATA

3.1.4 Current and future refinement
Considering previous descriptions of the A5 demonstrator (DA5.3 and DA5.4) compared to the
actual implementation performed as of today, main comments are the following.

1) PEID / Hardware components:
During development steps, investigation was conducted for having a common IT system for the
two CAT demonstrators, A2 and A5, with a complete PEID interfacing with on-board CAT
existing ECU and including Radio Frequency Read & Write system.
This first solution required the addition of a configured on-board computer with specific
connection to both current on-board ECU and new RF system.
For demonstration purposes, and, as the on-board RF system is currently not cost effective, the
off-board solution was chosen.
For further application, specifications of the off-board computer (hard and software’s) could be
integrated in existing on-board ECU, depending on the required level of automation of data
transfer, in case access to the machine is difficult or fatigue damage is critical compared to
frequency of data acquisition.

Copyright © PROMISE Consortium 2004-2008 Page 14

@

2) Interfaces / Data sources:

 Although we investigated on developing specific interfaces between CAT existing systems to
directly transfer BOL data to PDKM database, we decided to extract manually the required BOL
data to use the developed alternate processes to enter information in PDKM that is using direct
PMI format or entering manual inputs using DHL GUI or PDKM GUI (see §2.5).
Furthermore, as a customized CorePEID interface has been developed for the EOL demonstrator
A2 (see in DA2.6) to enter information in PEID and PDKM, we could replicate the solution for
the MOL demonstrator A5. We will then focus in this deliverable, on the description of the
Fatigue information flow and Predictive maintenance diagnosis.
In future implementation, we should develop dedicated interfaces to extract data from existing
CAT systems and then, use the PROMISE guidelines/processes to transfer automatically the
extract files to the PDKM database.

3) RFID / part tracking:
 Use of IDs and Bill Of Material up-date have been demonstrated in the CAT EOL demonstrator
using RFID passive tags and CorePEID interface. This requirement in the MOL demonstrator will
then be facilitated using DSS GUI manual entry to consider machine configuration (ie attachment
type: “standard”, “light” or “heavy”) in the predictive maintenance plan.

4) ECU / engine data capture:
 Use of ECU data has been demonstrated in the CAT EOL demonstrator using ET tool and script
to translate ET outputs into “xml” PDKM compliant format. This requirement in the MOL
demonstrator will then be facilitated using DSS GUI manual entry to consider machine payload
(ie number of running hours, fuel consumption rate corresponding to “light”, “standard” or
“heavy” application) in predictive maintenance plan.

3.2 Implementation step 2: BOL and MOL data up-date between PDKM and PEID

3.2.1 General description
BOL information has to be stored on PEID’s and in the PDKM (as described in §2.1.4.4).
Additionally, MOL information has to be recorded at maintenance service interval, with fatigue
information automatically transferred from PEID to PDKM and other MOL data manually entered
or up-dated in PDKM using dedicated interface (as described in §2.6).

There are two ways for the MOL update of PDKM, depending on the web access around the
machine. If the machine is serviced in a garage equipped with web access, fatigue data will be
automatically transferred to the PDKM back end; otherwise, fatigue data will be buffered in
service laptop for later retrieval and transfer to PDKM when service laptop will be connected to
the web afterwards.

The service operator will manually enter all other information in a PDKM interface after required
checks on the machine Payload information will be read from the machine board (total number of
running hours, total fuel consumption) as machine configuration update will be determined
considering previous information entered in PDKM back end (ie, BOL data, Attachment type)

During MOL, in case of repair or BOL information change (change owner), we will need to up-
date ECP chips data with information entered into PDKM.

Copyright © PROMISE Consortium 2004-2008 Page 15

@

Historical information about the machine and the structural parts that are monitored should be also
updated in PDKM by the service Dealer to record major information about the machine that is
monitored. In that case, some BOL data and MOL data should be modified using either the BOL
initialisation process (as described in §2.5) or the MOL up-date process (as described in §2.6).

3.2.2 PROMISE components used
Complete system architecture is used with ECP chips (PEID), CorePAC, DHL and RHL
applications (MW), PDKM backend and PDKM front end with PDKM GUI.

3.2.3 Functionalities demonstrated
For demonstration simplification, we have demonstrated the ability of the ECP chip tag to handle
limited BOL data, such as “A5_PART_NUMBER” and “A5_PART_attachment”, this BOL data
being able to be up-dated, such as “A5_PART_attachment” in case attachment is changed by the
Dealer or Customer of the machine (see scene 3 of DA5.3).

In this step, further functionalities of the system architecture and data flow mechanisms were
demonstrated corresponding to the scenes when a maintenance operation is performed leading to
modified part information with historical information entered in the PDKM (in case of repair or
part replacement) and ECP chips information possibly updated as well (in case of part
replacement).

To modify structural part information on both the ECP chips (PEID) and the PDKM back end,
following two steps have to be performed sequentially:

1. Modify PDKM data (PDKM front end GUI)
2. Data transfer from PDKM to PEID (via RHL, DHL using CorePAC-interface)

The PDKM allows the manual entry of information to a specific “info item” which is located on a
PEID. Initial information like e.g., the part’s serial number can be entered into the PDKM front-
end GUI (see figure 9). When pushing the “write” button, the write request is forwarded to the
middleware and then to the PEID (see figure 27 in annex).

FIGURE 9: PDKM DATA STRUCTURE (SCREENSHOT)

Copyright © PROMISE Consortium 2004-2008 Page 16

@

Our evaluation has shown that the correct information is stored on the PEID. Thus, all relevant
information that needs to be stored on the PEID can be entered into the PDKM (if necessary) and
written to the PEID using the complete PROMISE architecture.

Data capture from Fatigue Sensor (ECP, CorePAC) was demonstrated using the complete and
the following sequential steps:

1. In the PDKM data model for A5, measuring points for field data have been created (see
Figure 9) containing initial BOL-data

2. In the PDKM front-end, subscriptions to these measuring points can be created (see figure
10). A subscription will cause the field data to be read either in a defined interval or every
time the PEID comes into range.

FIGURE 10: SUBSCRIPTION FOR FATIGUE DATA (SCREENSHOT)

Our evaluation has shown that the correct field data is read from the PEID in the given intervals
and stored in the PDKM database. This validates that data, including the fatigue status of
structural parts, can be acquired and proves full vertical integration of the PROMISE system from
PEID to PDKM.

Copyright © PROMISE Consortium 2004-2008 Page 17

@

FIGURE 11: DATAFLOW MONITORED IN SAP’S MOMA-CONSOLE

FIGURE 12: READ REQUEST ANSWERED BY DHL

FIGURE 13: DATA RECEIVED BY THE PDKM

While Figure 11 shows the overall data-flow from the PEID to the DHL over the RHL to the
PDKM, Figure 12 shows that data was read by the DHL and Figure 13 shows the corresponding
result-graph in the PDKM.

Copyright © PROMISE Consortium 2004-2008 Page 18

@

3.2.4 Current and future refinement
A common IT solution for the two CAT demonstrators has been discussed and should be easily
developed given the synergies between the two demonstrators.
This means technically to combine the two PEID’s with a laptop configured for accessing both
ECP chips and RFID tags, in addition to the possibility to connect to the CAT on-board ECU’s.

The PDKM data structure for both demonstrators should be redesigned with a merged PDKM data
structure built for each demonstrator, allowing all scenes of each demonstrator to be performed
under the same IT architecture with the use of the CorePEID interface developed by the BIBA, in
particular.

3.3 Implementation step 3: DSS Use for Maintenance Decision

3.3.1 General description
During MOL, the DSS is used to plan maintenance services on a PROMISE compliant machine.
Combination of application type and machine configuration can be evaluated thanks to DSS
parameters modified in DSS administration module of the DSS GUI.

DSS should allow as well the operator to view historical information on a PROMISE compliant
machine.

During regular service maintenance on a PROMISE compliant machine at given frequency, say at
every specified unit time, i.e., every 960 hours, the information in PEID is uploaded into PDKM
system. The DSS manager changes required parameters in DSS GUI if needed, for example, if
part change cost has decreased or inspection cost has increased.

Based on the data retrieved from PEID and updated parameters manually entered using DSS GUI,
DSS generate alternative maintenance scenarios. With the result, the customer and machine
inspector discuss what the optimal solution is at this time: change part now, change part in-
between to next regular inspection, do nothing until next regular inspection.

3.3.2 PROMISE components used
Assuming the fatigue information has been recorded in the PDKM backend, the following
PROMISE components are used to run the DSS at the service Dealer location:

• PDKM backend
• DSS java program
• Mapping SQL statements for DSS program integration to the PDKM database
• DSS GUI

The DSS module is developed with java platform. It is composed of 3 parts: fatigue data
calculation module, maintenance alternative generation module, and input/output module.
The first two modules inherit ‘Action’ class, which are PROMISE standard module specification.
The input/output modules are for the information passing from/to the first two modules.
User inputs and data from PDKM are passed through input module and the result is received by
output module. The returned output modules are utilized to display the DSS result.

Copyright © PROMISE Consortium 2004-2008 Page 19

@

FIGURE 14: DATA FLOW AMONG DSS MODULE, PDKM, AND WEB GUI.

Figure 14 shows data flow during the DSS use. In the figure, the part 1 means the fatigue data
calculation module and the part 2 is for the maintenance alternative generation module. During
the step 3 to 5, the data are passed with the input/output module. DSS module does not intervene
in the admin work, because it is just a parameter setting work for the DSS.

Laptop to run the DSS should be configured with:

- Web access, with access to the PDKM server (located in Kalsrue)
- Java V5 installed

Prerequisite to be able to run the DSS are:

- DSS programmed in java
- DSS GUI programmed
- Interface between DSS and PDKM (mapping task for DSS business logic implementation)
- Interface between DSS GUI and PDKM

Copyright © PROMISE Consortium 2004-2008 Page 20

@

3.3.3 Functionalities demonstrated

Full implementation of the DSS has not been achieved due to technical issues for the
communication between DSS and PDKM database.
We nevertheless developed and refined the DSS algorithms for predictive maintenance on
structures with associated DSS GUI’s defined and programmed.

Implementation status of the DSS within the PDKM is as follows:

- A5 DSS Version 2 is connected to the PDKM. But only the input data is read from the
PDKM.

- A5 DSS run on a standalone basis
- No write operations are implemented (for entering information using DSS GUI)
- Neither the manual entries nor the DSS results are stored in the PDKM backend (for

recording historical information on machine or structural part)

3.3.3.1 DSS program
Two DSS modules were developed on the Java platform:

- Fatigue damage calculation module for each selected part.
- Regression model for the estimation of remaining lifetime of each censoring spot.

To follow the PROMISE interface standard among core modules and PDKM GUI, it supports
'exec' public function, which takes a defined input class. Of course, the input class should contain
all required information for the calculation before passing to the module. The execution of the
module returns an output class, which contains calculation result.
Hence, the DSS module gets all required information from input class, which is filled with
information from DSS GUI and PKDM.

The developed DSS module was tested to ensure the correctness with an arbitrarily generated
sample data before integration. Tests were done under the assumption of the input class contains
correct information.
The modules’ outputs were compared with the result from manual calculation with Microsoft
Excel, and results were exactly matched.

3.3.3.2 DSS GUI
In this section the functionalities of the A5 DSS Scenario will be illustrated. The Caterpillar MOL
demonstrator has two main functions: the Maintenance Planning and the Administration of
maintenance and design parameters. In the following, the A5 DSS GUI and its navigation is
described in detail.

1. The A5 DSS demonstrator starts with the selection of the main function (figure 15).

Copyright © PROMISE Consortium 2004-2008 Page 21

@

FIGURE 15: DSS GUI, FUNCTION SELECTION

2. The listed machines are extracted from the PDKM backend with the help of a web service

call.
For both functionalities, the user has to determine the respective machine, either by reading
the RFID tag or by selecting the machine ID and/or name manually from a drop down list
(figure 16).

FIGURE 16: DSS GUI, MACHINE SELECTION

3. During the Administration, the maintenance cost and design parameter can be modified for

the selected machine (figure 17). The “Save” function is not implemented. This means, the
modified parameters are not stored in the PDKM backend, but are valid only for the
specific DSS session.

Copyright © PROMISE Consortium 2004-2008 Page 22

@

FIGURE 17: DSS GUI, PARAMETERS ENTRIES

4. During the Maintenance Planning, the list of all components of the selected machine is

given in a table. Further, a data history is planned. Currently, not all recommended data is
inserted in the PDKM backend database. Thus, some of the shown columns are empty and
only one component is visible (figure 18).

FIGURE 18: DSS GUI, MACHINE VIEW

Copyright © PROMISE Consortium 2004-2008 Page 23

@

5. After selecting one component in the table and clicking “Continue”, the maintenance
history and proposed maintenance actions are shown (figure 19). The DSS algorithm
provides multiple alternatives to choose from. In the last step, the user selects the
alternative, best fitting to the respective problem and ends the demo by clicking “Finish”.

FIGURE 19: DSS GUI, MAINTENANCE ALTERNATIVES

The “Back” button returns to the previous screen by saving the performed selections and
modifications temporarily. The “Cancel” button discards the modifications done so far and returns
the previous demo step.

The current version of A5 is connected to the DSS business logic and thus to the PDKM backend
via a web service interface provided by Cognidata. The data available in the PDKM backend
database is read and shown in the GUI. However, no write operations are implemented. Neither
the manual entries nor the DSS results are stored in the PDKM backend. To support a
comprehensive demo, the missing PDKM data has to be inserted to provide multiple components
and various alternative maintenance strategies to choose from.

3.3.3.3 PDKM GUI
The PDKM GUI supports the review of all stored machine parameters. If the status is stored in the
PDKM backend, this parameter is visible.

Copyright © PROMISE Consortium 2004-2008 Page 24

@

3.3.4 Current and future refinement

Currently, the web services do not return the recommended data items, which have to be shown in
the GUI. Either this problem results from missing PDKM data or from an incomplete DSS
business logic implementation.

Therefore, for a complete PDKM / DSS implementation, the mapping task between DSS and
PDKM needs to be resolved and a large quantity of datasets need to be entered in PDKM backend
to finally validate the full DSS integration and its use.

More over, further DSS refinement could be conducted, as well as new DSS modules could be
developed for machine fleet management, for BOL perspectives.

4 Conclusion

Steps conducted during the implementation phase of the A5 MOL demonstrator demonstrated the
successful use of all PROMISE components and interfaces, except the PDKM / DSS integration.

The customized PEID, the customized Middle ware, the customized PDKM data structure and the
DSS program were developed and evaluated with basic tests performed to validate their main
functionalities.
Remaining activities would be to further extend the solution in term of workflow and information
flow fitting the A5 scenario and lastly, to refine the customized IT system before starting a real
world implementation on large-scale CAT products.
For this additional step, critical issues and further technical and business challenges described in
deliverable DA5.7 should be considered.

As well as customisation effort on the data structure and customized interfaces, the physical
PEID’s may be optimised.

From the technical point of view the developed solution of the “crack first” and ECP PEIDs
provides suitable means to evaluate the A5 demonstrator. The information relevant for the
demonstrator is acquired and is fed into the PROMISE system appropriately. Field tests on
excavators (in Austria and UK) have further validated the suitability of the solution. But there is
still room for improvement.

The current solution consists of two separated boxes (1 “crack first” box, 1 ECP box) that are
connected via a cable. Although the field tests have shown that this set-up can withstand harsh
environmental conditions (PEID combination is IP67 protected) it might be favourable to
integrate ”crack first” and ECP into one box. This will create an even more robust solution and
further minimize the size of the box that has to be mounted on the structural parts. As a result, the
deployment effort will decrease and mounting of the box in even more spatially constrained
locations will be possible. The integration of the two components may be considered in future
exploitation activities after the PROMISE project.

Copyright © PROMISE Consortium 2004-2008 Page 25

@

5 References
DA5.3 “Design of the A5 Demonstrator on information management for heavy vehicle lifespan
estimation”
DA5.4 “Process model workflow description for the demonstrator”
DA5.7 “Critical issues and barriers”
DR8.11 “Refinement and Improvement of the decision support demonstrator (Final version)”

6 Annex

6.1 Alternate initialisation processes of PEID and PDKM

6.1.1 Prerequisite
• PDKM data-structure for new equipment is available
• Initial data that is not acquired from PEID is entered (or imported) using the

Backend-System (see Figure 20)
• PEID is started and write-able (see Figure 21)
• DHL is started and PEID recognized (see Figure 22)

FIGURE 20: EXAMPLE DATA STRUCTURE IN SAP-BACKEND

Copyright © PROMISE Consortium 2004-2008 Page 26

@

FIGURE 21: SHELL OF EXAMPLE PEID

FIGURE 22: DHL WITH RECOGNIZED PEID

6.1.2 Bottom-Up-Initialization
• Navigate in DHLs service-structure to urn:upnp-org:serviceId:content:1 -> Write

(Figure 23)
• Enter UPIs’ and PEIDs’ ID and the data to be written (e.g., ECU_9, FUEL,100 ->

initial fuel-value) (Figure 24)
• Log in to PDKM (Figure 25)

Copyright © PROMISE Consortium 2004-2008 Page 27

@

• Navigate to MOL-functions -> Enter Mapping Data -> Search Product Instances -
> Navigate to your Equipment and to the info items corresponding measuring
point (Figure 26)

• Define a mapping between measuring point and info item by entering UPIs’ and
InfoItems’ ID-> ‘create entry’ Figure 27)

• Create a subscription by selecting the corresponding MW-node and the desired
subscription-interval -> ‘subscribe’ (Figure 28)

• Result: Data from PEID is transferred from PEID to PDKM automatically (Figure
30)

FIGURE 23: PEID'S CONTENT-SERVICE (FOR WRITING INITIAL DATA)

Copyright © PROMISE Consortium 2004-2008 Page 28

@

FIGURE 24: WRITING DATA TO PEID USING THE DHL

FIGURE 25: PDKM LOG-IN

Copyright © PROMISE Consortium 2004-2008 Page 29

@

FIGURE 26: BOL-FUNCTIONS OF PDKM

FIGURE 27: DEFINITION OF MAPPING PARAMETERS

Copyright © PROMISE Consortium 2004-2008 Page 30

@

FIGURE 28: CREATION OF A SUBSCRIPTION

FIGURE 29: WRITE REQUEST FROM PDKM TO BACKEND AND PEID

Copyright © PROMISE Consortium 2004-2008 Page 31

@

FIGURE 30: DATA-FLOW BETWEEN PEID AND PDKM

6.1.3 Top-Down-Initialization
• Log in to PDKM (Figure 25)
• Navigate to MOL-functions -> Enter Mapping Data -> Search Product Instances -

> Navigate to your Equipment and to the info items corresponding measuring
point (Figure 26)

• Define a mapping between measuring point and info item by entering UPIs’ and
InfoItems’ ID-> ‘create entry’ (Figure 27)

• Create a subscription by selecting the corresponding MW-node and the desired
subscription-interval -> ‘subscribe’(Figure 28)

• Enter initial data to be written to info item -> ‘Write to PEID’ (Figure 29)
• Result: Data from PEID is transferred from PEID to PDKM automatically (Figure

30)

6.2 Manual update of MOL data using the SAP-Backend

Prerequisite:

• Data structure is initialized
• User is logged in to SAP Backend and navigated to the desired equipment (Figure

31)
Update:

• Navigate to … -> Measuring Documents -> IK11 – Create

Copyright © PROMISE Consortium 2004-2008 Page 32

@

• Enter the ID of the Measuring Point (e.g, retrieved within user-interface shown in
Figure 20) an enter it there (Figure 32)

• Enter the current value and save (Figure 33)

FIGURE 31: SAP-BACKEND

Copyright © PROMISE Consortium 2004-2008 Page 33

@

FIGURE 32: SELECTION OF MEASURING POINT IN SAP-BACKEND

FIGURE 33: CREATION OF NEW MEASUREMENT DOCUMENT

Copyright © PROMISE Consortium 2004-2008 Page 34

@

6.3 DSS Algorithm
1. Notations

i index for maintenance options, 1: inspection, 2: repair, 3: change
j index for class of weld, 2{ , , , , , }j W G F F E D∈
t index for time
T additional delayed time
t′ Current time

itC Maintenance cost for maintenance option i at time t

PC Part change cost

RC Risk cost

BC Machine breakdown cost
()t

j

k
If t Ideal fatigue damage at time t for the class type j of weld in the application

profile k at time t, , t t t′ ′′=
()t

j

k
Ig t Inverse function of ()t

j

k
If t , , t t t′ ′′=

()t

j

k
Cf t Crack fatigue damage data at time t for the class type j of weld in the application

profile k at time t, , t t t′ ′′=

()t

j

k
Cg t Inverse function of ()

j

k
Cf t , , t t t′ ′′=

()Bp x Probability of machine breakdown at damage level x
P Risk factor
TD Designed target lifetime (=10,000 hrs)
TR Estimated remaining lifetime (based on real trend)
TI Theoretical remaining lifetime (based on designed target life time)

jλ Inspection threshold value of the class type j of weld
Ej Equivalent fatigue damage of the class type j of weld

2. Step 1: Status data collection

Collect status data of a structural part of a heavy construction equipment
Gather machine serial number, location, class of weld, crack propagation data, latest sensoring
time, current time, fuel consumption rate, and type of attached bucket size. We assume that the
data is gathered per every 960 hours.

3. Step 2: Remaining life time estimation

(1) Identify application profiles.
First, identify application profile based on fuel consumption types (light, standard, and heavy

applications) and attachment types (small, standard, and big bucket). In the fuel consumption
case, the change of fuel consumption type is automatically identified by the reference data (fuel
consumption rate). Attachment types can be identified manually.

Copyright © PROMISE Consortium 2004-2008 Page 35

@

Criteria of application profile Example
Small size bucket (0.8m3)

Standard EAME size bucket (1m3) Attachment type
Large size bucket (1.3m3)

Light application (OPG)
Standard application (quarry) Range of fuel consumption rate

Heavy application (hard soil or rocks)

The following shows the rule to classify application profiles according to fuel consumption

rate.
• If Fuel consumption rate < 0.227 Gal/hr, then, fuel consumption type is “light

application”.
• If 0.227 Gal/hr < Fuel consumption rate < 0.312 Gal/hr, then fuel consumption type is

“standard application”.
• If Fuel consumption rate > 0.312 Gal/hr, then, fuel consumption type is “heavy

application”.

(2) In this case example, the sensoring data are based on the F class of weld. Depending on

the class of weld, the fatigue damages are different. For each class of weld, we estimate
the equivalent fatigue damage function as follows. Note that all values of parameters
are empirical, which have been gotten from the company.

4.69 ()
WW CE f t= ⋅

3.05 ()
GG CE f t= ⋅

2 2
1.4 ()

FF CE f t= ⋅

()
FF CE f t=

0.52 ()
EE CE f t= ⋅

0.43 ()
DD CE f t= ⋅

(3) Calculate the regression model based on gathered field data.

For example, ideal degradation of fatigue damage at F class of weld, standard bucket,
and standard fuel consumption application can be expressed in the form.

() 10000t

j

k
I Df t t T t= =

And with the following regression model, we can express the real degradation of fatigue
damage by estimating a0, a1, and a2.

2
0 1 2()t

j

k
Cf t a a t a t= + ⋅ + ⋅ ,

For each identified application profile (total 9 profiles), we assume that we have reference
models for regression models of ideal degradation of fatigue damage as follows.

• Standard bucket
o Light application

Machine running hours Equivalent fatigue damage
0 0

5000 hrs 0.433 (43.3%)
10000 hrs 0.866 (86.6%)

Copyright © PROMISE Consortium 2004-2008 Page 36

@

o Standard application
Machine running hours Equivalent fatigue damage

0 0
5000 hrs 0.5 (50%)

10000 hrs 1 (100%)

o Heavy application
Machine running hours Equivalent fatigue damage

0 0
5000 hrs 0.833 (83.3%)

10000 hrs 1.667 (166.7%)

• Small bucket
o Light application

Machine running hours Equivalent fatigue damage
0 0

5000 hrs 0.353 (35.3%)
10000 hrs 0.705 (70.5%)

o Standard application

Machine running hours Equivalent fatigue damage
0 0

5000 hrs 0.407 (40.7%)
10000 hrs 0.815 (81.5%)

o Heavy application

Machine running hours Equivalent fatigue damage
0 0

5000 hrs 0.68 (68%)
10000 hrs 1.36 (136%)

• Large bucket

o Light application
Machine running hours Equivalent fatigue damage

0 0
5000 hrs 0.66 (66%)

10000 hrs 1.32 (132%)

o Standard application
Machine running hours Equivalent fatigue damage

0 0
5000 hrs 0.76 (76%)

10000 hrs 1.53 (153%)

o Heavy application
Machine running hours Equivalent fatigue damage

0 0
5000 hrs 1.27 (127%)

10000 hrs 2.545 (254.5%)

(4) Calculate the estimated remaining life time and theoretical remaining life time.

The estimated remaining life time and theoretical remaining life time can be calculated
with the formulae below.

Copyright © PROMISE Consortium 2004-2008 Page 37

@

4. Step 3: Asset status check

(1) Check inspection option.
If 0.1 ()t

j

k
j C jf tλ λ′ ′− ≤ ≤ , schedule inspection and go to (2). Inspection should be scheduled at jλ .

In this case example, 0.167Wλ = , 0.25Gλ = ,
2

0.583Fλ = , and 0.833Fλ = are given by the
company. Inspection cost (1tC) is also given as 30.

(2) Compare estimated remaining lifetime with theoretical remaining life time.

While theoretical remaining life time (TI) is based on designed target life time, estimated
remaining life time (TR) is based on real usage operation. If TR < TI -ε where ε is a threshold
value, in other words, when the machine is over-used than expected, then go to step 4.

5. Step 4: Maintenance option generation

For each option, alternatives can be generated from time t′ to Rt T′ + by increasing T for each
time. For each option, we can calculate maintenance cost, equivalent fatigue damage, and
estimated remaining lifetime.

For t, from t t′= to (100)t

j

k
R Ct t T g′= + = by increasing T each time

1. Calculate repair cost and estimated remaining time
Repair cost depends on damage status of machine. The repair cost can be calculated as

follows:

2

42.748 297.710 (), 0 () 0.8

11400 14500 (), 0.8 () 1

t t

j j

t t

j j

k k
C C

t k k
C C

f t f t
C

f t f t

⎧− + ⋅ ≤ ≤⎪= ⎨
− + ⋅ < ≤⎪⎩

Estimated remaining lifetime after repair is 0.8⋅TD=0.8⋅10000=8000 hrs.

2. Calculate change cost
The change cost (3tC) includes part change cost and risk cost. If the maintenance is not

taken at appropriate time, the possibility of machine failure will increase. Hence, the risk cost
for delaying maintenance should be considered in the cost model. The risk cost (RC) depends
on damage status and theoretical remaining life time.

3t P RC C C= +

(())t

j

k
R B C BC p f t C P= ⋅ ⋅

(100) (()) if (100) (())

0, otherwise

t t t t t t

j j j j j j

k k k k k k
I C C I C C

I

g g f t g g f t
T

′ ′ ′ ′ ′ ′⎧ ′ ′− ≥⎪= ⎨
⎪⎩

(100) (()) if (100) (())

0, otherwise

t t t t t t

j j j j j j

k k k k k k
C C C C C C

R

g g f t g g f t
T

′ ′ ′ ′ ′ ′⎧ ′ ′− ≥⎪= ⎨
⎪⎩

Copyright © PROMISE Consortium 2004-2008 Page 38

@

Where
2 2

0 1 2(()) () () 0.023 () 0.123 ()t t t t t

j j j j j

k k k k k
B C C C C Cp f t c c f t c f t f t f t⎡ ⎤ ⎡ ⎤= + ⋅ + ⋅ = − ⋅ + ⋅⎣ ⎦ ⎣ ⎦ ,

10000BC = , 3000PC = , and
()

,
()

t

j

t

j

t k
Ct

Rt k
It

f t dt
P t T

f t dt
′

′

= <∫
∫

The estimated remaining lifetime after change is TD=10000 hrs.

Using the above equations, we can generate some maintenance alternatives

