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Executive Summary 

The DREAMS tool chain consists of a modelling tool, variability, design space exploration and scheduling 
design tools, verification tools for timing and safety and last but not least, configuration file generation 
tools (see D4.4.1[1]). The role of this deliverable is to show how the tool chain has been applied to the 
demonstrators of the project or publically available use case.  

1 Introduction 

The goal of T4.4 is not only the creation of a tool chain based on the tools that implement algorithms 
defined in T4.1, T4.2 and T4.3, but also to make it concretely applicable. For this reason T4.4 has first 
described the functionalities offered by each tool with their means for interconnections and has 
identified tool chain use cases. To furthermore ease the adoption by the demonstrators, support has 
been provided in applying the tool chain, which is documented by this deliverable. 

 

1.1 Relationship to other DREAMS Deliverables 

Besides D4.4.1[1], which is the main input regarding the tool chain, all other WP4 deliverables that 
describe tools and the implemented algorithms are also relevant. For the descriptions of the 
demonstrators and the perimeter of the application of the tool chain the inputs are D7.1.1 and D8.3.1. 

1.2 Positioning of the Deliverable in the Project 

This deliverable is the second and last deliverable of the working task T4.4 “Tool integration and 
Demonstrator Support”. 

1.3 Structure of the Deliverable 

Three tool chain use cases have been defined in D4.4.1[1]. Their main step are reminded in Section 2. In 
Section 3 we describe how the tool chain has been applied to the wind power demonstrator (WP7) 
according to the Use Case 3 “Variability and Design-Space Exploration”. Use Case 2 “Scheduling 
Configuration with Resource Management” has been applied to a public avionics use case, see Section 4. 
In Section 5 we describe how the tool chain has been used in the healthcare demonstrator to configure 
the on-chip and off-chip. 
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2 Tool Chain Use Cases 

In this section we briefly remind the three tool chain use cases defined in D4.4.1[1]. The tool chain 
application sections are structured according to the (groups of) steps listed in the provided synthetic 
tables. 

The first use case covers the basic configuration of Schedules. Table 1 shows all steps from the definition 
of the Logical Architecture until the generation of the platform configuration files. 

 

N° Description of Step Tool(s) 

Applications and Resources 

1 Modelling of the Logical Architecture  AF3 

2 Modelling the Timing Requirements AF3 

3 Modelling the Platform Architecture  AF3 

Deployment 

4 Modelling the System Software model AF3 

5.A Defining the Deployment (Manual) AF3 

5.B Defining the Deployment (DSE) AF3 

Configuration of Schedulers 

6 Timing Decomposition (optional) RTaW-Timing 

7 Creation of an empty System Schedule AF3 

8 Adding partition/task schedules Xoncrete 

9 Adding on-chip transmission phases for time triggered virtual links RTaW-Timing 

10 Adding off-chip communication schedules TTE-Plan 

11 Timing Analysis RTaW-Timing 

Platform building block configuration file generation 

12 Generation of XtratuM configuration files AF3-plug-in 

13 Generation of on-chip network communication configuration files AF3-plug-in 

14 Generation of TTEthernet configuration files TTE-Plan 

 

Table 1 - Use Case 1: Basic Scheduling Configuration 
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The second use case is an extension of the first one, which includes the configuration of resource 
managers, in particular for core failures. Table 2 shows all steps. 

 

N° Description of Step Tool(s) 

Applications and Resources 

1 Modelling of the Logical Architecture AF3 

2 Modelling of Timing Requirements AF3 

3 Modelling of the Platform Architecture AF3 

Deployment 

4 Modelling of the System Software AF3 

5 Defining the Deployment for the nominal mode AF3 

Configuration of Schedulers 

7A Creation of a System Schedule with partition scheduling slots, with 
Xoncrete. 

Xoncrete 

7B Manual creation of a System Schedule with partition scheduling slots. AF3 

8 Adding Scheduling reconfigurations for failure modes GRec 

9 Adding transition modes MCOSF 

10 Adding off-chip communication schedules TTE-Plan 

11 Adding on-chip transmission phases for time triggered virtual links RTaW-Timing 

12 Timing Analysis RTaW-Timing 

Platform Building Block Configuration File Generation 

13 Generation of the Resource Management configuration files AF3-plug-in 

14 Generation of on-chip network communication configuration files AF3-plug-in 

15 Generation of TTEthernet configuration files TTE-Plan 

 

Table 2 - Use Case 2: Scheduling Configuration with Resource Management 
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The third use case covers the modeling and exploitation of product lines, see Table 3. 

 

 

N° Description of Step Tool 

Construction of the Product-Line 

1 Collect all existing products, as DREAMS system models AF3 

2 Build the 150 % model AF3 

3 Model variation points BVR 

4 Define of the feature realisations BVR 

Variability and Design Space Exploration 

5 Product-line sampling BVR 

6 Product Realisation BVR 

7 Goal definition AF3 

8 Exploration AF3 

 

Table 3 - Use Case 3: Variability and Design-Space Exploration 
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3 Application to the Windpower Demonstrator (WP7) 

The windpower demonstrator provided by work package WP7 serves as an evaluation platform for the 
methods and technologies developed in the DREAMS project applied to the industrial domain. The 
demonstration application is the control unit of an offshore wind turbine that consists of safety-critical 
and non-critical subsystems and is connected to a remote SCADA unit via EtherCAT. 

3.1 Introduction 

The predecessor deliverable D4.4.1[1] defines three use cases to describe the application of the 
toolchain: use case one and three (see also Section 2) are applied in this demonstrator since 
reconfiguration is not used for this fail-safe application. From a workflow perspective, the steps included 
in use case three are executed before the steps of use case one, thus use case three is described first. 

Use case three describes the derivation of concrete product models from a product line model. It 
consists of models that contain all possible features that may be present in the resulting products and 
variability models that describe all possible features and their interactions. For the windpower 
demonstrator, these models include a logical architecture, a library of logical components describing 
different component designs, a safety model, a feature model, and system software and hardware 
platform models. The workflow described in [2] serves as a base for this use case. A more detailed 
description of this workflow can be found in the deliverables D4.3.1[3] summarizing the state-of-the art 
in MCS product line engineering, and D4.3.2[3] and D4.3.3 [4] that describe the methods for each step of 
the workflow used to produce the product models. Applied to the windpower demonstrator, the 
resulting product models consist of a modified logical architecture, a system software and hardware 
platform architecture, a modified safety model, and a generated deployment of the component 
architecture to the platform architecture. 

These product models are used as an input to the steps described by use case 1. In particular, only the 
steps 6 to 14 (see Section 2) are exercised since due to the application of the workflow described above, 
a full system deployment is already available. Section 3.4 covers the configuration of the Schedulers, 
starting with the decomposition of end-to-end latency constraints into sub-constraints for the task and 
on-chip communication, followed by the actual generation of time-triggered partition and task 
schedules, as well as a schedule of the virtual links transferred via the NoC of the DREAMS harmonized 
platform. Finally, the resulting system schedule is checked for the satisfaction of end-to-end latency. 
Section 3.5 covers the generation of configuration files for scheduling related building block of the 
target, which includes the NoC, the hypervisors, the gateways etc.  

 

3.2 Application Architecture and Temporal Specification 

In the following, the WP7 application will be briefly described using one concrete set of product models 
that is derived from the set of product line models using the steps outlined above. The variability 
resolution process found 8 potential product model sets using the configuration described in [2] out of 
which 6 were identified to be able to satisfy the safety constraints by the DSE and the safety analysis. 
We will focus on the product model set number 6 that contains all features from the product model and 
thus is suitable to explain the application at a concrete instance. 
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3.2.1 Logical and Platform Architecture Models 

Product 6 of the Windpower demonstrator is characterized by the redundancy of the safety protection 
function. Therefore, the corresponding Components “SafetyProtection”, “Diagnostic” and “IOServer” 
have been automatically duplicated during variability resolution, as can be seen in Figure 1. The physical 
components of the Platform Architecture used in the Windpower demonstrator, are depicted inFigure 2. 
It consists of 4 Processor Tiles (red boxes), connected by a NoC (blue box). The right hand side 
represents the DHP that installed in the GALILEO box (see [5]). 

 

 
Figure 1 – WP7: Logical Architecture of Product6 of the Windpower Demonstrator (AF3). 
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Figure 2 - WP7: Platform architecture modelling the hardware platform of the windpower demonstrator (AF3). 

 

 

3.2.2 Timing Requirements 

The definition of timing requirements corresponds to step 2 of the Tool Chain Use Cases 1 and 2, see [1]. 

All tasks of the Windpower demonstrator (see Figure 1) must be executed with a period of 10ms. These 
timing requirements are expressed as Periodic Constraints and specified through the Timing Model 
editor integrated into AF3, see Figure 3. 
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Figure 3 – WP7: Periodicity constraint on task level components. 

 

Three Timing Chains with latency constraints have been identified for the Windpower demonstrator (see 
Section 4.2.2 on how to declare them). Because of the redundancy of the safety protection in “product 
6”, some tasks and the corresponding Timing Chains have been automatically duplicated during 
variability resolution, as can be seen in Figure 4. 

 

 
Figure 4 - WP7: Timing Chains with Reaction Constraints. 

The Timing Chain “Safety Protection” spans two tasks, namely “IOServer” and “SafetyProtection”: it 
starts with the reading of the input at port “InPCIExpress” by the task “IOServer” and ends with the 
writing to the output “OutSafetyRelay”, see in Figure 5. 
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Figure 5 - WP7: Path of Timing Chain "Safety Protection" 

Figure 6 shows the two sub-chains corresponding to the tasks “Safety Protection” and “IOServer”, with 
their corresponding stimulus and response events. 

 

 
Figure 6 - WP7: Sub-chains of the Timing Chain "Safety Protection" 

3.3 Deployment 

3.3.1 System Software 

As shown in Figure 7, hypervisors are defined for all Tiles, such that none of the tiles is used as a bare-
metal processor. 

 
Figure 7 - WP7: System software (AF3). 
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3.3.2 Deployment 

Figure 8 shows the Deployment “Product6_DSE_prod_realisation” of the component level tasks to the 
Partitions of the hypervisors, as defined by the DSE for Product6. As can be seen, the two tasks of the 
timing chain “SafetyProtection” are allocated to two different Tiles and thus the message sent from 
“IOServer” to “SafetyProtecton” has to transit over the on-chip network. 

 

 
Figure 8 - Wp7: Deployment for Product6 of the Windpower demonstrator. 

 

3.4 Configuration of Schedulers 

At this point, the deployment of the applications to Tiles and Partitions is defined and thus end-to-end 
latency constraints may be decomposed into sub-constraints (Section 3.4.1) which are the inputs for the 
configurations of the schedules of the task scheduling (Section 3.4.2) and on-chip communication 
scheduling domains (Section 3.4.3). Before generating the configuration file of the platform building 
blocks, end-to-end delays resulting from the domain schedules are verified against the latency 
constraints (Section 3.4.4). 

3.4.1 Timing Decomposition 

The decomposition of end-to-end latency constraints into sub-constraints for the different scheduling 
domains (task scheduling an on-chip communication) corresponds to step 6 of the Tool Chain Use Case 
1, see [1]. In order to execute the decomposition algorithm implemented in RTaW-Timing, the “Timing 
Decomposition” entry of the context menu of the Deployment “Product6_DSE_prod_realisation” must 
be selected (see Section 4.3.1.5 of [1]). As a result, the system description is automatically exported to 
RTaW-Timing, which computes the decomposition and shows the result in its GUI, see Figure 9. 
Furthermore, the results are automatically imported back into AF3 and visible in the Timing Model 
Editor (see Figure 10). 
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Figure 9 - WP7: Details of a timing decomposition (RTaW-Timing). 

 

In Section 3.3.2 we have seen that the two tasks of the Timing Chain “SafetyProtection” are deployed to 
two different Tiles. Therefore, the decomposition of the end-to-end latency constraints consists of 3 
sub-constraints or “budgets”, one for the processing on the “Celeron” Tile, a second for the 
communication of the NoC and a third for the processing on the “ARM” Tile. Figure 9 shows the details 
of the decomposition, where the so called “coordination delays” are listed separately.  A coordination 
delay is the time it may take, for example, between the latest possible time the output of a task is 
available for the transmission over the network, until the packet that transports that output is queued 
for transmission. The amount of this delay depends on how well the execution of the task and the 
queuing of the packet are coordinated. In the most favourable case, the frame is instantiated “just after” 
the latest possible execution end of the task and then queued with the fresh outputs. But coordination 
is only possible if periods are harmonic, i.e. one is a divider of the other or if they are simply equal. But 
defining harmonic periods might be impossible, because of different granularities of time, even if the 
clocks are synchronized as in the DREAMS architecture. The granularity of time is 1µs for the XtratuM 
hypervisor, but 2-n s for the NoC NI. In this use case, tasks have periods of 10 ms, but 10 ms are not a 
negative power of 2. To allow that every task outputs is sent over the network and never overwritten, a 
shorter compatible period must be chosen for the packet, which is 2-7 s = 7,813 ms. This implies non-
harmonic periods and makes coordination impossible. As a result, the coordination delay may reach the 
period of the frame that transports the output of the task or equal to the period of the task that reads 
the data transported by a frame. There a corresponding budget for the coordination is foreseen. 

In this use case it means for example that a message produced by “IOServer” on the “Celeron” Tile may 
have to wait up to 7,813 ms before being queued for sending over the NoC and when the message 
arrives at the “ARM” Tile, it may have to wait up to 10ms before being read by the next execution of 
“SafetProtection”. These are the values visible in the “Coordination” column in Figure 9. 
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Figure 10 - WP7: Timing Decomposition of the chain "Safety Protection" 

 

3.4.2 Task and Partition Scheduling 

The generation of schedules for partitions and tasks corresponds to step 8 of the Tool Chain Use Case 1, 
see [1]. In order to perform this step with Xoncrete, the “Xoncrete Eprj file Export” entry of the context 
menu of the Deployment must be selected, as show in Figure 11 (changed since the explanations given 
in [1]). 

 
Figure 11- WP7: Invocation of the Xoncrete file exporter. 

The result is the creation of 4 Xoncrete project files, one for each Tile/Hypervisor. They are located 
besides the AF3 model file and can be visualized in the “Resource Navigator”, see Figure 12. 
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Figure 12 - WP7: Xoncrete input files (AF3). 

Notice that the exporter has calculated the least common multiple (LCM) of all task periods (=10ms) and 
has exported this LCM as common MAF for all Tile/Hypervisors.  

Next, Xoncrete needs to be applied separately to each file, since Xoncrete can generates the scheduling 
of tasks for only one Tile/Hypervisor. For each file, the following steps need to be performed in 
Xoncrete: 

1. The file must be imported with the help of the “File->Load” menu entry. 
2. The “Analysis->Temporal Analysis” menu entry must be selected. 
3. The “Adj. Periods to given MAF” button must be clicked. 
4. The “2.Schedule Generation” button must be clicked. 
5. The “Run Analyzer” button must be clicked. 
6. When the schedule has been generated, the “File->Export to XMC file” menu entry must be 

selected and the result file exported to the folder where the input files are located. 

When all schedules are created, a SystemSchedule needs to be created in AF3 and the context menu 
“XtratuM Xmc file Scheduling Import” must be used to import the Xoncrete result files, as shown in 
Figure 13 (changed since the explanations given in [1]). 
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Figure 13 - WP7: Import of Xoncrete output. 

The result of the import is the creation of the corresponding partition and task scheduling model 
elements in AF3, as shown in Figure 14. 

  

 
Figure 14 - WP7: imported task and partition schedules. 

Notice that the exporter has created ETEFs for the defined Timing Chains, with offset and deadline 
constraints that correspond to their timing decomposition.  

Let us take again the Timing Chain “Safety Protection” considered in Sections 3.2.2 and 3.4.1.  The task 
“SafetyProtection” is the last segment of the chain and executed on the “ARM” Tile. The offset 
constraint for the corresponding ETEF is computed as follows: 

1. Sum of the “budgets” of the preceding segments “processing on the Celeron Tile” and 
“transmission over the off-chip network”, (see Figure 10):  3,358 ms + 7,818 ms = 11,176 ms. 
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2. The offset needs to be normalized with respect to the period of the task, i.e. the modulo with 
the task period needs to be computed: 11,176 ms mod 10 ms = 1,176 ms. 

Since the budget for the processing on the “ARM” Tile is 13,822 ms (see Figure 10), the deadline 
constraint for the ETEF is 1,176 ms + 13,822 ms = 14,998 ms. 

As can be seen in Figure 14, the task “SafetyProtection” is executed in the slot starting at 1,877ms for a 
duration of 683 µs, which is between 1,176 ms and 14,998 ms requested by the offset and deadline 
constraint. 

 

3.4.3 On-chip Scheduling of TT Virtual Links  

The generation of a time triggered scheduling configuration for TT Virtual Links over the on-chip 
network corresponds to step 9 of the Tool Chain Use Case 1, see [1]. In order to execute the algorithm 
implemented in RTaW-Timing, the “On-chip TT Schedule Generation” entry of the context menu of the 
SystemSchedule must be selected, as explained in Section 4.3.3.5 of [1]. As a result, the description of 
the on-chip communication requirements is exported to RTaW-Timing, which computes for every TT 
Virtual Link: 

 a period, compatible with the time granularity of the on-chip network (2-n s )  

 a transmission phase that avoid any collision with other TT Virtual Links 

The computed parameters are shown in the GUI of RTaW-Timing (Figure 15) and automatically imported 
into AF3, see Figure 16. 

 

 

 
Figure 15 - WP7: On-chip TT Scheduling computed by RTaW-Timing 
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Figure 16 - WP7: On-chip TT Scheduling parameters added to the SystemSchedule (AF3). 

 

 

3.4.4 Timing Analysis 

Performing worst case analysis of end-to-end delays, in order to verify that latency constraints on the 
timing chains are satisfied, corresponds to step 11 of the Tool Chain Use Case 1, see [1]. In order to 
execute the algorithm implemented in RTaW-Timing, the “Timing Evaluation” entry of the context menu 
of the SystemSchedule must be selected, as explained in Section 4.3.2.5 of [1]. As a result, the complete 
description of designed system is exported to RTaW-Timing, which executes the worst-case analysis and 
displays the computed bounds  in its GUI, as shown in Figure 17. 

 
Figure 17 - WP7: Bounds on worst-case delays of timing chains (RTaW-Timing). 

All bounds are displayed in green, because their values are smaller than the corresponding delay 
constraint.  
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Figure 18 - WP7: Bounds on worst-case delays of timing chain sub-segments (RTaW-Timing). 

Figure 18 shows the bounds on the sub-segments of the timing chain “Safety Protection”, already 
described in more details in previous sections. It can be noticed that for the on-chip communication, the 
worst-case bound is equal to the budget. Since no coordination is possible between tasks and on-chip 
communication, the coordination delay is equal to the message period in the worst case. The budget has 
been chosen accordingly by the timing decomposition algorithm (Section 3.4.1). Furthermore, since the 
on-chip schedule is based on phases that avoid any collision, the worst-case traversal time is actually the 
time needed in case of an empty network. The time budget has been chosen accordingly and thus the 
bound is equal to the budget. Notice that the comprehensive time (coordination + traversal) is 
independent of the number of VLs. Therefore it was possible to allocate tight budgets (see also [6], 
Section 4). 

On the other hand, the delays induced by the task segments depend on the processor load. Therefore all 
available slack with respect to the end-to-end latency constraint has been distributed over the task 
segments and since there is indeed slack (end-to-end delay bound << end-to-end constraint), the 
bounds on the worst case delays of the task segments are much lower than the budgets. 

 

 

3.5 Platform Building Block Configuration File Generation 

At this point, task and on-chip communication schedules have been defined and verified and thus the 
building block configuration files may be generated. 

3.5.1 XtratuM configuration files 

The generation of the configuration files for the XtratuM hypervisors corresponds to step 12 of the Tool 
Chain Use Case 1, see [1].  

The generation is implemented as AF3 plugin and can be executed by selecting the “XtratuM Xmc file 
Export” entry from the context menu of the SystemSchedule as shown in Figure 19 (changed since the 
explanations given in [1]). 
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Figure 19 - WP7: XtratuM configuration file export. 

The produced configuration files, one for each Tile, are located in the project folder and can be accessed 
in the “Resource Navigator” as shown in Figure 20. 

 
Figure 20 - WP7: Generated Xtratum configuration files. 
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Figure 21 shows the configuration file for the “APC910” Tile in the EMF tree viewer. Notice that the 
output of Xoncrete that contains the task and partition schedules (Section 3.4.2) is already produced in 
the XML format of the XtratuM hypervisor, but with respect to these files, the finally generated 
configuration files also contain communication related data, namely the partition ports and the 
communication channels between the partition ports and also the ports for the on-chip communication. 

 

 
Figure 21 - WP7: Tree view of a XtratuM configuration file. 

 

3.5.2 On-chip network communication configuration files 

The generation of the configuration files for the on-chip communication, corresponds to step 13 of the 
Tool Chain Use Case 1, see [1].  
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The generation is implemented as a two-step process, as explained in Section 3.3.1.5 of [7]. First the 
“Generate ‘Physical On-Chip Communication’ Configuration Model” entry from the context menu of the 
SystemSchedule must be selected in order to generate the configuration model, which is visible in the 
“Resoure Navigator” (.dcfg file). Figure 22 shows transmission phases for TT VL created in step 9 (Section 
3.4.3) for the LRS of one of the NIs. 

 

 
Figure 22 - WP7: Configuration model for the on-chip communication. 

 

The second step consists in transforming the configuration model into text files. For this purpose, the 
“Run configuration generation framework” entry from the context menu of the model need to be 
selected as shown in Figure 23 (not explained in [7]).  
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Figure 23 - WP7: Running the configuration generation framework. 

In dialog must be selected the “Onchip Network Configuration (Physical Platform)” entry, see Figure 24. 

 

 
Figure 24 - WP7: Configuration generation framework Wizard. 

The “Next” button moves to the selection of an output folder. We suggest creating a sub-folder in the 
project folder. Clicking “Finish” starts the generation, which produces a structure of nested text files 
with global and NI specific configuration files (see Figure 25), suitable for DRCSV2BIN (Section 3.3.1.2 in 
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[7]), which allows to translate the textual configuration files into binary files for the actual configuration 
of the platform building block. 

 
Figure 25 - WP7: Generated textual configuration files for the on-chip communication. 
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4 Application to an avionics use case 

 

4.1 Introduction 

In this section we apply the tool chain use case 2 “Scheduling Configuration with Resource 
Management” defined D4.4.1 [1] to an avionics use case, which is an extension of the ROSACE case 
study [8]. Here we have set up a system with three applications on two multi-core platforms to illustrate 
the inter-node communication between applications when reconfiguration is considered.  

With respect to the wind power use case described in Section 3, the definition of applications and 
resources (Section 4.2) considers only one product and the deployment is defined manually. But in this 
use case we create several deployments and resource schedules, managed by the local (LRM) and global 
(GRM) resource manager (see D2.2.2 [9]) so as to guarantee a certain degree of continuity of services for 
(critical) application in case of core failures (Section 4.4.2). The generation of the corresponding 
configuration files of the platform services is also illustrated (Section 4.5).  

4.2 Applications and Resources 

The construction of the DREAMS logical and platform architecture models in the AutoFOCUS3 (AF3) 
DREAMS edition tools is achieved via the context menu of an AF3 model, which is described in more 
detail in [1], [10], and [11]. Here, we will focus on a description of the ROSACE application models that 
include the application’s logical architecture, a timing requirement specification, and a target platform 
model. 

4.2.1 Logical Architecture 

The logical architecture of the ROSACE application consists of two parts: The application components 
and the resource management components that provide the runtime resource and monitoring DREAMS 
services (see Figure 26). The ROSACE application consists of a non-critical MPEG video decoder, an order 
generator and a critical control sub-application (see  Figure 27). The decoder is a single black box 
component and represents a large resource consumer. The control application description has been 
taken from [8] and is modelled by means of the DREAMS meta-model whereby the components are 
considered black-boxes with annotated properties. The order generator component represents an 
additional input to the engine control that communicates desired application operation modes to the 
control application, e.g. change flight course. 

 
Figure 26 - Top-level view on the logical components: ROSACE logical Architecture. 
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 Figure 27 - ROSACE control application 

The DREAMS platform services are modelled as components of the logical architectures such that they 
can be represented in the system deployment and schedules. Due to the fact that we have two nodes 
available in the platform architecture, the model contains two middleware components: a middleware 
component for the DHP that hosts the MPEG decoder, and a middleware component hosting the 
ROSACE control application (see Figure 26). The global resource manager (GRM) component is located in 
the DHP’s middleware (see Figure 28) to which the local resource managers (LRMs) of the DHP and the 
LRMs of the T4240 (see Figure 29) are connected. 

 
Figure 28 - Middleware components of the DHP. 
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Figure 29 - Middleware components of the T4240. 

Each component in the model is decorated with an annotation that specifies the application type: It can 
be either an application, the global resource manager, a local resource manager, or a monitor. Figure 30 
lists the component types for the MPEG component (first two rows in Figure 30; Type: Application) and 
the resource management component types of the two middleware components. The GRM located in 
the middleware component of the DHP is marked as such (see row 4 in Figure 30). 

 
Figure 30 - Logical component types. 
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4.2.2 Timing Requirements 

The definition of timing requirements corresponds to step 2 of the Tool Chain Use Cases 1 and 2, see [1]. 

All application tasks of the ROSACE demonstrator shall be executed periodically (5ms, 10ms, 20ms, 
100ms, 1s). These timing requirements are expressed as Periodic Constraints and specified through the 
Timing Model editor integrated into AF3, see Figure 31 

 
Figure 31 - ROSACE: Periodicity constraints on application task. 

Two Timing Chains related to applications have been considered, see Figure 32. The first one only spans 
tasks of the ROSACE application as illustrated in Figure 33, whereas the second covers the executions of 
a task of the application “OrderGenerator” and a task of the application “ROSACE” with the 
communication of some data from the former to the later.  

 

 
Figure 32 - ROSACE: Timing Chains. 
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Figure 33 - ROSACE: Timing chains spanning several task of one application 

Timing Chains may be declared with the help of the entry “Declare a Timing Chain” from the context 
menu of the component architecture, see Figure 34 (not shown in [1]). 

 

 
Figure 34 – Context menu for declaring a Timing Chain. 

In the creation dialog (shown in Figure 35), a name must be provided and the list of involved tasks, in 
the order in which information flows from the start to the end of chain. An optional reaction constraint 
can be provided in seconds. 
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Figure 35 - Declaration of a timing chain. 

 

Resource management tasks (LRM, MON and GRM) shall all be executed with the same periodicity. The 
corresponding periodicity constraints can be generated through a context menu of the nominal 
Deployment, as shown in Figure 36. The produced constraints are added to the Timing Model. 

 

 
Figure 36 - Context menu entry for specifying period of resource management tasks. 

For the ROSACE Use Case a resource management period of 1s has been chosen, which is equal to the 
smallest common multiple of the functional task periods (MAF).  

Since furthermore, LRM tasks must be executed at the end of the MAF, the timing constraint generator 
also adds an offset constraint that induces an execution start at t = MAF - WCET when the task schedules 
are generated (Section 4.4.1). 

When a core fails, the master LRM of the concerned Tile detects the event, applies a local 
reconfiguration (if possible) and informs the GRM (possibly running on another Tile) about the change. 
As a response, the GRM might order local reconfigurations on other Tiles, by sending an appropriate 
message to them. In this context it is interesting to consider the timing chain that spans the execution of 
an LRM, followed by the sending of a message to the GRM, the execution of the GRM, followed by the 
sending of an order message to some LRM and finally the execution of that LRM, which may trigger a 
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scheduling plan change. We have considered such a chain: from LRM0 of the T4240 node until the LRM0 
of the DHP node. It is the last Timing Chain “T4240.LRM0 -> GRM -> DHP.LRM0” at the bottom of Figure 
32. 

 

4.2.3 Platform Architecture 

The DREAMS platform meta-model consists of a hardware platform meta-model and a system software 
meta-model, i.e., the middleware [10]. The hardware model of the ROSACE example application is a 
single cluster that consists of a model of a DHP and a T4240 (see Figure 37) that are connected by a 
TTEthernet network model. For the DHP, only the ARM A9 Tile is modelled since the optional Microblaze 
processors are not used in the example. The T4240 node consists primarily of the T4240 Tile that has 12 
Cores.  

 
Figure 37: ROSACE HW platform model: DHP node and T4240 Tile. 

 

4.2.4 System Software 

The system software model of the ROSACE example consists of two Hypervisors: one assigned to the 
ARM A9 Tile of the DHP (see Figure 38), and to the T4240 Tile (see Figure 39). Each Hypervisor hosts a 
partition for each of the resource manager components, and partitions for the MPEG and the ROSACE 
application components. These partitions define the set of instantiable partitions that manifest in the 
configuration files for the Hypervisor. Here, a LRM and a monitor is defined for each of the cores present 
in the system. As discussed in [10], Hypervisors and Tiles (and Partitions to Cores) are assigned to each 
other by so-called Resource Link annotations.  

T4240 Tile

DHP Node
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Figure 38: Partitions and virtualized memory and communication elements of the ARM A9's Hypervisor. 

 
Figure 39: Partitions and virtualized memory and communication elements of the T4240's Hypervisor. 
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4.3 Deployment 

The DREAMS deployment meta-model defines component-to-execution unit allocations, an application’s 
Virtual Links, and the mapping of logical in- and output ports to the in- and outputs of the target 
platform (see [10],[11]). In contrast to the Deployments that are generated by the DSE for the wind 
power demonstrator application (see Section 3.3.2), the initial Deployment for the ROSACE example is 
defined mainly manually: the component-to-execution unit mapping is done using drag and drop in the 
deployment editor, while the Virtual Links are generated. 

As noted in the previous section, each resource management component is assigned to a separate 
partition (see Figure 40). The actual applications of the ROSACE example, the MPEG component and the 
components, constituting the ROSACE control application, are assigned to partitions hosted on the 
Hypervisor of the T4240 Tile (PROSACE and PMPEG2Server; see the missing “.dhp” suffix in the table 
shown in Figure 40). Hence, the counter part of these partitions present in the Hypervisor model 
assigned to the DHP Tile are fall-back partitions that may be used by the reconfiguration methods. The 
failure mode calculation uses these partitions to derive alternative deployment schedules that may use 
these partitions if it is required by some failure scenario. 

 
Figure 40: Excerpt of the Component-Execution Unit & Port allocations. 

Virtual Links are part of the Deployment meta-model [11]. Their generation is triggered from the context 
menu of the Virtual Link editor that is provided as a tab in the Deployment editor (see Figure 41). The 
Virtual Link generation is automated since it requires solving a number of complex tasks, including the 
multi-hop routing through the modelled platform. 
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Figure 41: Virtual Link editor. 

For the ROSACE example, the majority of Virtual Links (here: 15) are used for the communication 
between the resource management components that are located on different partitions, e.g., the Virtual 
Link in the green box in Figure 42). Since Virtual Links are not required if communicating logical 
components reside on the same partition and the components constituting the ROSACE component are 
located within one partition, only one Virtual Link is generated for the actual application (yellow box in 
Figure 42). It provides a Quality of Service feedback for the MPEG component. 

 
Figure 42: Virtual Links of the ROSACE initial Deployment. 

 

 

 

4.4 Configuration of Schedulers 

4.4.1 Nominal Task and Partition scheduling 

The generation of schedules for partitions and tasks for the nominal mode, corresponds to step 7A of 
the Tool Chain Use Case 2, see [1]. The goal is to provide a basis from which GRec (Section 4.4.2) 
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generates new scheduling plans to mitigate core failures. As we have seen before, the periods of the 
resource management tasks are chosen to be equal to the MAF (= smallest common multiple) of 
application task periods. In this use-case, the MAF is 1s, which is a rather long time interval and leads to 
complexity problems when using GRec to find new scheduling plans for different core failure scenarios. 

To work around this problem, we temporarily change the resource task period to 100ms, before letting 
Xoncrete generate the nominal scheduling plans. In order to perform this generation with Xoncrete, one 
needs to follow the steps already described in Section 3.4.2. 

An examination of the resulting System Schedule reveals that the first location of the execution of every 
task is located within the first 100ms, as illustrated with “POrderGenerator” in Figure 43. The period of 
“OrderGenerator” is 1s. This allows exporting only the first 100ms of the nominal scheduling plan to 
GRec, reducing this way the complexity of the problem to be solved by GRec. When importing the result 
of GRec into AF3, the original resource management period of 1s will be restored, see Section 4.4.2. 

 

 
Figure 43 – ROSACE First execution of "OrderGenerator" within 100ms. 

 

4.4.2 Failure modes 

Two failure modes are considered in the building blocks, namely  permanent core failure and deadline 
overrun but only the first one is modelled in the DREAMS tool chain. When a core of a node fails, the 
local LRM can apply a local reconfiguration and the GRM can apply a global reconfiguration (see 
D2.2.2[9]). All these local and global reconfiguration graphs are computed by GRec and stored in the 
meta-model (D4.4.1 [1]). 

The generation of a reconfiguration graph for tasks scheduling plans to allow ensuring the continuity of 
service for critical tasks in case of core failures, corresponds to step 8 of the Tool Chain Use Case 2, see 
[1]. 

In order to generate the input file for GRec, the “Generate GRec input” entry from the context menu of 
the System Schedule created with Xoncrete needs to be executed.  

In order to further reduce the size of the solution space to be explored by GRec, a configuration dialog 
asks for the granularity of time to use (Figure 44). Since in the current use case, all periods and WCETs 
are multiples of 100us, we chose a granularity of 100us. 
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Figure 44 - GRec input generation option. 

 

Remember from Section 4.4.1 that we have reduced the period of the resource management tasks to 
100ms. But GRec considers that the period of these tasks should be the MAF. Before importing the 
output of GRec, we need to set their periods back to 1s, by using the dedicated context menu (see 
Figure 36, Section 4.2.2). 

To import into AF3 the output of GRec, the “Import GRec ouput” entry from the context menu of the 
System Schedule created with Xoncrete needs to be executed. The following entities are created: 

 For each plan defined for the “ARM A9” Tile on the DHP node and 12 core Tile of T4240 node, a 
separate system schedule is created, see Figure 45. 

 A Reconfiguration Graph is created that specifies local (LRM) and global (GRM) scheduling plan 
changes. Figure 46 shows the transitions of the global reconfiguration graph. 

 A set of additional Deployments that correspond to the combinations of the scheduling plans 
(one for each Tile) which may occur when the LRMs and GRM follow the local and global 
reconfigurations defined the Reconfiguration Graph. 
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Figure 45 - ROSACE: Deployments, System Schedules and Reconfiguration Graph created by the GRec output importer. 
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Figure 46 - ROSAE: transitions of the global reconfiguration graph 
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4.4.3 On-line flexibility 

The estimation of online flexibility coefficient corresponds to step 9 of the Tool Chain Use Case 2, see 
D4.4.1 [1]. The flexibility parameter for a job defines the maximum delay which can be tolerated by the 
job without missing any deadline in the system. This information can be utilized by the partition LRS to 
admit aperiodic tasks online with the least response-time. The flexibility parameter for each job in the 
plan is calculated as defined in [12]. In order to generate flexibility parameter from the model, the input 
file for MCOSF needs to be generated using “Generate MCOSF input” entry from the context menu of 
the ‘Reconfiguration Graph’ created with GRec output import. The tool MCOSF is executed with the 
generated MCOSF input file as mentioned in Section 4.6.5 of D4.4.1 [1]. Once the MCOSF exits without 
any error, the MCOSF output file can be imported back in AF3 model by invoking “Import MCOSF 
output’ entry from the context menu of the ‘Reconfiguration Graph’ created with GRec output import. 
The MCOSF output import modifies the task triggers of each plan from Periodic to Flexible and defines 
the flexibility parameter as shown in Figure 47 below. 

 

 
Figure 47 – ROSACE: Flexibility parameter generated using MCOSF. 

Other than the flexibility parameter, MCOSF also generates blackout intervals and transition modes as 
defined in Section 10 of D4.1.3 [6]. The blackout intervals are calculated for each source of the mode 
transition defined by the local reconfiguration graphs of each node. The blackout intervals can be 
utilized by the hypervisor to see if an immediate mode switch at current time will lead to a deadline 
miss, i.e. not to switch immediately if the plan at current time specifies a blackout interval. An example 
of the blackout interval for the ROSACE case study is shown in Figure 48 (Note that the trigger for a 
blackout interval is not applicable/don’t-care as it does not trigger anything. Instead, it merely stops 
from triggering a mode change). 

 

 
Figure 48 - ROSACE: Blackout intervals generated using MCOSF. 



D 4.4.2 Version 1.0 Confidentiality Level:PU 

 
 

31.07.2017 DREAMS Page 44 of 59 

 

4.4.4 On-chip Scheduling of TT Virtual Links  

After the creation of additional Deployments through the import of the Reconfiguration Graph 
generated by GRec (Section 4.4.2), all different communication scenarios implied by the 
reconfigurations can be derived. Thus the scheduling of the on-chip communication can be configured, 
which corresponds to step 11 of Tool Chain Use Case 2, see Section 2.  

As can be seen in the upper part of Figure 37, only the processor Tile “ARM9” of the DHP is used in this 
use case. Thus, all communication from and to that Tile goes actually over the off-chip network. The 
communication between the processor Tile and the on-chip/off-chip gateway is allowed within so-called 
bypass windows which are opened and closed by the NI LRS according to a static schedule (see D2.1.3 
[13]). The sending and receiving through the bypass window is managed by the DRAL and not by the NI 
LRS. It implies that the generation of transmission offset with RTaW-Timing cannot be used here.  

But a bypass window needs to be defined and translated into the configuration files for the on-chip 
communication (Section 4.5.2), since the NI LRS is responsible for opening (and closing) the bypass 
window. Otherwise the DRAL would not be able to communicate with the on-chip/off-chip gateway. 

The following virtual links are (potentially) sent or received over the off-chip network: 

 GRM order message sent every 100ms 

 12 T4240 LRM status message sent every 100ms 

 1 message sent every 1s by OrderGenerator to ROSACE  

 1 message sent every 1s by ROSACE to MPEG2server 

The required bandwidth is low with respect to the throughput of the NoC at 100 Mhz, but the time 
between two consecutive bypass window instances must be limited, in order to limit waiting times at 
the entry of the NoC. Remember that periods, length and offset must be (negative) power of 1s (see 
D2.1.3 [13]). 

We propose to use one bypass window with the following characteristics: 

 open time = 0s  

 length = 2-11 s = 0,00048828125 s  488,28µs 

 period = 2-10 s = 0,0009765625 s  976,56µs 

If the bandwidth is sufficient, then the resulting NoC traversal time will be lower than 1ms. In Section 
4.4.6 we will verify this choice by computing a rough upper bound on the NoC traversal. 



D 4.4.2 Version 1.0 Confidentiality Level:PU 

 
 

31.07.2017 DREAMS Page 45 of 59 

 
Figure 49 - ROSACE: Bypass Window 

The bypass window must be defined in a dedicated System Schedule based on the nominal Deployment 
“Rosace Deployment” (Figure 49) and specified in the configuration dialog of the “On-chip TT Schedule 
Generation” menu entry which must be executed from the context menu of the Reconfiguration Graph. 
The configuration dialog asks for the System Schedule with the bypass window and creates for each 
Deployment referenced by the Reconfiguration Graph a System Schedule with the specified bypass 
window (see Figure 50). 

 

 
Figure 50 – ROSACE: System Schedules for the on-chip communication 

 

4.4.5 Off-chip Scheduling of TT Virtual Links 

After the creation of additional Deployments through the import of the Reconfiguration Graph 
generated by GRec (Section 4.4.2), all different possible communication scenarios implied by the 
reconfigurations are known and thus the scheduling of the off-chip communication can be defined, 
which corresponds to step 10 of  Tool Chain Use Case 2, see Section 2.  

To be able to use the dedicated tool TTE-Plan, the “Generate TTEthernet Network Description” entry 
from the context menu of the “Reconfiguration Graph” needs to be executed. This produces a 
“.network_description” file, which is the input for TTE-Plan. Notice that also TTE-Build needs to be 
executed in order to generate the C header files that contain the port ids, which are needed in the 
platform configuration file (PCF), see Section 4.5.1. In order to import the defined schedules and port 
ids, the “Import TTEthernet Scheduling” entry from the context menu of the Reconfiguration Graph” 
needs to be executed.  

The result of the import is the creation of dedicated System Schedules, one for each of the possible 
Deployments implied by the reconfiguration (Figure 51).  
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Figure 51 - ROSACE: System Schedules for the off-chip communication. 

Since the deployment of resource management tasks does never change, the scheduling of their virtual 
links is only defined in the nominal System Schedule. The Deployment specific schedules of the virtual 
links between applications are defined in the corresponding System Schedule. As can be seen, there is 
no off-chip communication between applications in “Deployment3”. This is because all applications are 
executed on the same Tile. This is, for instance, the case with the scheduling plan 8 of the DHP: ROSACE, 
Mpeg2Server and OrderGenerator are executed on the two cores of the DHP (see Figure 52). 
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Figure 52 - ROSACE: Scheduling plan 8 of the DHP, execution all three applications. 

 

4.4.6 Timing Analysis 

Performing worst case analysis of end-to-end delays, in order to verify that latency constraints on the 
timing chains are satisfied, corresponds to step 12 of the Tool Chain Use Case 2, see [1]. In order to 
execute the algorithm implemented in RTaW-Timing, the “Timing Evaluation” entry of the context menu 
of the “Reconfiguration Graph” must be selected, since it contains the references to all possible 
SystemScheules. As a result, the complete description of designed system is exported to RTaW-Timing, 
which runs the worst-case analysis and displays the results in its GUI, as shown in Figure 53. 
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Figure 53 - ROSACE: WP7: Bounds on worst-case delays of timing chains (RTaW-Timing). 

The first line “delta_e(az_filter)” corresponds to the first timing chain described in Section 4.2.2. The 
computed upper bound on the worst-case delay is 46.1 ms. Remember that in case of reconfiguration 
(Section 4.4.2) several scheduling plans are defined for each Tile. By clicking on the line and selecting the   
"Show local delays bound of maximal end-to-end bound" entry from the context menu, the tool shows 
more details in the “Local Delays” tab, see  Figure 54.  

 

 
Figure 54 - ROSACE: details about the bound on the timing chain “delta_e(az_filter)”. 

As shown by the “Segment” column in Figure 54, tasks of the chain are all executed on the T4240. The 
name of the “Analysis” has been changed by the tool indicated to that of a scenario where the worst 
case delay can be observed: the scenario is based on plan1 for the DHP and plan 61 for the T4240. 

Furthermore, the execution of the first task of the chain starts at 50ms (“Start” column) and the 
execution of the last task ends at 96.1 ms (“End” column). Figure 55 shows the corresponding Gantt 
chart. It can be seen that the delay is due in part to different periods and non-optimal execution orders 
of the involved task: the output of “aircraft_dynamics” may have to wait 10ms before being read by the 
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next instance of “vz_filter”. On the other side, the distance between two executions of the task 
“vz_control” may be larger than its nominal period of 20ms in the scheduling table of plan 61. 

 
Figure 55 - ROSACE: Gantt chart of worst delay of the timing chain “delta_e(az_filter)” on the T4240. 

Figure 56 shows the details of the worst case delay of the timing chain “T4240.LRM0 -> GRM -> 
DHP.LRM”. Recall that the delay spans from the execution start of LRM0 on T4240, which potentially 
detects a core failure, until the next execution end of LRM0 on the DHP that would receive a 
corresponding reconfiguration command from the GRM.  

Have a look at the last line of the table, which corresponds to the task execution segment on the DHP. 
Figure 57 shows the corresponding scheduling table, which has a period of 1s: the GRM is executed 
almost at the beginning and the LRM at the end. Recall furthermore that the schedule tables of the 
nodes are based on the same global time (DREAMS platform service). Thus, when the message arrives at 
t=1072,461 ms, i.e. at 72,461 ms after the start of the schedule table, the GRM has already finished to 
execute. Therefore, a “coordination delay” of 928,539 ms occurs until the execution of the next instance 
of the GRM. Since furthermore the LRM is executed at the end of the table, the result is a delay of 999 
ms from the start of the GRM until the end of the LRM.    

 

 
Figure 56 - ROSACE: Details about the bound on the timing chain “T4240.LRM0 -> GRM -> DHP.LRM” 
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Figure 57 - ROSACE: Scheduling table of core 0 of the DHP node in plan 2. 

 

4.5 Platform Building Block Configuration File Generation 

4.5.1 DREAMS Resource Management Configuration files  

The platform configuration file (PCF) is generated by invoking the “Generate DRMS Configuration files” 
entry form the context menu of the “Reconfiguration Graph”. It generates for each Tile a configuration 
file in YAML format as defined in [7] which contains  

 the declaration of applications and their partitions 

 the channels for the inter partition communication 

 the declaration of off-chip communication ports with their parameters (see Figure 58) 

 a set of partition and task scheduling plans (see Figure 58) 

 the local reconfiguration table  

 the global reconfiguration table (see Figure 59) 

 the remapping of DRAL ports to partition of on-chip/off-chip communication ports depending on 
the scheduling plan 

 

… 

hw_desc: 

  num_cores: 2 

  devices: 

    uart: 

    - {name: Uart, id: 1, baud_rate: 115200} 

    tte: 

    - name: TTEthernet_1 

      ports: 

      - {name: OrderGenerator_VacGenerator_Output_RosaceDeployment,  

        type: TT, portDirection: source, tte_port_id: 9, tte_port_ap: 3} 

      - {name: ROSACE_ToMPEG_QoS_Deployment2, type: TT,  

         portDirection: source, tte_port_id: 8, tte_port_ap: 1} 

  processor_table: 

  - id: 0 

    freq: 400000000 

    plan: 

    - id: 0 

      major_frame: 1000 

      slots: 

      - {id: 0, start: 0, duration: 100, part: OrderGenerator} 

      - {id: 1, start: 100, duration: 100, dlrm: lrm} 

      - {id: 2, start: 100, duration: 100, dlrm: grm} 

      - {id: 3, start: 100, duration: 100, dlrm: mon_cf} 

    - id: 1 

      major_frame: 1000 

      slots: 
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      - {id: 0, start: 0, duration: 1, dlrm: mon_cf} 

      - {id: 1, start: 1, duration: 50, dlrm: grm} 

      - {id: 2, start: 51, duration: 1, part: OrderGenerator} 

      - {id: 3, start: 999, duration: 1, dlrm: lrm} 

… 

Figure 58 – ROSACE: Snippet1 of the platform configuration file. 

 

…. 

  global_reconfiguration_table: 

    - { msg: [2,3,4,5,6,7,8,9], new: [-1,-1], current_configuration: [-1,-1] } 

    - { msg: 

[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,3

8,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,

67,68,69,70,71,72,73,74,75], new: [-1,-1], current_configuration: [-1,-1] } 

    - { msg: [76], new: [2,67], current_configuration: [1,56] } 

    - { msg: [77], new: [3,68], current_configuration: [1,56] } 

    - { msg: [76], new: [2,67], current_configuration: [1,57] } 

    - { msg: [78], new: [4,69], current_configuration: [1,57] } 

    - { msg: [76], new: [2,67], current_configuration: [1,58] } 

    - { msg: [79], new: [5,70], current_configuration: [1,58] } 

    - { msg: [76], new: [2,67], current_configuration: [1,59] } 

    - { msg: [80], new: [6,71], current_configuration: [1,59] } 

    - { msg: [76], new: [2,67], current_configuration: [1,60] } 

    - { msg: [81], new: [7,72], current_configuration: [1,60] } 

    - { msg: [76], new: [2,67], current_configuration: [1,61] } 

    - { msg: [82], new: [8,73], current_configuration: [1,61] } 

    - { msg: [82], new: [8,73], current_configuration: [1,62] } 

    - { msg: [82], new: [8,73], current_configuration: [1,63] } 

    - { msg: [82], new: [8,73], current_configuration: [1,64] } 

    - { msg: [82], new: [8,73], current_configuration: [1,65] } 

    - { msg: [82], new: [8,73], current_configuration: [1,66] } 

    - { msg: [1], new: [-1,-1], current_configuration: [-1,-1] } 

…. 

Figure 59 – ROSACE: Snippet2 of the platform configuration file. 

 

 

4.5.2 On-chip network communication configuration files 

As described in [1], the generation of the configuration files of the on-chip communication is a two step 
process, where first a configuration model is generated, by invoking the "Generate 'Physical On-Chip 
Communication' Configuration Model" entry from the context menu of the Reconfiguration Graph. 
Figure 60 shows the resulting configuration model. Second, the actual textual configuration files (Figure 
61) are generated with the help of the “Run configuration generation framework...” from the context 
menu of the ROSACE model.  
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Figure 60 - ROSACE: Configuration model of the on-chip scheduling (AF3 Resource Navigator). 

Recall that in this use case, there are only two network interfaces on the NoC and thus only two LRS 
configurations are generated. Furthermore, all virtual links go through the bypass window and thus no 
PortConfigurations are needed, only the scheduling of the bypass window, which is defined by the 
“EventTriggeredCommunicationSchedule” entity and stored in the “etcommsched.csv” configuration 
file. 

 

 
Figure 61 - ROSACE: Generated configuration files of the on-chip scheduling 

 

4.5.3 Off-chip network communication configuration files 

The parameters of the time triggered scheduling for the off-chip communication have been imported 
into AF3 from the off-chip network configuration files generated with TTE-Plan and TTE-Build in step 10 
(Section 4.4.5). Since these configuration files cannot be generated from a System Schedule defined in 
AF3, we (have to) use the files created in step 10. 
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5 Application to the Healthcare Demonstrator 

The final design of the healthcare demonstrator is described in D8.3.1 [14]. In the following sections we 
describe the minimal system model needed in order to allow the configuration of the off-chip 
communication through the tool chain. 

5.1 Applications and Resources 

5.1.1 Logical Architecture 

First, the application tasks and their data exchange must be modelled. There are two couples of tasks, 
one related to the ECG data (critical) and one related to video streaming (non critical), see Figure 62. 

 

 
Figure 62 - WP8: application level tasks with exchange of data. 

5.1.2 Timing Requirements 

Since we only consider off-chip communication, we associate timing constraints directly with the 
sending ports, see Figure 63. 

For the critical ECG communication, the “Time Triggered” traffic class shall be used The criticalwith a 
period of 10ms. This is specified by attaching an appropriate PeriodicConstraints to each of the 
concerned sender ports. . For the non critical communication between video server and player, the 
“Best Effort” traffic class shall be used. This is specified by attaching anAperiodicConstraint to each of 
the concerned sender ports.. 
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Figure 63 - WP8: timing constraint for the off-chip communication 

5.1.3 Platform Architecture 

To be able to configure the off-chip communication, the topology of the off-chip network with the 
connected nodes needs to be described, see Figure 64. 

 

 
Figure 64 - WP8: off-chip network topology. 

The model of a Node connected to the off-chip network must contain at least one processor Tile, 
containing at least one core to which partition may be mapped, see Section 5.2.1. Figure 65 shows the 
minimal model used for “Hospital Media Gateway” 

 
Figure 65 - WP8: Platform Architecture model. 
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5.2 Deployment 

5.2.1 System Software 

The deployment of the task components to Tiles determines which communications are crossing the off-
chip network. To be able to deploy task components, a minimal System Software entity needs to be 
defined, consisting of a Hypervisor for each Tile and Partitions to which the tasks can be deployed. 
Figure 66 shows the details for the “Hospital Media Gateway”, with the hypervisor on the Cortex A72 
Tile, and two partitions, one for the critical application and one for the non-critical one.  

 
Figure 66 - WP8: System Software. 

 

5.2.2 Deployment 

After having defined the System Software, the Deployment can be defined, which allocates each task to 
a Partition on some processor Tile, see Figure 67. 

Next, virtual links need to be generated in the “Virtual Links” tab of the Deployment. The result consists 
of two TT virtual links, for the ECG related communication (see Figure 68). No virtual links are created 
for the best effort communication, since the corresponding frames are not scheduled and their routing 
path is determined dynamically at run-time.  

 
Figure 67 - WP8: Deployment of tasks to partitions. 

 

 
Figure 68 - WP8: TT VLs. 
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5.3 Configuration of Schedulers 

5.3.1 Off-chip Scheduling of TT Virtual Links 

At this point, sufficient information is available for generating the off-chip network communication.  

With the help of the “Generate TTEthernet Network Description” entry from the context menu of the 
“System Schedule” the “.network_description” file can be produced, which is the input for TTE-Plan. In 
order to import the defined schedules, the “Import TTEthernet Scheduling” entry from the context 
menu of the “System Schedule” must be executed.  

The result of the import is the adding of scheduling entries for the time triggered communication of the 
TT VLs, as shown in Figure 69 and Figure 70. 

 

 
Figure 69 - WP8: off-chip scheduling parameter set. 

 
Figure 70 - WP8: off-chip scheduling parameters for VL 1 in the Juno board. 

5.4 Platform Building Block Configuration File Generation 

5.4.1 Off-chip network communication configuration files 

The generation of the textual configuration files for the off-chip network has already been performed in 
the previous step, at the same time as the generation of the scheduling parameters for the import into 
AF3, see Section 5.3.1. 
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