
Attribute-Based Credentials for Trust

The research leading to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 257782 for the project Attribute-based Credentials for
Trust (ABC4Trust) as part of the “ICT Trust and Security Research” theme.

D4.3 Final Perturbation Analysis of the
Implementation

Jesus Luna, Neeraj Suri,
Giancarlo Pellegrino, Heng Zhang, Michael Bladt

Stausholm

Editors: Jesus Luna, Neeraj Suri, Giancarlo Pellegrino (Technische Universität
Darmstadt)

Reviewers: Norbert Goetze (Nokia Solutions and Networks),
 Ioannis Stamatiou (Computer Technology Institute and Press

"Diophantus")

Identifier: D4.3
Type: Deliverable

Version: 1.0
Date: 30/07/2014

Status: Final
Class: Public

Abstract

The activity of Perturbation Analysis assesses the robustness of the ABC4Trust architecture as initially
described in Deliverable D2.1 and Heartbeat H2.1. Following the basic test cases that verify the
correctness of the implementation (Task 4.6), the perturbation analysis activity designs individual
misuse cases, and plans campaigns to inject a range of perturbations (e.g., at the ABCE API-level) on
the different operational blocks and also the architectural data flows to test the robustness of the
implementation and to suggest any corrective actions as needed.

Attribute-Based Credentials for Trust

The research leading to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 257782 for the project Attribute-based Credentials for
Trust (ABC4Trust) as part of the “ICT Trust and Security Research” theme.

Members of the ABC4TRUST consortium

1. Alexandra Institute AS ALX Denmark

2. CryptoExperts SAS CRX France

3. Eurodocs AB EDOC Sweden

4. IBM Research – Zurich IBM Switzerland

5. Johann Wolfgang Goethe – Universität Frankfurt GUF Germany

6. Microsoft NV MS Belgium

7. Miracle A/S MCL Denmark

8. Nokia Solutions and Networks GmbH & Co. KG NSN Germany

9. Computer Technology Institute and Press "Diophantus" CTI Greece

10. Söderhamn Kommun SK Sweden

11. Technische Universität Darmstadt TUD Germany

12. Unabhängiges Landeszentrum für Datenschutz ULD Germany

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium members shall have no liability
for damages of any kind including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due to applicable law.

Copyright 2014 by TUD, ALX.

Attribute-Based Credentials for Trust

The research leading to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 257782 for the project Attribute-based Credentials for
Trust (ABC4Trust) as part of the “ICT Trust and Security Research” theme.

List of Contributors

Chapter Author(s)

Executive Summary Jesus Luna, Neeraj Suri (TUD).

Introduction Jesus Luna, Neeraj Suri, Giancarlo Pellegrino (TUD).

Setup Jesus Luna, Neeraj Suri, Giancarlo Pellegrino, Heng Zhang (TUD) and
Michael Bladt Stausholm (ALX).

Issuance Jesus Luna, Neeraj Suri, Giancarlo Pellegrino, Heng Zhang (TUD) and
Michael Bladt Stausholm (ALX).

Presentation Jesus Luna, Neeraj Suri, Giancarlo Pellegrino, Heng Zhang (TUD) and
Michael Bladt Stausholm (ALX).

Revocation Jesus Luna, Neeraj Suri, Giancarlo Pellegrino, Heng Zhang (TUD) and
Michael Bladt Stausholm (ALX).

Inspection Jesus Luna, Neeraj Suri, Giancarlo Pellegrino, Heng Zhang (TUD) and
Michael Bladt Stausholm (ALX).

Summary Jesus Luna, Neeraj Suri, Giancarlo Pellegrino, Heng Zhang (TUD) and
Michael Bladt Stausholm (ALX).

Attribute-Based Credentials for Trust

The research leading to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 257782 for the project Attribute-based Credentials for
Trust (ABC4Trust) as part of the “ICT Trust and Security Research” theme.

Executive Summary

This deliverable investigates the robustness of the ABC4Trust reference implementation. The process
followed is of perturbation analysis, which entails introducing deliberate perturbations to investigate the
degree of deviance or tolerance by the ABC4Trust architecture towards them. The perturbation analysis
was conducted on the ABCE (and related core components invoked by the ABCE) of the reference
implementation (D2.1 and Heartbeat H2.2 – “old crypto” architecture). Then, those tests that resulted in
non-compliant outcomes (i.e., do not follow the specification) were repeated on the “new crypto
architecture” (D4.2 and Heartbeat H4.1) for comparison purposes. This process allowed developers of the
reference implementation to design and assess the effect of the required corrective actions.

This document presents both the methodology of the Perturbation Analysis as well as the obtained results
over the full life cycle of the privacy-ABC credentials. This covers both the basic tests to verify the
implementation correctness (Task 4.6), the perturbation analysis activity designs individual misuse cases,
and plans campaigns to inject a range of perturbations (e.g., at the ABCE API-level) on the different
operational blocks and also the architectural data flows to test the robustness of the implementation. As an
overview, the deliverable documents the analysis from the perturbations conducted at the data-flow and
component-levels of the ABCE. In addition, while not part of the PA, some supplemental misuse
observations as reported by the pilots are included in the Appendix.

Overall, the results from the conducted Perturbation Analysis highlight the uncovered robustness-related
risks, and also provided a preliminary guidance for the corrective actions to take while developing the
resultant ABC4Trust reference implementation (as reported in Heartbeats H2.2, H4.1 and finally in
Deliverable D4.2).

This deliverable was co-authored by Jesus Luna (Executive Summary, Introduction, Sect. 1-7), Neeraj
Suri (Executive Summary, Introduction, Sect. 1-7), Giancarlo Pellegrino (Introduction, Sect. 1-7),
Heng Zhang (Sect. 1-7) and Michael Bladt Stausholm (Introduction, Sect. 1-7).

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 5 of 68 Public Final version 1.0

Table of Contents

1 	 Introduction .. 9 	
1.1 	 Base Concepts .. 9 	
1.2 	 Perturbation Analysis Framework .. 10 	
1.3 	 Overview of the methodology .. 12 	
1.4 	 Detailed methodology .. 14 	

1.4.1	 Step 1: Identify the ET ... 14	
1.4.2	 Step 2: Classify the ET .. 14	
1.4.3	 Step 3: Select a Perturbation Class ... 14	
1.4.4	 Step 4: Test Perturbation ... 15	
1.4.5	 Step 5: Analyze Outputs .. 15	
1.4.6	 Step 6: Take Corrective Actions .. 15	

1.5 	 Scope, l imitat ions and testbed setup .. 15 	
1.6 	 Organization of the document . 16 	

2 	 Setup .. 17 	
2.1 	 Data f low-level perturbations .. 17 	
2.2 	 Component and Interface-level perturbations .. 20 	

3 	 Issuance .. 29 	
3.1 	 Data f low-level perturbations .. 29 	
3.2 	 Component and Interface-level perturbations .. 33 	

4 	 Presentation .. 37 	
4.1 	 Data f low-level perturbations .. 37 	
4.2 	 Component and Interface-level perturbations .. 39 	

5 	 Revocation .. 43 	
5.1 	 Data f low-level perturbations .. 43 	
5.2 	 Component and Interface-level perturbations .. 45 	

6 	 Inspection .. 47 	
6.1 	 Data f low-level perturbations .. 47 	
6.2 	 Component and Interface-level perturbations .. 48 	

7 	 Summary .. 50 	
7.1 	 Detailed overview of the results . 51 	

7.1.1	 Compliant ... 52	

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 6 of 68 Public Final version 1.0

7.1.2	 Non-compliant .. 53	
7.1.3	 Inconclusive ... 53	

8 	 Bibliography .. 54 	

Appendix A: Pilot misuse cases as reported by WP6 ... 55 	

Appendix B: Pi lot misuse cases as reported by WP7 ... 56 	

Appendix C: CSV formatted results of stress perturbations .. 61 	

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 7 of 68 Public Final version 1.0

Index of Figures

Figure 1: Dynamic Testing Classes ... 10	
Figure 2: Perturbation Analysis Framework .. 11	
Figure 3: Perturbation Analysis Methodology .. 12	
Figure 4: Memory Consumption of SetupSystemParameters() with Idemix. 19	
Figure 5: Memory Consumption of SetupSystemParameters() with U-Prove. 20	

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 8 of 68 Public Final version 1.0

Index of Tables

Table 1: Misuse case scenario template ... 13	
Table 2: Perturbation Classes .. 14	
Table 3: Scenarios and test cases (TC) grouped by ET Type .. 50	
Table 4: Summary of results grouped by ET Type .. 51	
Table 5: Detailed view of data flow perturbations .. 51	
Table 6: Detailed view of component and interface perturbations .. 52	

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 9 of 68 Public Final version 1.0

1 Introduction

The objective of the “perturbation analysis activity” is to experimentally assess the robustness of the
ABC4Trust’s reference implementation. For the purposes of this document, robustness will be
understood as “the implementation’s correctness (in particular integrity) in the presence of failures”.

Following the implementation of functional test cases (i.e., unit testing) that verify the correctness of
the reference implementation (as defined in Deliverables D2.1, and Heartbeat H2.1), the perturbation
analysis (Task 4.7) conducts testing campaigns to inject outlier test cases (including stress cases) and
also a range of perturbations (on the different operational blocks and also the architectural data flows).
The overall goal is to ensure the robustness of the final implementation (as reported in Heartbeats
H2.2, H4.1 and finally in Deliverable D4.2) under those specific sets of tests i.e., the perturbation
analysis does not aim for completeness. Furthermore, this document contributes a methodological
approach to perform a perturbation analysis targeting the robustness of the system.

This deliverable reports the design and results of the range of perturbation tests and analyses
conducted on the reference implementation1. The final reference implementation provided in D4.2 will
include requisite countermeasures to provide resilience against the potential risks identified after the
finalization of Task 4.7. These design/implementation enhancements are motivated by the results
obtained in this document.

 The rest of this section will introduce the necessary background related with the performed
perturbation analysis (including framework and methodology). Subsequently Sections 2-6 present the
actual results of the analysis organized according to the various elements of the privacy-ABC’s life
cycle. A detailed organization of the document appears in Section 1.6.

1.1 Base Concepts

This subsection reviews the basic terminology (as conventionally used in the dependability/security
testing communities) needed to provide the background for understanding the rest of this document.
For further details, the interested readers are referred to [1].

Robustness

Robustness refers to the implementation’s correctness (in particular availability and integrity) in the
presence of failures.

Perturbation

A perturbation is an event (e.g., related with some misuse or abuse of the system), that appears to have
the potential to alter the system’s delivery of correct operations i.e., affects the system’s robustness.

Perturbation analysis (PA)

The main objective of the PA is to investigate how a system, or parts of a system, behave under
anomalous (i.e., perturbed) operational conditions. A perturbation analysis is capable of demonstrating
what sort of outputs a system produces under anomalous circumstances. Often a perturbation analysis
will simulate scenarios that represent deviations from the system specification (also called “misuse
cases2”). The common assumption is that these misuse cases have not been considered at design-time,
and as such a corresponding reaction might not have been specified. Contrary to traditional functional
testing (correctness) and penetration testing (where usually a stable architecture and typically the

1 As mentioned in the Description of Work (DoW), the Perturbation Analysis presented in this document was
applied only to the reference implementation, not to the pilot deployments (cf., WP6 and WP7).
2 Further details about misuse cases will be presented in Section 1.2

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 10 of 68 Public Final version 1.0

source code level implementation details are needed), the primary target of a perturbation analysis is
assessing the system’s robustness (c.f. Figure 1). It is important to highlight that a perturbation
analysis is, by itself, not a means of determining correctness, but primarily to evaluate if the system’s
robustness/fault-tolerant mechanisms actually work in containing the encountered perturbations.

Figure 1: Dynamic Testing Classes

Perturbation Campaign

 Perturbation analysis typically does not test individual misuse cases, but instead a set of them that are
collectively regarded as a perturbation campaign. A campaign might target different elements of a
system (cf. ET below).

Evaluation Target (ET)

ET refers to the specific element of the system (e.g., component, building block) that is being targeted
by perturbation. The PA presented in this document will be applied to the architectural data flows (as
designed by WP2) and interfaces (WP4), therefore allowing some degree of isolation from the
continuous changes at the component’s source code level. In general, it is expected for an ET exposed
to a perturbation to observe a “fail-safe” behavior i.e., in the event that a failure is detected then the ET
should respond in a way that it does not compromise the robustness of other modules. A typical “fail-
safe” approach entails raising an exception and subsequently halting the operations at a pre-defined
safe state to prevent the propagation of a failure to other modules. Halting of operations, as possible
and specified in the system design, can entail literal stopping or switching to a pre-defined degraded
form of operations. Alternate nuances of fail-safe involve raising flags that require user inputs to
address the identified anomaly in order to proceed with execution.

1.2 Perturbation Analysis Framework

The perturbation analysis presented in this document is based on the framework shown in Figure 2
where an ET (from the reference implementation documented in Deliverable D2.1 and Heartbeat
H2.1) is exposed to a perturbation based on the functional test cases developed in Task 4.6 (cf. Section
1.1) in order to assess the system’s robustness. In the proposed framework, an ET is selected
according to the following criteria:

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 11 of 68 Public Final version 1.0

⇒ First, by focusing on a particular stage of the privacy-ABC’s life cycle (i.e. Setup, Issuance,
Presentation, Revocation and Inspection as documented in Deliverable D2.1 [2] and Heartbeat
H2.1 [7]).

⇒ Second, by selecting each one of the (i) flows taking place at the ABC4Trust architecture level
(as defined by WP2), and (ii) components and interfaces of the ABCE.

The perturbations shown in this document will be based on a set of functional tests designed in Task
4.6, with the goal to assess the robustness of the reference implementation. While not part of the PA,
some supplemental misuse observations as reported by the pilots are included in the Appendix A and
Appendix B.

Utilizing this framework, it is possible to achieve a comprehensive approach that ensures that
perturbations are being tested at all levels of the system: design, implementation and operational
(including end-users) levels. It conceptually incorporates perturbations derived from system
specifications on the different levels of abstraction during the construction of the system, as well as
feedback from operational conditions anticipated from the pilot deployment. The results of the
Perturbation Analysis are used by designers and developers in WP4 to improve the robustness of the
final reference implementation (i.e., Deliverable D4.2 and Heartbeats H2.2 and H4.1).

This document adopts existing established perturbation frameworks (e.g., [1] and [2]) that target the
ET’s assessment of availability and integrity in the presence of failures (e.g., software or network-
related). In the next section we present the methodological approach that implements the proposed PA
framework.

Figure 2: Perturbation Analysis Framework

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 12 of 68 Public Final version 1.0

1.3 Overview of the methodology

The methodology that implements the framework presented in the previous section consists of the
steps illustrated in Figure 3. At a glance, the methodology starts by identifying the ET based on the
framework (Figure 2), i.e., the privacy-ABC life-cycle and its associated flows/components and
interfaces from Deliverable D2.1 and Heartbeat H2.1 (as discussed in Section 1.2). In Steps 2 – 4, the
ET is classified so the corresponding data flow, component/interface or user-level perturbation
campaign can be composed and applied. In Step 5 the results of the performed perturbation are
analyzed to determine the needed corrective actions as well as the validation of any such correction.
Take into account that designed corrective actions might involve changing the ET type (therefore, the
arrow pointing from Step 6 to Step 2 in Figure 3).

Finally, in Step 6 the foreseen corrective actions are feedback to WP2 and WP4 for the design and
development of the final reference implementation (Deliverable D4.2 and associated Heartbeats H2.2
and H4.1).

Figure 3: Perturbation Analysis Methodology

It is best-practice to document each perturbation as “misuse case scenarios”, where design details are
specified about the applied perturbations, observed results and even with respect to the
mitigation/corrective actions that have been taken. At the state of the art there is no commonly agreed
way to document a misuse case, therefore in Table 1 we propose a template to be used in the rest of
this document. Such a template also gathers information to the test e.g., trying to reproduce the failure
once a corrective action has been deployed.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 13 of 68 Public Final version 1.0

Table 1: Misuse case scenario template

Scenario [no.]: Name of the misuse case scenario

Summary Short description of the scenario.

Evaluation Target
(ET)

Describe the ET (e.g., interface name, specific data flow, …).

ET Type Classify the ET as any of the following:

1 Architecture Data Flow (Arch).

2 Component/Interface (Comp).

Normal flow Describe the normal (i.e., “correct”) flow/usage of the ET.

Perturbation Describe the perturbation to test in this misuse case (e.g., send to the Verifier a
malformed token).

Perturbation Class Classify the perturbation to test in any of the following (cf. Section 1.1):

⇒ Data flow-level: Outlier cases (DF-O), including stress cases (DF-S).

⇒ Component and Interface-level: Data-Type cases (C-DT) or Outlier cases
(C-O).

Output old arch. Document the output/result of the tested perturbation in the old crypto architecture
(i.e., as documented in Deliverable D2.1 and Heartbeat H2.1). The result of a test
can be any of:

• Compliant: if its execution follows the documented specification i.e.,
detects the failure by triggering an exception, or, alternatively, if the
observed behavior does not show any evidence of uncontrolled resource
consumption.

• Non-compliant: if its execution does not follow the specification i.e., the
test does not detect a fail-safe and no exception is triggered. Or,
alternatively, if the observed behavior shows evidence of uncontrolled
resource consumption.

• Inconclusive: if it cannot be determined if the specification was followed
or not, possibly because the test’s execution time exceeded a prefixed
amount of time.

Output new arch. Document the output/result of the tested perturbation in the new crypto architecture
(i.e., as documented in Deliverable D4.2 and Heartbeat H4.1/H2.2). The result of a
test can be any of:

• Compliant: if its execution follows the documented specification i.e.,
detects the failure by triggering an exception, or, alternatively, if the
observed behavior does not show any evidence of uncontrolled resource
consumption.

• Non-compliant: if its execution does not follow the specification i.e., the
test does not detect a fail-safe and no exception is triggered. Or,
alternatively, if the observed behavior shows evidence of uncontrolled
resource consumption.

• Inconclusive: if it cannot be determined if the specification was followed
or not, possibly because the test’s execution time exceeded a prefixed
amount of time.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 14 of 68 Public Final version 1.0

Mitigation/Corrective
action

Document the action(s) taken to either mitigate or correct the observed fault (e.g.,
applied some specific patch to the Application Server).

If the perturbation was correctly handled by the ET, then just document in this field
the correctness of the implemented mechanism.

1.4 Detailed methodology

This section details the methodology depicted in Figure 3.

1.4.1 Step 1: Identify the ET

The PA starts by analyzing the whole system in order to identify the components that can compromise
the overall robustness of the system. For example, applying a perturbation to an API call’s URL
parameter might result on a “URL not found” exception (which can be managed at run-time by the
interpreter), however applying a perturbation to a security level parameter might result on malformed
system parameters that can be used by other components and cause unexpected results.

1.4.2 Step 2: Classify the ET

After having identified the ET at Step 1, the analysis classifies the ETs into one of the available
categories. The category will be used in the next step to select the adequate perturbation. The ET
categories used by this document are:

1. Architecture flow e.g., issuing a credential from scratch.

2. Component/Interface e.g., ABCE API’s initIssuanceProtocol() method.

It is worth noting that PA at the Comp level will be focused on the ABCE API located underneath the
context specific application, e.g., the User application or Issuer web application. This is a convenient
point to inject faults before any cryptographic primitive is used (e.g., at the transport level). This
approach (originally proposed by Nik [4], [5]) allows us to gain the control needed to apply the
perturbations.

1.4.3 Step 3: Select a Perturbation Class

The classes of perturbation are selected from the list in Table 2. Each class defines a group of tests.
Each test is designed starting from valid functional test cases, and then derived according to
perturbation class. DF-S tests (a particular class of outlier cases DF-O) were derived by introducing
sustained concurrent requests. DF-S tests will consider two parameters: the number of concurrent
requests k and the time interval in second t. The test keeps k concurrent requests during a period of t
seconds. C-DT and C-O tests are performed by selecting inputs over a set of invalid inputs. Invalid
inputs are identified by combining the syntax and semantics of the API function parameters. The
selection is done manually and by using a uniform distribution function.

Table 2: Perturbation Classes

ET Type Perturbation Type Comment/Example

Architecture data flow

 Outlier Case (DF-O) These are perturbations testing values that appear to
deviate markedly from other members of the sample in
which it occurs. DF-O includes stress cases

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 15 of 68 Public Final version 1.0

Perturbations (DF-S) aimed towards taking a system to
an extreme operation mode (close to its DoS border).

Component/Interface

 Data Type (C-DT) These perturbations test values that are valid for the type
of parameter (e.g., -128 to 127 for Java’s byte data
type), but that are invalid for the specification. For
example, typical DT perturbations [4] and [6] for an
integer parameter include: param--, param++, 1, 0, -1,
INT_MAX and INT_MIN.

In Service Oriented Architectures, the use of DT
perturbations is both useful and more efficient than other
techniques (e.g., bit flipping) for testing fault tolerance
mechanisms [4].

 Outlier (C-O) As defined in DF-O, these are perturbations testing
values that appear to deviate markedly from other
members of the sample in which it occurs.

1.4.4 Step 4: Test Perturbation

After selecting the perturbation, the tests are executed against the ET. This may require access to the
running system (physical/remote) and to the code (e.g., to increase log verbosity). In any case, the
perturbation analysis should guarantee that the perturbation is repeatable under the conditions
documented in the misuse case. In this document, the implementation of the designed perturbations is
based on the test cases defined in Task 4.6.

Stress tests are executed within a finite amount of time. If the test does not produce an outcome within
the time frame, then the test is considered inconclusive. The amount of time depends on the
specification of the test (see, for example, Scenario 2.1.1). The results of a test execution are
documented for each scenario using the template shown in Table 1.

1.4.5 Step 5: Analyze Outputs

During the test execution, the outputs are monitored and documented as part of the misuse case. This
is a critical step, because corrective actions will be designed and deployed in the final version of the
reference implementation (cf., Deliverable D4.2 and H4.1, H2.2) based on these observations.

Apart from the documented outputs of each individual use case, the results associated with the stress
test cases are included in Appendix C.

1.4.6 Step 6: Take Corrective Actions

The final step consists of a set of actions to correct/mitigate the observed behaviors. This may require
fixing the software and changing the system’s specification. This step usually falls outside the scope of
traditional perturbation analyses (cf., Voas [1] and Nik [4]).

1.5 Scope, limitations and testbed setup

Based on the Description of Work (DoW), the tests associated with the perturbation analysis
documented were based on the first version of the reference implementation and architectural data
flows presented in D2.1 [2] and Heartbeat H2.1 [7]. Such architecture (and its corresponding
implementation) will be referenced as “old crypto architecture” in the rest of this document.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 16 of 68 Public Final version 1.0

For the PA, both the data-flow level and component-level perturbations were designed focusing the
ABCE (Attribute Based Credentials Engine) and those core components invoked by the API while
performing the tests (including the Crypto Engines CE’s). Where applicable, the designed tests took
into consideration both of the Crypto Engines (i.e., Idemix and U-Prove). Given the DoW timeline for
designing/conducting tests, those components without stable specifications based on their undergoing
development for modification to the new crypto architecture (Deliverable D4.2 and Heartbeat
H4.1/H2.2) were precluded from this testing. Nevertheless some testing was also conducted in the
new architecture based on the architecture development schedule’s match with the testing timeline3.

Also as mentioned in the DoW, the obtained results and suggested corrective actions were considered
as feedback for the development of the final reference implementation (cf., the new crypto architecture
described in Deliverable D4.2 and Heartbeats H4.1 and H2.2). For the sake of completeness and
comparability, all tests that resulted in NON-COMPLIANT results in the old crypto architecture were
tested in the new crypto as well.

The tests reported in this deliverable were performed offline on local computers. The computer was a
Pentium (R) E5700 3GHz with 4GB of RAM running Windows 7 Professional N SP1. Tests were
performed on Java Virtual Machine 1.6.0, and Microsoft .NET 4.5.1.

Each PA test produced a log file and one or more Comma Separated Value (CSV) files. Log files and
CSV files were processed in order to detect an expected fail-safe behavior (i.e. the generation of one
or more Java exceptions) and to read the resource consumption measurements. CSV files associated
with stress-test cases are included in the Appendix.

1.6 Organization of the document

The rest of this deliverable is organized following the stages of the privacy-ABC life-cycle and
associated flows/components and interfaces. Section 2 shows the misuse cases and results considered
during the setup phase of the privacy-ABC life-cycle. Section 3 presents the scenarios during the
issuance phase where the user obtains privacy-ABC credentials from an issuer. Then, Section 4 shows
the scenarios testing the ABCE during the presentation stage in which the user’s access protected
resources. Section 5 and 6 show the scenarios to test, respectively, the revocation and inspection
phase. Finally, Section 7 summarizes the results of the analysis and concludes the deliverable.

While not part of the perturbation analysis, the functional bugs and the user-related failed installation
instances reported by the WP6 and WP7 pilots are listed in Appendix A and B respectively. Appendix
C shows the detailed CVS-formatted results of the stress test cases.

3 Based on the DoW’s schedule, the PA tests were designed from M25-M32 , whereas the initial specification of
the new crypto was available at M36 (Heartbeats H2.2 and H4.1). The final version of the reference
implementation will be available at M45 (Deliverable D4.2).

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 17 of 68 Public Final version 1.0

2 Setup

As described in Deliverable 2.1 [2], during the setup stage “the ABCE layer provides for each party a
dedicated method to obtain its private and public (if any) cryptographic parameters. Private keys will
be stored in the trusted storage of the corresponding party”. Also according to these documents, the
API calls involved in the setup stage are: setupSystemParameters(),
setupIssuerParameter(), setupRevocationAuthorityParameter() and
setupInspectionPublicKey().

As mentioned in Section 1.5, the perturbation analysis was focused on the data flows and interfaces
documented in Deliverable D2.1., i.e., the ABCE and both crypto engines (where applicable).

2.1 Data flow-level perturbations

The following section presents the data flow-level misuse cases considered for the Setup stage of the
privacy-ABC life-cycle. The presented scenario was selected and designed to test the robustness of the
data flows involved during the Setup stage. In particular this section focuses on testing the ABCE
under stress conditions (targeting the consumption of available resources, possibly due to a denial of
service), which is one of the most common cases found on the relevant literature [1].

Scenario 2.1.1: Stress perturbations on the ABCE component

Summary A stress perturbation is tested on the ABCE to assess its resilience against a denial of
service (DoS).

Component Under
Evaluation (ET)

ABCE – Setup (All Entities)

ET Type Arch

Normal flow The ABCE component supports concurrent setup requests, which are triggered by the
respective setup* ABCE API calls [1].

Perturbation Stress the ABCE component by keeping k concurrent setup requests during a period of
t seconds. The goal is to monitor the resource consumption (i.e., heap memory
consumption) and the availability of the service (i.e., time to process all the requests).
When applicable, this experiment should be repeated for all involved CEs.

The parameters k and t are the following:

• k ∈ {500, 1000, 1500};

• t ∈ {60, 120, 180}.

The pseudo-algorithm is the following:

1 - Until time t is reached:

2 - init = freeMemory();

3 - Execute k concurrent requests;

4 - mem = freeMemory() – init;

5 – Log mem, t, and k

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 18 of 68 Public Final version 1.0

Where freeMemory() is the API call to obtain the amount of system memory
available4.

Document the outputs and assess the consumption of the resource for (a) Idemix and
(b) U-Prove.

Perturbation Class DF-S (subclass of DF-O)

Output old arch. RESULTS:

(a) Compliant, (b) Non-compliant.

DETAILS:

This test does not aim at detecting a fail-safe behavior; it rather monitors the
implementation under a constant number of concurrent requests over different time
intervals. In this section, we provide more data to detail the conclusions for (a) and (b)

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of memory when
testing SetupSystemParameters(), SetupIssuerParameters(),
SetupRevocationAuthorityParameters(), SetupInspectionPublicKey().

 (a) Idemix

Below, we provide the PPMCC indexes respectively for SetupSystemParameters(),
SetupIssuerParameters(), SetupRevocationAuthorityParameters(),
SetupInspectionPublicKey():

• The PPMCC between t and the memory usage are 0.12, 0.25, -0.37, and 0.19;

• The PPMCC between k and the memory usage are -0.41, -0.37, -0.10, and 0.29;

The results show that the memory usage is positively, yet poorly, correlated with t and
that there is mainly a more substantial negative correlation between the number of
sustained parallel requests and the memory usage. An example of memory
consumption for SetupSystemParameters() is shown in Figure 4. The x-axis is the
duration of the test t in seconds, while the y-axis is the amount of memory used by
SetupSystemParameter() in MB. The three functions represent the memory consumed
by SetupSystemParameter() Idemix when executing concurrently 500, 1000, or 1500
concurrent requests. The memory usage of Idemix 500 tends to decrease over the time
while Idemix 1000 presents the opposite behavior. Finally, Idemix 1500 has a
consumption peak of 250 at 120s, while at 60s and 180s the memory usage is in the
range of 100-120 MB.

The variation of correlation between the memory consumed, and the parameters t and k
suggests that t and k are not significantly influencing the consumption of memory in
Idemix. The variation of used memory can be explained by an efficient object
dereference by the implementation and then by the execution of the Java garbage
collector.

 (b) U-Prove

We tested only SetupSystemParameters() and SetupIssuerParameters(). The other
functions were not tested because UProve does not support revocation and inspection.
The PPMCC indexes, respectively, for SetupSystemParameters() and
SetupIssuerParameters() are:

• The PPMCC between t and the memory usage is 0.13, and -0.39;

• The PPMCC between k and the memory usage is 0.74, and -0.70;

Figure 5 shows the memory consumption of SetupSystemParameters() over the time.

4 The real implementation used the java.lang.Runtime API . See the following URL for more details:
http://docs.oracle.com/javase/6/docs/api/java/lang/Runtime.html

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 19 of 68 Public Final version 1.0

The x-axis is the number of concurrent requests k, while the y-axis is the amount of
memory consumed by SetupSystemParameters(). The three functions plot the memory
used when performing concurrent requests for 60 seconds, 120 seconds, and 180
seconds. Figure 5 shows the positive correlation between the number of concurrent
requests and the memory consumed, in which an increasing number of concurrent
requests cause the system to use more memory. If an attacker can control this behavior,
e.g., by sending forged requests, then U-Prove may exhaust the available resources.

The results for SetupIssuerParameters() show a negative correlation between the
memory usage and the parameters t and k.

Output new arch. RESULTS:

(a) N/A, (b) Non-compliant.

DETAILS:

This test does not aim at detecting a fail-safe behavior; it rather monitors the
implementation under a constant number of concurrent requests over different time
intervals. In this section, we provide more data to detail the conclusions for (a) and (b)

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of memory when
testing SetupSystemParameters(), SetupIssuerParameters(),
SetupRevocationAuthorityParameters(), SetupInspectionPublicKey().

(a) Idemix

Test case (a) was not executed against the new architecture.

(b) U-Prove

We tested only SetupSystemParameters() and SetupIssuerParameters(). The other
functions were not tested because U-Prove does not support revocation and
inspection.

• The PPMCC between t and the memory usage is 0.83, and 0.69;

• The PPMCC between k and the memory usage is -0.38, and -0.13.

The results suggest that increasing number of concurrent requests have a negative
correlation with the amount of memory used. However, longer time interval in which
the concurrent requests are performed influences the memory consumption.

Mitigation/Corrective
action

None

Figure 4: Memory Consumption of SetupSystemParameters() with Idemix.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 20 of 68 Public Final version 1.0

Figure 5: Memory Consumption of SetupSystemParameters() with U-Prove.

2.2 Component and Interface-level perturbations

In this section are presented the misuse case scenarios related with the ABCE API calls used during
the Setup stage, namely setupSystemParameters(), setupIssuerParameter(),
setupRevocationAuthorityParameter() and setupInspectionPublicKey().

As mentioned in Section 1.2, the perturbation tests are mostly focused on those function parameters
that can compromise the robustness of the overall system. For example, while we considered testing
the system’s resilience against a perturbation affecting the value of the securityLevel parameter of
the setupSystemParameters call (which might propagate to the CE component and crash/corrupt
it), we did not consider as critical a perturbation that changes the value of the cryptoMechanism
parameter of the same call (it might only allow linking to an invalid URI, without any major security
compromise).

Scenario 2.2.1: Data-type perturbations to the securityLevel parameter in the
setupSystemParameters()call

Summary This perturbation aims to test the robustness of the API call that sets up the system
parameters, by using values that fall outside the specification of the securityLevel
parameter.

Component Under
Evaluation (ET)

ABCE API Call - setupSystemParameters() - Issuer

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:
SystemParameters setupSystemParameters(int
securityLevel, URI cryptoMechanism)

Security levels 80 and 128 MUST be supported (i.e., this is part of the
functional/correctness testing performed by Task 4.6), other values MAY also be
supported [2].

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 21 of 68 Public Final version 1.0

Perturbation This test considers the following two parameter perturbations:

a) Perturbation of securityLevel parameter values:
All the negative Java integer values fall outside of the securityLevel
specification. The selection criteria is a uniform distributed random function
that selects 500 negative Java integers and 500 supported cryptoMechanism.
In order to reproduce the experiment, we store the specific input used in the
logs.

b) Perturbation of cryptoMechanism parameter values:
The test generates 10 well-formed (i.e., syntactically correct) random URI
objects, e.g., urn:qro3D:vykQviPwps:BAFBn3kJVD:A5klCQNuuQ

Document the outputs and observe the correctness of the results/implemented
exception catching mechanisms.

Perturbation Class C-DT

Output old arch. RESULT:

(a) Compliant, (b) Compliant

DETAILS:

(a) Perturbation of securityLevel

The method “testIssuer” in class “eu.abc4trust.abce.perturbationtests.section2.Test21”
encountered an error to create “SystemParameters” with “constraint 3” on Idemix by
assigning a invalid value. The same error recurred on U-Prove.

(b) Perturbation of cryptoMechanism

The method “runTest” in class “eu.abc4trust.abce.perturbationtests.section2.Test21”
encountered an error to create “IssuerParameters” with “bit length constraint” and an
error to create “SystemParameters” with “Unsupported security level” on Idemix by
assigning a invalid value. The same error recurred on U-Prove by assigning an invalid
value.

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 2.2.2: Perturbation of the credspec parameter in the setupIssuerParameters()call

Summary This misuse case aims to test the robustness of the API call that sets up the Issuer’s
parameters, by adding perturbations to its credspec parameter.

Component Under
Evaluation (ET)

ABCE API Call - setupIssuerParameters() - Issuer

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:
IssuerParameters
setupIssuerParameters(CredentialSpecification credspec,
SystemParameters syspars, URI uid, URI hash, URI
revParsUid)

Perturbation Test and document the correctness of the implemented exception catching mechanisms
in the setupIssuerParameters call, by implementing as individual tests the

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 22 of 68 Public Final version 1.0

following perturbations to the credspec parameter:

a) Set /abc:CredentialSpecification/@Revocable to true, but do
not specify a revocation handle.

b) Create a credential specification with a duplicated value in
/abc:CredentialSpecification/abc:SpecificationUID

c) Select randomly 655 values in {0, …, 65535} for
/abc:AttributeDescriptions/abc:AttributeDescription/
@MaxLength.

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULT:

(a) Compliant, (b) Compliant, (c) Non-compliant

DETAILS:

(a) Revocable to true

The method “presentIDCard” in class
“eu.abc4trust.abce.perturbationtests.section2.Test22” encountered an error to verify
the presentation token with “not valid” by
“eu.abc4trust.exceptions.TokenVerificationException”.

(b) duplicate SpecificationUID

The method “issueIDCard” in class
“eu.abc4trust.abce.pertubationtests.section2.Test22” encountered an error to issue
credential with “null”.

(c) random MaxLength

The test case (c) failed because upon providing a randomly chosen value, it did not
observe a fail-safe behavior of the component. The sequence of events produced by the
component are:

1. Setting CredentialSpecification AttributeDescriptions.MaxLength = x

2. Used IssuerParameters to issue a credential

3. Successfully created a presentation token

4. Successfully verified presentation token

Where x is a randomly chosen value of the domain {0, …, 65535}.

Note: The test expects and exception at step 1 when the actual call to
setupIssuerParameters is performed. If the exception is not raised, then the
test attempt to use the parameters for issuance/presentation and verify if that works.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 23 of 68 Public Final version 1.0

Output new arch. RESULT:

(a) N/A, (b) N/A, (c) Compliant

DETAILS:

(a) Revocable to true

This test case was not executed against the new architecture as the result in the old
architecture was Compliant.

(b) duplicate SpecificationUID

This test case was not executed against the new architecture as the result in the old
architecture was Compliant.

(c) random MaxLength

The new crypto arch produces the following exception:
“com.ibm.zurich.idmx.exception.ProofException: Incorrectly re-computed NValue:
sig:0:cs:credSpec:c14n”

Mitigation/Corrective
action

None

Scenario 2.2.4: Perturbation of the uid parameter in the setupIssuerParameters()call

Summary This misuse case aims to test the robustness of the API call that sets up the Issuer’s
parameters, by adding perturbations to its uid parameter.

Component Under
Evaluation (ET)

ABCE API Call - setupIssuerParameters() - Issuer

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:
IssuerParameters
setupIssuerParameters(CredentialSpecification credspec,
SystemParameters syspars, URI uid, URI hash, URI
revParsUid)

Perturbation Test and document the correctness of the implemented exception catching mechanisms
in the setupIssuerParameters call, by generating parameters with the same
uid.

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULT:Compliant

DETAILS:

The implemented test encountered an error to issue credential using first set of
IssuerParameters by “Incorrect issuer public key for “credentialToBeIssued”.

Output new arch. N/A

Mitigation/Corrective
action

None

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 24 of 68 Public Final version 1.0

Scenario 2.2.5: Data type perturbations to the securityLevel parameter in the
setupRevocationAuthorityParameters()call

Summary This perturbation aims to test the robustness of the API call that sets up the RA
parameters, by applying a set of data type perturbations to the securityLevel.

Component Under
Evaluation (ET)

ABCE API Call - setupRevocationAuthorityParameters() -
Revocation Authority

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:
RevocationAuthorityParameters
setupRevocationAuthorityParameters(int securityLevel, URI
cryptoMechanism, URI uid, RevocationInfoReference infoRef,
NonRevocationEvidenceReference evidenceRef,
RevocationUpdateReference updateRef)

Security levels 80 and 128 MUST be supported (i.e., this is part of the
functional/correctness testing performed by Task 4.6), other values MAY also be
supported [2].

Perturbation Test the following values, which fail outside of the securityLevel specification:

Select randomly 500 negative Java integers for the securityLevel and 500
supported cryptoMechanism.

This feature in implemented only in Idemix.

Perturbation Class C-DT

Output old arch. RESULTS:

Compliant.

DETAILS:

The method “issueIDCard” in class“eu.abc4trust.abce.pertubationtests.section2.Test25”
encountered an error as “Failed to issue credential” with “null”.

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 2.2.6: Perturbation of the uid parameter in the
setupRevocationAuthorityParameters()call

Summary This misuse case aims to test the robustness of the API call that sets up the Issuer’s
parameters, by adding perturbations to its uid parameter.

Component Under
Evaluation (ET)

ABCE API Call - setupRevocationAuthorityParameters() - Issuer

ET Type Comp

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 25 of 68 Public Final version 1.0

Normal flow As documented in H2.1 the specification of this API call is:
RevocationAuthorityParameters
setupRevocationAuthorityParameters(int securityLevel, URI
cryptoMechanism, URI uid, RevocationInfoReference infoRef,
NonRevocationEvidenceReference evidenceRef,
RevocationUpdateReference updateRef)

Perturbation Test and document the correctness of the implemented exception catching mechanisms
in the setupRevocationAuthorityParameters call, by executing it two or more times
in order to generate two or more parameters with the same uid.

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULT:

Compliant

DETAILS:

The method “runTest” in class “eu.abc4trust.abce.pertubationtests.section2.Test26”
encountered an error of “Failed to issue credential using the second set of revocation
parameters”.

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 2.2.7: Use of NULL values in the URI parameters of the
setupRevocationAuthorityParameters()call

Summary This misuse case aims to test the robustness of the API call that sets up the Issuer’s
parameters, by adding perturbations to the parameters of type URI.

Component Under
Evaluation (ET)

ABCE API Call - setupRevocationAuthorityParameters() - Issuer

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:
RevocationAuthorityParameters
setupRevocationAuthorityParameters(int securityLevel, URI
cryptoMechanism, URI uid, RevocationInfoReference infoRef,
NonRevocationEvidenceReference evidenceRef,
RevocationUpdateReference updateRef)

Perturbation Test and document the correctness of the implemented exception catching mechanisms
in the setupIssuerParameters call, by setting (as individual tests) the following
URI type parameters:

a) cryptoMechanism set to null

b) uid set to null

c) Select randomly 10 invalid URI paramters for cryptoMechanism.

This feature in implemented only in Idemix.

Perturbation Class C-DT

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 26 of 68 Public Final version 1.0

Output old arch. RESULTS:

(a) Non-compliant, (b) Compliant, (c) Compliant

DETAILS:

 (a) cryptoMechanism set to null

The test case (a) failed because upon providing a null crypto mechanism object, it did
not observe a fail-safe behavior of the component. The sequence of events produced by
the component are:

1. Successfully produced parameters, now trying to create IssuerParameters

2. Managed to issue a credential

3. Successfully created a presentation token

4. Succesfully verified presentation token

5. Used Revocation AuthorityParameters to create a valid presentation token

Additional tests may be performed to verify whether an exception is raised in latter
phases.

(b) uid set to null

The test case (b) observed a NullPointerException. This exception is not
reported in the log files because, according to the test case developer,
“NullpointerExceptions dont have a message field, hence a null value is logged as the
message”.

(c) Select randomly 10 invalid URI paramters for cryptoMechanism

The test case (c) observed the same exception
Failed to issue credential :
java.lang.NullPointerException

This exception that is raised within the method issueIDCard of class
“eu.abc4trust.abce.pertubationtests.section2.PA_II_2_2_7randomUID".

Output new arch. RESULTS:

(a) Compliant, (b) N/A, (c) N/A

DETAILS:

 (a) cryptoMechanism set to null

The new crypto arch produces:
“com.ibm.zurich.idmx.exception.ConfigurationException: Idemx: Technology for
creating issuer parameters is not supported. Exception”

(b) uid set to null

This test case was not executed against the new architecture as the result in the old
architecture was Compliant.

(c) Select randomly 10 invalid URI paramters for cryptoMechanism

This test case was not executed against the new architecture as the result in the old
architecture was Compliant.

Mitigation/Corrective
action

Idemix was/is the only crypto engine supported by ABC4Trust that provides
revocation, so the ABCE is hardcoded to use it. Therefore crypto mechanism was/is
not used.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 27 of 68 Public Final version 1.0

Scenario 2.2.8: Data-type perturbations to the securityLevel parameter in the
setupInspectorPublicKey()call

Summary This perturbation aims to test the robustness of the API call that sets up the Inspector’s
public key, by applying a set of data type perturbations to the securityLevel.

Component Under
Evaluation (ET)

ABCE API Call - setupInspectorPublicKey() - Inspector

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:
InspectorPublicKey setupInspectorPublicKey(int
securityLevel, URI mechanism, URI uid)

Security levels 80 and 128 MUST be supported (i.e., this is part of the
functional/correctness testing performed by Task 4.6), other values MAY also be
supported [2].

Perturbation Test the following values, which fail outside of the securityLevel specification:

Select randomly 1000 negative Java integers for the securityLevel and 1000
supported cryptoMechanism.

This feature in implemented only in Idemix.

Perturbation Class C-DT

Output old arch. RESULT:

Non-compliant

DETAILS:

The component does not generate an exception. The log file shows that all tests
reproduced the following sequence of events:

1. Running test with security level x (x is the negative value)

2. Successfully produced inspector key, now trying to create IssuerParameters

3. Managed to issue a credential

4. Successfully created a presentation token

5. Successfully verified presentation token

Output new arch. The securityLevel parameter is replaced by a SystemParameters object in
the new crypto architecture, so this scenario is no longer relevant.

Mitigation/Corrective
action

The securityLevel is actually read from the SystemParameters, located in
the Inspectors KeyManager. The Parameters is therefore never actually used.

Scenario 2.2.9: Perturbation of the uid parameter in the setupInspectorPublicKey()call

Summary This misuse case aims to test the robustness of the API call that sets up the Inspector’s
public key, by adding perturbations to its uid parameter.

Component Under
Evaluation (ET)

ABCE API Call - setupInspectorPublicKey() – Inspector

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 28 of 68 Public Final version 1.0

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:
InspectorPublicKey setupInspectorPublicKey(int
securityLevel, URI mechanism, URI uid)

Perturbation Test and document the correctness of the implemented exception catching mechanisms
in the setupInspectorPublicKey call, by generating parameters with the same
uid.

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULT:

Compliant

DETAILS:

The method “runTest” in class “eu.abc4trust.abce.pertubationtests.section2.Test29”
encountered an error of “Failed to inspect using the first key”.

Output new arch. N/A

Mitigation/Corrective
action

None

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 29 of 68 Public Final version 1.0

3 Issuance

When issuing a credential, an interactive protocol is executed between the User and an Issuer, where at
the end the User obtains a privacy-ABC credential (or an error message) [2]. Issuance can be “from
scratch” (i.e., credentials are issued without relation to any existing credentials or pseudonyms already
owned by the Users) or “advanced issuance” (i.e., the information embedded into the newly created
credential can be invisibly “carried over” from existing credentials already owned by the User).

As mentioned in Section 1, the designed/tested perturbations focused on the core components
documented in D2.2 i.e., the Issuer ABCE and the involved CEs.

Also, regardless of the issuance type (i.e., from scratch or advanced) the API calls involved during this
stage are the Issuer’s initIssuanceProtocol() and, both Issuer’s and User’s
issuanceProtocolStep(). The reader is referenced to Deliverable 2.1 [2], for further details
about the credential issuance stage.

3.1 Data flow-level perturbations

Misuse cases related with data flow-level perturbations are developed in the rest of this section. Notice
that despite the fact that Issuance is a multi-legged protocol, the involved Issuance-related API calls
are stateless despite a “unique context” is kept among different messages from the same issuance
process to ensure that the Issuer is serving the right request.

Scenario 3.1.1: Stress perturbations on the ABCE component (Advanced Issuance with no carry over attributes)

Summary A stress perturbation is tested on the ABCE when issuing a credential with advanced
features, to assess its resilience against a denial of service (DoS).

Component Under
Evaluation (ET)

ABCE – Advanced Issuance - Issuer

ET Type Arch

Normal flow The ABCE component supports concurrent issuance with advanced features requests,
which are triggered by the respective issuanceProtocolStep() ABCE API call
[2].

Perturbation Stress the ABCE component by keeping k concurrent issuance requests during a period
of t seconds. The goal is to monitor the resource consumption (i.e., heap memory
consumption). When applicable, this experiment should be repeated for all involved
CEs.

The parameters k and t are the following:

• k ∈ {500, 1000, 1500};

• t ∈ {60, 120, 180}.

The pseudo-algorithm is the following:

1 - Until time t is reached:

2 - init = freeMemory();

3 - Execute k concurrent requests;

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 30 of 68 Public Final version 1.0

4 - mem = freeMemory() – init;

5 – Log mem, t, and k

Where freeMemory() is the API call to obtain the amount of system memory
available5.

The test consists of two phases: a preprocessing phase and a test phase. The
preprocessing phase starts by making k serial calls to the Issuers initIssuanceProtocol,
giving k IssuanceMessage (IM1). These k IM1 are then passed to the user ABCE (again
serially), yielding k new IssuanceMessages (IM2). The test phase uses the k IM2, which
are each assigned to a separate thread that calls issuanceProtocolStep()on the
issuer. These threads are run in parallel.

Document the outputs and assess the consumption of the resource for (a) Idemix and
(b) U-Prove.

Perturbation Class DF-S (subclass of DF-O)

Output old arch. RESULT:

(a) Compliant, (b) Non-compliant

DETAILS:

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of resources.

(a) Idemix

• The PPMCC between t and the memory usage is 0.5;

• The PPMCC between k and the memory usage is 0.19;

The results show a correlation between the memory usage and the time. However, the
maximum memory usage peak is 60MB

(b) U-Prove

The test execution reached the timeout set for these tests. U-Prove becomes
unresponsive after a set amount of requests have been sent. U-Prove has had some
issues with hardcoded (artificial) limitations.

Output new arch. RESULT:

(a) N/A, (b) Compliant

DETAILS:

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of resources.

(a) Idemix

This test case was not executed against the new architecture as the result in the old
architecture was Compliant.

(b) U-Prove

• The PPMCC between t and the memory usage is 0.48;

• The PPMCC between k and the memory usage is 0.60;

The results show a correlation between the memory usage and the time. However, the
maximum memory usage peak is 49MB

5 The real implementation used the java.lang.Runtime API . See the following URL for more details:
http://docs.oracle.com/javase/6/docs/api/java/lang/Runtime.html

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 31 of 68 Public Final version 1.0

Mitigation/Corrective
action

None

Scenario 3.1.2: Malformed Advanced Issuance’s parameters

Summary This perturbation consists of an outlier case for Advanced Issuance, where a list of
attributes to be carried over does not correspond to the respective Issuance Policy sent
by the Issuer.

Component Under
Evaluation (ET)

ABCE - Advanced Issuance – Issuer

ET Type Arch

Normal flow When issuing a credential with carried over attributes (i.e., Advanced Issuance [2]), an
Issuance Policy containing a credential template specifying the existing user
credential’s attributes to “reuse” is sent by the Issuer.

Perturbation The credential template used by the Issuer will contain an empty list of user attributes
to reuse in the requested credential; however the respective Issuance Policy should be
non-empty in order to trigger the Advanced Issuance.

This feature in implemented only in Idemix.

Perturbation Class DF-O

Output old arch. RESULT:

Compliant

DETAILS:

The method “runTest” in class “eu.abc4trust.abce.pertubationtests.section3.Test12”
encountered an error of “Failed to issue credential: Proof does not verify”.

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 3.1.3: Modifying the Issuance Message’s Context attribute

Summary This perturbation consists of an outlier case for Advanced Issuance, where the
message’s context attribute changes to a non-existing session. The perturbation is done
at the user-side of the issuance protocol.

Component Under
Evaluation (ET)

ABCE - Advanced Issuance – Issuer

ET Type Arch

Normal flow To allow the linkage of different legs of an issuance protocol, each message includes a
Context attribute, which must have the same value on all legs [2].

Perturbation Change the value of the Context attribute with 10 non-existing issuance sessions. The
selection of the 10 sessions is done randomly. This is only implemened in Idemix.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 32 of 68 Public Final version 1.0

Perturbation Class DF-O

Output old arch. RESULT:

Compliant

DETAILS:

The method “runTest” in class “eu.abc4trust.abce.pertubationtests.section3.Test13”
encountered an error of “Failed to issue credential: java.lang.NullPointerException”.

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 3.1.4: Modifying the Issuance Message’s Context attribute

Summary This perturbation consists of an outlier case for Advanced Issuance where the
message’s context attribute changes to an existing, but different from the current one,
issuance session.

Component Under
Evaluation (ET)

ABCE - Advanced Issuance - Issuer

ET Type Arch

Normal flow To allow the linkage of different legs of a issuance protocol, each message includes a
Context attribute, which must have the same value on all legs [2].

Perturbation Change the value of the Context attribute to an existing issuance session, but which is
different from the current one. That is, Client 1 initiates issuance with server (gets
issuance policy with context=AA in return), but never responds. Then Client 2 initiates
issuance with server (gets issuance policy with context=BB in return), but in this case
client 2 computes a response to the received issuance policy using context=AA (from
Client 1’s).

This feature in implemented only in Idemix.

Perturbation Class DF-O

Output old arch. RESULT:

Compliant

DETAILS:

The method “runTest” in class “eu.abc4trust.abce.pertubationtests.section3.Test14”
encountered an error of “Failed to issue credential : Proof does not verify”.

Output new arch. N/A

Mitigation/Corrective
action

None

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 33 of 68 Public Final version 1.0

3.2 Component and Interface-level perturbations

In this section the misuse case scenarios related with the ABCE API calls used during the Issuance
stage, namely issuanceProtocolStep() and initIssuanceProtocol()are presented.
Where applicable, the calls are analyzed for both Users and Issuers. For the presented misuse cases,
the same considerations apply as for those shown in Section 2.

Notice that perturbations to the PresentationPolicy embedded into the IssuancePolicy, will
be presented in Section 4.

Scenario 3.2.1: Perturbing the initIssuanceProtocol()call (Issuers)

Summary This perturbation aims to test the robustness of API call that initiates the interactive
issuance protocol (Issuers).

Component Under
Evaluation (ET)

ABCE API Call - initIssuanceProtocol() – Issuer

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:

 (IssuanceMessage, boolean, URI)
initIssuanceProtocol(IssuancePolicy ip, Attribute[]
attributes)

Perturbation Test and document the correctness of the implemented exception catching mechanisms,
by implementing as individual tests the following perturbations:

a) Create an issuance policy with a non-existing value in
/abc:IssuancePolicy/abc:CredentialTemplate/abc:Crede
ntialSpecUID

b) Create an issuance policy with a non-existing value in
/abc:IssuancePolicy/abc:CredentialTemplate/abc:Issue
rParametersUID

c) Create an issuance policy with a set of issuer parameters that are not meant for
the credspec specified in the template. That is, not matching (although valid)
/abc:IssuancePolicy/abc:CredentialTemplate/abc:Crede
ntialSpecUID and
/abc:IssuancePolicy/abc:CredentialTemplate/abc:Issue
rParametersUID

d) Specify a set of non-existing attributes to be carried over from existing
credentials (i.e.,
…/abc:UnknownAttributes/abc:CarriedOverAttribute/abc
:SourceCredentialInfo).

e) Create 10 randomly generated malformed attribute type-value pairs (i.e., the
attributes parameter)

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULT:

(a-e) Compliant

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 34 of 68 Public Final version 1.0

DETAILS:

The method “runTest” in class “eu.abc4trust.abce.pertubationtests.section3.Test21”
encountered the following exceptions:

a) “Failed to issue credential : Could not find credential description with UID:
"my:random:uri”

b) “Failed to issue credential : java.lang.RuntimeException:”

c) “java.lang.RuntimeException: Cannot find object my:random:uri located at
my:random:uri”

d) “Failed to issue credential : java.lang.RuntimeException:
java.lang.NullPointerException”

e) “Failed to issue credential : this is text, not a date”

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 3.2.2: Perturbing the issuance policy within the IssuanceMessage parameter of the
issuanceProtocolStep()call (Users)

Summary This perturbation aims to test the robustness of the issuance policy (embedded into the
IssuanceMessage parameter) used by the API call that performs one step in the
interactive issuance protocol (for both Users and Issuers).

Component Under
Evaluation (ET)

ABCE API Call - issuanceProtocolStep() - User

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:

For Users:

IssuanceMessage/CredentialDescription
issuanceProtocolStep(IssuanceMessage m)

Please note that the issuanceMessages sent to the issuer will never contain an
issuance policy, hence the perturbation is not relevant for issuers.

Perturbation Test and document the correctness of the implemented exception catching mechanisms
in the issuanceProtocolStep call, by implementing as individual tests the
following perturbations to the issuance policy contained into the IssuanceMessage
parameter:

a) Create an issuance policy with a duplicate (i.e., existing/non-unique) value in
/abc:IssuancePolicy/abc:CredentialTemplate/abc:Creden
tialSpecUID

b) Create an issuance policy with a duplicated (i.e., existing/non-unique) value in
/abc:IssuancePolicy/abc:CredentialTemplate/abc:Issuer
ParametersUID

c) Specify a set of non-existing attributes to be carried of from existing
credentials (i.e.,
…/abc:UnknownAttributes/abc:CarriedOverAttribute/abc
:SourceCredentialInfo).

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 35 of 68 Public Final version 1.0

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULT:

(a-c) Compliant

DETAILS:

The method “runTest” in class “eu.abc4trust.abce.pertubationtests.section3.Test22”
encountered the following exceptions:

a) “Failed to issue credential : java.lang.RuntimeException: cannot extract cred
spec”

b) “Failed to issue credential : java.lang.NullPointerException”

c) “Failed to issue credential : java.lang.RuntimeException:
java.lang.NullPointerException”

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 3.2.3: Perturbing the issuance token within the IssuanceMessage parameter of the issuer ABCE
API Call issuanceProtocolStep()call

Summary This perturbation aims to test the robustness of the issuance token (embedded into the
IssuanceMessage parameter) used by the issuer API call that performs one step in
the interactive issuance protocol.

Component Under
Evaluation (ET)

ABCE API Call - issuanceProtocolStep() - User

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:

For Issuers:
(IssuanceMessage, boolean, URI)
issuanceProtocolStep(IssuanceMessage m)

Perturbation Test and document the correctness of the implemented exception catching mechanisms
in the issuanceProtocolStep call by specifying a token with version (i.e.
/abc:IssuanceToken/@Version) different to “1.0”.

Perturbation Class C-O

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 36 of 68 Public Final version 1.0

Output old arch. RESULT:

Non-compliant

DETAILS:

The test failed because upon using a token version different to 1.0, the test did not
observe fail-safe behavior. The sequence of events produced by the component are:

1. Managed to issue a credential

2. Successfully created a issuance token

3. Successfully verified issuance token

Additional tests may be performed to verify whether an exception is raised in latter
phases.

Output new arch. RESULT:

Non-compliant

DETAILS:

The new crypto architecture has the same output.

Mitigation/Corrective
action

The version is never checked. It should be either removed from the specification or
implemented a check.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 37 of 68 Public Final version 1.0

4 Presentation

As described in Deliverable 2.1 [2], during the presentation stage the user requests access to a
protected resource, upon which the verifier sends a presentation policy describing which credentials
the User should present to obtain access.

The API calls to be tested are createPresentationToken() and
verifyTokenAgainstPolicy(). Interested readers are referenced to Deliverable 2.1 [2], for further
details about the token presentation stage.

4.1 Data flow-level perturbations

This section presents the misuse case (and its corresponding results) targeting the Presentation stage of
the privacy-ABC. In particular, the test presented in this section focuses on stressing the ABCE API
call in charge of performing the token verification, by executing a high number of concurrent requests
(which resembles a perturbation that can occur on a real deployment).

Scenario 4.1.1: Stress perturbations on the verifier’s ABCE component

Summary A stress perturbation is tested on the verifier’s ABCE, to assess its resilience against a
denial of service (DoS).

Component Under
Evaluation (ET)

ABCE – Verifying a presentation token - Verifier

ET Type Arch

Normal flow The ABCE component has been designed to support concurrent verification requests,
which are triggered by the respective verifyTokenAgainstPolicy() ABCE
API call [2].

Perturbation Stress the ABCE component by keeping k concurrent verification requests during a
period of t seconds. The goal is to monitor the resource consumption (i.e., heap
memory consumption) and the availability of the service (i.e., time to process all the
requests). When applicable, this experiment should be repeated for all involved CEs.

The parameters k and t are the following:

• k ∈ {500, 1000, 1500};

• t ∈ {60, 120, 180}.

The pseudo-algorithm is the following:

1 - Until time t is reached:

2 - init = freeMemory();

3 - Execute k concurrent requests;

4 - mem = freeMemory() – init;

5 – Log mem, t, and k

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 38 of 68 Public Final version 1.0

Where freeMemory() is the API call to obtain the amount of system memory
available6.

Document the outputs and assess the consumption of the resource for (a) Idemix and
(b) U-Prove.

Perturbation Class DF-S (subclass of DF-O)

Output old arch. RESULT:

(a) Compliant; (b) Non-Compliant

DETAILS:

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of resources.

(a) Idemix

• The PPMCC between t and the memory usage is -0.06;

• The PPMCC between k and the memory usage is -0.19;

Memory usage has a negative correlation with k and t. This suggests that the
component does not suffer from uncontrolled memory usage with regard to k and t.

(b) U-Prove

The test execution reached the timeout set for these tests.

U-Prove becomes unresponsive after a set amount of requests have been sent (this is
the same problem as in 4.1.1). U-Prove has had some issues with hardcoded (artificial)
limitations

Output new arch. RESULT:

(a) Compliant; (b) Non-Compliant

DETAILS:

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of resources.

(a) Idemix

The test case (a) was not executed against the new architecture because the result
against the old architecture was Compliant.

(b) U-Prove

• The PPMCC between t and the memory usage is -0.73;

• The PPMCC between k and the memory usage is 0.34;

The results indicate that UProve tends to use less memory when tested for a longer
period. The results also show that the memory usage has a positive correlation with the
number of concurrent requests. Furthermore, the maximum memory usage peak is
237MB.

Mitigation/Corrective
action

None

6 The real implementation used the java.lang.Runtime API . See the following URL for more details:
http://docs.oracle.com/javase/6/docs/api/java/lang/Runtime.html

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 39 of 68 Public Final version 1.0

4.2 Component and Interface-level perturbations

In this section are presented the misuse case scenarios related with the ABCE API calls used during
the Presentation stage, namely createPresentationToken() and
verifyTokenAgainstPolicy(). Other calls e.g., canBeSatisfied(), getToken() and
deleteToken() do not allow for a relevant perturbation that comprises the ABCE subsystem’s
robustness. For the presented misuse cases, the same considerations apply that for those shown in
Section 2.

Scenario 4.2.1: Perturbing the user ABCE createPresentationToken()call

Summary This perturbation aims to test the robustness of the user ABCE API call that returns a
presentation token satisfying the Verifier’s presentation policy.

Component Under
Evaluation (ET)

ABCE API Call - createPresentationToken() - User

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:

PresentationToken
createPresentationToken(PresentationPolicyAlternatives p,
IdentitySelection idSelectionCallback)

Perturbation Test and document the correctness of the implemented exception catching mechanisms,
by implementing as individual tests the following perturbations:

a) Create a presentation policy with a
/abc:PresentationPolicyAlternatives/@Version different
than “1.0”.

b) Specify a credential attribute in
…/abc:Credentials/abc:Credential/abc:DisclosedAttribu
te/@AttributeType that does not occur in at least one of the listed
credential specifications (i.e., the multiple abc:CredentialSpecUID
elements listed in the abc:CredentialSpecAlternatives child
element of the ancestor abc:Credential element).

c) Specify in
…/abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute/@Cred
entialAlias a value that does not occur as an Alias attribute in an
abc:Credential element within this abc:PresentationPolicy.

This feature in implemented only in Idemix.

Perturbation Class C-O

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 40 of 68 Public Final version 1.0

Output old arch. RESULT:

(a-b) Compliant, (c) Compliant

DETAILS:

(a) Version = 2.0

The method “createPresentation” in class
“eu.abc4trust.abce.pertubationtests.section4.Test21” encountered an error of “Failed to
create presentation token: java.lang.UnsupportedOperationException: Unknown
version, expected '1.0', got '2.0': Unknown version, expected '1.0', got '2.0'”

(b) Disclose Non Existent Attribute AttributeType

The method “createPresentation” in class
“eu.abc4trust.abce.pertubationtests.section4.Test21” encountered an error of “Failed to
create presentation token : java.lang.RuntimeException: java.lang.RuntimeException:
java.lang.NullPointerException: java.lang.RuntimeException:
java.lang.NullPointerException”.

(c) Unknown credential alias

The method createPresentationToken in class
“eu.abc4trust.abce.pertubationtests.section4.Test21” encountered an error of “Failed to
verify presentation token: eu.abc4trust.exceptions.TokenVerificationException: The
presented token does not satisfy the policy: The presented token does not satisfy the
policy”.

Output new arch. N/A

Mitigation/Correctiv
e action

The test is Compliant from the point of view of our analysis. However, it must be
noted that the exception returned is wrong. The exception is raised during the
generation of the token and not during the verification. According to that, a possible
mitigation is to raise a proper exception or, alternatively, to formally deprecate the
method as it is de-facto deprecated.

Scenario 4.2.2: Perturbing the PresentationPolicyAlternatives parameter of the
verifyTokenAgainstPolicy()call

Summary This perturbation to the PresentationPolicyAlternatives parameter aims
to test the robustness of the API call that given a single presentation policy and a single
presentation token, checks whatever the latter satisfies the former and the validity of
the cryptographic evidence contained in the token.

Component Under
Evaluation (ET)

ABCE API Call - verifyTokenAgainstPolicy() - Verifier

ET Type Comp

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 41 of 68 Public Final version 1.0

Normal flow As documented in H2.1 the specification of this API call is:

PresentationTokenDescription verifyTokenAgainstPolicy(
PresentationPolicyAlternatives p, PresentationToken t,
boolean store)

Perturbation Test and document the correctness of the implemented exception catching mechanisms,
by implementing as individual tests the following perturbations to the
PresentationPolicyAlternatives parameter:

a) Create a presentation policy with a
/abc:PresentationPolicyAlternatives/@Version different
than “1.0”.

b) Specify in
…/abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute/@Cre
dentialAlias a values that does not occur as an Alias attribute in an
abc:Credential element within this abc:PresentationPolicy.

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULTS:

(a) Non-compliant, (b) Compliant;

DETAILS:

(a) Version = 2.0

The test case (a) failed upon providing a presentation policy version equal to 2.0, the
component does not raise an exception. The implemented test produced the following
sequence of events:

1. Managed to issue a credential

2. Issued credential

3. Successfully created a presentation token

4. Successfully verified presentation token

(b) Unknown credential alias

The method “verifyToken” in class “Failed to verify presentation token :
eu.abc4trust.exceptions.TokenVerificationException: The presented token does not
satisfy the policy: The presented token does not satisfy the policy”.

Output new arch. RESULTS:

(a) Non-compliant, (b) N/A

DETAILS:

(a) Version = 2.0

The new crypto architecture has the same output

Test cases (b)

This test case was not executed against the new architecture.

Mitigation/Corrective
action

The version is never checked. It should be either removed from the specification or
implemented a check.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 42 of 68 Public Final version 1.0

Scenario 4.2.3: Perturbing the PresentationToken parameter of the
verifyTokenAgainstPolicy()call

Summary This perturbation to the PresentationToken parameter aims to test the robustness
of the API call that given a presentation policy and presentation token, checks
whatever the latter satisfies the former and the validity of the cryptographic evidence
contained in the token.

Component Under
Evaluation (ET)

ABCE API Call - verifyTokenAgainstPolicy() - Verifier

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:

PresentationTokenDescription verifyTokenAgainstPolicy(
PresentationPolicyAlternatives p, PresentationToken t,
boolean store)

Perturbation Test and document the correctness of the implemented exception catching mechanisms,
by implementing as individual tests the following perturbations to the
PresentationToken parameter:

a) Create a presentation token with a
/abc:PresentationToken/@Version different than “1.0”.

This feature in implemented only in Idemix.

Perturbation Class C-O

Output old arch. RESULT:

(a) Non-compliant

DETAILS:

(a) Version = 2.0

The test (a) failed upon providing a presentation policy version 2.0, the component
does not raise an exception. The implemented test produced the following sequence of
events:

1. Managed to issue a credential

2. Issued credential

3. Successfully created a presentation token

4. Successfully verified presentation token

Output new arch. RESULT:

(a) Non-Compliant

DETAILS:

(a) Version = 2.0

The new crypto architecture has the same output (for (a)).

Mitigation/Corrective
action

The version is never checked. It should be either removed from the specification or
implemented a check.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 43 of 68 Public Final version 1.0

5 Revocation

Within the ABCE layer have been implemented two basic revocation-related functionalities: querying
revocation information from the Revocation Authorities (RA) and, requesting a credential revocation
(driven either by Issuers or Verifiers). Interested readers are referred to [2] for further details related
with the revocation process. For the purposes of this document, we will only focus on (i) the currently
implemented issuer-driven revocation and, (ii) the ABC-architecture components that interact during
the revocation stage. Please notice that the RA is invoked only in the following cases:

1. The Issuer queries the RA during the issuance for the revocation handle attribute.

2. While retrieving the revocation information during the Presentation.

3. While revoking credentials via the RA on request from the Issuer, since only issuer-driven
revocation is supported currently.

5.1 Data flow-level perturbations

In this section are presented two misuse cases targeting the data flows involved during the operation of
the Revocation Authority (RA). The first scenario is a stress test analogous to those presented in
sections 2.1, 3.1 and 4.1

The second scenario considers three special cases based on the unreachability of the RA, and its
unavailability to service different classes of requests from the clients (i.e., issuing a revocation handle,
retrieving revocation information and, revoking credentials).

Scenario 5.1.1: Stress perturbations on the Revocation Authority’s ABCE component

Summary A stress perturbation is tested on the RA’s ABCE, to assess its resilience against a
denial of service (DoS).

Component Under
Evaluation (ET)

ABCE – Querying revocation information or Requesting credential revocation. The
API calls are: generateNonRevocationEvidence(), revoke() and
updateRevocationInformation() - Revocation Authority

ET Type Arch

Normal flow The ABCE component has been designed to support both concurrent revocation
information updates (requested by Users and Verifiers) and concurrent credential
revocation requests (Issuers/Verifiers).

Perturbation Stress the ABCE component by keeping k concurrent revocation requests during a
period of t seconds. The goal is to monitor the resource consumption (i.e., heap
memory consumption) and the availability of the service (i.e., time to process all the
requests). This scenario is applicable only to Idemix.

The parameters k and t are the following:

• k ∈ {500, 1000, 1500};

• t ∈ {60, 120, 180}.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 44 of 68 Public Final version 1.0

The pseudo-algorithm is the following:

1 - Until time t is reached:

2 - init = freeMemory();

3 - Execute k concurrent requests;

4 - mem = freeMemory() – init;

5 – Log mem, t, and k

Where freeMemory() is the API call to obtain the amount of system memory
available7.

Document the outputs and assess the consumption of the resource for (a) Idemix and
(b) U-Prove.

Perturbation Class DF-S (subclass of DF-O)

Output old arch. RESULTS:

(a) Compliant, (b) Inconclusive

DETAILS:

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of resources.

(a) Idemix

• The PPMCC between t and the memory usage is -0.72;

• The PPMCC between k and the memory usage is 0.32;

The result shows that the memory usage increases with the number of concurrent
requests, while over the time the memory used tends to be released. This can be caused
by the garbage collector which releases unused objected.

(b) U-Prove

The test execution reached the timeout set for these tests. This happens because the
feature under test is supported only by Idemix.

Output new arch. N/A

Mitigation/Corrective
action

None

Scenario 5.1.2: RA unreachable

Summary A perturbation to test Issuer’s resilience against unavailability of the RA

Component Under
Evaluation (ET)

ABCE – Issuer’s data flows that involve the RA - Issuer, Revocation Authority

ET Type Arch

Normal flow The RA is invoked by the Issuer (using its Revocation Proxy) in the following cases:

7 The real implementation used the java.lang.Runtime API . See the following URL for more details:
http://docs.oracle.com/javase/6/docs/api/java/lang/Runtime.html

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 45 of 68 Public Final version 1.0

a) While retrieving the revocation handle attribute during issuance.

b) While retrieving the revocation information during the Presentation protocol.

c) While revoking users via the RA on request from the Issuer, since only issuer-
driven revocation is supported currently.

Perturbation Stop the operation of the RA and document the output when:

a) The Issuer queries the RA during the issuance for the revocation handle
attribute.

b) Retrieving the user’s revocation information during the Presentation protocol.

c) Revoking credentials via the RA on request from the Issuer.

Perturbation Class DF-O

Output old arch. RESULTS:

(a-c) Compliant

DETAILS:

The method “presentIDCard” in class
“eu.abc4trust.abce.pertubationtests.section5.Test12” encountered the following
exceptions:

a) Failed to issue credential : com.sun.jersey.api.client.ClientHandlerException:
java.net.SocketTimeoutException: Read timed out

b) “Failed to create presentation token : java.lang.RuntimeException:
eu.abc4trust.cryptoEngine.CryptoEngineException:
eu.abc4trust.keyManager.KeyManagerException:
eu.abc4trust.keyManager.KeyManagerException:
com.sun.jersey.api.client.ClientHandlerException:
java.net.SocketTimeoutException: Read timed out:
eu.abc4trust.cryptoEngine.CryptoEngineException:
eu.abc4trust.keyManager.KeyManagerException:
eu.abc4trust.keyManager.KeyManagerException:
com.sun.jersey.api.client.ClientHandlerException:
java.net.SocketTimeoutException: Read timed out”

c) “Failed to issue credential :
com.sun.jersey.api.client.ClientHandlerException:
java.net.SocketTimeoutException: Read timed out”.

Output new arch. N/A

Mitigation/Corrective
action

None

5.2 Component and Interface-level perturbations

The ABCE API calls related with the revocation stage of the privacy-ABC life-cycle (e.g., revoke(),
updateNonRevocationEvidence(), getCurrentRevocationInformatio()) do not allow for a relevant
perturbation that comprises the ABCE subsystem’s robustness. Take for example the following two
cases:

1. A successful perturbation applied to calls like getRevocationHistory() might affect the
behavior of the application running on top of the ABCE API (e.g, obtain a "false" value
where a "true" value was expected), although even in that case it would be still compliant with
the API specification (i.e., a valid value is being obtained from the call).

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 46 of 68 Public Final version 1.0

2. The revoke() call is similar to the previous example, possible perturbations (wrong
URI/oversized parameters) cannot compromise the robustness of the RA reference
implementation.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 47 of 68 Public Final version 1.0

6 Inspection

Credential’s inspection is usually needed in order to lift the full anonymity granted by privacy-ABCs,
for example in the case of misbehaving users [2].

From the ABC API perspective the relevant call to test is inspect(), given its importance to the
overall system’s security.

6.1 Data flow-level perturbations

This section presents a stress test case for the Inspector, similar to those shown in sections 2.1, 3.1, 4.1
and 5.1. This perturbation aims to compromise the availability of the Inspector by depleting its
available resources through a set of concurrent requests (up to 1500 in a maximum of 180s), and
testing both Idemix and U-Prove in order to compare their behavior.

Scenario 6.1.1: Stress perturbations on the Inspector’s ABCE component

Summary A stress perturbation is tested on the Inspector’s ABCE, to assess its resilience against a
denial of service (DoS).

Component Under
Evaluation (ET)

ABCE – Requesting the inspection of a presentation token - Inspector

ET Type Arch

Normal flow The ABCE component has been designed to support concurrent inspection requests.

Perturbation Stress the ABCE component by keeping k concurrent inspection requests during a
period of t seconds. The goal is to monitor the resource consumption (i.e., heap
memory consumption) and the availability of the service (i.e., time to process all the
requests). When applicable, this experiment should be repeated for all involved CEs.

The parameters k and t are the following:

• k ∈ {500, 1000, 1500};

• t ∈ {60, 120, 180}.

The pseudo-algorithm is the following:

1 - Until time t is reached:

2 - init = freeMemory();

3 - Execute k concurrent requests;

4 - mem = freeMemory() – init;

5 – Log mem, t, and k

Where freeMemory() is the API call to obtain the amount of system memory
available8.

Document the outputs and assess the consumption of the resource for (a) Idemix and
(b) U-Prove.

8 The real implementation used the java.lang.Runtime API . See the following URL for more details:
http://docs.oracle.com/javase/6/docs/api/java/lang/Runtime.html

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 48 of 68 Public Final version 1.0

Perturbation Class DF-S (subclass of DF-O)

Output old arch. RESULT:

(a) Compliant, (b) Inconclusive;

DETAILS:

We applied the PPMCC (Pearson Product-Moment Correlation Coefficient) to identify
correlation between the parameters k and t, and the consumption of resources.

(a) Idemix

• The PPMCC between t and the memory usage is -0.28;

• The PPMCC between k and the memory usage is -0.44;

The result shows that the memory usage decreases with both k and t.

(b) U-Prove

The test execution reached the timeout set for these tests. This feature in implemented
only in Idemix.

Output new arch. N/A

Mitigation/Corrective
action

None

6.2 Component and Interface-level perturbations

In this section is presented the misuse case scenario related with the ABCE API call used during the
inspection of a presentation token, namely inspect(). The presented misuse case mainly consists of
a series of tests targeting the robustness of this ABCE API call against buffer overflows, by
performing a series of perturbations that make use of unbounded parameters (i.e., non-compliant with
the API specification). Apart from testing its resilience against buffer overflows, the presented misuse
case also tests invalid parameter values in order to find out the operational behavior of the reference
implementation.

Scenario 6.2.1: Perturbing the PresentationToken parameter of the inspect()call

Summary This perturbation to the PresentationToken parameter aims to test the robustness
of the API call that is in charge of inspecting a presentation token.

Component Under
Evaluation (ET)

ABCE API Call - inspect() - Inspector

ET Type Comp

Normal flow As documented in H2.1 the specification of this API call is:

• Attribute[] inspect(PresentationToken t)

Perturbation Test and document the correctness of the implemented exception catching mechanisms,
by implementing as individual tests the following perturbations to the
PresentationToken parameter:

a) Create a presentation token with a
/abc:PresentationToken/@Version different than “1.0”.

Perturbation Class C-O

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 49 of 68 Public Final version 1.0

Output old arch. RESULT:

(a) Non-compliant

DETAILS:

(a) Version = 2.0

The test case (a) fails because the inspection function does not raise an exception while
inspecting a perturbed token.

Output new arch. RESULT:

(a) Non-Compliant

DETAILS:

(a) Version = 2.0

The new crypto architecture has the same output for (a).

Mitigation/Corrective
action

The version is never checked. It should be either removed from the specification or
implemented a check.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 50 of 68 Public Final version 1.0

7 Summary

This deliverable detailed the PA conducted on the ABCE component (and other core-components that
are invoked through the ABCE API calls) of the reference implementation documented in Deliverable
D2.1 and Heartbeat H2.2 (i.e., “old crypto architecture”) in order to assess its robustness. The goal is
to identify those elements that need to be further analyzed and improved (from a robustness
perspective), before integrating into the next version of the implementation (i.e., the “new crypto
architecture” in Deliverable D4.2, and Heartbeats H2.2 and H4.1). The PA started with the analysis of
the whole system documented in D2.1/H2.2 in order to identify the ET that can compromise the
overall robustness of the system. Then, the PA classified the ET into architecture flow,
implementation component/interface, and usage9. The classification allows selecting the type of
perturbations to apply. Third, tests are executed against the implementation. The results of a test can
be one of the following: Compliant, Non-compliant, and Inconclusive. A test is Compliant if its
execution detected a fail-safe behavior, or, alternatively, if the observed behavior does not show any
evidence of uncontrolled resource consumption. If a test does not detect a fail-safe, then the test is
Non-compliant. A test is Inconclusive, e.g., it cannot be applied to a component, or its execution time
exceeds a prefixed timeout. Finally, the PA identified and suggested the proper action to be taken in
order to mitigate the findings in the next version of the reference implementation (i.e., Deliverable
D4.2).

In total, the PA consisted of 25 perturbation scenarios containing in total 43 test cases. Tests were
designed starting from valid functional test cases, and then introducing perturbation inputs. The
selection of inputs is done using both a uniform distribution function and manual selection over a set
of outlier inputs. Invalid inputs are identified by combining the syntax and semantics of API function
parameters. Table 3 reports the total number of perturbation scenarios (column Scen.) and test cases
(column TC) grouped by ET Type. Test cases are distributed in: (i) 16 flow and stress test cases, (ii)
27 component and interface test cases.

As mentioned before, the scope of this deliverable is to assess the robustness of the reference
implementation of ABC4Trust. The PA does not apply security testing techniques, such as penetration
testing. Moreover, this deliverable does not perform any benchmark and does not define metrics for it.
Software benchmarks and metrics are addressed in WP2 and WP3.

Table 3: Scenarios and test cases (TC) grouped by ET Type

Class

ET

Setup
(2.x.y)

Issuance
(3.x.y)

Presentation
(4.x.y)

Revocation
(5.x.y)

Inspection
(6.x.y)

Scen. TC Scen. TC Scen. TC Scen. TC Scen. TC

Data flow
(x.1.y)

1 2 4 5 1 2 2 5 1 2

Component
(x.2.y)

9 13 3 9 3 4 0 - 1 1

Total 10 15 7 14 4 6 2 5 2 3

9 Perturbations related with the misuse (functional bugs and failed installations) of the reference implementation
were documented by the WP6 and WP7 pilots. The reported results are shown in Appendix A and Appendix B.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 51 of 68 Public Final version 1.0

7.1 Detailed overview of the results

Table 1 shows the results of the test execution. The result of a test can be Compliant (column S), Non-
compliant (column T), and Inconclusive (column I). The number of Compliant tests is 31 out of 43,
while the number of Non-compliant tests is 8. The remaining 4 tests are inconclusive. Inconclusive
tests can be classified in unresponsive tests (i.e., reached the timeout condition), and the component
under test is not implemented (i.e., it is specified, but the implementation is missing. Table 5 and
Table 6 report the results for each test case. We summarize the results of the tests below.

Table 4: Summary of results grouped by ET Type

Legend: C=Compliant, N=Non-compliant, I=Inconclusive

Table 5: Detailed view of data flow perturbations

Test (Scenario ID + case) Old crypto New crypto

2.1.1 (a) Compliant

2.1.1 (b) Non-compliant Non-compliant

3.1.1 (a) Compliant

3.1.1 (b) Inconclusive (Timeout)

3.1.2 Compliant

3.1.3 Compliant

3.1.4 Compliant

4.1.1 (a) Compliant

4.1.1 (b) Inconclusive (Timeout)

5.1.1 (a) Compliant

5.1.1 (b) Inconclusive (Timeout)

5.1.2 (a) Compliant

5.1.2 (b) Compliant

5.1.2 (c) Compliant

6.1.1 (a) Compliant

6.1.1 (b) Inconclusive (Timeout)

10 Please refer to Section 5.2 for an explanation related to the lack of perturbations on this stage.

Class
Setup
(2.x.y)

Issuance
 (3.x.y)

Presentation
(4.x.y)

Revocation
 (5.x.y)

Inspection
(6.x.y)

TC C N I TC C N I TC C N I TC C N I TC C N I

Data flow
(x.1.y)

2 1 1 0 5 4 0 1 2 1 0 1 5 4 0 1 2 1 0 1

Component
(x.2.y)

13 10 3 0 9 8 1 0 4 2 2 0 010 - - - 1 0 1 0

Total 15 11 4 0 14 12 1 1 6 3 2 1 5 4 0 1 3 1 1 1

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 52 of 68 Public Final version 1.0

Table 6: Detailed view of component and interface perturbations

Test (Scenario ID + case) Old crypto New crypto

2.2.1 (a) Compliant

2.2.1 (b) Compliant

2.2.2 (a) Compliant

2.2.2 (b) Compliant

2.2.2 (c) Non-compliant Compliant

2.2.4 Compliant

2.2.5 Compliant

2.2.6 Compliant

2.2.7 (a) Non-compliant Compliant

2.2.7 (b) Compliant

2.2.7 (c) Compliant

2.2.8 Non-compliant Inconclusive (not applicable)

2.2.9 Compliant

3.2.1 (a) Compliant

3.2.1 (b) Compliant

3.2.1 (c) Compliant

3.2.1 (d) Compliant

3.2.1 (e) Compliant

3.2.2 (a) Compliant

3.2.2 (b) Compliant

3.2.2 (c) Compliant

3.2.3 Non-compliant Non-compliant

4.2.1 (a) Compliant

4.2.1 (b) Compliant

4.2.1 (c) Compliant

4.2.2 (a) Non-compliant Non-compliant

4.2.2 (b) Compliant

4.2.3 (a) Non-compliant Non-compliant

6.2.1 (a) Non-compliant Non-compliant

7.1.1 Compliant

31 tests out of 43 were compliant. It is important to consider that (a) the PA does not claim
completeness as an experimental methodology and (b) the test platform restrictions often do not allow

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 53 of 68 Public Final version 1.0

tracing the stress cases and loads reaching the ABCE and its CE. This is a natural limitation of any PA
approach where one needs to constrain elements such as length of inter-component propagation flows
or the level of detail of a perturbation case. Thus the validity of the PA and designated success is based
around the class of considered perturbations either as outliers, high-likelihood or nature of
interface/data-flows for a target. Naturally, it must also be noted that these results do not imply that
the implementation is secure. As shown in Figure 1, the PA aims at the robustness of the
implementation. Although robustness issues may imply security issues as well, the PA did not
explicitly target security properties of the implementation. Indeed, the PA did not apply security
testing techniques, such as penetration testing, and they were considered out of scope as reported
earlier in H4.1.

7.1.2 Non-compliant

The total number of non-compliant tests in the old architecture is 8. The tests that failed are:

1. Test case 2.1.1 (b) shows that U-Prove is at risk of memory exhaustion

2. Test case 2.2.2 (c) fails because random maximum lengths for the Attribute Description are
accepted

3. Test case 2.2.7 (a) fails because the component accepts a null crypto mechanism

4. Test case 2.2.8 fails because the component accepts randomly chosen negative security levels
and crypto mechanisms

5. Test cases 3.2.3 fail when testing the components with an invalid token version number. A
different version number was tested with the test cases 4.2.2 (a), 4.2.3 (a), and 6.2.1 (a). All
these tests failed as well

These tests indicate the presence of issues that may affect the robustness of the application. They were
executed also against the new architecture. The results are the following:

1. Test case 2.1.1 (b) still shows a memory exhaustion risk, however it must be noted that the
component under test should not be accessible by external attacker. This should mitigate the
risk of denial of service attacks

2. Test case 2.2.2 (c) and Test case 2.2.7 (a) now succeeds because the component raises an
exception

3. Test case 2.2.8 is inconclusive because the scenario is no longer relevant for the new
architecture

4. Test cases 3.2.3, 4.2.2 (a), 4.2.3 (a) and 6.2.1 (a) still fail. The corrective action to be taken is
to either remove the behavior from the specification or to implement a version check.

The PA spotted eight issues in the old architecture: 2 of them were solved in the new architecture, 1 is
considered unreachable by an external entity (e.g., an attacker), 1 is no longer applicable, and the
remaining 4 are still marked as fail however the corrective actions have been identified.

7.1.3 Inconclusive

The total number of inconclusive results is 4 that are due to a test execution timeout when testing the
U-Prove cryptographic engine (see Scenarios 3.1.1 (b), 4.1.1 (b), 5.1.1 (b), and 6.1.1 (b)).

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 54 of 68 Public Final version 1.0

8 Bibliography

[1] Voas J.M and Miller K.W., "Software Testability: The New Verification," Proc. of IEEE
Software, vol.12, no.3, pp: 17-28, May 1995.

[2] Krontiris I. (ed.), “Architecture for Attribute-based Credential Technologies - Version 1,”
ABC4Trust Deliverable D2.1, Tech. Rep., 2011.

[3] Voas J. M. and McGraw G., “Software Fault Injection: Inoculating Programs Against Errors”.
John Wiley & Sons, Inc., 1997

[4] Nik L., Munro M. and Xu J., "Simulating errors in web services." International Journal of
Simulation Systems, Science & Technology. pp: 29-37, 2004

[5] Nik L., Munro M. and Xu J. "Assessing the Dependability of SOAP RPC-Based Web Services
by Fault Injection," Proc. of Intl. Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS), 2003

[6] Koopman P., et. al., "Comparing operating systems using robustness benchmarks," Proc. of the
Symposium on Reliable Distributed Systems (SRDS), pp: 72-79, 1997.

[7] Krontiris I. (ed.), “ABC4Trust Architecture for Developers” ABC4Trust Heartbeat H2.1, Tech.
Rep., 2012.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 55 of 68 Public Final version 1.0

Appendix A: Pilot misuse cases as reported by WP6

Note: These tests were not part of PA – are being provided as supplemental information only.

The following misuse cases have been reported by the Soderhamn pilot (WP6). Only during the first
round of the pilot, operators misuse cases were detected related with checking for functional bugs and
failed installations. Further details about used test bed (hardware and software) can be found in:

D6.1 Application Description for the school deployment

By Souheil Bcheri, Norbert Goetze, Monika Orski, Harald Zwingelberg

Scenario 1: UProve cards don’t store credentials

Summary UProve Smart Cart doesn’t save credentials due to new issuer parameters

Evaluation
Target (ET)

User Client or User Client to Issuer interface

Test PC: Asus A55A (Core i7 Quad, 8Gb DDR3, 256Gb SSD, 1Gb VRAM), Windows 7 x64

ET Type Usage

Normal flow 1. Initialize U-Prove Smart Card
2. Add the user record to IdM
3. Register in IdM or add pseudonym to IdM
4. Login to IdM Portal
5. Click button to save credential to the card (credSchool)
6. Enter PIN and confirm in dialog
7. Use “View credentials” to check the credential

Perturbation Credential was not saved to the card

Perturbation
Class

Misuse (M-U)

Base functional
test case (Task
4.6)

1. Trying steps 1 to 6 from normal flow
2. Checking the credential according to step 7
3. Discovering that credential was not saved but IdM has an issuance record
4. Rebooting, reinstalling, starting over from 1, no change of result

Output IdM LDAP Tool shows the data which corresponds to artifacts that credential was issued by
ABCE Issuer, but Smart Card is empty

Mitigation/
Corrective
action

Check the User Client against correctness of issuance parameters and ability to work with
different length of keys for UProve or rollback to previous versions

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 56 of 68 Public Final version 1.0

Appendix B: Pilot misuse cases as reported by WP7

Note: These tests were not part of PA – are being provided as supplemental information only.

The following misuse cases were found and reported during both rounds of the Patras’ pilot (WP7).
Further details about used test bed (hardware and software) can be found in:

D7.1 Application Description for students

By Joerg Abendroth, Vasiliki Liagkou, Apostolis Pyrgelis, Christoforos Raptopoulos, Ahmad Sabouri,
Eva Schlehahn, Yannis Stamatiou,Harald Zwingelberg

D7.2 Necessay hardware and software package for the student pilot deployment

By Kasper Damgaard, Hamza Ghani, Norbert Goetze, Anja Lehmann, Vasiliki Liagkou, Jesus Luna,
Gert Læssøe Mikkelsen, Apostolos Pyrgelis, Yannis Stamatiou

Misuse cases reported during the first round:

Scenario 1: DoS on Smart Card due to “Out of RAM Error”

Summary When the user collected his credUniv and credCourse credentials more than twice from
the University Registration System, his smart card could not be accessed anymore due
to an “Out of RAM” error (640E status word).

Component Under
Evaluation (ET)

ABC4Trust Smart Card (Basic Card ZC7.5)

ET Type Usage/Deployment (Usage).

Normal flow The user can get issued credUniv and credCourse as many times as the smart card’s
available RAM memory allows.

Perturbation The users tried to collect both credUniv and credCourse more than twice from the
University Registration System.

Perturbation Class U-M

Preconditions The user requests to be issued both credUniv and credCourse multiple times (e.g. more
than twice).

Output Due to the “Out of RAM” error the student’s smart card was unusable. Thus, he could
not perform basic operations of the pilot e.g. log in to the Course Evaluation System
and submit his evaluation, or log in to the University Registration System with an ABC
token.

Mitigation/Corrective
action

The users who faced this problem had to visit the pilot administrators with their smart
card so that they would re-initialize it. The new smart card’s pseudonym had to be
registered at the IDM database and, the student database attributes (e.g. crypto engine)
had to be re-initialized. After that, the students had to collect once again their
credentials from the University Registration System (but only one time), so they were
able to perform the course evaluation.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 57 of 68 Public Final version 1.0

Scenario 2: DoS on Issuer/Verifier due to concurrent access to the ABCE layer services.

Summary When users access any of the Issuer or Verifier ABCE simultaneously (e.g. when 2
users try to log in at the Course Evaluation System at the same time) the
issuance/verification service might catch an exception and reply with an error response
code.

Component Under
Evaluation (ET)

Issuer/Verifier ABCE layer.

ET Type Comp

Normal flow When two valid users contact the Issuer/Verifier ABCE layer service at exactly the
same time, they should be able to get a valid response from the web service.

Perturbation When two users with valid smart cards access an ABCE layer service (e.g. verification
service when they try to log in to the Course Evaluation System) one of them might get
rejected because of an ABCE exception.

Perturbation Class DF-O

Preconditions Multiple users access an Issuer/Verifier ABCE layer web service (e.g. verification web
service) at exactly the same time.

Output Any of the valid users trying to access the Issuer/Verifier ABCE web service
concurrently with another user, could get an error response from the web service. This
way he would not be able to access a resource (e.g. the course evaluation webform) at
that exact point in time.

Mitigation/Corrective
action

The rejected user should retry accessing the issuance/verification service once again. If
there are not any other users accessing it, then the request should be successful.

Misuse cases reported during the second round of WP7:

Scenario 1: Smart Card Reader Drivers

Summary On some user PC’s, the smart card reader (Omnikey 3021 USB) drivers were not
installed properly by the Windows Driver Installation Manager. As a result, the User
Application could not communicate with the smart card and the User interaction with
the pilot systems was problematic.

Evaluation Target
(ET)

User PC, User Application

ET Type Usage/Deployment (Usage).

Normal flow Normally, the Windows OS would recognize successfully the smart card reader and
would install the appropriate drivers.

Perturbation When a User interacted with the pilot systems (e.g. registering her smart card at the
University Registration System), the User Application tried to transmit some
commands to the smart card. These commands could not reach the smart card and as a
result the student could not complete the requested operation.

Perturbation Class ⇒ User-level: any of Misuse (U-M).

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 58 of 68 Public Final version 1.0

Base functional test
case (Task 4.6)

Testing the User Application – Installing the Smart Card Reader Drivers on the User
pc.

Output The User could not perform any Privacy-ABC operation (e.g. register her smart card,
obtain credentials etc.) since the User Application could not communicate properly
with the smart card.

Mitigation/Corrective
action

The Users had to download and install manually the smart card reader drivers from the
Omnikey website. Then, the User Application would communicate successfully with
the smart card and the users could interact with the pilot systems without any problems.

Scenario 2: Unlocking the Smart Card Using the PUK

Summary When a smart card would get locked (by inserting the wrong PIN, 3 times in a row), the
User could unlock it through the User Application by entering the PUK. If the PUK
value was shorter than 8 digits (such a case is possible when using the smart card
initialization script), the User Application could not unlock the smart card since it was
programmed to handle only PUK values that were exactly 8 digits long. As a result, the
User could not unlock her smart card and could no longer interact with the pilot
systems.

Evaluation Target
(ET)

User Application

ET Type ⇒ Usage/Deployment (Usage).

Normal flow When the User would utilize the User Application in order to unlock her smart card, she
would be requested to enter her PUK value. As soon as she did so, the User Application
would request from the User to enter the new PIN value and the smart card would get
unlocked.

Perturbation Since the User could not unlock her smart card, it was impossible for her to interact
with the pilot systems or even obtain attendance data during the course lecture.

Perturbation Class ⇒ User-level: any of Misuse (U-M).

Base functional test
case (Task 4.6)

Testing the User Application.

Output With the smart card in locked mode, the User could not interact with any of the pilot
systems until she was able to unlock it.

Mitigation/Corrective
action

In order to solve this issue, the pilot administrators implemented a script in Java that
could handle PUK values shorter than 8 digits and assist the Users in unlocking their
smart cards. When executed, the script requested from the User to enter the PUK value
and then it would require from the User to enter the new PIN value. Finally, the smart
card would be unlocked and the User could continue interacting with the pilot systems.

Scenario 3: Inconsistent State of University Credential after Trying to Perform a Proof Towards the
Course Evaluation System with Insufficient Counter Value

Summary When a User who possessed a smart card that had the University and Course credentials
stored on it - but not a sufficient attendance counter value, tried to log-in at the Course
Evaluation System (the presentation policy asked for both credUniv and credCourse),
the state of the University Credential changed from ‘presentable’ to ‘presentation
committed’ but did not change back when the proof failed. As a result, the University
credential remained in an inconsistent state and it could not be used in future proofs.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 59 of 68 Public Final version 1.0

Evaluation Target
(ET)

User Smart Card

ET Type Usage

Normal flow When a student with a smart card which contained both University and Course
credentials, but not a sufficient attendance value, tried to log-in to the Course
Evaluation System, the proof should fail (due to the insufficient value) and the student
should not be able to log-in for submitting her evaluation for the course. However,
when the counter would reach the pre-defined attendance threshold, the User should be
able to log-in to the Course Evaluation System by creating a presentation token based
on the existing University and Course credentials.

Perturbation The student’s University credential was in an inconsistent state and it could not be used
in future proofs. As a result, the User could not use this credential for logging in the
Course Evaluation System and submit her evaluation for the course.

Perturbation Class ⇒ User-level: any of Misuse (U-M)

Base functional test
case (Task 4.6)

Logging in to the Course Evaluation System (by presenting both credUniv and
credCourse).

Output With the University credential in an inconsistent state the User could not create a
presentation token based on it and an exception would show up at the User ABCE
layer. As a result, the User could not log-in to the Course Evaluation System (which
required both credUniv and credCourse) and submit her evaluation for the pilot course.

Mitigation/Corrective
action

In order to deal with this issue, the User had to obtain a new University credential from
the University Registration System and delete the old one from her smart card. The
state of the newly obtained credential would be consistent. Thus, when the counter on
her smart card had reached the threshold she could perform a proof towards the Course
Evaluation System and submit her evaluation for the course.

Scenario 4: Unable to Obtain a Tombola Credential due to Insufficient Smart Card Storage Space

Summary When some Users obtained their University and Course credentials from the
University Registration System multiple times, their smart card memory space was
insufficient to store the Tombola credential. As a result, when a User evaluated the
course and tried to obtain the Tombola credential from the Course Evaluation System
the issuance protocol would fail, since there was not enough space on the smart card to
store the credential.

Evaluation Target
(ET)

User Application / User Smart Card

ET Type ⇒ Usage/Deployment (Usage).

Normal flow When the User would request the Tombola credential from the Course Evaluation
System, the issuance protocol would complete without any problems and the credential
would be stored on the User smart card.

Perturbation The Tombola credential cannot be obtained due to insufficient space on the smart card.

Perturbation Class Classify the perturbation to test in any of the following:

⇒ User-level: Misuse (U-M)

Base functional test
case (Task 4.6)

Obtaining the Tombola Credential from the Course Evaluation System.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 60 of 68 Public Final version 1.0

Output Since the student could not obtain the Tombola credential from the Course Evaluation
System, she could not register for the lottery through the Tombola System.

Mitigation/Corrective
action

In order to resolve this issue, the Users had to make some space on their smart card by
deleting the redundant credentials from it (the ones they had obtained multiple times).
This operation was possible by the User Application which allowed the User to handle
the contents of her smart card.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 61 of 68 Public Final version 1.0

Appendix C: CSV formatted results of stress perturbations

As the following raw data is only available on the restricted Wiki, we provide it here in its basic form
for completeness of information access to the reviewer.

Scenario 2.1.1: Stress perturbations on the ABCE component

Old Architecture

The column “CE” stands for the Crypto Engine. Columns “k” and “t” are, respectively, the number of
concurrent requests and the duration of the test. The column “reqs” is the total number of requests
performed during the test. The column “Errs” is the number of exception reported. The column “real t”
is the real execution time, and, finally, the column “mem” reports the memory (MB) consumed during
the test execution.

SetupSystemParameters():

CE k t reqs. errs real t

mem11

Idemix 500 60 40843 0 61 279

Idemix 1000 60 44888 170 60 101

Idemix 1500 60 46500 403 60 106

Idemix 500 120 85269 494 120 193

Idemix 1000 120 99171 150 120 67

Idemix 1500 120 98269 552 120 245

Idemix 500 180 144611 705 180 211

Idemix 1000 180 141579 100 180 212

Idemix 1500 180 141821 365 180 122

Idemix 10 60 46529 659 60 30

U-Prove 500 60 191111 0 60 19

U-Prove 1000 60 191882 0 60 163

U-Prove 1500 60 191152 0 60 101

U-Prove 500 120 387594 0 120 52

U-Prove 1000 120 387967 0 120 51

U-Prove 1500 120 372831 0 120 135

U-Prove 500 180 581024 0 180 54

U-Prove 1000 180 581433 0 180 113

U-Prove 1500 180 583374 0 180 166

11 „mem“ is the difference between the amount of memory used before and after the execution of the test. Due to
the interference of the Java Garbage Collector, it may happen that “mem” is negative.

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 62 of 68 Public Final version 1.0

SetupIssuerParameters():

CE k t reqs. errs real t

mem11

Idemix 500 60 525 0 60 46

Idemix 1000 60 1018 0 60 35

Idemix 1500 60 1517 0 60 38

Idemix 500 120 524 0 120 216

Idemix 1000 120 1015 0 121 42

Idemix 1500 120 1514 0 120 175

Idemix 500 180 511 0 181 270

Idemix 1000 180 1011 0 180 -33

Idemix 1500 180 1511 0 180 60

U-Prove 500 60 510 0 60 156

U-Prove 1000 60 1008 0 60 98

U-Prove 1500 60 1506 0 60 80

U-Prove 500 120 508 0 121 137

U-Prove 1000 120 1006 0 120 162

U-Prove 1500 120 1501 0 121 90

U-Prove 500 180 504 0 181 140

U-Prove 1000 180 1004 0 180 63

U-Prove 1500 180 1502 0 181 -26

SetupRevocationAuthorityParameters():

CE k t

reqs. errs real t

mem11

Idemix 500 60 505 1 60 -7

Idemix 1000 60 1003 0 61 247

Idemix 1500 60 1503 0 60 178

Idemix 500 120 506 0 121 189

Idemix 1000 120 1004 0 120 178

Idemix 1500 120 1507 0 120 240

Idemix 500 180 509 0 181 159

Idemix 1000 180 1006 0 183 79

Idemix 1500 180 1503 0 182 -180

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 63 of 68 Public Final version 1.0

SetupInspectionPublicKey():
CE k t reqs. errs real t mem11

Idemix 500 60 44372 0 62 144

Idemix 1000 60 43209 0 61 15

Idemix 1500 60 6479 0 61 256

Idemix 500 120 89337 0 122 124

Idemix 1000 120 79381 0 122 263

Idemix 1500 120 88102 0 122 48

Idemix 500 180 130410 0 182 101

Idemix 1000 180 132341 0 183 181

Idemix 1500 180 109491 0 183 256

New Architecture

The column “CE” stands for the Crypto Engine. Columns “k” and “t” are, respectively, the number of
concurrent requests and the duration of the test. The column “reqs” is the total number of requests
performed during the test. The column “errs” is the number of exception reported. The column “real t”
is the real execution time, and, finally, the column “mem” report the memory consumed during the test
execution.

SetupSystemParameters():

CE k t reqs. errs real t

mem11

U-Prove 500 60 539 0 60 11

U-Prove 1000 60 1037 0 60 3

U-Prove 1500 60 1516 0 60 9

U-Prove 500 120 546 0 120 40

U-Prove 1000 120 1026 0 120 21

U-Prove 1500 120 1524 0 121 9

U-Prove 500 180 533 0 180 41

U-Prove 1000 180 1035 0 180 34

U-Prove 1500 180 1522 0 180 34

SetupIssuerParameters():
CE k t reqs. errs real t mem11

U-Prove 500 60 513 0 60 62

U-Prove 1000 60 1004 0 60 64

U-Prove 1500 60 1505 0 60 37

U-Prove 500 120 507 0 120 130

U-Prove 1000 120 1003 0 120 11

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 64 of 68 Public Final version 1.0

U-Prove 1500 120 1507 0 120 71

U-Prove 500 180 504 0 180 121

U-Prove 1000 180 1006 0 180 256

U-Prove 1500 180 1504 0 180 137

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 65 of 68 Public Final version 1.0

Scenario 3.1.1: Stress perturbations on the ABCE component (Advanced
Issuance)
The column “CE” stands for the Crypto Engine. Columns “k” and “t” are, respectively, the number of
concurrent requests and the duration of the test. The column “reqs” is the number of requests
performed during the test. The column “errs” is the number of exception reported. The column “real
t” is the real execution time, and, finally, the column “mem” report the memory consumed during the
test execution.

Old Architecture

CE k T reqs. errs real t mem11

Idemix 500 60 21953 21455 61 -15

Idemix 500 120 52712 52213 120 -28

Idemix 500 180 80545 80046 180 43

Idemix 1000 60 22993 21998 60 -160

Idemix 1000 120 51708 50714 120 60

Idemix 1000 180 78754 77760 180 0

Idemix 1500 60 22198 20699 60 39

Idemix 1500 120 40679 39179 120 -6

Idemix 1500 180 45199 43701 180 58

New Architecture

CE k T reqs. errs real t mem11

U-Prove 500 60 500 0 60 14

U-Prove 500 120 500 0 120 17

U-Prove 500 180 500 0 145 29

U-Prove 1000 60 1000 0 60 -1

U-Prove 1000 120 1000 0 120 11

U-Prove 1000 180 1000 0 180 23

U-Prove 1500 60 2944 1444 60 33

U-Prove 1500 120 3710 2210 120 47

U-Prove 1500 180 2910 1410 180 49

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 66 of 68 Public Final version 1.0

Scenario 4.1.1: Stress perturbations on the verifier’s ABCE component
The column “CE” stands for the Crypto Engine. Columns “k” and “t” are, respectively, the number of
concurrent requests and the duration of the test. The column “reqs” is the total number of requests
performed during the test. The column “Errs” is the number of exception reported. The column “real t”
is the real execution time, and, finally, the column “mem” report the memory consumed during the test
execution.

Old Architecture

CE k t reqs. errs real t mem11

Idemix 500 60 721 0 360 237

Idemix 500 120 804 0 420 63

Idemix 500 180 799 0 481 43

Idemix 1000 60 1085 0 361 30

Idemix 1000 120 1484 0 420 118

Idemix 1000 180 1573 0 480 128

Idemix 1500 60 1545 0 361 58

Idemix 1500 120 1923 0 420 75

Idemix 1500 180 2171 0 480 124

New Architecture

CE k t reqs. errs real t mem11

U-Prove 500 60 1755 0 60 311

U-Prove 500 120 3184 0 120 210

U-Prove 500 180 4516 0 180 131

U-Prove 1000 60 2365 0 60 339

U-Prove 1000 120 3732 0 120 256

U-Prove 1000 180 5033 0 180 269

U-Prove 1500 60 2827 0 60 326

U-Prove 1500 120 4095 0 120 228

U-Prove 1500 180 5368 0 180 249

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 67 of 68 Public Final version 1.0

Scenario 5.1.1: Stress perturbations on the Revocation Authority’s ABCE
component
The column “CE” stands for the Crypto Engine. Columns “k” and “t” are, respectively, the number of
concurrent requests and the duration of the test. The column “reqs” is the total number of requests
performed during the test. The column “Errs” is the number of exception reported. The column “real t”
is the real execution time, and, finally, the column “mem” report the memory consumed during the test
execution.

Old Architecture

CE k

 t reqs. errs real t mem11
Idemix 500 60 4406 146 61 224
Idemix 500 120 6105 32 120 145
Idemix 500 180 7500 21 180 34
Idemix 1000 60 4885 18 60 168
Idemix 1000 120 6542 39 121 123
Idemix 1000 180 7862 38 180 120
Idemix 1500 60 5102 31 60 211
Idemix 1500 120 7066 36 121 151
Idemix 1500 180 8373 45 180 168

ABC4Trust Deliverable D4.3

D4 3_PerturbationAnalysis_final.doc Page 68 of 68 Public Final version 1.0

Scenario 6.1.1: Stress perturbations on the Inspector’s ABCE component

The column “CE” stands for the Crypto Engine. Columns “k” and “t” are, respectively, the number of
concurrent requests and the duration of the test. The column “reqs” is the total number of requests
performed during the test. The column “Errs” is the number of exception reported. The column “real t”
is the real execution time, and, finally, the column “mem” report the memory consumed during the test
execution.

Old Architecture

CE k t reqs. errs real t mem11
Idemix 50 60 736 0 60 177
Idemix 500 120 1919 0 120 2
Idemix 500 180 2626 0 180 198
Idemix 1000 60 1702 0 60 239
Idemix 1000 120 2408 0 120 217
Idemix 1000 180 3132 0 180 17
Idemix 1500 60 2204 0 60 21
Idemix 1500 120 2917 0 120 28
Idemix 1500 180 3611 0 180 25

