

D3.4 Final integrated context inference and configuration
planning system

WP related to the Deliverable: 3

Nature: P

Dissemination Level : PU

Version: V1.0

Author(s):
Lars Karlsson

Project Participant(s) Contributing: ORU

Contractual Date of Delivery: 20141231

Actual Date of Delivery: 20150113

Project Acronym: Giraff+
Project Title: Combining social interaction and long term
monitoring for promoting independent living
Grant agreement no.: 288173
Starting date: 1st January 2012
Ending date: 31st December 2014

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 2

Document History

Version Date Type of editing Editorial

0.1 01/12/14 Table of Contents ORU

0.2 21/12/14 First complete draft ORU

1.0 11/01/15 Final version ORU

Deliverable Summary

This deliverable contains material that supports the delivery of the Final integrated context
inference and configuration planning system. The latest version of the context recognition module
has been operational in the test sites for over a year. There is a version of the configuration
planner which supports reasoning about preferences in order to find configurations that are more
adapted to the needs of users.
The context recognition and the configuration planner are integrated through the context
recognition preprocessing module: the latter is configured by means of an XML file which describes
what sensors to use and how to preprocess that sensor data before the context inference is
applied.
Finally, a panel for computing and displaying statistics for long-term trend analysis has been
integrated with the DVPIS (developed in WP4). This supports the computation of a number of
statistics for activities, and can for comparative purposes display both several activities and several
statistics in the same graph.

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 3

Table of Contents
1 Introduction ... 4

1.1 Scope of document ..4

1.2 Deliverable structure ...4

1.3 Deviations from plan ...4

2 Context Recognition ... 4

3 Configuration planning ... 5

4 Integration of context inference and configuration planning ... 6

5 Long-term trend analysis .. 7

6 Deployment ... 10

7 Conclusions and future work .. 10

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 4

1 Introduction

The aim of WP3 is to provide context recognition services to GiraffPlus by inferring activities and
other context information from the sensors distributed in the primary users’ apartments. This is
achieved as follows:

 The central component of is a context recognition service (task 3.1 according to the DoW)
which takes sensor data from the data storage (developed in WP2), and infers activities for
those upon requests made through the DVPIS (DVPIS stands for data visualization and
personalization; see D4.3 for details).

 The context recognition service is supported by a configuration planning service, which
determines how to obtain the sensor data needed by the former (task 3.2).

 The two services are integrated by allowing the configuration planning service to
reconfigure the preprocessing module of the context recognition service (task 3.3).

 In order to support a long-term analysis of activities, statistics can be aggregated for
inferred activities and displayed in the DVPIS (task 3.4). These statistics functions are part
of the DVPIS, and are displayed in a designated panel.

 The context recognition service is deployed on a central server, and not in the individual
apartments (task 3.5). Reconfiguration is done by reconfiguring the preprocessing module
of the preprocessing module of the context recognition service.

1.1 Scope of document

This deliverable presents advances in WP3 during M30-M36 (the previous deliverable covered
work done up to M30). The deliverable comes attached with two scientific articles that represent
the cumulative work done in the work package which includes the last work done in this period.
The two articles have been submitted to journals in the field of artificial intelligence during this
period and are currently under review. One of the articles addresses context recognition (task 3.1.)
and the other one configuration planning (task 3.2). The deliverable also describes progress in the
other tasks (3.3-3.5).

1.2 Deliverable structure

The rest of the deliverable is organized according to the tasks in WP3. Section 2 reports on context
recognition, section 3 on configuration planning, section 4 on integration between the former and
the latter, section 5 on long term trend analysis, and section 6 on deployment. Section 6 discusses
how the additional sensors presented in D2.4 might be used for context recognition, and 7
presents conclusions and future work.

1.3 Deviations from plan

There have been no significant deviations from the project plan.

2 Context Recognition

The work in context recognition has during the last period been focused on consolidation and
publication. In particular, the context recognition system has been presented in an article that is

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 5

currently under review for International Journal on Artificial Intelligence Tools (Ullberg, Loutfi, &
Pecora, Submitted). The article is included as Appendix A, and we refer to it for details. The major
contributions are:

 A system architecture consisting of: a preprocessing module where it can be specified
(manually or by the configuration planning service) what sensors to use and how to
process their data; an inference module which can infer context from sensor data given
inference rules; and an extraction module that can select among multiple interpretations.

 Capability of the inference module to produce multiple interpretations of sensor data in
order to make inferences more robust when samples might be missing or wrong.

 A query language for supporting queries by users.

 An experimental evaluation of the scalability of the inference algorithm, which indicates a
linear complexity for sparse networks and a quadratic complexity for dense networks.

 A test case at one of the Swedish test sites involving a primary and a secondary user.
The context recognition server has been operational for more than a year now (on a server
residing at the facilities of XLAB), and can be queried from the DVPIS developed in WP4 (see D4.3,
section 4).
In the test case mentioned above, the secondary user (caregiver) reported that the context
recognition service provided useful and sufficiently accurate information about the primary user’s
(resident’s) activities. In particular, it was discovered that the primary user quite often went up
during the night. The accuracy of this was verified by querying the primary user. We have also
investigated the situation at test sites in Spain and Italy, by querying two secondary users
(physicians). It appears that while certain activities were reliably inferred, others were not. In
some cases, this can be explained by problems with sensors (e.g. an electrical usage sensor that
was not working properly), but in other cases it might be the rules or the available data that are
insufficient. Overall, the context recognition service is able to provide relevant information about
activities, but in its current form of the service its usability is limited. "Improvements in the input
language for specifying the temporal rules (which lies somewhat outside the scope of GiraffPlus),
the sensor suite and/or the user friendliness of the service would be required before commercial
deployment is possible. Training of secondary users should also be considered. These are issues
that would need more research.
Besides providing activity data to secondary users, the context recognition service has also been
used to provide input to a fall detection system, together with data from a wearable fall sensor.
This has been published in a journal article (Koshmak, Lindén, & Loutfi, 2014).

3 Configuration planning

Regarding the configuration planning service, the major aim of the last 6 months has been to
further publish our results. The configuration planning algorithm of GiraffPlus has been presented
in an article that is currently under review for Kunstlige Intelligenz (Silva-Lopez L. S., Broxvall,
Loutfi, & Karlsson, Submitted). The article is included as Appendix B, and we refer to it for details.
The major contributions are:

 A domain representation for configuration planning which supports multiple categories of
preferences on the selection of different components (typically sensors or programs for
preprocessing sensor data) and how these components are combined. These categories,
which are provided by the user, may include for instance power consumption, noise level,
and reliability.

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 6

 An algorithm which find valid configurations while performing multi-objective optimization
over preference categories, using Pareto and Lorenz dominance criteria.

 An extensive experimental evaluation of the algorithm, where 9 different parameters (e.g.
number of available components and average number of requirements for each
component) were varied in order to create 2200 problem families, and for each family
14000 problem instances were randomly generated and solved. The problems were in
general solved in a matter of milliseconds or seconds.

We believe that the inclusion of preferences, besides opening up interesting scientific issues, also
can contribute to make the system more robust and facilitate use acceptance. The representation
of preferences is presently quite limited, and extending it constitutes important future work.
In addition, an article about an earlier version of the planner, without preferences, is still under
review, for Journal of Ambient Intelligence and Smart Environments (JAISE) (Silva-Lopez L. S.,
Broxvall, Loutfi, & Karlsson, Submitted).

4 Integration of context inference and configuration planning

In the integration (which was first described in D3.3), we take advantage of the preprocessing
module of the context recognition component, which can request sensor data from the data
storage, preprocess this data in various ways (e.g. thresholding, aggregating) and then make it
available to the inference module. The configuration of the preprocessing module is specified in an
XML file. Hence, the configuration planner outputs configurations as XML-files which are read by
the context recognition.
Figure 1 gives a schematic of the integration, including the various documents involved and the
connections to the DVPIS (see D4.3) and data storage. Notice that it is the DVPIS (and in the
extension the users) that decides what activities to look for in the data, and this in turn provides
the goals for the configuration planner. The planning domain consists of a mapping between
sensors and state variables, and a specification of functionalities available in the preprocessing
module of the context recognition.

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 7

Figure 1 Schematic of integration of configuration planning and context recognition, with data flows, documents,
and other components involved.

5 Long-term trend analysis

The major novel contribution during M30-36 has been the reimplementation and integration of
the long term trend analysis (LTTA) into the DVPIS@Office, which is the client available for
secondary users (physicians, caregivers etc). The purpose of the LTTA is to compute and display
various statistics of activities, in order to discern patterns and trends over longer time. It uses the
same data (sets of intervals for activities obtained from the context recognition service) as the
activity viewer (see D4.3 section 4) but performs additional processing.
The LTTA is based on dividing the timeline into epochs, which are typically a day each. (Some of
the statistics are mostly meaningful within day-long epochs). These day-long epochs can either be
from midnight to midnight (day epochs), or from noon to noon (night epochs). The latter is useful
for investigating night-time activities: if e.g. the primary user sleeps from 9pm to 7am, that should
fit into one epoch. The different statistics that are currently available concern both how
much/often an activity is performed, and when it is performed:

 Number of occurrences per epoch

 Sum of durations per epoch

 Average duration per epoch

 Earliest starting time per epoch

Configuration
planner

Context
recognition

Preprocessing
(Configuration

plan)

Inference rules Sensor – state
variable table
(Planning domain)

Functionality specs
(Planning domain)

Data
storage
(sensor
data)

DVPIS

Timelines

Sensor data

Component

Document

Database

Data flow

Legend

Queries
(activity & period)

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 8

 Latest ending time per epoch

 Average time for activity per epoch
The LTTA can also compute running averages over several epochs. Typically, the longer the total
period investigated, the more epochs should be used for computing this average. The running
averages are important for separating the signal from the noise when a large number of epochs
are considered. We preferred to use running averages to linear trends, as the former can capture
more patterns than long-term increases and decreases of a parameter.

Figure 2 Example of LTTA panel opened in the DVPIS, showing one statistics for one activity (number of times the
person is in the living room) over a month-long period. The user selects activities and statistics in the list boxes to
the right, and period and epochs. There is also a smoothed curve (in darker colour) for the activity. The smoothing is
done with a 5-day running mean. Data comes from one of the Italian test sites.

Figure 2 shows a window with LTTA opened from the DVPIS@Office application. The secondary
user can select one or more activities, one or more statistics to apply to these activities, and what
time and epochs (day or night) to use. This allows the user to both look at several statistics for the
same activity at once, or to compare a statistic for several different activities, or even a
combination of both. For periods longer than 10 days, the LTTA module also computes a
smoothed version of the curve, using running averages. This is displayed as a dotted curve in a
slightly darker colour.
Figure 3 shows the same period, but with night epochs instead.

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 9

Figure 3 This panel displays the same activity, statistics and period as in Figure 2, but with epochs set to nights as
indicated by the moon icon to the right.

Finally, Figure 4 shows a month with three activities and two statistics selected. Colours are
assigned automatically to the different curves.

Figure 4 This panel displays three activities (in bed, in living room and in kitchen) and two statistics (sum of
durations and average duration) over a month, including smoothed curves (in darker colours) for each combination.
The smoothing is done with a 5-day running mean. One can see here that the resident spends most of the time in
the living room (green curve).

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 10

6 Deployment

The context recognition is a Representational State Transfer (REST) service that runs as a servlet
on a central Tomcat server. Queries to this service are done with a lightweight API which is
embedded in several services that run on the client computer or on the central server. All
computations are done on the central server when querying an activity. Such queries can be made
by users through the DVPIS, in the activity and long term trend analysis views. The context
recognition in turn gets sensor data from the data storage. The context recognition can also send
alarm messages to Pushover clients. More details can be found in Appendix A.
Although we have verified that the configuration planning service can output valid configurations
to the context recognition service, the former has not been used in the 15 GiraffPlus systems
deployed with real users. As the entire GiraffPlus system is evolving, it has been more convenient
for our engineers to specify configurations manually. In addition, the current sensor suite is fairly
small and has not much redundancy, so there is in practice not much work for a configuration
planner to do. However, we believe that in a more large-scale and long-term deployment of a
more stable version of the system, the configuration planner would provide valuable services and
in particular increase the robustness and adaptability of the system.

7 Conclusions and future work

The main effort during M30-36 has been on publishing the scientific results produced in the work
package. Presently, three journal papers are under review (Ullberg, Loutfi, & Pecora, Submitted)
(Silva-Lopez L. S., Broxvall, Loutfi, & Karlsson, Submitted) (Silva-Lopez L. S., Broxvall, Loutfi, &
Karlsson, Submitted). These submissions mainly concern tasks 3.1 (Context recognition) and 3.2
(configuration planning).
The main contribution to the GiraffPlus system during M30-36 is the long term trend analysis (task
3.4), which has been integrated into the DVPIS. For the other tasks, including integration (3.3) and
deployment (3.5), the implementation work was by large completed at M30. The context
recognition service, which is the most important contribution of WP3 to the GiraffPlus system, is
currently running as part of the system. The configuration planning service has also been
integrated, but is currently not actively used.

There are many opportunities for future work. During the last months of the project, some novel
sensors have been investigated within WP2: a collection of ZWave sensors (alarm buttons, PIR
temperature/light, door/window contact, electrical/lamp socket etc); a Samsung Gear Live watch
(heart rate meter, accelerometer, gyroscope, compass, step counter); and a Garmin cardio chest
strap. In order to take advantage of these new sensors in the context recognition, it would
sufficient to have their data stored in the data storage, and possibly also develop preprocessing
components for them. They could then be used by the context recognition and configuration
planning components by including them in the relevant documents according to Figure 1.
In order to be part of a commercially deployable system, the context recognition service would
need more systematic evaluations and subsequent improvements. If the numbers and types of
sensors are extended, for instance with the ZWave sensors mentioned above, this could also give
more opportunities for the configuration planning service. As mentioned in D3.3, there is also
potential to develop a more systematic approach to the context recognition preprocessing by

GiraffPlus D3.4 Final integrated context inference and
configuration planning system

Final version 11/01/2015 11

introducing a well-founded "timeline logic". This will increase the versatility and expressiveness of
the rule specification language, e.g., by allowing the negation, disjunction and conjunction of
sensor traces.

References
Koshmak, G., Lindén, M., & Loutfi, A. (2014). Dynamic Bayesian Networks for Context-Aware Fall

Risk Assessment. Sensors(14), 9330-9348.
Silva-Lopez, L. S., Broxvall, M., Loutfi, A., & Karlsson, L. (Submitted). A partial-order configuration

planner with local information heuristics for generating configurations of devices in robotic
ecologies. Journal of Ambient Intelligence and Smart Environments.

Silva-Lopez, L. S., Broxvall, M., Loutfi, A., & Karlsson, L. (Submitted). Towards Configuration
Planning with partially ordered preferences: representation and results. Kunstlige
Intelligenz.

Ullberg, J., Loutfi, A., & Pecora, F. (Submitted). A Context Recognition Toolset for Elder Care.
International Journal on Artificial Intelligence Tools.

Appendix A

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

A Context Recognition Toolset for Elder Care∗

Jonas Ullberg

Center for Applied Autonomous Sensor Systems, Örebro University
SE-70182 Örebro, Sweden

jonas.ullberg@oru.se

Amy Loutfi

Center for Applied Autonomous Sensor Systems, Örebro University
SE-70182 Örebro, Sweden

amy.loutfi@oru.se

Federico Pecora

Center for Applied Autonomous Sensor Systems, Örebro University

SE-70182 Örebro, Sweden

federico.pecora@oru.se

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

This paper provides an overview of a complete context recognition toolchain that has been

developed for the GiraffPlus project which performs activity monitoring in the homes
of elderly. The paper discusses the details of the context recognition system itself, both
from an algorithmic and semantic point of view, and describes how it is integrated with
other services (such as alarms and visualization software). The experimental validation

presented in this paper evaluates the performance of the algorithm and the practical
applicability of the system in terms of forming queries that are relevant for the users.

The system has been tested and deployed in fifteen real European homes inhabited by

elderly people with varying levels of mobility and healthiness.

Keywords: Context Recognition; Temporal Constraints; Elderly Care

1. Introduction

Enabling elderly people to live independently in their own home after the onset of

ageing related health problems is beneficial both for the society and the individual.

From the individual’s point of view, staying at home is positive since it allows

them to keep established habits and comforts. From a societal point of view this is

also beneficial since home care is often more cost-effective than nursing home care.

∗This work was supported by the European Commission in the framework of the GiraffPlus FP7
project (Contract no. 288173).

1

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

2 Jonas Ullberg and Amy Loutfi and Federico Pecora

The current rapid increase in ageing population growth makes the latter argument

increasingly important.

In order to further facilitate independent living among the elderly, the relative

benefits of nursing home care need to be brought into homes. In Sweden, for instance,

home care consists of scheduled visits by caregivers, complemented with wearable

alarm bracelets that the elderly can use to alert the caregivers in case an accident

occurs (e.g., a fall). This situation can be improved upon by introducing new, non-

intrusive, technology into their homes that allows caregivers to monitor the habits

of the elderly in order to proactively detect signs of possible health deterioration,

and alert caregivers of dangerous situations when the elderly is unable to do so on

their own.

Thus, a key enabler for independent living is automated behaviour monitoring

coupled with pervasive sensors which can provide the mentioned capabilities. In

particular, such a system should possess several key qualities: (requirement 1) it

must allow physicians to perform “activity queries” on different aspects of the elderly

person’s daily life based upon known or suspected medical conditions; (requirement

2) it should be possible to trigger notifications should certain activity patterns or

hazardous situations emerge from the sensor data; (requirement 3) the behaviour

monitoring system should be capable of performing queries over long horizons, as

it is often important from the caregiver’s point of view to measure trends over

weeks and months; and (requirement 4) the system should be easy to deploy by

caregivers with little or no technical training, and should therefore not be brittle to

small changes in sensor placement and imprecise sensor readings.

As we explain in the evaluation section of this article, the above requirements

emerge from real experience with elderly people and their caregivers. The focus of

this article is the Context Recognition (CR) system — specifically, the knowledge

representation and reasoning techniques developed to address the requirements above.

We discuss two key innovations of our approach, namely a novel representation of

sensor readings which captures the uncertainty deriving from coarse sensor placement

and noisy readings, and the ability to reason upon long periods of time. Data from

the environmental sensors are processed by the CR system through qualitative

temporal models that define conditions on how activities are inferred. These models

used are specified in the form of temporal relations among sensor readings. The

models can be defined, added and/or removed dynamically to a list of behaviours

that are specified by caregivers, and which is alterable online.

The presented CR system has been developed as a part of a larger system called

GiraffPlus [4] which is developed as an EU-FP7 funded project. The GiraffPlus

system includes a network of sensors placed in the home or worn by the elderly

and is deployed in fifteen homes in three different countries, namely Sweden, Spain

and Italy. These include physiological sensors such as weight and blood pressure,

as well as environmental sensors like motion, pressure, temperature, and electrical

usage sensors. The GiraffPlus system is named after one of its components: the

Giraff telepresence robot. The robot uses a Skype-like interface to allow caregivers

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 3

to virtually visit an elderly person in the home. The Giraff telepresence robot is used

as the primary means of communicating with the elderly; results of trend analysis,

details of the models used for monitoring, and currently active sensors can all be

accessed and/or manipulated on the Giraff robot’s interface. Physiological sensors

and the integration of the telepresence robot lie outside the scope of this article and

we refer the interested reader to [4, 22] for details of the complete GiraffPlus system.

The contributions of this paper include (1) a CR system that accounts for models

of human behaviors that are modeled from first principles by caregivers (in adherence

to requirement 1), (2) a novel, efficient constraint-based context inference engine

that accounts for uncertainty in sensor readings (in adherence to requirements 3

and 4), and (3) a system for continuous automatic inference of behaviors of interest

(in adherence to requirement 2). Benchmarks and real-world scenarios are used

to validate the proposed system. The latter consist of a test case with an elderly

Swedish user in Örebro.

The paper is organized as follows. Section 2 provides the necessary background.

Section 3 describes the specifics of the constraint propagation algorithm that is used

by the CR system. Section 4 describes how the entire GiraffPlus system and its

services are implemented. Sections 5 and 6 describe the CR service in greater detail

and the modeling language provided to caregivers for specifying the behaviors that

are to be monitored. Finally, Section 7 provide an evaluation of the CR from a user

perspective.

2. Background

Current approaches to the problem of recognizing human activities can be roughly

categorized as data-driven or model-driven. In data-driven approaches, models of

human behavior are acquired from large volumes of data over time. Notable examples

of this approach employ Dynamic Bayesian network (DBNs) in conjunction with

learning techniques for inferring transition probabilities [23, 35]. Extensions of these

approaches have been proposed for dealing with realistic features of the domain,

such as interleaved activities [9, 21] and multiple persons [29].

Although highly effective in specific domains, such systems are typically brittle

to changes in the nature and quantity of sensors, requiring significant re-training

when the application context changes. This contrasts with the requirement that

the criteria for CR can be specified on-line depending on circumstances assessed by

secondary users and put to service immediately, without the need for re-training

and model tuning (requirement 1). Liao et al. [18] have described an approach

which partially overcomes these limitations using conditional random fields, showing

that learned behavior models can be generalized to different users. However, this has

been empirically proved only for the specific context of activity recognition using

GPS traces and location information, and does not cater to user defined queries that

can be posted online. A complementary approach is followed by Helaoui et al. [14]

to overcome some of the limitations of purely data-driven techniques. Specifically,

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

4 Jonas Ullberg and Amy Loutfi and Federico Pecora

the authors incorporate modeling capabilities to capture features such as qualitative

temporal relations which describe how events relate to each other. One of the key

features of the approach is its capability to recognize interleaved activities. However,

it is limited to detecting sensor context, and the applicability of the approach to a

highly-dynamic context, like our use case, is untested. Nor do any of the approaches

above address the issue of triggering notifications or measuring trends over long

periods of time (requirements 2 and 4).

Model-driven approaches to activity recognition follow a complementary strategy,

in which patterns of observations are modeled from first principles rather than

learned or inferred from large quantities of data. Such approaches typically employ an

abductive process, whereby sensor data is explained by hypothesizing the occurrence

of specific human activities. Examples include work by Goultiaeva and Lespérance

[11], where the Situation Calculus is used to specify very rich plans, as well as the

work of Augusto and Nugent [3], Jakkula et al. [16], Pinhanez and Bobick [25], all

of whom propose rich temporal representations to model the conditions under which

patterns of human activities occur. As we show in this paper, the temporal relations

between sensor readings and human activities are an essential element of modeling,

and our system uses temporal relations as the primary representational element in

modeling. Other techniques used to perform CR include ontological reasoning. For

instance, Springer and Turhan [30] employ OWL-DL to specify models of complex

situations, the argument being that the more complex the situation to recognize,

the more sophisticated the behavior of the smart environment. However, time is

considered only implicitly, and the ability of the system to infer context online

over long horizons, as well as its ability to cope with imprecise readings, is not

established (requirements 1, 3 and 4). Similarly, Riboni and Bettini [27] combine

ontological and statistical reasoning to reduce errors in context inference, albeit

without addressing temporal relationships between activities.

Data- and model-driven approaches have complementary strengths and weak-

nesses: the former provide an effective way to recognize elementary activities from

large amounts of continuous data — relying, however, on the availability of accu-

rately annotated datasets for training; conversely, model-driven approaches provide

a means to easily customize the system to different operational conditions and users

through expressive modeling languages — which, though, is based on the ability

of a domain modeler to identify criteria for recognition appropriately from first

principles.

The CR engine presented in this work is related to temporal constraint-based

approaches such as sam [24] and constraint-based chronicle recognition [7]. These

approaches employ temporal reasoning techniques to perform on-line recognition

of temporal patterns of sensory events. An approach based on evidence theory

augmented with temporal features presented by Mckeever et al. [20] underscores the

advantage of explicitly accounting for activity durations. Our work introduces a key

novelty in temporal constraint-based CR, namely the ability to take temporal uncer-

tainty in the sensor readings into account. This capability is an important enabler

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 5

of configurable (requirement 1) and continuous (requirement 2) recognition, as

this allows us to interpret the output in time of sensors in ways that fit high-level,

user-defined models of behavior, and possesses the necessary good performance to

be used on-line.

3. Propagating Temporal Constraints on Sets of Intervals

In this work, context is recognized from sensory data that is represented as sets of

intervals on timelines. The model that describes the causal relationships between

the states of the sensors and the inferred activities is provided as a set of temporal

constraints in Augmented Allen’s Interval Algebra (AAIA). A relation in AAIA of

(a) two intervals i1, i2, (b) a qualitative relation in Allen’s Interval Algebra [AIA,

see 2], and (c) a (possibly empty) set of bounds on the distances between relevant

time points of the relation. Relevant time points of a relation in AIA are those

which define the semantics of the relation, e.g., the semantics of the precedence

relation i1 PRECEDES i2 is defined as the end time of i1 being less than the start

time of i2. AAIA constraints allow to bound the distances between the relevant

time points of the intervals involved in the relation, e.g., i1 PRECEDES{[l, u]} i2,

or i1 DURING{[l1, u1], [l2, u2]} i2 — see Table 1. An interval represents a fact that

holds true during a limited period of time, e.g., the fact that a person is at a

particular location. These facts are then related to human activities with the help of

AAIA constraints. For instance the constraint Cooking DURING{[l, u]} InKitchen,

describes the relation between the activity “Cooking” and the fact “In Kitchen”,

that is, cooking occurs when the human is sensed as being in the kitchen, and

the bounds l and u in the AAIA relation represent optional temporal “margins”.

Metric bounds on qualitative relations are useful, for instance, to distinguish between

events that happened a minute ago and a week ago. Other approaches to context

recognition [e.g., 14] employ only qualitative relations, and therefore have to make

strict assumptions about the number of occurrences of an activity within a fixed

temporal window.

In this work, both sensor traces and hypothesized human behaviors are rep-

resented as intervals. Assessing whether a model of human behavior holds given

the sensor traces consists of attempting to constrain a hypothesized behavior with

intervals representing sensor readings according to the constraints given in the model.

Each interval represents a fact about a state variable. State variables represents

either sensors or behaviors of the human user. We indicate that an interval i represents

a fact about state variable S as var(i) = S. The set of intervals referring to one

state variable constitute a timeline, that is, a stepwise-constant function mapping

time to values of a state variable.

A model of human behavior is a collection of tuples 〈v , {v1 r v2 : r ∈ AAIA}〉,
where v is a state variable representing human behavior, and v1 and v2 are state

variables representing human beaviors or sensors. Each tuple expresses a “temporal

rule”, that is, a set of temporal relations that must hold between a particular

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

6 Jonas Ullberg and Amy Loutfi and Federico Pecora

behavior v and sensor readings or other behaviors v1 and v2. For instance, the model

corresponding to the example above is:

〈Cooking

{Cooking DURING In Kitchen,

Cooking CONTAINS Stove On}〉

Intervals representing sensor readings and inferred context are maintained in a

network of AAIA constraints. A well known approach for verifying whether modeled

human behavior is consistent with respect to sensor readings is to cast the problem

as a Simple Temporal Problem [STP, see 6]. The time points in the STP represent

the start and end times of the intervals, and the AAIA constraints in the model of

human behavior are cast as simple distance constraints among these time points. It

can be easily shown that a model of human behavior holds if and only if the resulting

STP is consistent [7, 24]. In case of consistency, the admissible bounds of the time

points in the STP represent the minimum and maximum times at which the time

points can occur. The time points corresponding to the interval that represents the

hypothesized behavior thus represent the temporal bounds within which the sensor

readings indicate that the activity takes place. Overall, each tuple in the model can

be considered a query : the example above represents a query by the caregiver which

asks whether the user is cooking (iff the resulting constraint network is consistent),

and when this activity occurs (indicated by the bounds of the interval on the Cooking

timeline).

While a STP-based approach using such models allows for a convenient spec-

ification of relations, these expressions are brittle in that small deviations in raw

sensory data can prevent certain activities from being inferred. To circumvent this

issue, we propose here a method, first presented by Ullberg et al. [34], which allows

many interpretations of sensor readings to be admitted. This is done by performing

temporal inference on multiple intervals contextually, where each sensor reading is

represented as a set of flexible temporal intervals rather than only one. To motivate

the proposed approach, we provide an illustrative example which is inspired by

deployed sensors in a real home.

Figure 1. This Figure shows a situation where the activity Cooking can not be inferred due to the

fact that there is no placement of it on the timeline where it is both DURING Cooking and CONTAINS

Stove. Thus, after inference the Cooking timeline is empty.

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 7

Consider the situation illustrated in Figure 1. Unprocessed data coming from

two sensors have been illustrated topmost in this figure: first, an infrared (IR) sensor

that provides information about when motion is sensed in the kitchen; second, an

electrical usage sensor that senses when the stove consumes electricity. For simplicity,

we assume that the stove sensor is perfect and provides the ground truth. The IR

data however needs to be interpreted to tell when the inhabitant is present at a

location (in contrast to the sensing of motion which is what the data represents). In

this example, the IR data is preprocessed in such a way that it forms three distinct

intervals on the “In kitchen” timeline.

In this example, the model stated above for recognizing Cooking does not hold,

as no Cooking interval can be placed on the corresponding timeline so that the two

constraints hold with respect to the existing intervals on the In Kitchen and Stove

On timelines.

Figure 2. Unlike in the situation shown in Figure 1, here the Cooking activity can be inferred due

to the fact that it can both be placed so that it occurs DURING Cooking and CONTAINS Stove. The
dashed contour shows residual flexibility in the Cooking interval, i.e. any start and end time of the
interval in question can be extended within its bounds, the solid interval has the minimal duration

however.

Note, however, that Figure 1 represents an arbitrary interpretation of the IR

sensor readings. This interpretation ignores the fact that the readings which lead

to the separation between the intervals (1), (2) and (3) may simply have been due

to a blind spot in the kitchen — recall, we must assume that sensor are placed

approximately by the caregiver, and can be slightly moved over time. Figure 2

shows an alternative interpretationin in which Cooking is successfully recognized.

Even though these two interpretations are visually similar, they are very different

from the point of view of the constraint-based inference. Clearly, the rule is written

with the scenario that unfolds in Figure 2 in mind, and small deviations from this

“prototypical scenario” can prevent us from recognizing the activity. The problem

illustrated in Figure 1 can be overcome by altering the rule so that Cooking is

required to be OVERLAPPED-BY In Kitchen rather than occur DURING the same. This

constraint would however not be satisfied if In Kitchen is first sensed after Stove On

becomes true.

In general, one could argue that the above rule specification is simplistic, and

does not take into account the multiple possible evolutions in time of the sensors

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

8 Jonas Ullberg and Amy Loutfi and Federico Pecora

when the cooking activity occurs. However, forcing the modeler to cater for all

possible evolutions of sensor traces has the obvious drawback of over-burdening

the process of modeling the behaviors of interest: caregivers have a rough idea of

“how” a cooking activity appears in terms of the sensors that have been placed

in the environment — and qualitative temporal relations offer a convenient and

intuitive means to capture this knowledge — but should not be required to foresee

all possible situations. Note also that sensor placement may change slightly over

extended periods of time (e.g., trivially, because the environment is cleaned and

small displacements of sensors occur). These factors motivate the need for reasoning

with multiple interpretations of sensor readings to enlarge the applicability of simple

user-defined temporal queries.

We propose an approach that it is able to infer context from more relaxed

interpretations of the sensor readings than what is typically possible, something that

has proven to be an obstacle in the past due to the symbolic nature of the model.

The core advantage is the ability to generalize the interpretation of sensory events

over time, so that the interpretations of data take into account the timespan in which

the query is grounded in. This is useful in the example above, where a more lax

interpretation of the IR sensor allows to recognize cooking even if the given model is

simple. Other practical use cases motivate the need for multiple interpretations of

sensor readings. For instance, electrical usage sensors coupled to microwave ovens

will provide different readings depending on whether the oven is used to heat a meal

at 800 W or to defrost frozen goods at 90 W. Different interpretations can be used to

ground brief but intense heatings of meals as separate events from longer defrosting

instances at low power.

In our approach, we provide an algorithmic solution that employs multiple

interpretations of sensor readings; the collection of these interpretations encompasses

a wider range of possible intervals as support for the constraint-based context

inference procedure. For instance, we might wish to use an interval (generated by a

relaxed interpretation of the sensory data, biased towards generating large continuous

intervals rather than introducing discontinuities) and all of its sub-intervals as support

for the inference. The key issue hence becomes that of developing temporal reasoning

algorithms that are able to reason on multiple interpretations of the same sensory

data, using each of these interpretations as additional support for inferring an activity.

In the following section, we provide a formal description of the representation and

reasoning solutions we have developed for this purpose.

3.1. Formal problem statement

Our CR problem can be described as a Constraint Satisfaction Problem [CSP, see 33]

of the form 〈V,CA〉. Here, V = {v0, . . . , vl} is a set of variables, each representing

the timeline of a sensor or of one inferred activity. The domain of each variable,

v = {i0, . . . , im}, is a set of (possibly overlapping) temporal intervals of the form

i = [s, e], where s is the start time of the interval and e its end time. Each such

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 9

interval either denotes that a sensed fact holds true, or that an activity was performed

as the interval’s time-span states (not during, but precisely starting at time s and

ending at time e).

CA = {c0, . . . , cn} is a set of constraints on the variables in V of the form

ci = {(v0 r v1)}, where each ci constrains the domains of two variables. v0 is a

variable representing the timeline of an inferred activity, r is constraint in AAIA, and

vi6=0 is either a variable representing the timeline of a sensor or of another inferred

activity. Note that this implies a dependency graph among timelines of inferred

activities which has no loops, i.e., a tree. These constraints define temporal relations

between the variables that should hold in order for an activity to be inferred. Table 1

shows all thirteen constraints in AAIA. This table does not show the quantitative

aspect of the constraints, but rather the thirteen unique qualitative relations that a

pair of intervals can have. Recall that the quantitative algebra we employ allows

for the quantification of distances between the start and end times of the respective

intervals, e.g. “a starts between 10 and 20 time units before b”.

A solution to the problem 〈V,CA〉 is an assignment of values (i.e., sets of intervals)

to variables (i.e., activity and sensor timelines). A solution to the CR problem is the

projection of a solution to the CSP on the variable representing the inferred activity.

In other words we are not interested in the interpretations of sensors readings

necessary to support inferred activities.

In the CSP, we maintain only one variable representing an activity to be inferred.

The reason has to do with constraint propagation. Let an activity to be inferred be

A. Propagating the constraints in the CSP may reduce the domain of a variable

representing a sensor, S, which is necessary to support A. However, this reduction

only reflects the fact that some intervals in the domain of S are not relevant for

inferring A, and not that they represent incorrect knowledge about the sensor

readings. The intervals filtered out due to the requirements of A could be used

to infer another activity B. This is not possible if the CSP contains variables

representing both A and B.

We employ a geometric representation of the domains of the variables in V .

This representation allows us to define a propagation algorithm which achieves

arc-consistency.

3.2. Representing multiple intervals

In order to increase the number of activities that we can successfully identify it makes

sense to perform temporal inference on batches of interpretations contextually, or

even more useful, on an entire spectrum of interpretations including these. In a näıve

way, the former could be accomplished by admitting several overlapping intervals

on the same timeline. For instance, by merging the interpretations in Figure 1 and

Figure 2. This would however only work to a limited extent since it would also

increase the complexity of searching for matching patterns in the data. This problem

affects all approaches to CR which rely on an explicit representation of each interval

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

10 Jonas Ullberg and Amy Loutfi and Federico Pecora

Table 1. The thirteen relations of Allen’s Interval Algebra

v0 PRECEDES v1

v0

v1

v0 PRECEDED-BY v1

v0

v1

v0 MEETS v1

v0

v1

v0 MET-BY v1

v0

v1

v0 OVERLAPS v1

v0

v1

v0 OVERLAPPED-BY v1

v0

v1

v0 STARTS v1

v0

v1

v0 STARTED-BY v1

v0

v1

v0 DURING v1

v0

v1

v0 CONTAINS v1

v0

v1

v0 EQUALS v1

v0

v1

Note: In our quantified version of Allen’s Interval algebra we parameterize

the admissible temporal distances between the start and end times, while

doing so we relax the meaning of the algebra so that it is not always distinct
or exhaustive — although such reasoning is possible. The rationale is that
making a distinction between PRECEDES or MEETS, for instance, would have

little meaning to the user since no two events occurs exactly at the same time.

in memory.

A more intelligent strategy is to propagate constraints on a spectrum of interpre-

tations contextually. This requires changing the way in which we represent sets of

intervals. The most straightforward way of representing a set of intervals would be

to interpret an interval as a single point in a two-dimensional space as in Figure 3a.

Each of the four points (intervals) in this space corresponds to one of the intervals

in Figure 1 & 2. In this space, each point’s projection onto the x-axis defines the

interval’s start-time, and its projection onto the y-axis the end time. Naturally, an

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 11

S

E

3

0 2

1

(a) A two-dimensional represen-
tation of a set of enumerated

intervals. The numbered inter-

vals (points) in the figure corre-
sponds to the ones in Figure 1

and Figure 2.

S

E

0

(b) The set of intervals that oc-
curs DURING interval 0 in Fig-

ure 3a.

S

E

0

(c) The set of intervals that
occurs DURING interval 0 in

Figure 3a, excluding all inter-

vals contained within the two
“gaps” in the timeline in Fig-

ure 1.

Figure 3. Set based representations of the timelines shown in Figure 1 and Figure 2.

interval is not permitted to end before it has started, therefore no interval is allowed

to reside in the lower-right part of this space. Interpreting intervals as points in a 2D

space was first proposed by Rit [28], who named the representation Sets of Possible

Occurrences (SOPOs), and described how qualitative Allen Interval constraints

could be used and propagated on such representations. This representation was later

discussed by Pujari et al. [26] and has subsequently only been briefly mentioned

in other work [1, 8]. The reason for this lack of attention is most likely because of

the introduction of alternative problem formulations such as the STP, TCSP [6]

and DTP [31]. However, SOPOs cater exactly to the representational needs of our

application, where we are not interested in representing disjunctions of constraints

(as done in DTPs), and where a single interval representation (as provided by the

STP) does not suffice. Furthermore, SOPOs allow to represent compactly large sets

of intervals. Thus there is reason to believe that this representation is better suited

for our particular problem.

SOPOs can be used to “generalize away” the usage of enumerated sets of intervals,

considering instead groups of intervals. Figure 3b visualizes such a set of intervals.

Specifically, the gray region protruding from the diagonal in this figure corresponds

to the set of all intervals that are CONTAINed within Interval 0 in Figure 2. For an

interval to be contained within another, the requirement is that the interval starts

after and ends before the “containing” interval. These two requirements corresponds

to the bounds of the gray area in the figure. Thus, this area contains all the intervals

found in Figure 3a.

By looking at the figures we can also notice that it might be meaningful to

reason about the set of intervals that are fully contained within Interval 0, with

the exception of the sub-intervals that are contained in the two “gaps” in Figure 1,

where we have no sensor data that can support an assumption of the person being

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

12 Jonas Ullberg and Amy Loutfi and Federico Pecora

in the room. Figure 3c illustrates the mentioned set. The rationale behind this could

for instance be that we want to be more general in our description of the state of

the world and use facts such as “The person was in the kitchen between 13:00 and

14:00” (contained in interval 0, arbitrary picked time not illustrated in any figure)

or “between 13:00 and 13:15” (contained in interval 1), but not “between 13:20

and 13:25” (if this corresponds to the gap between Interval 1 and 2). Thus, this

representation allows temporal constraints to be supported by general descriptions

of the events, i.e., the person was mostly in the kitchen between 13:00 and 14:00,

but not by more precise queries that we have reasons to doubt, e.g., being in the

kitchen between 13:20 and 13:25.

3.3. Constraints among multiple intervals

i

b
[l, u]

B
i

S

E

l

u

(a) START-START[l, u]

i

S

E

[l, u]

b

i

l

u

B

(b) PRECEDED-BY[l, u]

i

S

E

[l, u]

b

i

l

u

B

(c) OVERLAPS[l, u]

Figure 4. Admissible intervals B of three quantitative Allen constraints given an interval i and a

timespan [l, u] that quantifies the algebra.

The representation introduced above would be useless unless it was also possible

to propagate temporal constraints on the intervals defined by these sets. Fortunately

this can be done, although under certain assumptions as we will see.

We can directly outline the admissible set of intervals B that a single interval i

allows given a constraint as illustrated in Figure 4a. This figure shows one single

interval i along with the set of intervals B that satisfies the temporal constraint

i Start-Start[l, u]b, so that any interval b in B starts at least l and at most u time

units after i (To make this example easy to understand we have used a disjunction of

several Allen’s interval constraints which we named Start-Start, it corresponds to

(Precedes ∨ Meets ∨ Overlaps ∨ Starts)). Note that since this constraint does not

limit the allowed end time of any interval in B, the set of allowed intervals stretches

up towards infinity in the figure. For mixed constraints, i.e., constraints in which

one interval’s start time constrains another interval’s end time or vice-versa, the

geometric representation involves a projection onto the diagonal. An example of this

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 13

is illustrated in Figure 4b, the semantics here is that the end time of an interval i

constrains the start time of another interval b. Thus, the start time of i is projected

onto the diagonal to translate it into an end-time. The diagonal intersection is then

used to constrain B in a similar way as in Figure 4a.

Furthermore, Figure 4c illustrates a constraint that involves more than a single

time point in the STP, i.e., the start or the end time, taken from each of the intervals.

Here, the start time of i limits the possible time of occurrence of the end time of B.

The distinguishing factor here is that the start time of any b is also limited to occur

after the start time of i.

3.4. Propagation

The propagation algorithm that is used to solve the context recognition problem is

based on the the AC-3 algorithm [19], adapted to work on geometric sets of intervals.

Like AC-3, the algorithm keeps a work list containing the arcs in the constraint

network that should be propagated. This set is initialized to contain all the variables

in the domain. Similarly, during propagation, arcs are removed from this list and

processed. If this reduces the domain of a variable, arcs involving this variable are

reintroduced into the list.

Algorithm 1

1: function propagate arc(A, c,B)

2: P ← ∅
3: Aconvex ← convex subsets (A)

4: for p in Aconvex do

5: I ← ∅
6: for i in p do

7: I ← I ∪ evaluate (i, c)

8: end for

9: p← convex hull (I)

10: P ← P ∪ p
11: end for

12: B ← B ∩ P
13: end function

Algorithm 1 shows how we propagate one arc, A
c←− B, in the constraint network,

i.e., how the algorithm removes values from the domain of a variable B with the

help of the constraint c and the values in the domain of variable A. Traditionally,

this is done by checking each value in the domain of B and searching for a variable

in the domain of A that satisfies the constraint. If one exists, the value in B is kept,

otherwise it is filtered. In our case, this is not possible since we do not maintain

an explicit representations of the intervals in the domains of the variables. Instead,

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

14 Jonas Ullberg and Amy Loutfi and Federico Pecora

given A and c, we calculate all possible values of B. This is done by calculating the

Minkowski Sum [5] of the interval A and (dynamically) each convex set of intervals

that are formed by evaluating the constraint on the vertex intervals in A. We will

refer to this set as the convolution of A given c, and we will use it to geometrically

intersect the previous domain of B in order to remove inconsistent values.

Algorithm 1 calculates A
c←− B and takes as an argument two variables, A and

B, and a constraint c. It starts by initializing a new empty set of polygons (line 2)

that will be used to store the convolution of A. The next step is to calculate a

convex decomposition Aconvex of the polygons defining the set of intervals in A with

the function convex subsets (line 3). This function takes as input a set of possibly

non-convex polygons and returns a larger (or equally sized) set of convex polygons

that defines the same regions (line 4). This kind of decomposition is handled using

an algorithm such as the one by Keil [17]. Note that optimal decomposition of a

simple polygon can be done in O
(
r2n2

)
time [17], where n is the total number of

vertices and r is the number of notches (reflex angles). Note also that we can do

this in O (n log (n)) time [15] with a guarantee that we do not get more than four

times more convex pieces than the optimum.

The convolution itself is driven by solving a small STP containing two intervals

(i.e., four time points). In the STP, these time points are initially constrained to each

other with simple distance constraints reflecting the Allen interval constraint defined

by c. Furthermore, one pair of time points are constrained to the start and end

time of interval i respectively. The STP is then propagated with the Floyd-Warshall

all pairs shortest path algorithm [10], which reduces the temporal domain of the

remaining pair of time points.

S

E

A

(a) The individual convolutions of the
intervals defined by region A with the

constraints shown in Figure 4c.

S

E

A

B

(b) The convex hull of the individual con-
volutions shown in Figure 5a.

Figure 5. Convolution of a set of intervals.

At this stage, the mutual temporal relationship between the second pair of time

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 15

points in the STP reflects the set of intervals that are admissible given the constraint

c and the interval i. This corresponds to the situation illustrated in Figures 4a–4c.

In these figures, the pair of time points that are initially constrained represent the

start and end time of i, and after propagation the remaining temporal flexibility

in the second pair defines area B. The admissible region for B according to the

interval i and the constraint c is then extracted by analyzing the remaining temporal

flexibility of the second pair of time points. Each such convolution of a single interval

i generates four new intervals (i.e., the vertices of the admissible area of B in

Figure 4c). This process is done for each interval representing a vertex of A, and for

each convex sub-polygon of A a set of intervals I is formed. This situation is shown

in Figure 5a.

Redundant (interior) intervals are then removed from each I by taking the set’s

convex hull. This creates a (convex) polygon p (line 9) that defines the convolution

of the convex subset of A, Aconvex, with respect to the constraint c such as the one

illustrated in Figure 5b. The convex hull is retrieved with a Graham scan [12] which

has a complexity of O (nlog (n)) where n is the number of intervals (vertices) in I.

All such convex polygons form one set of polygons P that completely define the

admissible values of B with respect to A and the constraint c. This set is then used

to intersect the previous domain of B (line 12), which effectively removes values from

B that cannot be satisfied with respect to A and the constraint c. Like the union,

the intersection is calculated with a clipping algorithm such as the one outlined

by Greiner and Hormann [13], which has a complexity of O (mn), where m and n are

the number of vertices (i.e., intervals) in the two polygons to be intersected. However,

in practice, this can usually be done much faster if some sort of partitioning scheme

is used.

It should be noted that since we are reasoning upon sets of intervals, not all

constraints are of equal practical importance in AAIA; MEETS and STARTS are not

very useful since they both imply equality between time points in an “off-by-one”

fashion in the underlying STP. Making such distinctions is not very useful when

reasoning upon sets of intervals. If, for instance, a set A contains all intervals such

that ∀a ∈ A : as ∈ [l, u] then the constraint B MEETS A constrains B so that ∀b ∈ B :

be ∈ [l, u] whereas B OVERLAPS A constrains B so that ∀b ∈ B : be ∈ [l + ε, u+ ε],

where ε is the smallest representable unit of time. Given that we are reasoning

on relatively large timespans, this distinction is not particularly useful to make in

practice. (If a instead was one particular interval, then the resulting constraints

at the STP level would be be = as and be ∈ [as, ae]
∧
bs < as respectively, where

is < ie is implied for all intervals.)

Finally, just like in AC-3, when the domain of one variable is reduced, all of

its outgoing arcs are reasserted in the work list. Furthermore, when the work list

becomes empty the constraint network has been fully propagated. The algorithm

outlined here provides the necessary functionality to propagate Allen’s interval

constraints in a network where the domains of the variables are sets of temporal

intervals defined by polygons. The described algorithm performs the bulk work of the

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

16 Jonas Ullberg and Amy Loutfi and Federico Pecora

CR within GiraffPlus, additional information about the same can be found in [34].

4. Query Language

Current Time

Inference of Eating

Eating

At Table

Cooking

Stove On

Fridge Open

Figure 6. Example showing the dependencies used for inferring Eating. In this Figure, rectangles

represents intervals containing sensor data while activities that are inferred by the system have

rounded corners. In addition, a few dashed intervals have been added to highlight the fact that a
timeline is a set of intervals.

GiraffPlus defines a query language that is used to post questions to the CR

system. The language that governs how activities are inferred in GiraffPlus uses

constraints in AAIA to describe how temporal intervals that represent activities

are inferred from sets of intervals representing sensed data. A constraint used by

the model might, for instance, declare that an activity, Eating, should be inferred

whenever the inhabitant sits down AtTable shortly after Cooking. In this example

AtTable can be inferred directly by preprocessing the sensor data coming from a

pressure sensor on the chair, while Cooking, in turn, is an inferable activity which

can be grounded in sensor data by requiring it to occur while the stove is on, and

after the fridge has been opened. This example is illustrated in Figure 6.

This representation provides some flexibility in that “intermediate” activities

such as Cooking can be reused or modified for different homes without rewriting the

entire model. As can be seen in Figure 6 which illustrates the scenario mentioned

above, a query for an activity is a tree like constraint network in which the leaves

consists of data coming from sensors and where the intermediate nodes represents

activities.

The CR service itself runs on a central server to facilitate upgrades and to allow

for better control of access to the data. Context is recognized in response to queries

made by the user through a client side API. A query consists of a rule document,

an activity to be inferred, and a timespan of interest.

Listing 1 shows a sample rule document that can be used in the system. As can be

seen, the format is based on XML. The inference of an activity is performed in three

different steps, preprocessing, inference and extraction (illustrated in Figure 7), these

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 17

1 <?xml ve r s i on =”1.0” encoding=”UTF−8” ?>
2 <rules home=” t e s t s i t e s e 2 ”>
3
4 <preproc name=”Tunsta l lTrueFalse ” in=”Fridge ” out=” f r i d g e op en”/>
5 <preproc name=”Tunsta l lTrueFalse ” in=”Stove” out=” stove on”/>
6 <preproc name=”Tunsta l lTrueFalse ” in=”Chair Kitchen” out=” a t t a b l e ”/>
7
8 <rule out=” ea t i n g”>
9 <constraint from=” ea t i n g ” type=”a f t e r ” to=” cook ing ” args =”[0 ,600]”/>

10 <constraint from=” ea t i n g ” type=”during ” to=” a t t a b l e ”/>
11 </rule>
12
13 <rule out=” cook ing”>
14 <constraint from=” cook ing ” type=”a f t e r ” to=” f r i d g e op en ”

args =”[0 ,600]”/>
15 <constraint from=” cook ing ” type=”during ” to=” stove on”/>
16 </rule>
17
18 <extractor name=”max” in=” ea t i n g ” out=”eat ing”/>

Listing 1. A rule document that describes how the activity eating can be inferred. When provided
as an input to the CR system the the document creates the constraint network in Figure 6.

are represented in the document using the preproc, rule and extractor elements

respectively. Each of these elements controls how the corresponding operations are

performed on the CR server.

4.1. The Context Recognition Service

In GiraffPlus, context is recognized centrally by a REST servlet deployed on a

Tomcat server. Queries to this service are done through a lightweight API which is

embedded in several peripheral services that run on the client computer and the

central server. All computations are done on the central server when querying an

activity. This architecture has the advantage of;

• Reducing bandwidth (since it does not need to transfer raw samples across

the network).

• Allowing for a more strict access control to sensor data.

• Enabling system updates without requiring changes to client software.

Figure 7 shows the details of the context recognition service. The main point of

interest is the inference procedure that is divided into three distinct steps; prepro-

cessing, inference and extraction. The responsibilities of these are as follows:

Preprocessing module

On the server the client sends a query to the CR engine by providing it with an XML-

document describing how sensor data and activities correlate. The preprocessing

module’s responsibility is to fetch samples from the database and use these samples

to build a higher level representation of the events that takes place in the home. This

is done by using an appropriate preprocessor for the data. For instance, a timeline

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

18 Jonas Ullberg and Amy Loutfi and Federico Pecora

Figure 7. This figure shows the flow of data within the CR module.

that declares if a person is at a location or not, based upon PIR-motion sensors, can

be constructed either by looking at individual sensors or by using sensors at other

locations as well as terminal conditions. In the former case a temporal threshold

parameter needs to be provided to determine the temporal extent to which a person

is considered to be in a room. For this to work, a continuous sequence of repeated

motion readings needs to be generated by the user, and the query is parameterized

with with a maximum allowed temporal discontinuity between these. In the latter

case the person is considered to be at a location until he is sensed somewhere else.

Listing 1 contains preprocessors that interpret boolean readings from sensors

manufactured by the company Tunstall. This contrasts with the preprocessing of

motion readings for instance, which only produces a boolean true reading but does

not indicate the absence of movement. The approach is generic, however, since it

does not impose any limitations on which sensor data can be used: symbolic or

real-valued readings can be handled, and the preprocessors works on the entire

set of samples contained in the timespan of the query simultaneously (i.e., not on

individual samples). This module can, for instance, make use of the data coming

from a temperature sensor placed on the warm-water pipe of the shower faucet

to deduce that the inhabitant is showering. This requires a special logic which is

implemented as a preprocessor since, after taking a shower the warm-water pipe

remains warm for several hours.

Preprocessors are used to create the leaf nodes in the constraint network, which

is later propagated by the Inference module. Line 4, for instance, creates a variable

with the name “ fridge open” in the document by utilizing data coming from the

sensor named “Fridge” in home “testsite se 2” (line 2).

Inference module

The symbolic models underlying the inference are grounded on a constraint-based

representation. The key advantage of doing so lies in the widely recognized capability

of this paradigm to support search and incremental constraint solving capabilities,

and the relative efficiency of the resulting applications. The user-supplied rules

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 19

used by the inference module define how sensor readings correlate to context that

can be inferred. These correlations are expressed, as explained above, as temporal

constraints in AAIA. Activities are inferred by performing temporal constraint

propagation on the domains of intervals generated by the preprocessing module (arc

consistency, see Section 3). The output is a domain of intervals that are admissible

with respect to the rules.

The inferences step propagates the constraint network that is produced by the

“rule” and “constraint” elements in the document. Line 8–11 in the Listing 1 for

instance, creates the variable “eating” and uses temporal constraints to relate it

to other variables (see Figure 6), either supplied by a preprocessor or by another

rule. During inference, only the sensor data that is necessary to answer the query is

fetched from the database. In addition, the CR system caches recently used data

locally to facilitate (near) real-time viewing of activities as they unfold (which is

accomplished by repeatedly polling the system).

Extraction Module

As the inference and preprocessing module generates large amounts of hypotheses

about the activities that have taken place there is the need to provide a system

to easily analyze this data. The extraction module’s responsibility is to generate

timelines that can be used by other software components (e.g., the visualization

software or the alarm system).

In GiraffPlus this module only supports one type of extraction method, which

extracts the maximum duration interval for an activity, an example of this can be

seen on line 18 in Listing 1 which describes how the activity eating can be inferred

from the variable “ eating”. (This step can also be used to negate the timelines for

instance.)

5. System Implementation

As stated, an important contribution of the GiraffPlus system is that it integrates

components for environmental sensing, physiological sensing, context recognition,

data visualization and storage. In this section we briefly present the components of

the system and how they are integrated in order to provide a better understanding

of the role and place of the CR in the overall architecture. Figure 8 shows how the

components of the system system interacts with the services and hardware used in a

typical deployment, the main components of which are the following:

5.1. Physical environment

The home of the end-user contains several sensors which are wirelessly connected to

an Asus EEE Box PC which in turn is connected to Internet. The system is deployed

in two steps, first a preliminary visit to the home is done together with caregivers to

assess the needs of the inhabitant. During the visit the inhabitant is interviewed

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

20 Jonas Ullberg and Amy Loutfi and Federico Pecora

Figure 8. A high level overview of the relationship between the context recognition and the other
components in the GiraffPlus system.

to get a firsthand account of his or hers daily activities. This information is then

taken into account with the layout of the apartment and the system is installed on

a subsequent visit a few days after the initial one. The vast majority of the work of

configuring the system can be done off-site so that the installation procedure takes

less than an hour in most cases.

Environmental and Physical sensors: The environmental sensors that are used

include motion sensors, pressure sensors (to detect the presence of the inhab-

itant in the bed for instance), electrical usage sensors, reed-switch sensors

(to detect open doors etc.), smoke alarms, flood detectors and more. All

environmental sensors are provided by Tunstall, whereas the physiological

sensors are provided by Intellicare. The latter measures physiological param-

eters such as blood pressure, heart rate and body weight. However, unless

told otherwise, the end user takes these measurements whenever he or she

so wishes, and the data these sensors provide are useful as-is to a caregiver

and thus not deemed very interesting. Therefore, the focus is on using the

environmental sensors (although there is no limitation on this, both types

of data are handled equally).

PC: The PC is an Asus EEE Box PC, originally intended to be used as a media

center, this computer is suitable to be used in homes due to its small form

factor, low noise and power efficiency. The PC is connected to the Internet,

either via a 3G router or directly depending on the available options at

each test site. Furthermore, it is connected to a Tunstall Connect+ gateway

which enables it to receive and forward data from the environmental sensors.

Middleware: The middleware handles forwarding of sensor data to the remote

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 21

database server and also buffering of data in case the Internet connection

is temporarily lost or congested. Thus data that can not be submitted

immediately is queued for later transmission. A detailed description of the

middleware which is partially derived from the PERSONA project [32] can

be found in [22].

5.2. Remote Server

The remote server hosts a database and several Java-servlets running on a Tomcat

web server. This means that all connections to the server are done by Representational

State Transfer (REST) HTTP calls. Since the data that is stored on the server is

sensitive, all connections are protected with SSL and each user and home needs a

personal certificate to connect to the server (i.e. a third party can not access the

system using only a password).

Data Storage: The data storage provides an API to query and store information

about homes in a MongoDB database. This includes the sensor samples

that are sent from the homes and other data such as information about

primary and secondary users and their access rights. MongoDB is a document

database that focuses on scalability. Scalability was deemed an important

feature since a useful and commercially viable system needs to be able to

support thousands of homes.

Context Recognition: The CR system is deployed on the same server as the

database in order to remove the overhead of transmitting raw samples

over Internet and to facilitate updates. A client sends a query to the CR

consisting of a rule document and a time period. The server in turn requests

the required data from the DB and infers a corresponding timeline containing

the activities that were queried for.

Alarm Checker: This system regularly queries the CR module for user-defined

alarm conditions. If an alarm condition is detected the system will send a

Pushover notification to alert relatives and caregivers.

Connectivity Checker: This systems monitors the connectivity of the test sites

and alerts technical support if a given home has not provided any data for

a long period of time (due to issues with the Internet connection, the local

PC or the sensor system).

5.3. End user devices

The end user, which can be an elderly a relative or a caregiver, can use the Giraff

system with a PC or a smart mobile device.

Pushover Client: This software runs on Android and iOS devices and presents

short messages to the user. There are different levels of urgency to these

messages which controls if the receiver is alerted with a sound during night

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

22 Jonas Ullberg and Amy Loutfi and Federico Pecora

or not for instance. In addition, the system supports acknowledging the

message, although this functionality has not been fully implemented into

the infrastructure yet.

Data Visualization: The PC in the home or at the caregivers office runs the data

visualization and personalization software “DVPIS”. It enables the user

to fetch the elderly’s physiological measurements (e.g. body weight blood

pressure etc.) and perform activity queries to determine what the elderly

has been doing during given periods of time.

6. Evaluation

6.1. Benchmarks

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

 |A|=5
 |A|=10
 |A|=20

 qfit(|A|=20)

Figure 9. Time taken in milliseconds to fully “propagate” randomly generated networks consisting

of two variables. The y-axis shows the average runtime of calculating A
c←− B followed by B

c←− A,
and in reverse order (i.e, AC-3’s work order). The measurements are the average of 200 runs. The
series denotes the number of sets in A and the x-axis denotes the number of sets in B. It took, for
instance, roughly 90 ms on average to propagate the constraint network when variable A contained
20 sets of intervals and variable B 30 (i.e., problem instance 〈|A| = 20, |B| = 30〉) and this is

conveyed by the series and the x-axis respectively. The corresponding data point has been marked

with a circle in the figure. Furthermore, a quadractic fit of series |A| = 20 has been included as
“qfit (|A| = 20)”.

In order to characterize the performance of the algorithm, the runtime was

measured while solving a basic temporal constraint network with randomized variable

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 23

domains. Figure 9 shows the result of one such triala. The figure shows how the

complexity of solving a basic problem consisting of two variables, A and B, is affected

by the increase in size of the domains of one of the variables. The three series each

denote a different number of temporal sets in variable B, while the X-axis denote the

number of temporal sets in variable A. Furthermore, each variable contains regions

made up by several instances of a four vertex temporal set.

The experiment was conducted by repeatedly propagating A
c←− B followed by

B
c←− A and subsequently B

c←− A followed by A
c←− B (as a separate problem),

where c is the CONTAINS constraint (di). This was done 200 times for each point in

the figure (100 in each order) and the timing is the average time taken. Thus, the

runtime reflects the cost of making one arc in the constraint network consistent,

effectively synchronizing the values of the two variables, which is the basic operation

in the algorithm.

The fluctuations in the series can be explained by the fact that the algorithm

is implemented in Java, and the garbage collector runs sporadically during the

benchmarking. Also, since the domains are randomized their respective sizes does

not describe the complexity of obtaining a solution completely since the random

placements of the sets of intervals can be overlapping, thus creating slightly simpler

problems, or more difficult (in case the overlap creates non-convex sets which needs

to be decomposed by the algorithm before the propagation). Moreover, in each

particular trial, e.g. 〈|A| = 20, |B| = 30〉 the initial domains of A and B remains the

same in all 200 trials, whereas 〈|A| = 20, |B| = 31〉 for instance contains a completely

new problem domain for both A and B.

The conclusion that can be drawn from this figure is that the complexity of

solving a randomly generated problem is roughly O (nm) as long as the problem is

“sparse” (in the sense that the scale and number of intervals placed onto the timeline

does not tend to generate overlaps). When the problem becomes more “dense”, i.e.

there exists a lot of overlap, then decomposition needs to be done more often and the

complexity seems to grow as a quadratic polynomial, i.e., O
(
n2m2

)
. Set 20 in the

data above is linear with an adjusted R2 = 0.9470 and quadratic with an adjusted

R2 = 0.9777 and a quadratic coefficient of 0.0187 (RMSE = 12.17).

Solving equal sized problems on a sparser timeline would result in a lower

quadratic coefficient and solving a more dense problem would result in a higher

quadratic coefficient. Thus in the domain of CR, where the temporal size of the

entire domain/timeline is closely related to the number of sets of intervals in it, the

complexity of the algorithm is essentially linear with respect to the query window.

I.e., inferring activities from two weeks of data takes toughly twice as much time

as doing the same for one week (given that the data is placed uniformly on the

timeline). This relationship is shown in Figure 10, as a basis for these series, 20 sets

of intervals were consistently placed in domain A. The sets in the figure shows the

aParts of the algorithm can be parallelized and solved by different threads concurrently, this
functionality was however disabled during this experiment.

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

24 Jonas Ullberg and Amy Loutfi and Federico Pecora

results of scaling the domain size by a factor of 0.01, 0.10, and 1.00 (i.e., reducing

the size in the first two cases) while solving a problem with the same amount of

randomly generated intervals. As can be seen, a lower domain size (i.e. 0.01), takes

precedence over the other with respect to the runtime. Thus, 0.10 and 1.00 appears

linear in comparison with the same sets of intervals placed randomly in the set with

scale 0.01 which contains the most dense timelines.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

|A|=20 x 0.01
|A|=20 x 0.10
|A|=20 x 1.00

Figure 10. This figure shows the effect of scaling the temporal size of the entire domain while
placing (consistently sized) randomly generated intervals on the timeline. The series with scale 1.00

corresponds to series |A| = 20 in Figure 9, although with a different initial pseudo-random seed.

6.2. Test case in a Swedish Home

Ground truth is difficult to obtain as it would require that the elderly themselves

annotate their activities. An evaluation was therefore done together with a local

caregiver with insights into a test subject’s daily life and medical history. The goal

was to assess how well the system could infer medically meaningful information

about the users daily life.

The apartment in this case study is inhabited by an 82 year old man (born

1931) which has been living alone since his wife passed away two years ago. At

around the same time the man had a stroke and spends most of his time inside, the

exceptions are when he goes outside to do shopping or to visit any of his three sons

with his mobility scooter. The man receives help from home care four times a day

that ensures that he is feeling well and that he takes his medication. They also make

his bed in the morning, and at lunchtime they heat his food in the micro oven (he

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 25

Figure 11. The layout of the second test site in Sweden. This is not an exact depiction but

captures the general layout of the large home.

buys his food himself because he does not like the food they provide). The man’s

sons live nearby and visits him often, in addition, his grandchildren uses the Giraff

telepresence robot to visit him remotely.

An initial working version of all software components of the system is available in

the apartment. The apartment is depicted in Figure 11. Before deploying the system

in the home the inhabitant was interviewed. The answers given during the interview

was used to determine a good sensor placement that would allow the system to

capture as meaningful traces of his daily activities. This resulted in the fact that

the laundry room and the study were not instrumented at all since the inhabitant

almost never used these, and the living room was sparsely instrumented since it

was only used when the man had visits. Conversely, the TV-room, the kitchen, the

bathroom and the bedroom were considered important and therefore equipped with

more sensors.

The session with the caregiver resulted in several queries to the context recognition

system using a horizon of two weeksb. In the beginning of the session the caregiver

claimed that the man had stated that he spends much of his time in front of the TV.

The caregiver wanted to know how often and when the person was watching the TV

since this behavior can influence his health. Consequently, a query was made to see

how much time the user spent in front of the TV using the motion sensor in the TV

roomc, the output of this query is shown in Figure 12.

bA more limited timespan was chosen for the graphics used in this paper so that details are visible.
cThe motion sensor was used instead of the electrical usage sensor connected to the TV since the
former appeared to be in an always on state. We suspect this happens because the TV consumes

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

26 Jonas Ullberg and Amy Loutfi and Federico Pecora

Figure 12. A pair of timelines showing when the elderly man visits the TV room, constructed
using different methods of preprocessing the sensor data.

The topmost timeline, in tv room1, in Figure 12 shows the result of the first

query. Given the fragmented nature of the timeline (containing many short intervals)

it appeared as if the person was mostly sitting still in the TV room, or at least

not moving enough to trigger the motion sensor frequently enough to generate

continuous intervals on the timeline. In order to address this problem, another

query was made using data from other motion sensors in the apartment as well,

the output of this query is shown bottommost in Figure 12 as in tv room2. Here,

the data from the additional sensors were used as terminal conditions for ending

the activity (the motion sensor placed in the hall adjacent to the TV-room was

particularly important). The timeline for in tv room2 is clearly more continuous

than in tv room1 but still contains some discontinuity. This is probably due to a

bad placement of the motion sensor in the hall, allowing the user to be detected

even though he is in the TV-room. At some occasions this can also be due to the

fact that he had had visitors, e.g. home care or relatives, as they move around the

apartment they constantly end the in tv room1 activity.

1 <?xml version=” 1 .0 ” encoding=”UTF−8” ?>
2 <r u l e s home=” t e s t s i t e s e 2 ”>
3
4 <preproc name=”Tunstal lPIRSimple ” in=”PIR − TV Room” out=” in tv room1 ”

args=””/>
5 <preproc name=”Tunstal lPIRSimple ” in=”PIR − TV Room, PIR − Bedroom , PIR −

Kitchen” out=” in tv room2 ” args=””/>
6
7 <ex t r a c t o r name=”max” in=” in tv room1 ” out=” in tv room1 ” />
8 <ex t r a c t o r name=”max” in=” in tv room2 ” out=” in tv room2 ” />
9

10 </ r u l e s>

Listing 2. A rule that infers when the person has been in the TV room using two different methods.

One responsibility of the CR module within GiraffPlus is to provide timelines

containing performed activities to a statistics extraction module, the result of the

second query forms a much better basis for assessing time spent in front of the TV

during the day and can be used over longer horizons to detect changes in behavior

and anomalies. The rules created to detect when the person is in the TV-room is

enough electricity in standby mode to be considered on.

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 27

shown in Listing 2.

1 <?xml ve r s i on =”1.0” encoding=”UTF−8” ?>
2 <rules x s i : noNamespaceSchemaLocation=”rule schema . xsd”

home=” t e s t s i t e s e 2 ”>
3
4 <preproc name=”Tunstal lPIRSimple ” in=”PIR − TV Room” out=” in tv room1 ”

args=””/>
5 <preproc name=”Tunstal lPIRSimple ” in=”PIR − TV Room, PIR − Bedroom , PIR −

Kitchen” out=” in tv room2 ” args=””/>
6
7 <extractor name=”max” in=” in tv room1 ” out=”in tv room1 ” />
8 <extractor name=”max” in=” in tv room2 ” out=”in tv room2 ” />
9

10 <!−− ##################−−>
11
12 <preproc name=”Tunsta l lTrueFalse ” in=”Bed − Bedroom” out=” in bed”/>
13 <preproc name=”Tunstal lPIRSimple ” in=”PIR − Kitchen” out=” i n k i t c h en ”/>
14
15 <rule out=” awake in k i t chen”>
16 <constraint from=” awake in k i t chen ” type=”during ” to=” i n k i t c h en ” />
17 <constraint from=” awake in k i t chen ” type=”a f t e r ” args =”[0 ,1000]”

to=” in bed ” />
18 </rule>
19
20 <rule out=” awake in tv room”>
21 <constraint from=” awake in tv room” type=”during ” to=” in tv room2 ” />
22 <constraint from=” awake in tv room” type=”a f t e r ” args =”[0 ,1000]”

to=” in bed ” />
23 </rule>
24
25 <extractor name=”max” in=” awake in k i t chen ” out=”awake in k i t chen ” />
26 <extractor name=”max” in=” awake in tv room” out=”awake in tv room” />
27
28 </rules>

Listing 3. This listing shows an example rule that is used in the real system. The rule describes
the conditions under which the activities awake in kitchen and awake in tv room can be inferred.

Even though these queries did not produce optimal visual results, the caregiver

had gotten a better understanding of the persons habits, and it can clearly be seen

that the person spends many hours a day in front of the TV. Also, the caregiver

noted that the man’s TV-watching habits were not isolated to daytime. After having

inspected the man’s TV-watching habits, the caregiver was interested in the evening

and night time activities of the man since he could be seen to watch TV late at night

at some occasions e.g. on Sunday the 16th. In addition, discussions with the person

had revealed that he sometimes went up during the night to read the newspaper in

the kitchen.

As the evaluation session continued the caregiver wanted to see when the person

went up at night to look at the TV or to read the newspaper so rules were constructed

to filter out these events. In addition to processing the sensory data, a rule that

filters out events where the person had left the bed and went to either of these

locations were constructed using the language of Allen’s Interval Algebra. Activity

intervals awake in kitchen and awake in tv room were inferred on a timeline so

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

28 Jonas Ullberg and Amy Loutfi and Federico Pecora

that each filtered interval occurred AFTER in bed and DURING presence at the re-

spective locations; in kitchen and in tv room. The output of this query is shown

in Figure 13.

Figure 13. A pair of timelines showing when the elderly visits the kitchen and the TV-room after

having left his bed.

It can be seen that the user typically visits both the TV room and the kitchen

when he leaves his bed. Also, this behavior seems to be a part of a habit since it

occurs so often. A fraction of the rule document created to detect when the person

leaves his bed to visit the TV-room and the kitchen is shown in Listing 3.

To obtain a verification of the inferences produced by the system, the results were

discussed by the elderly man. He confirmed the inferences with his own recollection

of his activities. During this discussion the man expressed discomfort about the

system knowing how often he had been awake during the night. Despite being well

informed of the system’s capabilities, he expressed that he was less comfortable with

an aggregation of long term data about his habits than with alternative technologies

such as observing him visually from time to time through a video camera.

7. Conclusions and Future Work

This paper has presented a fully working CR system that has been developed for the

GiraffPlus project. The focus of the system is to address real world CR issues such as

the scarcity of sensors and the need to be able to dynamically adapt the underlying

inference model to the needs of the user, in this case the elderly and caregivers. The

adaptability is achieved through the use of rule documents that control how sensory

data is processed to an intermediate representation consisting of sets of intervals

on timelines, how activities relate to this representation with the use of constraints

from Allen’s interval algebra, and how the inferred results are interpreted.

Surrounding tools in the system has also been discussed, such as the alarm

system which provides caregivers and relatives with the ability to be notified when

certain conditions occurs, and a monitoring system that sends notifications to system

engineers in case of technical problems.

The system currently analyzes data coming from fifteen test sites (homes) located

in three different countries. The complexity of the underlying algorithm has been

evaluated in an experiment and was found to be linear in complexity for the problem

encountered by the CR system. Furthermore, in two examples we have shown how

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

A Context Recognition Toolset for Elder Care 29

queries about the inhabitants behavior can be customized in cooperation with

a medical professional. Future research will focus on expanding the capabilities

of the constraint language and evaluating its usability in the different test sites.

Furthermore, we will investigate the possibility of making the collected sensor data

available to the research community.

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

30 REFERENCES

References

1. Wolfgang Aigner and Silvia Miksch. Carevis: Integrated visualization of

computerized protocols and temporal patient data. Artificial Intelligence

in Medicine, 37(3):203–218, 2006. ISSN 0933-3657. doi: 10.1016/j.artmed.

2006.04.002. URL http://www.sciencedirect.com/science/article/pii/

S0933365706000595. Knowledge-Based Data Analysis in Medicine.

2. J.F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23

(2):123–154, 1984. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/0004-3702(84)

90008-0.

3. J.C. Augusto and C.D. Nugent. The use of temporal reasoning and manage-

ment of complex events in smart homes. In Proceedings of the 16th Eureopean

Conference on Artificial Intelligence (ECAI), 2004.

4. Silvia Coradeschi, Amedeo Cesta, Gabriella Cortellessa, Luca Coraci, Javier Gon-

zalez, Lars Karlsson, Fransesco Furfari, Amy Loutfi, Andrea Orlandini, Filippo

Palumbo, Federico Pecora, Stephen von Rump, Ales Stimec, Jonas Ullberg, and

Britt Östlund. Giraffplus: Combining social interaction and long term monitoring

for promoting independent living. In 6th International Conference on Human

System Interactions (HSI), pages 578–585, 2013. doi: 10.1109/HSI.2013.6577883.

5. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

geometry: algorithms and applications. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 1997. ISBN 3-540-61270-X.

6. Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.

Artificial Intelligence, 49:61–95, May 1991. ISSN 0004-3702. doi: 10.1016/

0004-3702(91)90006-6. URL http://dl.acm.org/citation.cfm?id=120536.

120554.

7. Christophe Dousson and Pierre Le Maigat. Chronicle recognition improvement

using temporal focusing and hierarchization. In Proceedings of the 20th interna-

tional joint conference on Artifical intelligence, IJCAI’07, pages 324–329, San

Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

8. G. Duftschmid, S. Miksch, and Gall. Verification of temporal scheduling con-

straints in clinical practice guidelines. Art. Intelligence in Medicine, 25(2):

93–121, 2002.

9. T.V. Duong, H.H. Bui, D.Q. Phung, and S. Venkatesh. Activity recognition

and abnormality detection with the switching hidden semi-markov model. In

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), 2005.

10. Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,

5:345–348, June 1962. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/367766.

368168. URL http://doi.acm.org/10.1145/367766.368168.

11. A. Goultiaeva and Y. Lespérance. Incremental plan recognition in an agent

programming framework. In Working Notes of the AAAI Workshop on Plan,

Activity, and Intention Recognition (PAIR), 2007.

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

REFERENCES 31

12. Ronald Lewis Graham. An efficient algorithm for determining the convex hull

of a finite planar set. Information Processing Letters, 1(4):132–133, 1972.

13. GÃ 1
4nther Greiner and Kai Hormann. Efficient clipping of arbitrary polygons.

ACM Transactions on Graphics, 17(2):71–83, April 1998.

14. R. Helaoui, M. Niepert, and H. Stuckenschmidt. Recognizing interleaved and

concurrent activities: A statistical-relational approach. In Proccedings of the

IEEE International Conference on Pervasive Computing and Communications

(PerCom), 2011.

15. Stefan Hertel and Kurt Mehlhorn. Fast triangulation of the plane with respect

to simple polygons. Information and Control, 64(1-3):52–76, 1985.

16. V. Jakkula, D.J. Cook, and A.S. Crandall. Temporal pattern discovery for

anomaly detection in a smart home. In Proceedings of the 3rd IET Conference

on Intelligent Environments (IE), 2007.

17. J. Mark Keil. Decomposing a polygon into simpler components. SIAM J.

Comput., 14(4):799–817, 1985.

18. L. Liao, D. Fox, and H. Kautz. Extracting places and activities from gps traces

using hierarchical conditional random fields. Robotics Research, 26(1):119–134,

2007. ISSN 0278-3649.

19. Alan K. Mackworth. Consistency in networks of relations. Artificial In-

telligence, 8(1):99–118, 1977. ISSN 0004-3702. doi: 10.1016/0004-3702(77)

90007-8. URL http://www.sciencedirect.com/science/article/pii/

0004370277900078.

20. S. Mckeever, J. Ye, L. Coyle, C. Bleakley, and S. Dobson. Activity recognition

using temporal evidence theory. Ambient Intelligence and Smart Environments,

2(3):253–269, 2010.

21. J. Modayil, T. Bai, and H. Kautz. Improving the recognition of interleaved

activities. In Proceedings of the 10th International Conference on Ubiquitous

Computing (UbiComp), 2008.

22. Filippo Palumbo, Jonas Ullberg, Ales S̆timec, Francesco Furfari, Lars Karls-

son, and Silvia Coradeschi. Sensor network infrastructure for a home care

monitoring system. Sensors, 14(3):3833–3860, 2014. ISSN 1424-8220. doi:

10.3390/s140303833. URL http://www.mdpi.com/1424-8220/14/3/3833.

23. D.J. Patterson, D. Fox, H. Kautz, and M. Philipose. Fine-grained activity

recognition by aggregating abstract object usage. In Proceedings of the 9th IEEE

International Symposium on Wearable Computers, 2005.

24. F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg, and A. Saffiotti. A constraint-

based approach for proactive, context-aware human support. Journal of Ambient

Intelligence and Smart Environments, 4(4):347–367, 2012.

25. C. Pinhanez and A. Bobick. Fast constraint propagation on specialized allen

networks and its application to action recognition and control. Technical Report

456, M.I.T. Media Lab, Perceptual Computing Section, 1998.

26. Arun K. Pujari, G Vijaya Kumari, and Abdul Sattar. Indu: An interval duration

network. In Proceedings of Sixteenth Australian joint conference on AI, pages

November 25, 2014 15:45 WSPC/INSTRUCTION FILE .UllbergE-
tAl˙IJAIT.tex

32 REFERENCES

291–303. SpringerVerlag, 2000.

27. Daniele Riboni and Claudio Bettini. Context-aware activity recognition through

a combination of ontological and statistical reasoning. In Proceedings of the 6th

International Conference on Ubiquitous Intelligence and Computing, UIC ’09,

pages 39–53, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-02829-8.

doi: 10.1007/978-3-642-02830-4 5.

28. Jean-Francois Rit. Propagating temporal constraints for scheduling. In Proceed-

ings of the 5th National Conference on Artificial Intelligence, 1986.

29. Geetika Singla, Diane J. Cook, and Maureen Schmitter-Edgecombe. Recognizing

independent and joint activities among multiple residents in smart environments.

Ambient Intelligence and Humanized Computing, 1(1):57–63, 2010.

30. T. Springer and A.-Y. Turhan. Employing description logics in ambient intelli-

gence for modeling and reasoning about complex situations. Ambient Intelligence

and Smart Environments, 1(3):235–259, 2009.

31. Kostas Stergiou and Manolis Koubarakis. Backtracking algorithms for disjunc-

tions of temporal constraints. Artificial Intelligence, 120:248–253, 1998.

32. Mohammad-Reza Tazari, Francesco Furfari, Juan-PabloLÃ¡zaro Ramos, and

Erina Ferro. The persona service platform for aal spaces. In Hideyuki

Nakashima, Hamid Aghajan, and JuanCarlos Augusto, editors, Handbook of Am-

bient Intelligence and Smart Environments, pages 1171–1199. Springer US,

2010. ISBN 978-0-387-93807-3. doi: 10.1007/978-0-387-93808-0 43. URL

http://dx.doi.org/10.1007/978-0-387-93808-0_43.

33. E. Tsang. Foundations of constraint satisfaction. Computation in cognitive

science. Academic Press, 1993. ISBN 9780127016108. URL http://books.

google.se/books?id=TnxQAAAAMAAJ.

34. Jonas Ullberg, , and Federico Pecora. Propagating constraints on sets of intervals.

In ICAPS Workshop on Planning and Scheduling with Timelines (PSTL), 2012.

35. J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. Rehg. A scalable

approach to activity recognition based on object use. In Proceedings of ICCV

2007, 2007.

Appendix B

Noname manuscript No.
(will be inserted by the editor)

Towards Configuration Planning with partially ordered preferences:
representation and results

Lia Susana d.C. Silva-Lopez* · Mathias Broxvall · Amy Loutfi · Lars Karlsson

Received: date / Accepted: date

Abstract Configuration planning for a distributed robotic
system is the problem of how to configure the system over
time in order to achieve some causal and/or information goals.
Such a configuration plan specifies what components (sen-
sor, actuator and computational devices), should be active at
different times and how they should exchange information.

In this paper we present theoretical and preliminary em-
pirical results of an approach to configuration planning that
incorporates general partially ordered preferences in order
to distinguish preferred configuration plans from less pre-
ferred ones. As there can be multiple preference categories,
the planner solves a multiple-objective optimization prob-
lem: for a given problem, it finds all possible valid, non-
dominated configuration plans.

The system has been able to successfully cope with par-
tial ordering relations between quantitative preferences in
practically acceptable times, as shown in the empirical re-
sults. Preferences here are represented as c-semirings, and
are used for establishing dominance of a solution over an-
other in order to obtain a set of configurations that will con-
stitute the solution of a configuration planning problem with
partially ordered preferences (C3PR). The dominance oper-
ators tested in this paper are Pareto and Lorenz dominance.
Our solver considers one guiding heuristic for obtaining the
first solution, and then switches to a dominance based mono-
tonically decreasing heuristic used for pruning dominated
partial configuration plans. In our preliminary empirical re-
sults, we perform a statistical study in the space of problem
instances and establish families of problems for which our
approach is computationally feasible.

Center for Applied Autonomous Sensor Systems, Örebro University,
SE-70182 Sweden
E-mail: lia.silva@gmail.com*
{mathias.broxvall,amy.loutfi,lars.karlsson}@oru.se

1 Introduction

Consider a distributed robotic systems consisting of a set of
communicating components capable of sensing, actuation
and/or information processing. These may involve various
types of sensors, from simple ones like temperature sensors,
or pressure sensors in furniture, to advanced sensing and
information processing systems like computer vision sys-
tems. They may also involve various types of actuators, like
automatic door openers and radiators, and complex robots
with varying degrees of autonomy and capable of both sens-
ing (i.e. cameras) and actuation (i.e mobility) as well as in-
formation processing (i.e. localization, path planning). Fi-
nally, the different components can exchange information
by means of a network, which may involve both wired and
wireless communication.

A snapshot of all running sensing, actuation, informa-
tion processing and communication tasks given to the dif-
ferent subsystems in order to solve some overall task is then
called a configuration of the system. Different tasks may re-
quire different configurations, and even for the same task
there may be several different configuration plans that could
solve it. Some tasks may also require several steps to solve,
this means that different components will be active at differ-
ent times. In other words, the configuration can change over
time. In this context, the configuration planning problem is
that of finding a configuration plan that specifies the config-
uration of the system over time and that will take the system
and the environment from an initial state to a state satisfying
some predetermined criteria – given an accurate domain de-
scription of the components, the tasks they can perform and
their effect on the environment. Note that the target states,
that is the goal, may involve that certain information is pro-
duced (e.g. about the position of a person) in addition to the
physical state of the environment (e.g. that a robot is at a
certain position).

2 Lia Susana d.C. Silva-Lopez* et al.

Configuration planning can be seen as an extension of
task planning [15]. A task plan essentially is a sequence of
actions where each action from the planner’s perspective is
considered an indivisible unit, such as pickup box1 or move
robot from room1 to room3. The different actions in a task
plan are causally dependent on each other. For instance, if
box1 is in room3 and the robot initially is in room1, then the
action pickup box1 needs to be preceded by the action move
robot from room1 to room3. This is expressed in the plan-
ning domain as a precondition of pickup box1 and an effect
of move robot from room1 to room3 and can be of the form in
robot room3. An admissible plan is one where each action’s
preconditions are satisfied in the state in which the action
is to be performed. A task planning problem consists of an
initial state, a set of goals and a set of available actions, and
a solution is an admissible plan that leads to a state where
the goals are satisfied.

Configuration planning can in addition to causal interac-
tions also involve parallel execution of tasks on components
and information flows between tasks and components. In an
admissible configuration plan, both causal and information
requirements of each component in each step must be sat-
isfied. Thus, an action in task planning corresponds in con-
figuration planning to a temporary configuration. Actually,
a previous approach to configuration planning by Lundh et
al [18] utilized a task planner to generate a skeleton plan
which satisfied causal requirements, and then a configura-
tion planner transformed each action into a configuration.
The end result was a plan consisting of a sequence of con-
figurations. However, the approach presented in this paper
integrates reasoning about causal and information require-
ments into a single algorithm.

The work presented in this article was done in the con-
text of the GiraffPlus system [12], for support of old people
at home, where the system, consisting of a range of sen-
sors (e.g. motion, light, door closing, temperature, pressure
in/under furniture) and a semi-autonomous robotic platform,
needs to be configured in order to monitor specific every-
day activities. However, the same techniques should also be
applicable to many other domains such as monitoring and
aiding people at department stores or airports, or managing
and supervising warehouses. We strive for an approach with
general applicability.

Furthermore, we often seek plans which are not only ad-
missible, but also optimal with respect to some given pref-
erence function which specify to what degree a solution is
preferred considering a number of criteria (preference cat-
egories). This preference function may take into account
both conditions internal to the system, such as the appropri-
ateness of different actions/components for achieving some
effect, or externally imposed conditions like a user’s rank-
ing of soft goals. For most quantitative languages for pref-
erences, the ordering relations between preferences are to-

tal. However, partial orders for preferences are desirable as
many real-life configuration problems often involve incom-
parable preference criteria as well as cases in which no dom-
inance between criteria exists.

A configuration planning with partially-ordered prefer-
ences (C3PR) problem is that of finding the set of non-dominated
admissible configurations given a partially-ordered prefer-
ence function over the set of configurations and a domina-
tion criteria. A solution to a C3PR problem is the maximum
set of fully admissible configurations that are non-dominant
between each other according to the goal preferences, but
more dominant than any other fully admissible configura-
tion.

To illustrate the need of partially ordered preferences,
consider a request for the shortest and least expensive con-
figuration. Suppose the planner returns three dominant (see
more on dominance functions in the section of dominance
functions) configurations that are non-dominant between each
other: one with cost 5 and length 5, one with cost 4 and
length 6, and one with cost 6 and length 4. If only one con-
figuration is selected from the set of configurations in the so-
lution, and we were to apply a bias function to that favored
a configuration that has a more balanced set of scores, then
the first configuration would be ranked as the best one. If on
the other hand the preferences were given using the total or-
der of either of the two criteria, we would have had ended up
either with the second or the third configuration, depending
on which criteria we decided to favor. Partial orders are not
only desirable to represent features of an application domain
in which a representation with total orders becomes artificial
and even forced, but they are also flexible enough for allow-
ing the use of total orders over the non-dominant solutions
in case a ranking that considers other criteria is needed.

The contributions of this paper are three. First, the C3PR
problem is explained and a representation for it is presented
(Section 3). Second, an algorithm, heuristics and dominance
operators for solving C3PR problems (Section 4). Third,
empirical tests over an implementation of the second and
third contributions of this paper (Sections 5). The authors
have made both the implementation and the data available
to the public. Conclusions are in Section 6.

2 Related Work

Regarding configuration planning, we adopt the problem def-
inition given by Lundh et al. [18]. Historically, the prob-
lem described by Lundh is within the context of achieving
unattended and adaptable collections of sensors, actuators
and programs with cognition and communication capabili-
ties, in which the notion of robot emerges from the interac-
tion between the elements of the collection. ASyMTRe [20]
is a related approach for configuring coalitions of single-
task robots performing multi robot tasks using instantaneous

Towards Configuration Planning with partially ordered preferences: representation and results 3

assignment. According to the taxonomy by Korsah et al.
in [17], the configuration planning problem is more related
to the ”multi-task robots, multi-robot tasks” category, while
considering that there are many different ways in which the
utility can be calculated, which in turn may end up in differ-
ent degrees of interdependence of agent-task utilities.

Regarding planning with preferences, Baier and McIl-
raith [3] made a comprehensive survey and in the following
we will use their distinctions. Quantitative preference for-
malisms associate plans with numerical preference values.
In Markov Decision Processes [23] for planning in stochas-
tic domains, action-state combinations come with different
rewards which are aggregated over time, often taking a dis-
count into account. Policies, that is plans that are conditional
on the state, that have maximal expected discounted rewards
are preferred. These policies are typically generated by us-
ing dynamic programming methods.

PDDL3 [14] is a formalism that also supports quanti-
tative preferences. Preferences in PDDL3 can refer to con-
ditions at specific points or periods of time, or to temporal
relations between conditions. For each preference, it is de-
termined whether it is violated, and a metric function com-
putes an aggregated numeric value for the set of preferences,
which serves as the preference value for the entire plan. The
forward-chaining heuristic planner HPLAN-P [2] is a no-
table planner for PDDL3.

Qualitative preference formalisms are typically based on
specifying a preference ordering on choices. In conditional
preference networks [7], each node represents a choice (e.g.
what to have for desert) and how the preferences for that
choice depend on other choices (e.g. what to have for main
course). There are also extensions to those such as Tradeoff-
enhanced CP-nets [10], which allows to express the rela-
tive importance of choices (e.g. the choice of main course
is more important than the choice of beverage when din-
ing at a highly rated restaurant). For the latter, the plan-
ner PREFPLAN [8] has been developed. Finally, there are
qualitative formalisms for temporally extended preferences,
such as PP [25] and LPP [4] which utilizes linear temporal
logic [22]. PPLAN [5] is one example of a planner for LPP.

In contrast to the quantitative formalisms reviewed here,
the formalism proposed in our paper allows planning for
multiple partially ordered quantitative preferences. We got
inspiration from Brafman et al, who stated in [9] that the ap-
plication to planning with preferences of the work of Bistarelli
et al in [6] has not been discussed, and pointed its value as
a future research topic. To the best of out knowledge, ours
is the first work that integrates concepts from Bistarelli’s
framework into planning with preferences.

3 Representing problem instances

Before we can come to the representation and definition of
the computational problem of configuration planning with
preferences we will give an informal definition of the prob-
lem. This definition is given in the context of a networked
robotic environment that consists of a number of functional-
ities where each functionality can sense/act on the environ-
ment or perform pure computations.

Consider a scenario in which we have a robot that is too
simplistic to have any localization sensors on it, however it
does have two functionalities: a navigation functionality that
can move iff it is given localization data, and an onboard
temperature sensor. Additionally we have a number of sen-
sors distributed in an elderly care home that are capable of
localizing robots and humans alike.

In order for the robot to navigate the home, we need a
plan that involves simultaneous actions in both the robot it-
self and in the sensors which need to track the robot and send
the localization information to it in order to close the control
loop. Thus we need to represent not only casual state vari-
ables that represents the state of the environment, but also
information state variables that represent continuous infor-
mation exchange between entities. With this representation
we can have goals that are of a casual nature (eg. the robot
should be in a location) or of an information nature (eg. send
temperature measurements from a location).

An example would be a plan that uses the navigation
component of the robot, the localization systems, and finally
the onboard temperature sensor on the robot to take a tem-
perature measurement in the bedroom.

1. Run navigation on robot to move from kitchen to hall-
way, requires localization data. Run tracking sensor in
kitchen to generate localization data, send to navigator.

2. Run navigation on robot to move from hallway to bed-
room, requires localization data. Run tracking sensor in
hallway to generate localization data, send to navigator.

3. Run temperature sensor on robot, gives temperature in
bedroom. Output as requested goal.

To represent the state of the environment we will use
state variable assignments to represent all casual state vari-
ables (eg. location(robot) = bedroom) and state vari-
ables without assignments to represent information that is
being sensed (eg. localization(robot)).

We can then represent functionalities as having a number
of requirements and acting as sources of either information
state variables and/or of casual state variables.

The temperature sensor from above can be described as
having a requirement location(robot) = x and the ef-
fect of being a source of temperature(x) data – where x

can be any room of the environment.
Finally, different functionalities can come with costs (or

utilities) in a range of different metrics such as power con-

4 Lia Susana d.C. Silva-Lopez* et al.

sumption, noise level, reliability that depend on the given
(required) information or casual state variable (assignments).
We call these metrics preference categories and build a partial-
ordered final preference value from them. This allows for the
planner to output only plans that are optimal depending on a
selected definition of optimality.

In the remaining of this paper, whenever an element o
needs to be extracted from a tuple t that contains such a
named entry we will write πo(t) or simply o if t is implicit.

3.1 Formal representation of C3PR problems

We give here a mathematical definition of what a config-
uration plan is, define functionalities, admissibility of con-
figuration plans and methods for expressing and computing
preferences over a domain Upre f . Finally we define the com-
putational problem of finding the optimal admissible config-
uration plans.

Definition 1 A C3PR problem instance is a tuple:

C3PR =
〈
F,DN ,DA,Upre f ,g

〉
In which F is a set of functionalities, DN is a set of all possi-
ble state variables names and DA is a set of all possible state
variable assignments, Upre f is the cross product of the set of
possible values of all preference categories, and g is a goal.

The state variable assignments must each contain a state
variable name and a value: DA ⊆DN×D for some set of val-
ues D. A goal is a set containing one or more state variable
names or state variable assignments.

State variable names are used to represent observable
(information) or controllable (casual) properties, e.g. the tem-
perature in a room or the location of the robot:

DN = {temp(bedroom),loc(rob), ...}

The state variable assignments are the set of all possible val-
ues for the state variables that can be controlled:

DA = {loc(rob) = bed,loc(rob) = kitch, ...}

Note that DN and/or DA can be infinite of size since we
separate the definition of the problem from the language in
which the problem is expressed. Practically, a simple STRIPS
[13] inspired language with classical variables and unifica-
tion is used for expressing a C3PR problem.

Definition 2 A functionality F ∈ F is a tuple:

F = 〈Ir,Cr,Is,Cs,D,Pr,Ps〉

In which Ir and Cr are sets of unique functionality vari-
ables representing ungrounded information and causal re-
quirements, and Is and Cs are sets of unique functionality

variables representing ungrounded information and causal
sources. D is a set of mappings from functionality variables
to state variables or state variable assignments. This set con-
strains the mappings allowed by the functionality.

D⊆ (DN ∪DA)
Ir∪Cr∪Is∪Cs

We define two preference functions, one for the require-
ments Pr and one for the sources Ps:

Pr : Ir ∪Cr→ Upre f

Ps : Is∪Cs→ Upre f

The significance and use of the preference functions are de-
tailed in Section 3.2.

Finally, we define a functionality instance as a copy of a
functionality with all variables substituted for a new unique
variable name and all constraints updated accordingly.

To continue the earlier example, we can describe a func-
tionality such as the navigation functionality that can nav-
igate from room R1 to room R2 iff it receives localization
information for room R1. For brevity we limit the choices of
R1 to bed or hall and of R2 to bed only.

Ir = {x} Cr = {y} Cs = {z}

D=




x 7→ track(rob,hall),

y 7→ loc(rob) = hall,

z 7→ loc(rob) = bed

,


x 7→ track(rob,bed),

y 7→ loc(rob) = bed,

z 7→ loc(rob) = bed




Thus the set of functions D allows for parameterization
of the functionality (can start in any of the two rooms) and
unification (starting room dictates which tracking data is
needed). Again, keep in mind that D is given more com-
pactly by the syntax of the language used for describing
functionalities.

It is here important to not confuse the functionality vari-
ables (x,y,z) that only describes which requirement/source of
a functionality we are talking about with the state variables
(loc(rob)=bed) which describe the required/provided state
information or state of the environment.

Since we require configuration plans to contain function-
ality instances that can be executed multiple times at dif-
ferent timepoints, we require a way to represent their exe-
cution timepoint(s) and the (potentially) varying parameters
and assignments to state variables. For this we require each
functionality instance to contain a unique set of variables by
renaming from an existing functionality. Furthermore, we
require a set of execution ordering constraints over these in-
stances. This is expressed in a temporal reasoning algebra R
such as the point algebra PA [26], Simple Temporal Problem
STP [11] or Allens intervall algebra IA [1]. For the remain-
der of this paper, unless stated otherwise we will use the
point algebra as R.

Towards Configuration Planning with partially ordered preferences: representation and results 5

Definition 3 A configuration plan C is a tuple:

C = 〈Fi,Lki,Lkc,Ex〉

Where Fi is a set of functionality instances used in this plan.
Lki and Lkc are linking functions that given an information
or a causal requirement gives the variable name of a corre-
sponding source in some other functionality instance.

Ex is a set of execution order constraints over Fi so that
Ex⊆ Fi×Fi ×R, in which R is a set of temporal relations
used when describing the execution order constraints. Con-
sistency of Ex is determined by global consistency for the
chosen relational algebra R.

Definition 4 Given a configuration plan C, let Fi = πFi(C)

and let Ir, Cr,Is, Cs be the union of all information variables
and causual requirement/source variables in C:

Ir =
⋃

Fi∈Fi
πIr(Fi) Cr =

⋃
Fi∈Fi

πCr(Fi)

Is =
⋃

Fi∈Fi
πIs(Fi) Cs =

⋃
Fi∈Fi

πCs(Fi)

A linking function for C is a total function that given any
requirement belonging to a Fi ∈ Fi returns the source that
has been assigned to satisfy it.

Lki : Ir→ Is Lkc : Cr→ Cs

We say that a pair of linking functions Lki,Lkc are satis-
fiable if and only if there exist two mappings Mi : Ir → DN ,
Mc : Cr→ DA such that:

Mi(x) = Mi(Lki(x)) Mc(x) = Mc(Lkc(x))

∀Fi ∈ Fi : ∃d ∈ πD(Fi) : ∀x ∈ Ir ∪ Is : d(x) = Mi(x)

∀Fi ∈ Fi : ∃d ∈ πD(Fi) : ∀x ∈ Cr ∪Cs : d(x) = Mc(x)

We note that the definition of link satisfiability requires
two parts: firstly that the mapping of state variable name or
state variable assignment to the requirements must match
the corresponding mapping to the linked source; secondly,
that the allowed assignments to requirements and sources
are restricted by the domain D given by the corresponding
functionalities.

To continue the example, assume that we have a second
functionality kinnect:

Ir = {} Cr = {} Is = {w}

D = {{w 7→ track(rob,hall)}}

We can then create a linking function Lki : x 7→w. Assuming
that we have a starting condition given by a functionality:

Ir = {} Cr = {} Is = Cs = {a}

D = {{a 7→ loc(rob) = hall}}

We can create linking function Lkc : y 7→ a. These two link-
ing functions together are satisfiable since there exist map-
pings:

Mi : x,w 7→ track(rob,hall)

Mc : y,a 7→ loc(rob) = hall z 7→ loc(rob) = bed

3.2 Representing preferences

As described in Section 1, many configuration problems can
be described by a multitude of incomparable optimization
criteria – something which is expressed as one or more prop-
erties of the functionalities. For example, a functionality may
take 5 seconds, consume 1 unit of a resource and have a re-
liability of 90%.

In the interest of avoiding context dependent weighting
functions we take the approach of partial orderings from
the multivariable optimisation community. For this purpose
we introduce the following three concepts for configuration
planning: (i) a preference category representing one type of
information eg. cost or reliability; (ii) a preference value
consisting of an algebraic value for each such category, eg.
50$ and 90% success; and finally (iii) a preference relation
that compares preferences. An example of the later would
be the expression “50$ at 20% chance is better than 5$ at
10% chance”.

For the first, preference categories, we will consider a
generalization that is capable of representing a wide range
of different types of information. We define each prefer-
ence category as consisting of values from a correspond-
ing c-semiring with together with a comparison operation.
As such this lends itself well to expressing everything from
crisp costs, to fuzzy logic, to probabilities.

We recall that a semiring is an algebraic structure con-
taining a set A, and two binary operations corresponding to
addition and multiplication [6]:

X = 〈A,+,×〉

In X , the addition operation + is commutative with iden-
tity element 0 and closed. The multiplication operation ×
is associative, closed, distributes over +, and has 1 as the
unit element and 0 as the absorbing element. When a semir-
ing has idempotency (∀a ∈ A : a+a = a), a commutative ×
operation, and 1 as the absorbing element in +, then such
semiring is a c-semiring [6]. To emphasize the idempotency
we will sometimes write ⊥ for the additive unity 0 and/or >
for the multiplicative unity 1. We write a c-semiring S as:

S = 〈A,+,×,0,1〉

For the preference function in the C3PR planner we require
the domain to specify a corresponding semiring and opera-
tions on them for each preference category.

6 Lia Susana d.C. Silva-Lopez* et al.

Definition 5 A preference category represents a type of pref-
erence that can exist in a C3PR problem and is given by a
tuple < S,≺S> where S is a c-semiring and ≺S is a (partial)
order over the elements of S.

The preferences for a given planning problem is a tuple
of such preference categories <C1, . . . ,Cn > corresponding
to a semiring Upre f :

Upre f = 〈A1× . . .×An,+,×,0,1〉

where A1, . . . ,An are the values of the corresponding semir-
ings C1, . . . ,Cn and where the operators and additive / multi-
plicative unity is componentwise defined by the semirings.

We define a partial ordering ≺ over the preferences as:

x≺ y⇔ π1(x)≺S1 π1(y)∧·· ·∧πn(x)≺Sn πn(y)

Definition 6 For a given configuration plan C, we say that
the preference requirements are satisfied iff for each func-
tionality Fi holds:

∀x ∈ Ir : Pr(x)≺ Ps(Lki(x))

∀x ∈Cr : Pr(x)≺ Ps(Lkc(x))

Where Pr and Ps are the preference functions for functional-
ity Fi respectively the functionality linked to by Lk(x).

Note that the notion of preference satisfaction is only
used to further restrict the possible sources for a require-
ment. In order to compute preference values for complete
configuration plans we need:

Definition 7 For a given configuration plan C, the prefer-
ence value pref(C) is given by:

pref(C) = ∏
x∈Ir

Ps(Lki(x))×∏
x∈Cr

Ps(Lkc(x))

We note that the domain of pref(C) is Upre f with the
partial order≺ used to differentiate between admissible con-
figurations. Furthermore, the preference value of a configu-
ration plan is monotonically decreasing as additional func-
tionalities and links are added to it.

To extend the example with preferences, assume that
Upre f is the cross product of two c-semirings named cost
and reliability, both with a domain [0,1] and max respec-
tively min as addition and multiplication. We can then en-
code that the navigation functionality requires at least 0.7
reliability on localization data and ignores cost:

Pr : x 7→ 〈⊥,0.7〉 y 7→ 〈⊥,⊥〉

Similarly we can encode a cost and reliability of 0.5 for the
functionality effects:

navigator :Ps : z 7→ 〈0.5,0.8〉

kinnect :Ps : w 7→ 〈>,0.7〉
The same linking functionalities as above are still satisfiable,
and the preference value for the final configuration plan is
〈0.5,0.7〉

Definition 8 A fully admissible configuration plan is a con-
figuration plan Ca in which the linking function Lk is satis-
fiable and total, Ca is preference satisfied, Ex is consistent,
and for at least one linearisation, the following conditions
for a discrete, totally ordered timeline hold:

– For every pair of functionalities f i1, f i2: if f i2 is linked
by Lki to f i1 then f i1 is executed during the execution of
f i2. For PA we require the equality relation, for IA we
require any of the non-strict during relations.

– For every pair of functionalities f i1, f i2: if f i2 is linked
by Lkc to f i1 for some causual requirement x ∈Cr(f i1)
then f i2 is executed before the execution of f i2 and there
exist no other functionality f3 executing in between and
with a causual source effecting the same state variable
assignment.

When a configuration plan Ca does not fulfill all of the
former conditions, then such a configuration is a partial con-
figuration plan.

As we can see from the above definition we now have a
way of defining a C3PR problem instance, defining what is
an admissible configuration plan (solution) and evaluating a
partially ordered preference value for each such configura-
tion plan.

3.3 The C3PR optimization problem

For many C3PR problem instances there exists a large po-
tential number of fully admissible configuration plans. In
order to minimize the number of choices returned from a
solver for the C3PR problems we require an optimality cri-
teria. One of the most common optimality criteria for partial
orders is Pareto optimality which is derived directly from
the partially ordered preference function above. We note that
the computational problem of interest here is thus a multi-
objective optimization problem, giving a set of mutually in-
dependent optimal solutions. Since there exists further defi-
nitions of optimality criteria we define the optimization prob-
lem with respect to a general optimality criterion:

Definition 9 The C3PR optimization problem is defined as
follows: given a C3PR problem instance C3PR and a domi-
nance operator Rd calculate the maximum set G of fully ad-
missible configuration plans such that no configuration plan
in G is dominated through Rd by any other element of G.

G =C3RPd(C3PR,Rd)

c1,c2 ∈ G→¬(c1Rdc2)

We note that when Rd is the empty relation, the solution G
is the full set of all admissible configuration plans for the
given C3PR problem instance.

Towards Configuration Planning with partially ordered preferences: representation and results 7

As we can see, a dominance relation Rd in a C3PR prob-
lem is a preference relation for establishing if a configura-
tion plan Cx is more preferable or just as preferable as a con-
figuration plan Cx′ .

Definition 10 C3PRP (Pareto) Problem
A C3PR Pareto problem C3PRP is a C3PR optimiza-

tion problem in which the dominance relation Rd is a Pareto
dominance relation. Rd can be weak Pareto dominance �P

or strict Pareto dominance �P .
Assume that the domain of preferences is:

Upre f = 〈A1× . . .×An,+,×,0,1〉

Then, weak Pareto dominance c1 �P c2 occurs if and only
if each preference category have a non-strictly higher value
in c1 than c2 [16, 19]:

∀Ai : πAi(c1)≥ πAi(c2)

Strict Pareto dominance c1 �P c2 holds if and only if weak
dominance holds and there exist at least one preference cat-
egory with a strictly higher preference value:

c1 �P c2∧∃Ai : πAi(c1)> πAi(c2)

Weak Pareto dominance�P of configuration plan x over
configuration plan x′ occurs if πPcat(x) weakly dominates
πPcat(x′), which in turn occurs if and only if πPcat(x)i ≥
πPcat(x′)i,∀i ∈ {1, ...,m} .

A set of configuration plans in which the values of their
preference categories do not dominate each other, is called a
Pareto Set of configuration plans. It can be a weak Pareto set,
or a strict Pareto set, depending on the type of Pareto domi-
nance used. Unless otherwise stated, the dominance relation
for the Pareto set refers to �P .

Definition 11 C3PRL (Lorenz) Problem
A C3PR Lorenz problem C3PRL is a C3PR problem in

which the dominance relation Rd is the Lorenz dominance
relation. Just like with Pareto, there exists weak Lorenz dom-
inance �L and strict Lorenz dominance �L . The Lorenz
dominance relations are partial order relations such that Pareto
monotonicity, Impartiality, and the Pigou-Dalton principle
of transfers are satisfied. A set of configuration plans in which
the Lorenz dominance relation applies, is called a Lorenz Set
of configuration plans and we note that it is a subset of the
Pareto set.

Let us consider f(1)(x) f(2)(x)... f(m)(x) as the components
of a preference value f = (f1(x), f2(x), ..., fm(x)), sorted by
increasing order. Let x ∈ X be a preference value. Let the
generalized Lorenz vector associated to x be L (x)= (l1, ..., lm),
where l1 = f(1)(x), l2 = f(1)(x)+ f(2)(x), ... lm =∑

m
i=1 f(i)(x).

Let x,x′ ∈ X be two preference values. According to Nagy
et al. [19] the value x weakly Lorenz dominates (�L) the
value x′ if and only if: L (x)�P L (x′). Similarly, the value

x strictly Lorenz dominates (�L) the value x′ if and only if:
L (x)�P L (x′).

Unless otherwise stated, the dominance relation for the
Lorenz set refers to �L .

To illustrate the difference between the two dominance
operators we assume that we have plans with corresponding
preference values given below:

a = 〈0.5,0.5,0.5〉 b = 〈0.5,0.4,0.6〉

c = 〈0.5,0.3,0.7〉 b′ = 〈0.5,0.4,0.7〉

Here only b′ � b, and the Pareto optimal set is {a,b′,c}. The
corresponding generalized Lorenz vectors are:

L (a) = 〈0.5,1.0,1.5〉 L (b) = 〈0.4,0.9,1.5〉

L (c) = 〈0.3,0.8,1.5〉 L (b′) = 〈0.4,0.9,1.6〉

Hence the Lorenz optimal set is {a,b′}.

4 Solving C3PR optimization problems

In order to find solutions to C3PR optimization problems,
we introduce Algorithm 1. The algorithm searches the space
of partial solutions, and is based on partial order planning
[21] [27]. An ordering function H is used to sort the par-
tial solutions in the search array. The algorithm progresses
in two stages, initially a heuristic function H1 is used as H
in order to find the first solution. Once the first solution has
been found the dominance function Rd for the problem is
used as H instead and is used to expand the search front
along possibly optimal solutions and to prune non-optimal
solutions. Step 8 uses the traditional partial ordered plan-
ning resolution of conflicts [27]. Steps 11 handles a missing
requirement of a functionality by adding a new functionality
(or reusing an existing one), and adding a link from the latter
to the former. In partial order planning, only causal links are
added, but here also information links can be added. Notice
that the latter implies simultaneous execution of the linked
functionalities.

The solution to a C3PR optimization problem is the max-
imum set of non-dominated fully admissible configuration
plans (FACP), which hints at the importance of the dom-
inance operator. Currently this algorithm supports solving
C3PRP and C3PRL . We note that solutions to C3PRL are
subsets of C3PRP , and our hypothesis is that C3PRL prunes
significantly more from the search and runs faster. To imple-
ment Lorenz dominance, we strictly followed the method
proposed by Nagy et al [19].

For solving the C3PR problem instance, the algorithm
keeps a search array with partial configuration plans, and an
array of dominant FACP. The array of dominant configura-
tions contains the set of FACP’s that do not dominate each

8 Lia Susana d.C. Silva-Lopez* et al.

Algorithm 1 Algorithm for solving C3PR optimization
problems
Input: C3PR problem PC3PR, first heuristic H1, dominance func. Rd .
Output: Maximal non-dominated set SPC3PR of solutions

1. Ordering function: H ← H1
2. Functionality instance: fg← 〈Ig,Cg, /0, /0〉

where Ig,Cg are the goal requirements.
3. Configuration plan: Ci← 〈{ fg}, /0, /0,{〈 fg, fg,R=〉}〉
4. Search queue: S←{〈Ci,H (Ci)〉}
5. Solution set: SPC3PR ←{}
6. If S is empty, quit and return SPC3PR .
7. Take Nx = 〈Cx,hx〉 from search queue S.
8. If an effect of any fx ∈ Fx of plans Cx in node Nx threatens any link

returned by Lkc of Cx :
(a) generate child partial conf. plans from conflict resolution.
(b) check children for consistency.
(c) add all consistent children to S using ordering function H
(d) Go to 6

9. If no unsat requirements in Cx:
(a) If SPC3PR is empty:

i. H ←Rd
ii. hx←H (CX)

iii. Add Nx to SPC3PR .
iv. Recalculate Heuristic value for all elements in S using

H , pruning away those dominated by hx
v. Sort S

(b) If SPC3PR is not empty:
i. Prune from S all nodes dominated by hx

ii. Discard Nx if dominated by any element in SPC3PR .
iii. Prune from SPC3PR all nodes dominated by by hx

(c) Go to 6.
10. Select unsat req rx of some fx ∈ Fx of plan Cx
11. for-each instantiate or re-use f ′ with source r′x compatible with rx.

(a) Create child plan C′←Cx
where C′ = 〈F′,Lk′i,Lk′c,Ex′〉

(b) F′← Fx∪{ f ′}
(c) If rx is a causal requirement of fx:

i. Lk′c← Lkc∪{rx 7→ r′x }
ii. Ex′← Ex∪{

〈
f ′, fx,Rbefore

〉
,
〈

f ′, fg,Rbefore
〉
}

(d) If rx is an information requirement of fx
i. Lk′i← Lki∪{rx 7→ r′x }

ii. Ex′←Ex∪{
〈

f ′, fx,Rsimultaneous
〉
,
〈

f ′, fg,Rbefore
〉
}

(e) If H (C′) dominated by any value in SPC3PR discard C′

(f) If Ex′ consistent: insert 〈C′x,H (C′x)〉 into S
(g) Go to 6

other. The planner first starts with a heuristic as the ordering
function H = H1. Once the first FACP has been found, a
one-time event 9(a)i is triggered in which H = Rd and the
ordering value is recalculated for every element in the search
array (into a preference-based score). For every FACP found
(including the first one) a pruning phase is triggered both in
the search and in the dominant FACP array. All configura-
tions dominated by this FACP are removed from the search
array and the array of dominant FACP.

When preferences are used for comparing configurations,
we combine the preference value of the sources of all the
links in the configuration plans as given by Definition 7.
This provides a monotonically decreasing preference value,
necessary for correctness of step 9(a)iv and 11e.

5 Experiments and Preliminary Results

The goal of the experiments is to obtain a preliminary idea
of the performance of the planner as well as to establish
how different types of problems affect the performance of
the planner, considering Pareto and Lorenz dominance. The
main null hypothesis for these experiments is that the plan-
ner is equally sensitive to the variation of the preliminary
set of parameters. A secondary null hypothesis is that the
planner has the exact same performance when running with
Pareto and with Lorenz dominance. The experiments are in-
tended to refute both hypotheses. The results here presented
are intended to show the community that it is possible to
have a fast planner for solving problems of configuration
planning with multiple partially ordered preferences.

In order to setup the experiments we have taken a sta-
tistical approach [24] where we calculate the mean value of
properties of the algorithm over all problem instances up to
a given size and with a few other limitations outlined below.

The first step for setting up the experiments was to define
the population over which we can ensure a statistically sig-
nificant measurements. In practice, this means defining the
set of parameters used for problem generation and splitting
it into a set of families of problems where a describing factor
of a family is eg. number of functionalities in the problem.
For the remaining parameters, eg. the specific functionalities
used, we have sampled using a random uniformly distributed
sampling over the population set. For this we have made ex-
ploratory initial tests for obtaining the behavior of different
parameters.

To generate the problems we have generated a dictionary
of state variable names and values for state variable assign-
ments. Based on this we have randomly generated a number
of functionalities, and for each functionality generated a ran-
dom number of requirements and sources. The domain func-
tion for each functionality D has been built to accept exactly
one state variable name or assignment for each requirement
or source of the functionality. In practice this means that
no unification or other correlation between variables have
been allowed in these tests. Finally the preference functions
for each functionality have been randomly generated to give
values in a preference universe Upre f consisting of exactly
three preference categories.

The parameters for the different families of problems in-
vestigated are:

– Average # of requirements (2, 4, 6), sources (2, 4, 6),
goals (2, 3, 4), available instantiations in the function-
alities (2, 5, 10) and number of functionalities (64, 128,
256).

– Size of the dictionary used to create sources and require-
ments (16, 32, 64 for 64 functionalities, 32, 64, 128 for
128, and 64, 128, 256 for 256)

Towards Configuration Planning with partially ordered preferences: representation and results 9

– # of functionalities that only contain sources (10, 25 and
aprox. 50 % of each number of functionalities)

A second practical problem is to define what is a reason-
able time to wait for a solution since a few individual prob-
lem instances may otherwise block the experiments almost
indefinitely, and for all practical purposes we should con-
sider problem instances that take unreasonably long to solve
as non-solvable by the algorithm. We note that the planning
problem has an exponential growth in the time consumption
and in the memory consumption measured by the size of the
found solutions. Furthermore, the practical implementation
of the algorithm is mainly limited by the amount of avail-
able computer RAM memory which can be exhausted in less
than a minute. Therefore we define a cut-off for tractability
by maximum consumed memory so that we can avoid ex-
cessive garbage collection and swapping.

The results here presented have a confidence level of 1σ

for N=35, with a small percentage of the standard deviation
in confidence levels, meaning approx. 14000 experiments
per planning approach according to method 2 in [24], for
each of the ca. 2200 families of problems.

The authors are using the data here presented as prepara-
tion for a third round of experiments in 3σ , in order to iden-
tify which parameters of interest affect how much harder
the planning problems become. Then, the parameters with
marginal influence are discarded. This is done in order to
diminish dimensionality in the number of problem types to
evaluate.

The variables of interest measured on every experiment
include whether or not the run was terminated by full ex-
ploration, or dropped after a limiting condition was reached,
as well as: the number of solutions found before termina-
tion, the number of generated, visited and pruned nodes, the
maximum size of the search list, the number of generated
configuration plans (differs from generated nodes in the fact
that many configuration plans are pruned before getting to
the search list of the algorithm), the time in nanoseconds for
a run, and the Average branching factor of a run.

5.1 Preliminary Results

Table 1 presents the means and standard error for different
variables of interest for Lorenz and Pareto. In order to ob-
tain this means, for each problem family we partitioned re-
sults into blocks of 35 samples, considering only individual
runs terminated by full exploration. If a block contained less
than 35 samples, it was discarded from this calculation. The
means for each block were calculated, and then the result in
this table is the mean of the means of all blocks. The stan-
dard error is calculated by dividing the sample estimate of
the standard deviation by the square root of the size of the
samples (

√
(35)). Table 2 presents the means of the prob-

Table 1: Total Sample Means and Standard Error for vari-
ables of interest, for Lorenz and Pareto dominance

Variable Lorenz Lorenz Pareto Pareto
of interest StdErr Mean Mean StdErr

Time(s) 0.0624 0.159 0.102 0.0226
Generated nodes 968.15 6935.12 7009.66 974.71

Visited nodes 170.01 1016.96 1029.79 171.45
Pruned nodes 844.42 6053.49 6129.69 852.48

Generated
configurations 964.672 6499.147 6487.437 904.303
Maximum size

of searchlist 499.540 3965.122 3939.596 459.094
Avg. Branch

factor 0.345 7.075 7.292 0.378
Solutions

found 2.947 15.249 17.350 4.178

Table 2: Min and Max Sample Means for variables of inter-
est, for Lorenz and Pareto dominance

Variable Lorenz Lorenz Pareto Pareto
of interest MinMean MaxMean MinMean MaxMean

Time(s) 0.0038 20.81 0,0033 4,67
Gen. nodes 47.0 51749.03 45.23 62299.91

Visited nodes 15.6 8490.83 15.6 8724.51
Pruned nodes 7.34 45050.6 7.34 55204.54

Generated
configs 226.514 44961.886 279.229 46129.114

Max size
of searchlist 146.971 13641.0857 162.8 11983.857
Avg. Branch 1.63 12.837 1.59 13.121

factor
Solutions

found 2.057 424.543 2.20 481.886

lem families with the smallest and largest means, for each
variable of interest, for Lorenz and Pareto.

The first important observation from Tables 1 and 2, is
that the average time for solving C3PR problems within the
tested parameter ranges is quite reasonable for most prac-
tical purposes. If the reader is interested on accessing the
sources of the implementation, they are available via bit-
bucket (for access, please contact the first author).

The second important observation from Table 2, is that
the planner is evidently not equally sensitive to the variation
of the preliminary set of parameters, which refutes the main
null hypothesis of these experiments.

From observing Table 1, we can observe that for Lorenz
and Pareto, the means of the variables of interest are within
the standard errors of both. When putting Table 1 in per-
spective with Table 2, we observe a significant difference
between the Min and the Max means. Such difference shows
that the problem instances can have a significant effect on
the performance of the planner, and suggests that a more
balanced standard error can be achieved if the total are cal-
culated considering clusters of families of similar behavior.
As mentioned in Section 5, this is one of the analysis that

10 Lia Susana d.C. Silva-Lopez* et al.

will be performed in order to diminish dimensionality in the
run parameters for the 3σ tests. Therefore, the secondary
null hypothesis could not be refuted. Further tests and anal-
ysis are necessary in order to confirm or refute the secondary
hypothesis.

6 Conclusions

In this paper we have presented a representation, a language
and an algorithm for configuration planning with partially
ordered quantitative preferences, inspired in partial order plan-
ning [21] [27] and in the soft constraints framework from
Bistarelli et al [6]. Moreover, we have presented prelimi-
nary results on a number of variables of interest, for a num-
ber of families of problems and for two dominance operators
(Pareto and Lorenz).

These preliminary results show that the existing plan-
ning approach is suitable for practical applications falling
within the types of problem families tested, and that is possi-
ble get significantly different performance for different fam-
ilies of problems. The results can be used as a benchmark for
similar experiments regarding configuration planning with
preferences.

7 Acknowledgement

This research was supported by the GiraffPlus EU Project,
funded by the European Community’s Framework Programme
Seven (FP7) under contract #288173.

References

1. James F Allen and Johannes AGM Koomen. Planning using a
temporal world model. In IJCAI, volume 8, pages 711–714, 1983.

2. Jorge Baier, Fahiem Bacchus, and Sheila A. McIlraith. A heuris-
tic search approach to planning with temporally extended prefer-
ences. Artificial Intelligence, 173(5-6):593–618, 2009.

3. Jorge A. Baier and Sheila A. McIlraith. Planning with preferences.
AI magazine, 4(29):25–36, 2008.

4. M. Bienvenu, C. Fritz, , and S. A. McIlraith. Planning with qual-
itative temporal preferences. In Proceedings of the 10th Interna-
tional Conference on Knowledge Representation and Reasoning
(KR-06), pages 134–144. AAAI Press, 2006.

5. M. Bienvenu, C. Fritz, , and S. A. McIlraith. Specifying and
computing preferred plans. Artificial Intelligence, 175(7–8):1308–
1345, 2011.

6. S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier. Semiring-based csps and valued csps: Frameworks,
properties, and comparison. Constraints, 4(3):199–240, 1999.

7. Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H.
Hoos, and David Poole. Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference statements.
Journal of Artifcial Intelligence Research (JAIR), 21:135–191,
2004.

8. R. Brafman and Y. Chernyavsky. Planning with goal preferences
and constraints. In Proceedings of the International Conference
on Automated Planning and Scheduling, pages 182–191, 2005.

9. Ronen I. Brafman and Yuri Chernyavsky. Planning with goal
preferences and constraints. In Proceedings of the Fifteenth In-
ternational Conference on Automated Planning and Scheduling
(ICAPS-2005), 2005.

10. Ronen I. Brafman, Carmel Domshlak, and Solomon E. Shimony.
On graphical modeling of preference and importance. Journal of
Artificial Intelligence Research, 25:389–424, 2006.

11. Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint
networks. Artificial intelligence, 49(1):61–95, 1991.

12. Coradeschi et al. Giraffplus: Combining social interaction and
long term monitoring for promoting independent living. In 6th
International Conference on Human System Interactions (HSI),
2013.

13. Richard E Fikes and Nils J Nilsson. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence, 2(3):189–208, 1972.

14. Alfonso Gerevini and Derek Long. Preferences and soft con-
straints in pddl3. In ICAPS workshop on planning with preferences
and soft constraints, pages 46–53, 2006.

15. Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated plan-
ning - theory and practice. Elsevier, 2004.

16. Christophe Gonzales, Patrice Perny, and J Ph Dubus. Decision
making with multiple objectives using gai networks. Artificial In-
telligence, 175(7):1153–1179, 2011.

17. G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias. A
comprehensive taxonomy for multi-robot task allocation. The
International Journal of Robotics Research, 32(12):1495–1512,
2013.

18. Robert Lundh. Robots that Help Each Other: Self-Configuration
of Distributed Robot Systems. PhD thesis, Örebro University,
School of Science and Technology, 2009.

19. Réka Nagy, Mihai Suciu, and D Dumitrescu. Exploring lorenz
dominance. In Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2012 14th International Symposium on,
pages 254–259. IEEE, 2012.

20. Lynne E Parker and Fang Tang. Building multirobot coalitions
through automated task solution synthesis. Proceedings of the
IEEE, 94(7):1289–1305, 2006.

21. J. Scott Penberthy and Daniel S.Weld. Ucpop: A sound, complete,
partial order planner for adl. In Proceedings of the third inter-
national conference on knowledge representation and reasoning,
pages 103–114. Citeseer, 1992.

22. A. Pnueli. The temporal logic of programs. In Proceedings of
the 18th IEEE Symposium on Foundations of Computer Science,
pages 46–57. Institute of Electrical and Electronics Engineers,
1977.

23. Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc., New
York, NY, USA, 1st edition, 1994.

24. Lia Susana d.C. Silva-Lopez and Mathias Broxvall. Empirical
methods for evaluating properties of configuration planning algo-
rithms. In O’Grady et al, editor, Evolving Ambient Intelligence,
volume 413 of Communications in Computer and Information Sci-
ence, pages 114–119. Springer International Publishing, 2013.

25. T. C. Son and E. Pontelli. Planning with preferences using
logic programming. Theory and Practice of Logic Programming,
6(5):559–607, 2006.

26. Mark Vilain and Henry Kautz. Constraint propagation algorithms
for temporal reasoning. In Proceedings of the Fifth National Con-
ference on Artificial Intelligence, pages 377–382, 1986.

27. Haakan L. S. Younes and Reid G. Simmons. Vhpop: Versatile
heuristic partial order planner. J. Artif. Intell. Res. (JAIR), 20:405–
430, 2003.

