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Short description

In this deliverable report, we introduce the system that has been developed in the
completion of T4.1: Data fusion for robust detection and identification objects and users.

For object recognition, we fuse data from different modalities to improve the quality of
available data for object modelling and detection. Concretely, the colour image data of a
colour camera is combined with the depth information gained from stereo vision that is
improved with the depth data of a time-of-flight sensor. The result is a dense coloured
point cloud at a high resolution. This data is applied in the object recognition system that
models the shape and texture of objects to facilitate robust re-detection of those objects in
real scenes. In order to avoid the modelling of thousands of objects, the object recognition
system is accompanied by an object categorization component that predicts the object’s
class if no model is available in the recognition module.

In our person detection, tracking and identification system, the ambient cameras are
mounted on the ceiling of the Robot House, and their locations are fixed to the world
coordinates frame defined by the room. We calibrate the static cameras with OpenCV to
facilitate the transfer between the image coordinates and the world coordinates. Since the
localization module of the Care-O-bot also runs in the same coordinates system, the data
from the ambient camera and the robot can be fused seamlessly. We expect in this way
the camera calibration to be more robust than the method that finds correlation of feature
points among the different camera images, as the features points are usually rather
unstable due to occlusions and rotation of the object.

This report also describes a probabilistic framework for the fusion of data from a laser
range finder on a mobile robot and an overhead camera fixed in a domestic environment.
The contribution of the framework is that it enables seamless integration with other
sensors. For tracking multiple people it is possible to use a probabilistic particle filter
tracker. We show that the fusion improves the results of the individual subsystems.

For person identification, the cameras mounted at Care-O-bot’s head are used because of
their higher resolution. The identification module is based on data fusion between the time-
of-flight sensor and a colour camera as well. The depth image is exploited to detect heads
in the range of sight of the robot and those regions are inspected in the colour image for
the appearance of faces. All detected faces are put into an identification module that
asserts the name of the found person. Together with the person tracking via cameras in
the environment it is possible to fuse both kinds of information to obtain trajectories of
person movements that are labelled with the person’s name. Amongst others, this enables
the robot to find a target person in the house quicker than with random search.
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1. Introduction

As the baby boom generation is coming to retirement age, the number of elderly citizens over
60 years of age is expected to grow further to a proportion of 1 out of 3 by the year 2030.
Alongside this growth in the elderly population, we face short and long-term labour
shortages, especially in the health-care sector. Robots may offer a solution for making elderly
care affordable by using them for physical [1], cognitive [2] or social [3] support. All these
studies share a common foundation that the robots interact intensively with humans, and
locations, of both the person and the robot, are estimated robustly.

Robust people detection and localization is a prerequisite for many applications where
service robots interact with humans. Future robots will not be stand-alone any more but will
operate in smart environments that are equipped with sensor systems for context awareness
and activity recognition.

Sensing systems for robot localization or people localization are usually mounted either on
the robot or are fixed in the environment. In this report we describe a probabilistic framework
for the fusion of data from robot and fixed sensors. Here we restrict ourselves to a laser
scanner on the robot and an overhead camera fixed in the room. The contribution of our work
is that by mapping all information into a probabilistic model, the system can be easily
extended with other sensors such as multiple cameras or RGB-D cameras, and is robust to
the absence of sensors.

2. Data Fusion for Object Detection and Identification

This section explains the system for object recognition and its prerequisites. To improve the
guality of data available to the recognition system, a fusion of different modalities is applied.
This preceding step combines the colour image data from a colour camera, computes a
depth map of the colour image with the help of the image of a second camera and improves
the quality of the depth estimate by integrating the output of a time-of-flight sensor. After the
description of this process in Section 2.1 we introduce the system for object recognition in
Section 2.2. The object recognition system is able to detect previously learned objects in the
scene. However, as the number of occurring objects in a household might be quite large and
since nobody is keen to introduce hundreds or thousands of objects to the robot, we also
developed an object categorization method. This module is meant to recognize the class of
objects that have not been introduced to the robot beforehand. This way the robot can even
make sense for many unseen objects without having to learn them in advance. The
categorization system gets explained in Section 2.3.

2.1 Fusion of Stereo Cameras and a Time-of-Flight Sensor

The combination of sensor data from different sources aims at creating information that
exceeds the quality of each individual source. In terms of quality one usually relates to
accuracy, completeness or confidence. The data sources considered in this case are two
colour cameras used for stereoscopic vision and one Time-of-Flight sensor that directly
deliver 2.5D range data. This work aims at combining both modalities to create accurate 3D
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point clouds with associated colour information even in unstructured image areas. In the
following, the characteristics of the two sensor modalities are described, beginning with the
Time-of-Flight sensor.

Time-of-Flight cameras emit modulated near infra-red light to illuminate a given scene. The
reflection of the modulated light is collected in a CMOS matrix. By comparing the returning
signal to the camera’s source modulation, the phase shift is measured which is a linear
function of distance to the reflecting surface. Using the described procedure, the Time-of-
Flight sensor is able to operate in real time at about 30 Hz. It creates dense point clouds,
however with a limit spatial resolution. As the measurement principle assumes perfectly
sinusoidal signals, which are not achievable in reality, the measured distance is subject to
noise. It comprises about 1% of the measured distance. Also the measurement principle is
biased as a function of object albedo, resulting in poor performance on textured scenes. A
prominent example is the distance measurement of a checkerboard, where the black squares
seem closer to the camera than the white squares. Additionally, the quality of the measured
intensity image is low.

Stereo vision estimates depth through triangulation on point correspondences across image
pairs and the knowledge of the cameras’ intrinsic and extrinsic parameters. On most textured
scenes, stereo is able to provide high resolution point clouds. However, in the absence of
features, the system fails to measure depth. Due to the different viewing angles of the two
cameras, stereo vision is also prone to occlusions. Additionally, low frequency distortions
often disturb the feature association, leading to false depth measurements. Current state-of-
the-art stereo matching algorithms achieve accurate dense depth maps only when using
global optimization algorithms, needing up to a minute of computation time. Only local
correlation based methods are fast enough for real time applications, at the cost of less
accuracy and sparse depth maps.

With the combination of a Time-of-Flight camera and a stereo rig, we aspire to unite the
advantages of both approaches, that is having dense point clouds with a high resolution
within an acceptable computation time. A review of related work has been presented in D4.1.
The sensor setup as mounted on the head of Care-O-bot 3 is displayed in Figure 1.
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The first step for successful data fusion from multiple vision sensors is the proper calibration
of the sensor rig. This process includes the intrinsic calibration of each single device as well
as the pairwise calibration between all sensors. For intrinsic and extrinsic calibration the
method of Zhang [18] is applied to all cameras using Bouguet’s Matlab calibration toolbox
[19]. To increase the calibration quality of the time-of-flight sensor we follow the ideas of
Lindner and Kolb [20]. The extrinsic calibration results are used to associate depth
measurements from the time-of-flight sensor with the corresponding measured disparity from
stereo vision or the corresponding colour pixel of one colour camera. The stereo rig is
initialized using the extrinsic and intrinsic colour camera parameters. The resulting colour
camera’s stereo rectified projection matrix enables an association of 3D data with 2D colour
image coordinates.

Figure 2 displays the source data from the colour cameras and the time-of-flight sensor that
becomes combined during the sensor fusion process. Before we can describe the fusion
algorithm, some pre-processing is necessary as the time-of-flight sensor produces noisy
measurements and flying pixels at edges as visible in the side view displayed in the left
image of Figure 3. Another source of noise is data that exceeds the hon-ambiguity range of
the sensor, which lies between 0 m and 5m. To filter the latter source of noise we apply fixed
amplitude thresholding [21]. The flying pixels, however, need to be removed with a more
sophisticated technigue. Therefore, the following wave front propagation
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algorithm is applied after amplitude thresholding. We iteratively expand the neighborhood of
each pixel until a maximal depth threshold t,, relative to the reference pixel is exceeded. The
size s, of the pixel p’s neighborhood is compared against a speckle threshold t;. When

s, < tg the pixel's range value is labeled as invalid. Otherwise, it is considered as a valid
range value. Using wavefront propagation, only range values of pixels with a sufficient
number of close-by (in terms of depth differences) neighbors will survive. This directly
corresponds to the smoothness assumption made for global stereo vision. The results of
filtering the 3D Time-of-Flight data using wave front propagation is shown in the right image
of Figure 3.

The filtered 3D measurements from the time-of-flight sensor are now projected into the
image plane of the left colour camera. Let R} be the extrinsic rotation matrix and T} the
extrinsic translation vector that describe the relative pose of the left colour camera to the
Time-of-Flight sensor. A 3D measurement x, = (x,y,z)" of the time-of-flight camera directly
corresponds to the 3D point x; = R} x, + T} in the coordinate frame of the left colour camera.
Based on the intrinsic calibration of the left colour camera we can now employ the 4-by-4
projection matrix Q;, that transforms 3D points x; measured in the camera’s coordinate frame
to 2D points p; = (u,v)T measured on the camera’s image plane as well as the disparity
value d. The calculation (u’,v’,d’,w)T = Q, - (x;, )T uses homogeneous coordinates, that
means that the actual values of p; and d are recovered through division by scale parameter
w: (p,d) = (W' /w,v" /w,d/w). The projection of the low-resolution time-of-flight
measurements to the high-resolution colour image covers only a part of all colour pixels and
the coverage has gaps. To be more useful for the optimized depth value computation later,
the depth information of the projected time-of-flight measurements is spread to neighbouring
pixels at the resolution of the colour image by wave front propagation. To reduce
computation time, the propagated range values are not interpolated and copied as they are.
However, to express this kind of inexactness an uncertainty value is assigned to the
estimated depth measurement that is proportional to the distance of its origin.

After the preparation of the raw data from all sensors, we can now fuse the information to a
high-resolution coloured point cloud. The projected time-of-flight measurements serve as a
first guess for the disparity computation from the rectified stereo images. As it is common for
the computation of disparities in pure stereo vision algorithms we first have to define
matching costs that represent how likely two measurements from different sensors are to
originate from the same point in the real world. Then we can use this measure to verify the
quality of the estimates from the depth sensor. The pixelwise matching costs Cgy (p, d) of
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pixel p = (u,v) and disparity d are computed as block matching, which is the accumulation
of similarity measures within a pixel’s square neighbourhood of size 2N + 1 pixels side
length.

N N
Cem(p,d) = Z Z Cer(u—1i,v—j) Equation 1

i=—N j=—N

As similarity measure Cgr(p) we have chosen the method of Birchfield and Tomasi [22]
which determines the difference of intensities in the range of half a pixel along each direction
of the epipolar line. When computing the matching costs Cgy, (p, d) for each pixel p of the
colour image and the estimated disparity d from the time-of-flight sensor, we can gauge the
validity of the initial depth estimate by considering a pixel’s depth estimate as invalid when
Cgu (p, d) exceeds a fixed threshold tz;. Now we have two cases: first, there are pixels that
come with some valid depth estimate, i.e. pixels whose time-of-flight measurement does not
contradict with the local texture in the colour image, and second, there are pixels without a
valid depth estimate. In the latter case, we do not have a reliable time-of-flight measurement
for the pixel and just use the block matching cost function Cgy, (p, d) from stereo vision. In the
first case, we acknowledge that the valid depth measurement is subject to noise. The cost
function is chosen as a reversed Gaussian distribution 1 — P, P,~N(u, o) to model this
uncertainty, where u represents the initial depth estimate and ¢ = ¢(d) stands for the
expected sensor noise which is set to be 2% of the measured distance d. Since the depth
measurements have been propagated to pixels without depth measurement in the
neighbourhood by copying the value instead of interpolation, the uncertainty o is increased
for those cases. To accelerate computation and to incorporate the possibility that Time-of-
Flight based disparity guesses may still be wrong, the cost function becomes constant as
disparity differences become larger than 2¢. This yields the cost function for matched pixels
with valid time-of-flight measurement

Cror(p,d) = {k (1 B Pp(d))' if|d —ul <20 Equation 2
k, otherwise

Factor k provides the possibility to scale the maximal costs to a desired value. The total
matching cost function is then

C ,d), if time-of-flight data is valid
C(p, d) — { TOF(p ) g

Cem(p, d), otherwise Equation 3

The optimal disparity d,,.(p) for each pixel p is not taken as the value that produces minimal
costs C(p, d), because this would yield many false predictions and a very discontinuous
disparity image. Instead, we assert a local smoothness assumption and apply the semi-
global disparity optimization approach of Hirschmudiller [23]. The smoothness constraints
are supposed to avoid ambiguous matching costs for different disparities and are formulated
as the energy function

ED) =Y (c(n.D,)+ Y PT{ID, =Dyl =11+ Y. P.T{ID, ~ D, >1] |  Equation 4

D q€EN, qENy
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Therein, function T[-] evaluates to 1 if its argument is true and to O otherwise. C(p, Dp)
represents the cost function from Equation 3 for pixel p with the disparity estimate D,,. The
other two terms enforce smoothness of the disparity values within the neighbourhood N,, of
point p: the second term penalizes disparity differences of 1 to a neighbouring pixel g with the
additional costs P;and the third term penalizes larger differences in disparity with the costs
P, > P;. Minimizing this energy function over the whole image is a global optimization
problem in 2D and known to be NP-complete. The minimization in individual 1D directions is
can be computed in polynomial time with dynamic programming, but it generates streaking
effects in the direction of optimization. The solution of Hirschmdller performs the 1D
optimization from 16 directions surrounding each pixel and hence avoids the streaking effect.
An individual cost path is defined by

/ Lr(p _rld)l \
1 L(p—-rd-1) +P, _ _
L.(p,d) = C(p,d) + min | L(p—rd+1)+P, [ — mker(p —1,k) Equation 5
minL,(p —7,i) + PZ/
l

where r represents the traversed direction of the individual cost path and i traverses over all
disparities except for d,d + 1 and d — 1. The first minimization term adds the minimal cost
of the preceding pixel for the current optimization direction r, when selecting disparity d for
the current pixel. The costs of the preceding pixel are penalized depending on its disparity
difference to the currently selected disparity d as explained for Equation 4. To prevent the
value of L, (p, d) from constantly growing while traversing the cost path, the minimum path
cost of the preceding pixel is subtracted from the equation. The overall costs are the sum of
all cost paths

S(p,d) = z L.(p,d) Equation 6
r

while selecting the minimum ming S(p, d) yields the desired disparity for pixel p. We are using
the cost function from Equation 3 within this semi-global optimization framework so that the
disparity optimization can benefit from both data sources, stereo vision as well as the time-of-
flight measurements.

Finally, some standard post-processing procedures are utilized to improve the disparity
estimates after optimization. First, if there are multiple disparities minimizing S(p, d) the
disparity estimate is rejected for its ambiguity. Furthermore, a left-right consistency check
ensures that the disparities in the left and right camera image correspond so that the
uniqueness of the disparity estimate is likely. Eventually, the final disparity estimate is
interpolated based upon the costs of neighbouring disparities at pixel p by

4 g S(p,d+1)—S(p,d—-1)
new == 2S(pd+ 1) + S(p,d — 1) — 25(p, d))

The whole sensor fusion procedure is summarized in the scheme that is displayed in Figure
5.

Equation 7
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The sensor fusion system has been tested with the SwissRanger SR4000 time-of-flight
camera and the AVT Prosilica stereo camera pair mounted on the head of Care-O-bot 3. The
two colour cameras have a resolution of 1388x1038 pixels, the SwissRanger SR4000
operates with an image resolution of 176x144 pixels. The cost function has been evaluated
for 176 different disparities. Using this setup, the sensor fusion can be computed at a rate of
0.3 Hz when the code is implemented with SIMD based parallelization.

One important factor for the quality of the results is the proportion of projected time-of-flight
depth measurements relative to the number of all pixels in the high-resolution fused image.
This number can be affected by the size of wave front propagation of time-of-flight
measurements to neighbouring pixels without time-of-flight data. Figure 6 illustrates this
relation. The upper left image shows a disparity map of the scene from Figure 2 which is
purely based on stereo vision. Hence, only textured areas yield depth estimates whereas the
depth of plain-coloured surfaces cannot be estimated. The upper right image shows the
disparity map when stereo vision is combined with time-of-flight data that was allowed to
propagate its depth values in a 1x1 neighbourhood. The depth map is quite similar to the
purely stereo vision-based approach since the time-of-flight measurements are outnumbered
by the stereo depth estimates so that the latter dominate the semi-global optimization. The
numbers of depth estimates from the time-of-flight sensor and stereo vision are better
balanced in the lower left image which represents the sensor combination results for a 3x3
propagation neighbourhood of time-of-flight
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measurements. This time both sources of information are incorporated to yield a dense depth
image. Using a 5x5 neighbourhood renders the stereo map even slightly denser as visible in
the lower right image. Nevertheless, the time-of-flight measurements should not be
distributed too far as they would overwrite the more accurate stereo depth estimates where
they are available. Figure 7 displays several depth maps obtained from the fusion algorithm
when using a 5x5 neighbourhood and compares them to estimates from stereo vision only.
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2.2 Object Recognition

This section discusses a system for object recognition that uses the colour and depth data of
the previously described sensor fusion algorithm. Object recognition is a necessary
prerequisite to enable Care-O-bot for detecting the location of objects and grasping them.
The current approach operates on data from a single perspective and is suitable for detecting
objects with occlusions and multiple occurrences in highly cluttered scenes

The detection of objects is based on previously learned models that comprise texture
information of outstanding feature points with the 3D location of their occurrence on the
object. The model learning step requires the object to be placed on a rotary table with
attached sensors for model capture or in the gripper of the robot. In both cases, the object is
turned so that it can be recorded from different perspectives. For each perspective, STAR
[24] feature points are searched within the colour image and a BRIEF [25] descriptor is
computed for each feature point (see Figure 8). An accurate 3D location of each feature point
is provided by the fusion of stereo and time-of-flight depth information as described in the
previous section. The individual perspectives are written into a common object model that
contains all detected featured points at their 3D location. Each recording can be related to
this common model using the odometry of the rotary table or the robot’s gripper.
Nevertheless, the odometry is not precise enough to register each view at the correct
position in the object model. Hence, an optimization step based on bundle adjustment follows
the first model generation pass that is based on pure odometry. The resulting model contains
the detected feature points from all perspectives written into a common 3D model of the
object. One difficulty for the bundle adjustment is the ambiguity of feature points at repetitive
patterns like company labels that are common for many food packages. This problem is
tackled by accepting only those feature point registrations that correspond approximately with
the measured odometry. Furthermore, the resulting feature point model may contain up to
20,000 points which is a burden for storage and later processing operations. Indeed, many of
those points describe the same point on the object but are captured from different
perspectives. To reduce the number of feature points, the model points are clustered with
mean shift filtering. This results in single centre points for smaller groups of features which
relate to the same location. Only the centre points are kept in the model together with the
mean descriptor values. The descriptor values, however, are discretized to 0 or 1 after mean
shift filtering to keep the data format of the original BRIEF descriptors. This measure reduces
the number of model points by around 75%.
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The recognition of learned objects in captured scenes proceeds simply spoken by the
computation of feature points and their descriptors and by the search for object models that
fit clusters of the found feature points in their texture and 3D shape appearance. First, STAR
features are searched over the colour image and at each feature point we compute a scale
and rotation invariant version of the BRIEF descriptor. Rotation invariance is introduced by
using the ORB [26] extension and scale invariance can be obtained when relying on the
scale computed by the STAR feature point detector or by relating the measured distance of
the object to the patch and kernel size of the BRIEF descriptor. The binary BRIEF descriptor
itself is computed by 8n comparisons of randomly chosen pixel pairs within the patch of size
48x48 pixels around a feature point. For increased robustness, not only individual pixels
become compared but the sum of intensities p(x) within a 9x9 neighbourhood around each
sampled pixel x contribute to the comparison. Consequently, the BRIEF descriptor is
assembled as follows

fo = z 2 (p; x4, yi) Equation 8
1<i<8n
. _ (1, ifp() <p(k) ,
(p; x,y) = {0, otherwise Equation 9

For the feature point matching procedure between feature points from previously learned
objects and feature points from the current scene it is not sufficient to go the usual way, this
is to take the closest two matches, compute the ratio of their distances and accept the match
if the ratio stays below 0.8. We apply a more sophisticated method since the standard
approach fails if the same object appears multiple times in the scene. In that case the ratio
would always be close to 1 and many good matches would be discarded. Instead, we create
two classes of matches: strong matches that have a distance between both descriptors lying
below threshold t.;,s. are collected in the set M,;,;. and weak matches whose matching
distance is bigger than t;,s. but smaller than a second threshold tg,, > t;05e g0 iNto set
M;q,-. We now check each detected feature point of the scene against every trained object

instance 0; whether it is a strong, weak, or no matching and put matches into the sets Mgll.ose
and Mgfr, respectively. This allows each feature point to have multiple active object
association hypotheses after descriptor matching and before the final object model selection.
To localize all existing objects in the scene we then process the sets Mgliose and ngfr for

each object instance 0; individually. First, these sets become sorted by matching distance.
Then we down-sample Mgll,ose spatially to a grid of cell size p (where p = 4 in our

experiments) by keeping only the strongest matching per cell. This operation yields the set
MgP“"* that contains uniformly distributed matches with a high matching quality. Following,

we consider each matching feature point x; € M,"*"** as a seed point for object localization

by putting feature points y,, € {Mgliose,Mgfr} of the local 2D neighbourhood of x; into the set

M})‘z“" of potential matches for an object. Then, the PROSAC [27] algorithm is employed for
guided drawing of point triplets, the model pose estimation based upon those points and
verification of the model with the remaining points of Mé‘;“”. PROSAC terminates either with
a valid estimate that satisfies the non-randomness condition or asserting that there is no valid
match between object model and scene points. After processing all seed points x; € M} “"**
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according to this procedure, we filter object detections with intersecting bounding boxes by
removing the one that fits the model worse.

The obtained object detection and pose estimation algorithm has several desirable
properties: it can detect and localize objects in any pose, at different distances to the camera
and even if large parts are occluded. If multiple instances of the same object occur in the
scene, they can be all detected and localized individually. The procedure can recognize all
occurring objects in a scene within a second on a modern laptop computer when the
database of known objects contains 10 objects. Some exemplary images of detected objects
in a scene are displayed in Figure 9. The bounding box is drawn around every detected
object in order to highlight the estimated pose.
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2.3 Object Categorization

In order to enhance the usefulness of the previously discussed object recognition method, we
also developed an object categorization algorithm that can determine the category of a
formerly unseen object. This method is complimentary to the object recognition approach as
is can be used for learning new objects automatically in future applications or as a hint of
present objects even when they are not known to the robot, yet. Hence, the versatility of the
robot increases because it can deal with a greater selection of objects whose manual training
would have been very tedious for the user.

The work on object categorization so far has been published at two conferences:

1. R. Bormann, J. Fischer, G. Arbeiter, and A. Verl, “Efficient Object Categorization with
the Surface-Approximation Polynomials Descriptor,” in Spatial Cognition VIII (C.
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Stachniss, K. Schill, and D. Uttal, eds.), vol. 7463 of Lecture Notes in Computer
Science, pp. 34-53, Springer, 2012.

2. R. Bormann, J. Fischer, G. Arbeiter, and A. Verl, “Adding Rotational Robustness to
the Surface-Approximation Polynomials Descriptor,” accepted for publication in
Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids
2012), Osaka, Japan, November 2012.

The papers are attached in Appendix A and provide a comprehensive description and
evaluation of the developed object categorization system.
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3. Data Fusion for Human Detection and Localization

In this section, we introduce the data fusion method of fusion robotic sensors with ambient
camera to detect and localize person robustly.

3.1 Camera Sensory Network

The Robot House is the test environment of our project where participants will be invited to
perform various activities related to carrying out household chores. After developing and
testing the human localization software in local base at the University of Amsterdam (UvA),
UVA installed the human localization component to the Robot House in the University of
Hertfordshire (UH).

RADIATOR ‘ RADIATOR
Bookcase DESK/DINING TABLE SOFA'1
Drawers L] Fish-eye living room
CHAIRS O COFFEE TABLE 8
>
N

Fish-eye stairs

I‘ COMPUTER DESK

STAIRS ‘

WIFI

Hi } KINECT kitchen CABINET

T |

e 2 RADIATOR

Two types of cameras have been used in the Robot House. Figure 10 gives an overview of
the cameras that are mounted there. The main area is the living room which is the largest
area of the Robot House. To localize persons in such an area, two fish-eye cameras (GV-
FE421') are mounted on the ceiling, covering the whole living room as well as part of the
kitchen and corridor. The fish-eye camera gives an omnidirectional view of the environment
and enables us to monitor all angles of a location with less occlusion.

! www.geovision.com.tw/english/Prod GVIPCAMH264Fisheye4.asp
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The kitchen area of the robot house is relatively small, and a Microsoft Kinect sensor? is
considered to be sufficient for monitoring users in the relatively small space. The Kinect
sensor is mounted on the left side of the kitchen above the window to avoid the direct
sunlight from the window and also keeps a whole field of view of the kitchen. In the current
work, only the colour component of the Kinect is used for localizing humans in the kitchen.
But we expect the depth component would be more useful in the next step of our research to
recognize human activities.

Figure 11 gives an overview of how the devices are connected in our localization system.
Each of the camera sensors is connected with a dedicated PC via a fast wired connection.
After receiving image streams from the camera, the PC processes the data and generates
intermediate products for data fusion. All three dedicated PCs are connected to a network
switch and a wireless Router, to enable data communication with the Care-o-bot and other
PCs.

Kinect [ Fisheye | | Fish-eye -‘
kitchen stairs !\ livingroom |

N

e buul Other PCs
usb dedicated wired <sh remote (=)
connection

PC-kitchen PC-stairs PC-living room
(camera2) (camera3) (cameral )

-

- Wired Network S - .

- >, ()
| Switch Wireless Router /_ -
update RH Database - - Robot - )
< House Network = RH Database
Router

The Robot Operating System (ROS) are used as the software framework when building the
human localization module. With ROS, the messages from the Robot can be easily accessed
from the dedicated PCs, facilitating the data fusion of ambient cameras and robot sensors.

3.2 Camera Calibration

Benefiting from the fish-eye effect, our cameras have an Omni-directional field of view of the
environment. However, the images from the fish-eye cameras are highly distorted and cannot

Z www.xbox.com/KINECT
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be used directly for localizing people. The intrinsic parameters of the cameras, therefore,
have to be estimated to eliminate the image distortion. After the intrinsic parameters are
calibrated, we then find the rotation and position of the camera in the world coordinate frame
by extrinsic calibration. In this section, we introduce our method of estimating the two set of
parameters that are necessary for transferring coordinates between the image frame and the
world coordinate system.

The Intrinsic model of the camera defines the curvature of the lens in the fish-eye cameras,
i.e. in which way the lens is distorted. The OpenCV library [4] provides functions that
calibrate the intrinsic parameters of the cameras using the checker board pattern®.

The intrinsic calibration involves of estimating two parameters of the camera: a camera
matrix and the distortion coefficient. The camera matrix defines the location of the optical
centre of the camera and the focal length expressed in the pixel coordinates. The distortion
coefficient controls how the distortion spreads over the image space.

Figure 12 shows a sample image of the checkerboard pattern that is used in calibrating the
intrinsic parameters of the fish-eye camera. Our calibration software finds out where the
corner points of the checker board pattern locate in the image coordinates, and use them to
approximate the camera matrix and the distortion coefficient. Each pattern gives a set of
locations of the corner points and generates a function of the intrinsic parameters. By using a
number of such images with different attitude and positions, we can compute the intrinsic
parameters that fit the functions optimally.

® The documentation for the camera calibration and the environmental setup is available at
http://basterwijn.nl/ninghang/robot_house/
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The extrinsic parameters of the camera define the location of the camera in the room and
how the camera is oriented. After apply the image with intrinsic parameters, we are able to
transfer coordinates between the undistorted image space and the locations on the floor of
the Robot House.

We made a set of markers on the floor as shown in Figure 13. The markers were put with an
interval of one meter and their locations were manually annotated from the image. Combining
their corresponding locations in the world coordinate frame, we are able to compute the
translation and rotation matrix between the two coordinate systems. Thereby the extrinsic
parameters are estimated.

3.3 Data Fusion for Human Localization

There is a long tradition of research in the field of people detection and localization in robot
applications. Many studies concentrate on people detection using the sensors on the mobile
robot. Relatively simple sensors such as laser range finders were used for detection and
localization [5][6]. People are extracted from range data as single blobs or found by merging
nearby point clusters that correspond to legs. Probabilistic techniques such as multi-
hypothesis trackers are used for tracking multiple objects [7].

Instead of using the laser range systems on the robots, vision systems have also been used
for people detection. Since robot-mounted cameras are moving, the detection cannot be
based on background modelling methods, and local characteristics such as colour
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histograms or local features have been used [8][9]. To make detection more robust, the
fusion of different modalities of robot sensors is suggested. Leg detection by laser range
finders in combination with face detection has shown to be more robust than individual
modalities [9] [10]. In [11], Viola-Jones type of visual detectors are used to recognize body
parts and are combined with laser range data.

However, future robots will operate in smart homes that are equipped with sensors, and it
seems obvious to use these sensors also for person detection. One advantage is that the
system may be more robust: noise or deviations in a sensor may be detected and corrected.
Another advantage is that the robot does not need to keep monitoring the persons all the
time. The robot may be required to finish other tasks from time to time, rather than allocating
its resources to the task of tracking each person all the time.

Person tracking systems that are mounted in domestic environments are usually based on
vision systems, although there are some exceptions using laser range finders [12] or speech
[13]. Overhead cameras are often used, which are usually mounted very high, and have a
very wide angle of view, covering most of the areas in the room. Since they look down from
above, it turns out that human users are less likely to be occluded compared with cameras
mounted on the side. An application in a kids playroom is given in [14].

In our set-up we combine an overhead camera with the laser range finder on the robot. In
order to have a sound probabilistic framework we build on the approach of [15], who uses a
probabilistic foreground segmentation with a template based detection. The result is a
posterior distribution on the locations of the persons in the room. This is combined with a
distribution based on the laser range finder.

Our proposed system is used to detect and localize the elderly people in chores of robot
home-care. With our system, the robot is able to obtain accurate locations of the users in the
room, and thereby it can interact with the human users precisely. The robot we use
possesses multiple on-board sensors, including a Microsoft Kinect camera, a stereo camera,
and a laser range finder.

In the recent work, most of the robots are designed for following the targets. These
approaches, therefore, require that the users are always in the range of the robot sensors. In
the case of home care, however, the robot moves around in the room to execute a variety of
tasks, and at some points the robot sensors will loss the track of the human user, e.g. the
robot is asked to get an object that is in an opposite direction to the user. To overcome such
a problem and enable continuous human localization, we adopt an ambient camera and
mount it on the ceiling of the room. The advantage of the ambient camera is twofold: (1) that
it gives a top view of the whole room, and (2) that people in the room are less likely to be
occluded compared with the robot cameras. Since it covers the whole area of the room, the
ceiling-mounted camera is able to localize persons continuously when the users are present
in the room, so that when the robot sensors fail to detect the users, the ambient camera is
still able to report the correct location to the system. Besides, the robot sensors and the
ambient camera observe the persons from different directions, giving complementary cues
for the human detection and localization. The fusion system can, therefore, obtain a better
estimate of the location of the users compared with the approaches using single modality.
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To combine the robot sensors and the ambient camera, we propose a Bayesian fusion
framework. Next, we formulate the problem and introduce our fusion framework.

The Bayesian approach provides an elegant way of fusing between different sensor sources
as well as dealing with noise and uncertainty in sensor measurements [16].

Assume Iy is the observed data from the robot sensor, and I is observed from the ambient
camera, i.e. the overhead camera. Given Iy and I , we aim to find a robust estimation of the
location of multiple persons Ly, the location of the robot I , and the orientation of the robot
0. In the context of a Bayesian framework, the posterior distribution P(Ig, I¢, 0|z, I¢) is the
target we would like to know by the end.

Using the Bayesian Theorem, the posterior probability can be derived as
P(Lg, Ly, 0 |Ig, 1) < P(Ig,Ic|Lg, Ly, 6 YP(Lg, Ly, 60r) Equation 10

where P(Lg, Ly, 6r) = p(Lg) p(Ly) p(ORr) is the prior distribution that is known before the
sensory data is observed. These priors can be estimated either from separate training data,
or from prior knowledge of the problem. In our case, we simply assume a uniform distribution
over the ground area of the floor, and a uniform distribution over the angles of the orientation.
P(Ig, I¢|Lg, Ly, 8R) is the likelihood.

By assuming Iy and I, are measured independent with separate sensors, and I is not
dependent on the rotation of the robot 85, the likelihood probability of Equation 11 can be
decomposed as

P(IRIIC|LR1LH1 eR) = P(IRlLR'LH' QR)P(I(JlLR'LH) Equation 11

where P(Iz|Lg, Ly, 6g) is the likelihood of generating the image I given the combination of I
, Ly, and 6z, while P(I-|Lg,Ly) represents the likelihood of the ambient camera that
generates the observation I, .

Again, our goal is to find the optimal combination of Ly, Ly, and 6z that maximizes the
posterior distribution P (I, I, Or|Ig, Ic), Which is a typical MAP problem that can be solved by
particle filtering [17].

The camera likelihood P(I-|Lg, Ly)is used as the proposal distribution to sample particles,
and the particles are weighted by the corresponding likelihood of the laser data
P(Ix|Lg, Ly, 0g). The optimal combination of Ly, L and 6y is considered as the particle that
holds the highest weight. In a Bayesian framework, however, we find the expectation of the
parameter values rather than the most probable value. Therefore, rather than choosing one
particle that maximizes the joint distribution, we compute the solution as a weighted sum of
all the particles.

The remaining is to compute the two likelihood terms in Equation 11. In the following two
sections, we introduce the methods of estimating the two likelihood items separately. Here,
we will focus on modelling the likelihood of the robot sensor. For the camera, we adopt the
algorithm from [15].
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In our data fusion framework, the state is to be estimated is a triplet of {Ip, Ly, 60z}. The
likelihood of the robot sensors measures the probability of generating the observation I
rather than all the observations that can be possibly generated from such a triplet, given such
a state triplet, i.e. P(Iz|Lg, Ly, 6r).

In this report, we adopt the Laser Range Finder as our robot sensor. The Laser Range Finder
scans in a plain and detects the distance to the objects in range. In the context of human
localization in a home setting, the detected objects can either be objects that exist in the
room or be part of the human in the room. In this report, we use the background model and
the human model, respectively, to model the probability that a region is occupied by either of
these two objects. Then we can compute the occupancy map of the room, i.e. the probability
that the area is occupied by either the background object or by a human.

The occupancy maps are used to estimate the probability of the robot sensor generating a
certain set of observations, i.e. the robot sensor's likelihood.

To find out what the room looks like in terms of background obstacles, the robot is first driven
around to build a background model of the room.

For each time stamp, the robot sensor fires a set of laser beams [ = {l;,1,,15,...}. Whenever
there is an object in the way, the laser is reflected back to the base and thereby the distance
to the background obijects is detected. Given the coarse location of the robot, we are able to
find the approximate locations of these laser detections. But due to the uncertainty in the
location of the robot as well as the noise in laser data, these locations are not fully reliable.
Therefore, simply giving a Boolean answer to the occupation of the local region is not an
elegant solution, and a probabilistic way of modelling the background is required.

In our approach, the ground plane is first discretized into small cells of equal size. We denote
k as the index of the cell on the ground plane. Then for each cell k, we aim to estimate the
probability that the cell is occupied by a part of the background. Collectively, these
probabilities form the background model P, (k).

In this report, the background model P, (k). is measured as the number of times the laser
scanner observes an occupied cell normalized by the number of times that the cell is in the
range of the laser scanner. To formalize the problem, we define three patterns that can be
observed given a scan | and a cell k, see Figure 14Figure 14: The relation between a laser
beam and a cell can be summarized into three patterns. In the left pattern e}, = 1, the laser is
blocked by the cell, referring that the cell is occupied by certain background objects. The
middle pattern al, =2 shows the laser has passed through the cell, indicating the cell is
empty. As for the third pattern, however, the laser beam is blocked before it reaches the cell.
Therefore, no clue about whether the cell is occupied can be deduced from the third pattern..
We use a random variable a! to denote the index of the three patterns. The first pattern
refers that the cell k is detected by | as an occupied cell. The second pattern denotes that the
cell is observed as an empty cell. As for the third pattern, no information about the cell can be
inferred since the cell is either occluded by other background objects that are in front of the
cell, or the laser is not fired in the direction of the cell. Therefore, the third pattern does not
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contribute to the background model while only the first two do. Next, we estimate the
background model by

I _ I _ 1 _
a, =1 a, =2 a, =3

Yi8(al—1) Equation 12
Y18 — 1) +8(ap — 2)

where 6 is a Kronecker delta function, and the equation sums over all the lasers that pass
through the cell k.

Py, (k) =

The human model P, reflects how the human looks like from the robot sensors in the world
frame. It is learned by accumulating the laser points that locate in a small region around the
center of the person. Each pixel in such a region holds a value indicating the probability that
the cell is occupied by the person, i.e. a higher value means the cell is more likely to be
detected by the robot sensor due to the occurrence of the human.

Similar to training the background model, we learn the human model P, by calculating the
number of laser beams that either have a positive detection at the cell or pass through the
cell. Again, we adopt the Equation 12 for computing the human model P;,.

Given the person locating in cell k, the local human model P, can be translated into the world
frame to generate a human model map Py, (k).

Knowing the background model and the human model, we are able to compute the
probability of occupancy for each of the cells on the ground plane. Note that the cell cannot
be occupied by both the human and the background obstacle at the same time, therefore the
occupancy map is computed as

_ Py(k)Py (k) + Py (k) Py (k) Equation 13
T AN

where

Py(k) =1 — P(k) Equation 14
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The likelihood of the Laser Range Finder denotes the probability of generating the current
observation given the state {Iy, Ly, 0r}. Iz represents a vector of the laser range data.
Assume I contains N independent measurements {i},i3,...,i%,...,iN}. Suppose the
direction of the range measurement i} is defined by 6. Therefore

N Equation 15
PUglLn L, 6) = | | PG ILg L OB)
n=1
I and 6y define a robot at the location I , and the robot fires a laser beam in the direction
of 8. Ly refers to the location of multiple persons.

Empty cells Laser Detection
Cl:”l—l C?H

A X

Y

Cl:M
Maximal Range

Suppose the laser beam iy passes through a set of cells in a straight line, e.g.
{c1,¢3,...,cm_1}, and then it detects a certain object at the cell ¢,,. ¢, denotes the maximal
range that the laser can reach. See Figure 15. Then the probability of obtaining detection at
cell ¢, rather than the other locations can be computed by

wc,, [li=1:m—1 @, Equation 16

Zj:l:M ij l_[i=1!j—1 aCl‘

P(i;?LlLRJLHJ 9}?) =

Since multiplications of the probabilities can result in very small humbers which lead to
floating point overflows, we compute the log-likelihood instead

Equation 17
LGE 1Lp, L, OF) = A = D 4
j=1:M

where

m-1 Equation 18
I = l0g(wg,) + ) 1og(@c,)
i=1

The likelihood of overhead camera is computed the same way as in [15]. Assuming the pixels
are independent from each other given the image taken by the ceiling mounted camera, the
likelihood P(I;|Lg,Ly)can be derived as
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PUclin i) = | | PGRILR L) Equation 19
n=1:N
We build a specific polyhedron to model the 3D shape of both the human and the robot.
Given the location of the human Ly and the robot I , the polyhedrons are projected into the
image space, generating a foreground mask M. For each pixel location P(i¢*) on the image,
we look up in the mask and use M,, to determine whether the pixel is a part of the foreground
or background. Then the likelihood can be computed as

P(i¢|Lgr,Ly) = Pr(i)My + P(it)(1 — My) Equation 20

where P, (if¥) is the background model which is learned beforehand using the background
images. Pr(i¢) is the foreground model, and in our case we apply a uniform distribution over
the colours.

The proposed data fusion framework was evaluated on data collected with a Nomad robot
platform and an overhead camera, see Figure 16. The overhead camera is mounted centrally
on the ceiling and gives a panoramic view of the room. The frames that are captured with the
camera are highly distorted due to the fish-eye effect. The camera’s lens parameters are
calibrated with the OpenCV module [4].

1000 2000 3000 4000 5000 6000 7000
X

On the Nomad robot platform, a Laser Range Finder, a Kinect camera and a stereo camera
are mounted on the robot. For the present experiments, we restrict ourselves to test the
framework by using the Laser Range Finder, mounted at a height of 20 cm. The robot is
remote-controlled and manually driven around in the room. The robot records its odometry
information by measuring the rotations of its two wheels. The odometry data are then
adopted for generating the orientation and location of the robot. The Nomad robot runs on
the Robot Operating System (ROS), and all data captured on the robot site is time stamped
in ROS.

The exact time stamp of each frame collected with the overhead camera is obtained by
means of a stopwatch mounted close to the camera. We use a nearest-neighbours classifier
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to recognize digits in the image to recover the time stamp. We synchronized the robot
sensors and the overhead camera based on specific time points, where an event (e.g. the
puncturing a balloon in front of the Laser Range Finder) was observed by both the robot
sensor and the overhead camera.

The ground plane is subdivided into small cells of 50xX50mm. In a first training run, the robot
was remote-controlled to generate the background model. Second, the human model is
trained according to Equation 12 . During testing, the two models are combined
probabilistically into an occupancy map given the particles, as depicted in Figure 17. Here
each pixel of the occupancy map reflects the probability that that location is occupied, either
by a person or by a background object in the room.

We evaluate the systems by measuring the Euclidean distance between the detection results
and the ground truth locations of persons. In this report, three localization approaches are
tested and compared: a) with a single Laser Range Finder; b) with a single overhead
camera; c¢) with our proposed fusion framework. We evaluate the proposed system and the
single modality approaches on 165 camera frames together with synchronized laser data.
For each of these frames, volunteers manually annotated the locations of the persons in the
ground plane, based on physical markers that were positioned on the floor during the
recording, and these markers were used as reference to compute the ground truth location.

A particle sampling approach is applied both in the single laser and the data fusion approach.
An equal number of 800 particles are sampled. Due to the fact that humans are not likely to
be too close to each other, we define the safe distance between two persons as 500mm. We
incorporate such assumption to reduce the space when sampling particles, i.e. the sampled
point is always at least 500mm away from each of the points the previous sample set.

The single laser approach detects the foreground laser points by set a threshold to their
probability in the background model. The threshold in our experiment is empirically set to 0.3.
The particles are sampled from the foreground laser points with a Normal distribution on the
location of the points. The weights are assigned by the likelihood of the laser data given the
particles, and they are quantized in the sub-divided cells on the ground plane according to
the locations of the particles. The human is then localized by recursively finding the cell that
has the largest sum of weights as in [15].

In the approach with a single camera, we adopt the human detection algorithm from [15]. For
each candidate location of the persons on the ground plane, the likelihood of the camera
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frame is measured. The locations of the multiple persons are found by choosing the locations
that maximize the likelihood of the camera image.

The proposed approach combines the overhead camera and the robot Laser Range Finder in
a probabilistic Bayesian framework. After persons are localized with the single camera, the
particles are sampled around the location of the persons with a Normal distribution. These
particles are then weighted by the likelihood of the laser observations. The final detection is
computed by the weighted sum of the particles that are sampled from the same person.

Figure 18 shows the detection results of our data fusion system comparing with the approach
using single modality. The proposed fusion system consistently outperforms the single-
camera and the single-laser approach, and approximately 80 percent of the detections are
less than 200 mm from the ground truth location. In contrast, only 70% of the camera-only
detections and 27% of the laser-only detections are within such distance of the ground truth.
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4. Face Recognition and Tracking

The person recognition and tracking system so far bases upon the data from cameras
mounted at the ceiling of the room that have a wide viewing angle. Consequently, it is not
possible to recognize the identity of a person because of the low resolution and because of
the inappropriate perspective for this task. Nevertheless, person identification is highly
desirable for human-centred and individualized tasks like reminding to medicine or bringing
some ordered item to the user. The cameras that are placed in the robot’s head are well-
suited for the identification of faces as they capture persons from an adequate perspective
and have the necessary resolution to record details. Therefore, the identification of persons is
realized with the movable Care-O-bot. By using the robot’s localization in the map of the
house and the calibration of the ceiling cameras to that map, the data can be streamed as
the trajectories of persons that are attached with name tags. The component described in
this section is already available as open-source ROS package at
http://www.ros.org/wiki/cob_people perception.

4.1 Methods

The face identification module has three parts: first, there is the localization of faces in the
image, then follows the identification of those detected faces and finally we have a
component that organizes some tracking of found faces to render the labels more robust.

The first step is face detection, which is the localization of regions in the image that contain a
face. The standard approach for this task is the robust and fast method of Viola and Jones
[28] that employs a classifier cascade based on Haar-like features to reject non-face regions
on an image of a colour camera. We use this approach because of its reliability and efficient
computation but modify it to reduce the number of false positives. Our modification uses the
possibility to rely on depth data as well that originates from the sensor fusion algorithm
presented in Section 2.1 or directly from a RGB-D sensor device like the Asus Xtion Pro live.
The idea is to search for heads on the depth image with the procedure of Viola and Jones,
first, to lower the chances of false positive face detections in the subsequent application of
the Viola-Jones classifier to the colour image. The two classifier cascades are trained with
exemplary heads regions found in depth images and face regions from the colour image,
respectively. The head regions, however, contain a significant amount of background which
is a problem for detection at other places. We hence generated a plethora of random
background patterns automatically and placed them in the background of the training images
for the cascade classifier. Figure 19 illustrates the process of two-staged face detection: first,
the depth image is searched for head regions using the Viola-Jones classifier (1) and only for
those regions that probably contain a head, we process the colour image with the Viola-
Jones classifier for faces (2).
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After the selection of face regions in the colour image the identification of these image
patches follows. We use the Eigenfaces [29] algorithm which identifies a face by projecting it
into a space of eigenfaces. Those eigenfaces are obtained as the principal axes when
applying PCA to a large set of images depicting human faces. The eigenfaces that
correspond to the largest eigenvalues can be considered as the most important prototypes
for assembling an image of a human face. For training a recognition model of person A we
capture several images of A’s face and project them into the space spanned by the N most
prominent eigenface vectors. The factors obtained from the projection represent the model of
person A. If we are to recognize a person from a detected image patch of a face, this image
is projected into the same eigenface space and the factors of the projection are compared
with the known models of persons. If the distance to a face model is close enough, the
respective label is assigned. However, if no model can be found close to the computed
projection, the algorithm asserts that it does not know the depicted person. The identification
is illustrated as step (3) in Figure 19 with the placement of a name tag.

Although the detection of faces and the identification only need a single RGB-D snapshot of
the scene it is highly desirable to increase the confidence of an identification if it can be
verified over several frames or to keep track of a person even though the face is not visible at
the moment. The tracking component supports exactly these purposes by assigning
detections at time t; to the previously recognized faces at time t;_;. This allows increasing
the confidence for an identified face with each redetection and lowering the confidence at
each time when no detection can be associated with that face. In doing so, it is possible to
assert face identification not before a certain threshold of confidence is reached.
Furthermore, people regularly move their heads in a way that the face is not continuously
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visible. Nevertheless, if we can identify the face once and still track the head in the following
seconds, there is no reason why the label should not stay attached to the detected head. The
tracking component facilitates exactly this behaviour and does not decrease the confidence
of identification as long as the head is visible but not the face. The recognition confidence is
hence only lowered when neither a head nor a face can be associated with the previous
detection.

4.2 Results

Within experiments evaluating the power of the face detection component, a set of 120 faces
from 10 persons and 424 non-face regions were used to train the classifiers. It has been
taken care to capture different viewing angles and different mimics with the training set. The
classification performance of the proposed method has been measured by processing 360
images each containing one face. The classification results are compared with the
classification performance of the original Viola-Jones algorithm applied on colour images,
only. The results are shown in the left diagram of Figure 20. It becomes visible that our
approach has the advantage of a very low false positive rate (1.1%) compared to the 24.1%
of the original approach, which means that every fourth face detection would be a false
alarm. At the same time, the detection rate of our method is almost equally high as for the
original classifier with 98.0%. Furthermore, as depicted in the right image of Figure 20 the
computation time of our variant is only little higher than half of the original approach, which is
already very fast.
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Figure 21 Examples of the application of face detection and identification to real scenes.

Besides these quantitative results, we also demonstrate the successful application of the
face recognition system in Figure 21.
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5. Summary of the Applied Sensor Fusion Techniques

As the description of work for WP4 puts emphasis on the fusion of sensory information from
the sensors placed in the environment with sensory information generated on the mobile
Care-O-bot, we like to summarize and highlight the employed strategies in this separate
section.

The original idea for the implementation of sensor fusion as stated in the description of work
has been identified to be impractical and of very limited use for the following two reasons.
First, the continuous calibration of multiple colour cameras is neither robust nor fast to
compute. The calibration lacks robustness since the lens characteristics of the objectives put
on the fish-eye camera and those of the cameras mounted on Care-O-bot differ by a large
extent and furthermore, both kinds of cameras observe the scene from very different
perspectives so that it is fairly complicated to find a sufficiently large and stable set of unique
correspondence points which is a prerequisite for successful camera calibration.
Furthermore, using present people as calibration landmarks, as proposed in the description
of work as an alternative, is quite unreliable as well because it is neither guaranteed that
there is any person visible in the images of all cameras nor can the pose estimation of body
parts of detected people be accurate enough for a good calibration. Besides, the number of
correspondence points that originate from people in the scene would be fairly limited and
badly-distributed over the image which is another criterion of exclusion for this approach.
Concerning the computational speed of continuous calibration it is easy to see that the
extraction of robust feature points and their reliable matching are procedures that take at
least one second if not more on a modern computer what turns this approach inapplicable for
most purposes. Moreover, the computational power on the robot is limited so that this
valuable computational effort should rather be available for other tasks. The second reason
for abandoning the original idea of continuous calibration between robot and environment
sensors is the restricted usefulness. A high precision camera calibration between robot and
fish-eye cameras in the environment could only be beneficial for object recognition; however,
this application requires high-resolution images of the objects which are to be detected.
Because of their wide viewing angle the ceiling cameras are not in the condition to deliver
this kind of data. Hence, there is no use for the cost-intense high-precision calibration of the
mobile and fixed vision sensors.

Nevertheless, the fusion of higher-level information, which originates from the robot and the
cameras in the environment, is indeed of high value but requires a relative calibration with an
acceptable accuracy in the range of +5cm. This level of accuracy is achievable with simpler
technologies that are already available for the environment cameras and the robot. The
strategy for data fusion that we pursue in the current work is to fuse data with the help of a
map of the robot house that has a fixed coordinate system. This approach is very feasible as
all data processing of any sensor delivers information with spatial coordinates that can be
easily transformed into that fixed map coordinate frame. At the one hand, the cameras in the
environment need to be calibrated against the fixed map coordinate system once in advance,
at the other hand, the Care-O-bot is continuously localized with its laser scanners with
sufficient accuracy. All the coordinate frames are then put into the transformation tree (tf) of
the robot operating system ROS so that coordinates can be transformed easily and
computationally cheap from any sensor into the map coordinate frame or between any two
sensors.
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Specifically, this strategy is implemented for object recognition and categorization in the
following way. Although the fish-eye cameras are not useful for object recognition and
categorization, the presented systems can deal with the coloured point cloud data from
modern RGB-D sensors like the Asus Xtion Pro Live. Hence, object recognition and
categorization may run on any PC that has a calibrated RGB-D device attached and deliver
object localizations in the detection range of the sensor. The detections can then be
transformed to the map coordinate frame and stored in the common object database of the
whole system. Consequently, this type of data fusion is transparent to the source of object
detections, sensors in the environment may contribute with detections in the same way as
the robot.

The fusion of information is even tighter for the application case of person detection as the
ceiling cameras deliver a different type of information than the cameras on the robot. The
ceiling cameras have advantage of observing the whole house continuously; moving persons
are thus always tracked and localized. However, the ceiling cameras do not have the
perspective or the resolution for person identification, but the robot can do so with its own
sensors. Again, sensor fusion is implemented successfully within the common map
coordinate frame based on common spatial coordinates for both sensor’s detections at given
points in time. This means, we fuse the trajectory and immediate location of a tracked person
(information from the ceiling camera) with identity recognized by the robot.

In conclusion, this procedure of information fusion is accomplishable with negligible
computational overhead while generating a central map that collects all information from
various recognition systems. Higher-level applications can directly benefit from this central
map representation.
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6. Conclusion and Future work

In this deliverable, we have described a method that allows for the fusion of stereo camera
data with the measurements of a time-of-flight sensor. This procedure generates more
accurate depth maps than a time-of-flight sensor alone whenever stereo data is available and
delivers denser depth maps than those which can be obtained from stereo vision alone. The
sensor fusion algorithm is used to yield a better input for our object recognition system, which
is able to detect and localize previously modelled objects in cluttered scenes even if they are
occluded to larger extents. The object recognition system is accompanied by an object
categorization module that can detect the class of objects that are not known to the robot,
yet, and hence cannot be detected with object detection. Future work will address the
extension of the object recognition method to apply to untextured objects as well.
Furthermore, we would like to integrate more properties for the object categorization to model
classes. It is also targeted to use object categorization for automatic learning of new objects
whose initial label would be related to the detected class and could be specified later by the
user.

We furthermore have proposed a novel probabilistic fusion framework for the localization of
humans using ambient cameras and robot-mounted Laser Range Finders. Our experiments
show substantial improvements in the accuracy of the localization, thus enabling more
precise interaction between robot and humans. Due to its probabilistic nature, our framework
can deal with occlusions and the absence of measurements in a principled way. As a result,
the localization of humans is more robust, and natural interaction becomes possible even in
challenging conditions.

In our current experimental work, the orientation and the location are not considered as part
of the particle, but only the location of multiple persons are sampled. But we expect the
performance can be improved by incorporating robot location and orientation into patrticles.
We plan to specifically address occlusions and missed detections in one of the sensors. We
will also extend the method to use more and different sensors, including the robot-mounted
Kinect camera, as well as multiple overhead cameras.

Finally, a simple method for multimodal face detection has been implemented that allows
decreasing the number of false positives while keeping recall very high. In conjunction with
the Eigenfaces approach for the identification of a face and the tracking over several frames,
the current system can assert face labels for a low number of people with a high confidence.
Upcoming work at this topic focuses on improving the robustness of the face identification
approach to different lighting and higher numbers of distinguishable persons either by
replacement with a different method or by better data pre-processing.
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Abstract. Perception of object categories is a key functionality towards
more versatile autonomous robots. Object categorization enables robots
to understand their environments even if certain instances of objects
have never been seen before. In this paper we present the novel descrip-
tor Surface-Approximation Polynomials (SAP) that directly computes a
global description on point cloud surfaces of objects based on polynomial
approximations of surface cuts. This descriptor is directly applicable to
point clouds captured with time-of-flight or other depth sensors without
any data preprocessing or normal computation. Hence, it is generated
very fast. Together with a preceding pose normalization, SAP is invari-
ant to scale and partially invariant to rotations. We demonstrate exper-
iments in which SAP categorizes 78 % of test objects correctly while
needing only 57 ms for the computation. This way SAP is superior to
GFPFH, GRSD and VFH according to both criteria.

Keywords: Object Categorization, Robot Vision, 3D Descriptor

1 Introduction

Mobile service robots which are intended to serve people in natural household
environments need to retrieve rich information about their surroundings to ac-
complish tasks given to them. A major part of this perception problem is the
recognition of objects for interaction. Although powerful object detection algo-
rithms exist today they do not suffice for a versatile operation. Neither should ev-
ery single object occurring in the environment be learned by the robot in advance
nor would this even be realizable with respect to current hardware limitations.
Object categorization solves this problem by identifying the class of formerly
unseen object instances. Hence, the perception problem decreases significantly
in size. This work focuses on the categorization of small and medium-scale rigid
household objects with a simple shape.

The use of point cloud data is a good starting point towards successful ob-
ject categorization in this case since many common object classes in households
expose strong similarities in shape whereas texture may differ significantly. More-
over, algorithms for categorization should evaluate fast as there is limited com-
puting power and energy supply available on a mobile robot while users expect
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2 Object Categorization with Surface-Approximation Polynomials

Alpen
milch

Fig. 1. Computation of the SAP descriptor: the point cloud of the milk box is scale
normalized and cut with planes. The red surface points at the cuts contribute to the
polynomial approximation.

fast responses. To our knowledge, the best algorithms with respect to runtime
use Global Fast Point Feature Histograms (GFPFH) [1], Global Radius-based
Surface Descriptors (GRSD) [2] or Viewpoint Feature Histograms (VFH) [3],
that describe the properties of an object’s point cloud based on point normals.
They are computed within less than a second by several complex steps which also
include the denoising of the data that is necessary for reliable normal estimation.

In this work, we present the novel Surface-Approximation Polynomials (SAP)
descriptor, which is tailored for the goal of fast and normal-free object catego-
rization on point cloud data. It is based on a pose normalization of the object’s
point cloud and the approximation of polynomials along cuts of the surface (see
Figure 1). We successfully apply this descriptor directly to noisy and unpro-
cessed point cloud data generated by SwissRanger SR4000 and PMD CamCube
depth sensors. We will show that this descriptor allows for a categorization per-
formance of 78 % correctly categorized objects on a dataset of 14 classes. This is
superior to GFPFH, GRSD and VFH by 9.5 % and more. At the same time the
SAP descriptor can be computed within only 57 ms which is faster than each of
the three aforementioned descriptors. We also demonstrate the scale invariance
of SAP and the partial rotation invariance to tilt and pan. Finally, we provide
an outlook for the addition of rotational invariance around the camera axis.

The remainder of this paper is structured as follows: Section 2 provides a
literature review on object categorization techniques in different contexts and
Section 3 explains the algorithm of the SAP descriptor as well as the categoriza-
tion framework. In Section 4 we present various experiments which demonstrate
the performance and properties of the SAP descriptor. We conclude with a sum-
mary and an outlook on future work in Section 5.
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2 Related Work

Object categorization is a topic of high interest in the computer vision and the
robotics community. However, both areas are quite different concerning their
data, constraints and objectives. Computer vision approaches usually rely on
plain color images and aim at tasks like image retrieval. A good overview over
current methods is provided by Galleguillos and Belongie [4]. Modern techniques
in this area mostly use derivatives of Bag-of-Words models (BoW) on local de-
scriptors with Support Vector Machines (SVM) as classifier and attain image cat-
egorization results of around 70% on the Caltech-101 dataset [5]. While computer
vision research rather focused on categorizing large amounts of classes recently
[6], high precision in the predictions is actually more important to robotics. We
believe that the use of depth sensors supports this goal since 3D shape is often
very characteristic for object classes.

Hence, we have to deal with 3-dimensional data from our objects of interest.
Similar to local 2D images features, many local 3D descriptors have been devised.
Some popular examples are Spin Images [7], Shape Index [8], 3D SURF [9] and
SHOT [10]. For a broader overview on local 3D descriptors and a comparison
regarding the object classification task we refer to Knopp et al. [11], who present
orientation invariant 3D object categorization based on Bag-of-Words from 3D
SURF features and a Hough Transform voting method. They evaluate their
algorithm on high resolution full 3D models and obtain 95.5% accuracy for 8
categories. However, the processing for one model takes 20.66s on the 3D SURF
features and even more on other local features. Likewise, Toldo et al. [12] present
up to 100% accuracy on synthetic data for 6 classes while having computation
times around 50s. They apply Bag-of-Words on segmented parts of the object
using the Shape Index descriptor and classify with an SVM. Examples of global
features for the shape matching task are Shape Distributions [13] and Spherical
Harmonics [14]. Although these approaches provide very high accuracies, they
do not meet several aspects in robotics: first, highly resoluted 3D meshes are
normally not available with current 3D sensors attached to robots. Moreover,
the object’s surface is regularly captured and categorized from a single view
instead of a full 360° model. Finally, computation times should be as low as
possible but definitely not in the order of seconds or higher. Therefore, we will
propose a 3D descriptor for categorizing single shot object surfaces which is very
fast to compute and robust to low quality sensory input yet powerful enough
for high categorization rates. Pu et al. [15] present an approach for 3D model
retrieval that computes the global descriptor from various slices through the 3D
mesh. Their key idea is similar to our approach, however, their work focuses on
instance retrieval of highly resoluted full 3D models.

Related work which addresses the issues of robotics is available with unsu-
pervised and supervised category learning. The first problem was investigated
by Endres et al. [16] who collect histograms of discretized spin images of objects
segmented from 3D laser scanner data and cluster them with Latent Dirichlet
Allocation (LDA) in an unsupervised fashion. The resulting classes correspond to
balloons, boxes, chairs, swivel chairs and humans with 90.38% accuracy. Labels
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are assigned within 0.5 s. However, as we like to access the semantic information
included in the class labels, we need to use a supervised learning approach.

Based on a linear SVM classifier Bo et al. [17] propose color and depth kernel
descriptors which can categorize 86.2 % of the test objects into 51 classes. Further
popular descriptors are Surflet-pair-relation histograms [18], Global Fast Point
Feature Histograms (GFPFH) [1], which are very similar to the first, and Global
Radius-based Surface Descriptors (GRSD) [2]. GFPFH builds on FPFH which
computes the sum of angle histograms between angles of normals of each surface
point and its neighboring points. These histograms are classified as geometric
primitives. Histograms over the occurence of geometric primitives along lines
between any two voxels of the object’s point cloud yield the GFPFH feature.
Its accuracy on a 4 class problem is 96.69% with a computation time of below a
second. The GRSD descriptor is composed similarly to GFPFH descriptor from
local RSD features, which basically represent the local minimum and maximum
curvature around a point. It can categorize 85% of unseen objects correctly into
six classes needing around 0.2s for each computation. Another descriptor that is
very similar to GFPFH but that also encodes the viewpoint at the visible object
surface is the Viewpoint Feature Histogram (VFH) [3]. VFH includes the camera
axis in the computation of FPFH histograms to establish viewpoint dependent
signatures for the trained objects.

Our descriptor is different from these methods insofar as it does not rely on
normal computations and local feature representations. Instead, we construct
the descriptor directly in a global fashion on the point cloud data and hence
avoid the data preparation and normal computation which can consume quite
some time if no GPU is available. This way SAP can be computed very fast
within 57 ms. The next section details our approach.

3 Methods

This section describes the concepts of the SAP descriptor and the employed
framework for categorizing unknown objects. We present a simple and easy-
to-compute descriptor on point cloud data of objects. The SAP descriptor is
specially designed for the needs of efficient object categorization on a robot
being compact, scale invariant and having little computational demands.

Within the categorization framework, we approach the following two kinds
of problems provided that the robot can obtain some descriptor for every object
in its surroundings:

1. The robot must find objects of a certain category k in its environment. It
will label descriptors as either being members of category k or not. This is
a binary classification problem.

2. The robot has to assign a category label to every object found in its sur-
roundings. This problem is essentially a classification problem with multiple
classes.

The next section starts with an explanation how the needed data is acquired
and preprocessed.
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3.1 Data Acquisition and Segmentation

The SAP descriptor solely needs a single shot point cloud P of the object of
interest segmented from the scene. We test the descriptor on two databases
captured with a SwissRanger SR4000 sensor and a PMD CamCube, respectively.
We did not use the Kinect sensor because it was not yet on the market when
the databases were collected. The Swissranger 4000 has a resolution of 176x144
pixels and a depth accuracy of around 1% of the measured coordinates. The
PMD CamCube can capture depth images with a slightly higher resolution of
204x204 pixels. Both databases will be introduced in Section 4.1.

For recording, the objects were placed on a rotary disc embedded into a table
surface. We placed the depth camera approximately 1 m away from the object
center and captured depth images of the objects from a slightly elevated viewing
angle in front of a mostly homogeneous background (see Fig. 1). By rotating
each object incrementally on the rotary table we recorded point clouds from all
sides that can typically be observed by the robot when searching for objects on
surfaces of the height of a table. This way, we captured 36 to 72 views per object.

For computing the SAP descriptor the obtained point clouds need to be
segmented. We require that objects can only be placed on top of a plane, for
example a table as in the case of the database recordings. We use a parametric
model fitting algorithm from the PCL library [19] for the iterative estimation
and removal of larger planes. This method searches for the plane parameters
a,b, ¢, d and points (z,y, z) satisfying the corresponding plane equation

ar+by+cz+d=0 . (1)

Sample points are drawn from the point cloud and associated with a plane
according to the RANSAC [20] algorithm. RANSAC iteratively draws triples of
points, solves the plane equation and searches for further points supporting this
plane. The algorithm terminates when the plane with most supporting points
is found with high probability. The volume above this plane is considered as
the space of potential objects. Multiple objects inside this volume are separated
by Euclidean clustering so that we can only examine simple scenes with this
approach. Nevertheless, providing a fancy segmentation algorithm that works in
arbitrary situations is beyond the scope of this paper. We refer to the literature
for approaches that work properly in many cases [1, 21, 22|. In the following we
describe the SAP descriptor and the categorization methods.

3.2 Surface-Approximation Polynomials Descriptor

The underlying idea of the SAP descriptor is to generate a scale normalized view
of an object’s surface, cut it with 2-dimensional planar subspaces perpendicular
to the camera plane and approximate the projections of the cut with polynomials
of even order. For a better understanding of the idea and the single steps we
refer to Figure 2. To receive a scale-invariant description, the pose of point cloud
P is normalized by computing the centroid m of P and its rescaling factor
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Fig. 2. Computation scheme of the SAP descriptor. The upper left image shows the
input point cloud. Then, pose and scale normalization is applied, surface cuts are
extracted and finally approximated with a polynomial .

8 = maxXpep{ |Pe — Mal, [Py — My}, where p; ans p, are the z- and y-coordinates
of point p and m; and m, are components of the centroid m. The coordinate
system is defined with the z-axis pointing from the camera center towards the
scene. The z-axis runs horizontal in the image plane, the y-axis is vertical. Every
point p is then translated to shift the point cloud’s center into the origin and
scaled by % Due to the computation of the rescaling factor s, the p,- and p,-
coordinates of each point p of the transformed point cloud P fall into the range
[-1,1]. In summary, the transformation is:

Y @
1

m=-— P (3)
Pl 2

s = max{lpz —mal,lpy —my[} - )

Translating the center of the point cloud to the origin ensures translation invari-
ance with respect to the coordinate system of the depth sensor while the scaling
operation effects that the point cloud is resized to a common scale.

After normalization, we sample points from the surface which are approxi-
mately located on straight lines parallel to the z- and y-axes. This can be thought
of as picking points which approximately lie within cutting x — z-planes (y =
const.) or y — z-planes (z = const.). Specifically, we define to sample points for
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ng lines parallel to the z-axis and n, lines parallel to the y-axis. These lines are
equally spaced within the [-1, 1] interval. The cutting planes are illustrated in
the lower right image of Figure 2 in rose (y = const.) and purple (z = const.)
color. The points associated with cuts are displayed in red.

Following, we approximate the points assigned to each cut with a polynomial
of order n, which essentially comprises the information coded in the point loca-
tions into 7, + 1 parameters of the polynomial. The polynomials are computed
with a standard regression approach: suppose that the coordinates of the points
projected into the 2-dimensional subspace are renamed from z or y to v and from
z to v. We aim to find the parameters a = (ap, a1, ... ,anp)T of the polynomial
v =ag+a1u+...+a,,u". If we have L sample points on the cutting line, with
L > ny + 1, we obtain L constraints that can be rephrased in vector notation:

v.:=ag+a1u,-+...+anﬂu?",Vi=1,...,L, (5)

v=U-a, (6)

v=[v,...,u]T, (m
lul...u;"

U=l | (8)
l'uL...'u'z”

We can easily generate vector v and matrix U from the L point samples and
solve the linear regression problem with a standard approach, e.g. Singular Value
Decomposition. If the available point data is insufficient, we assign zeros to a.

Finally, we concatenate the parameter vectors faT,i=1,...,n, +ny, of the
ng and n, approximated polynomials into one vector & = [1aT,...,"=+raT]
The final SAP descriptor

_ (M A2 As
c_|:'Y’)\1,/\1:c:| (9]

consists of the parameter vector & and some general size information of the
object. The eigenvalues A;, Az and A3 (in descending order) are obtained from
a Principal Component Analysis on point cloud P. They encode the size of
the object in the three principal directions. A; and A3 are expressed relative to
A1 to encode the relations between the side lengths. A; instead is saved with
its full magnitude, except for the constant scaling factor +y, so that the broad
information about the object’s absolute size is preserved. The constant + is solely
necessary to rescale the entry of A; approximately into the range [0, 1].

The computational complexity for computing the SAP descriptor is O(|P|)
where |P| is the number of points in the point cloud. In detail, the single com-
putations have the following complexities:

scale and pose normalization: o(P)), (10)
point assignment to cuts: O((ng +ny) - |P]), (11)
SVD for polynomial approximations:  O(Lmaz(np + 1)2(nz +ny)),  (12)
PCA for eigenvalues: o3 -|P)), (13)
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where Lo, < |P| is the largest number L of points on a cutting line.

In summary, the SAP descriptor is basically a collection of parameters from
polynomials fitted into the normalized surface of an object and three size vari-
ables. The three parameters that can be tuned are the numbers of cuts n, and
n, parallel to the z- and y-directions as well as the order n, of the polynomial.

3.3 Category Learning

After the computation of descriptors we have to apply a method that separates
the different object categories by finding the characteristics in their descriptors.
Recall that we aim at enabling the algorithm for two tasks: the search for an
object instance of a certain class, which is a binary one-against-all classifica-
tion problem, and the detection of the category of an unknown object, which is
a multi-class decision problem. Therefore, the classification algorithm is based
on N binary one-against-all classifiers that distinguish each of the N object
classes against the others. A straightforward extension of these binary classifiers
for multi-class distinction without learning a new classifier will be discussed in
Section 3.4.

We use Random Forest classifiers [23] for the NV binary one-against-all classi-
fication problems because they compared favorably to Support Vector Machines
[24] and K-Nearest Neighbors as we will see in Section 4.2. Each Random Forest
is trained in regression mode assigning a 1 as desired output if the provided
descriptor is from the category the classifier is trained on and assigning a 0 if
the sample originates from any other class. Queried with a sample x, the Ran-
dom Forest for class k& will output a number wy = wg(x) between 0 and 1. We
define a decision boundary 6; € [0,1],% = 1,..., N, for each of the N Random
Forest classifiers which allows to interpret the outputs wy: we say that classifier
k asserts that sample x belongs to its class if wy, > 8. Dependent on the value
of the decision boundary 6 we obtain different results regarding

h
the true positive rate py,, (recall): Pror = 53— 1 :—ph , (14)
tp fn
h
the false positive rate pe,,: Pipr = 3 -|f-ph, and (15)
fp tn
oo oy
© Precision Ppr: Ppr = m (16)
P P

of the classifier. Here we denote the number of true positive classifications hyp.
These are positive samples which were actually classified positive. The number
of false positive classifications is called hg,, the number of false negative classi-
fications hs, and the number of true negative classifications hyy.

We set each 8; to the optimal value suggested by the performance on the
training set according to the following measure:

0 = arg min droc (Prpr,i(t), prpr,a(t)) 1)
droc (Ptprx prr) =4/(1- Ptpr)z + p?pr' (18)
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Object Categorization with Surface-Approximation Polynomials 9

Hence, we are searching for the #; that minimize the distance of the ROC plot
to the optimal point with pepr s = 1 and pg,rs = 0 for each class i. If we search
for an object of class 7 and the corresponding classifier outputs a value greater
or equal than &; when provided with a descriptor x we consider the sample as
belonging to the queried class .

However, this method does not work properly if the category of a sample
has to be determined since in some cases more than one binary classifier might
assert that sample x belongs to its class. Therefore, we convert the output wy of
each classifier ¥ = 1,..., N into a likelihood L(ax|x) of descriptor x belonging
to class k. We define

gormi (%)
Llag) = i s (19)
W (x) =0k >0
mx) = 4 i=on o w200 20
) {wkg;i-g., e (20)

Mapping m(x) maps the output value wy(x) piccewise linearly from the range
[0,...,6k,...,1] to [-1,...,0,...,1] where the decision threshold 6 is mapped
to 0. Then for all positive decisions of classifier k, that is wg(x) > 8y , it holds
that my(x) > 0 and for all negative decisions we have mi(x) < 0. Equation
(19) is inspired by the conversion of the tree ensemble output to a probability in
AdaBoost [25]. This function maps negative values of m(x) to low probabilities,
positive values of mg(x) to high probabilities and assigns uncertainty, that is
0.5, if mg(x) equals 0.Whereas the potentially different values of the decision
thresholds 8,k = 1,..., N, prevent a direct comparison of the outputs wy(x),
the conversion as shown renders the certainties L(ax|x) of different classifiers
comparable. Parameter a > 0 in equation (19) is a scale factor which defines the
slope of the mapping and the minimally =57 and maximally ;-%°— possible
probability. @ must be carefully adjusted to distribute the occurring wy(x) over
the whole range of probabilities.

The next section details how we can obtain a category decision from the
likelihoods of the binary classifiers with respect to their reliabilities.

3.4 Extension for Multi-class Categorization

Most of the popular classification methods of machine learning are essentially
distinguishing between two classes. Several approaches exist for a multi-class ex-
tension of those binary classifiers, like one-against-all or one-against-one schemes.
In one-against-all solutions, there exists one basic classifier for each class which
discriminates a single class against the remainder of classes. The decision for a
certain class is found either by choosing the result of the classifier with the high-
est certainty or by constructing a decision cascade beginning with the strongest
classifier [26]. Another approach is the one-against-one scheme which contains
a basic classifier for each pair of classes. The decision is determined by collect-
ing the votes of all these classifiers. For the reasons discussed in Section 3.3 we
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10 Object Categorization with Surface-Approximation Polynomials

decided for the one-against-all scheme whose size only grows linearly with the
number of classes.

Furthermore, each of the N one-against-all classifiers outputs a certainty
L(ak|x) that descriptor x belongs to class k as explained in Section 3.3. One
could be tempted to classify a descriptor with the respective class of the classifier
yielding the highest certainty. However, this can easily lead to wrongly biased
multiclass decisions since the individual reliabilities of the classifiers are not
considered. A simple example illustrates the problem: Suppose the classifier for
class j is outputting a probability of 1.0 for every sample so that we would
always choose it. Nevertheless, this classifier is only correct in those few cases
when the sample is indeed from class j. That is visible on the low precision
of classifier j, which indicates that only few of the positive outputs are indeed
correct. The multiclass performance of this classifier would not be better than
guessing. This finding suggests that we have to incorporate the precision of each
classifier, which is a measure of reliability.

Consequently, we apply a probabilistic decision scheme which outputs a prob-
ability distribution for the class to choose. The proposed scheme incorporates
the different reliabilities of the classifiers in a principled way. Assume there are
N different binary classifiers, Random Forests in our example, each for one of
the N classes of objects. Presented with a data sample x, their outputs are the
likelihoods L(a;|x), ..., L{an|x), where L{ax|x) stands for the certainty of clas-
sifier k that x is a sample of its class (see Section 3.3). Applying the formula for
total probability, the probability that sample x is a descriptor of class o; can be
expressed as

ploilx) = ploilax, x)p(ax(x) - (21)
k=1

We approximate

plaxloi)p(o:)

plax)
The decision accuracy term p{ag|o;), which describes the probability that the
binary classifier of class k considers a sample positive when it is actually a
sample of class 4, is determined from eross-validating the binary classifiers while
the class frequency prior p(o;) is set to a uniform distribution but could also be
obtained from the training dataset. Having these distributions we can calculate
pla) = ZfL plak|o;)p(o;). The prior p(ai|x) = BL(ak|x) is proportional to the
certainties L(ak|x). However, as we are only interested in the object class 6 =
arg maxo, i=1,....~ p(0i|x) with highest probability, we do not have to compute
B. In summary, we determine the multiclass decision 6 as

plo;|ax,x) ~ p(oi|ax) = (22)

N
L plaxloi)p(o:)
e=me o,—,i=1,...,N§ plax) Laelx) - (23)
This approach allows to weight the probabilities with which the classifiers are
voting for their class with the reliabilities of these classifiers.
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Object Categorization with Surface-Approximation Polynomials 11

Table 1. Number of objects captured from each class in the IPA-1 and IPA-2 database.

IPA-1 IPA-2

class # objects||class # objects|class # objects
ball 3 binder 10 dishliquid 9
book 10 book 11 drink carton 9
bottle 10 bottle 10 computer mouse 8
coffeepot 7 can 10 pen 10
cup 10 coffeepot 10 scissors 5
drink carton 4 cup 10 screen 10
flowerpot T dishes 10 silverware 29
plush toy 3

toy car 3

4 Evaluation

This section evaluates the categorization performance of the SAP descriptor
and compares the results with other approaches. We additionally demonstrate
the properties of the SAP descriptor concerning computation time and invari-
ance to camera distance and rotations. All experiments measuring categorization
rates were carried out with a 10-fold randomized leave-out-one cross-validation
in which we left one randomly chosen object for the test set that did not oc-
cur within the training data. Categorization rates are the ratios of correctly
classified views of the test objects to the total number of views from test ob-
jects. Categorization rates are computed individually for each class and reported
as the average over all classes. All results were determined using the following
databases.

4.1 Datasets

We recorded two datasets with 9 and 14 classes of household objects, respectively,
according to the procedure described in Sec. 3.1. The dataset with 57 objects
from 9 classes is called set IPA-1. For this set, each object was placed on a
rotary table and captured 72 times yielding consecutive views in 5° steps. The
Swissranger depth camera was mounted at the height of a robot viewing slightly
downwards onto the table. The average number of points per segmented object
is 6144, The left column of Table 1 summarizes the classes contained in the
database as well as the number of object instances captured.

The second dataset, named IPA-2, was captured with a PMD CamCube
and contains 36 views per object. The average number of points per object is
26491. The middle and right columns of Table 1 provide an overview over the
distribution of the 151 objects into the 14 classes. A detailed description of the
IPA-2 object database can be found in [27]. This set is publicly available at
http://wuw.kyb.mpg.de/nc/employee/details/browatbn.html.
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12 Object Categorization with Surface-Approximation Polynomials

4.2 Results

We compare the performance of our categorization framework and the SAP de-
scriptor on the larger IPA-2 database with the Global Radius-based Surface
Descriptor (GRSD), the Global Fast Point Feature Histogram (GFPFH) de-
scriptor and the Viewpoint Feature Histograms (VFH) descriptor, which have
been applied to similar tasks. For computing the latter three descriptors, we
used the implementations of the PCL library [19] and implemented the supple-
mentary preprocessing according to the descriptions in the original papers [2, 1,
3]. Additionally, the point clusters of the objects were centered in front of the
camera before any data processing so that no random deviations of the camera
viewpoint could diminish the descriptive power of these descriptors. We found
that this measure increased the recall rate of VFH by almost 2 %, for example.
Then, the point clouds were downsampled with a voxel filter of leaf size 1.5 cm
(GRSD, GFPFH) or 0.5 cm (VFH), respectively, to speed up the following nor-
mal estimation. Finally, we called the functions which compute the respective
descriptors from the point cloud and its normals. For accumulating the local
RSD features, we utilized the GFPFH-function as this is almost exactly the al-
gorithm which also computes GRSD and because no other implementation was
available. The labels for each voxel were estimated with the getSimpleType()
function, which appears to realize the method described in the original paper.
As we do not have point-wise labels in our datasets, we could not train the voxel
labels w.r.t. to the FPFH descriptors as explained in [1]. Instead, we clustered
the FPFH descriptors with k-means into 5 classes and used these classes as la-
bels for the GFPFH computation. Using more clusters resulted in a decrease in
performance.

In the following, the naming scheme for the variants of SAP descriptors is
SAP-nz-ny-np, where ny,n, describe the number of cuts along the z- and y-
coordinate axes and n, denotes the degree of the approximating polynomial. The
multi-class classification rates and their standard deviations on dataset IPA-2
are compiled in Table 2 for all tested descriptors. For the sake of completeness
we also cite the results from Browatzki et al. [27] who conducted similar exper-
iments on this database. We can observe that the SAP descriptor appears to be
more powerful for categorization problems than VFH, GRSD or GFPFH with
an increase in multi-class categorization performance of 9.5 % to 23.5 %. SAP
also performs 5 % better than the best of the four descriptors tested in [27]. For
SAP, GRSD and GFPFH we report the results when using the categorization
framework of this paper whereas the VFH descriptors are categorized with a
Support Vector Machine.

Table 3 summarizes the classification rates of these descriptors with respect to
the used classifier. We compare a K-Nearest Neighbors (KNN) classifier with k =
1, a multi-class Support Vector Machine (SVM)! and our proposed framework
with Random Forests. It shows that our method can almost always attain the top
performance. Only with the VFH descriptor the multi-class SVM is 1.1 % better.

! Both classifiers as implemented in OpenCV [28], however the SVM originates from
libsvm [29].
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Table 2. Comparison of several descriptors regarding multi-class categorization per-
formance, average computation time per view and average throughput in points per
second. The evaluation was carried out on the IPA-2 database.

Descriptor Performance Computation Throughput
Time
Shape Distributions [27] 254 % 31 ms ~ 855 000 pts/s
Shape Index [27] 34.6 % 78 ms ~ 339 000 pts/s
Shape Context 3D [27] 55.2 % 234 ms ~ 113 000 pts/s
Depth Buffer [27] 72.9 % 16 ms ~ 1 656 000 pts/s
GFPFH 54.4+6.2 % 921 ms 28 928 pts/s
GRSD 56.1+5.8 % 957 ms 27 841 pts/s
VFH 68.44+6.7 % 93 ms 205 883 pts/s
SAP-7-7-2 77.9+5.5 % 57 ms 338 534 pts/s

Table 3. Comparison of different classifiers for categorizing the objects from the IPA-2
database with several descriptors.

Classifier KNN (k=1) SVM Random Forests
Performance with SAP-7-7-2 554 % 45.5 % 77.9 %
Performance with VFH 604% 684 % 67.3 %
Performance with GRSD 56.0%  51.5% 56.1 %

Performance with GFPFH 51.6 % 46.8 % 54.4 %

The results for KNN do not improve when the number of considered neighbors
k is increased. The SVM uses a one-against-one multi-class extension. It was
trained with automatic parameter tuning through a 10-fold cross-validation. The
margin between the three classifiers is by far the largest with the SAP-7-7-2
descriptor. The reason for this effect is the inhomogeneous descriptor which
consists of an absolute size measure, two relative size measures and parameters
of polynomials. Random Forests do not require the input data to be normalized
to a common magnitude. Consequently, they work well with the data we provide.
However, we would need to construct an adequate metric for KNN or SVM since
these classifiers rely on normalized data.

Besides the categorization performance we also report average computation
times and throughput for the descriptor computation from a single view, includ-
ing necessary preprocessing. To avoid biased representations the computation
time for the classifier is not included. Nevertheless, our Random Forests-based
approach evaluates very fast with only 8 ms on average for the SAP-7-7-2 de-
scriptor (45-dimensional). The results for the descriptors Shape Distributions,
Shape Index, Shape Context and Depth Buffer were determined by Browatzki
et al. [27] and are obtained on a 3 GHz DualCore machine with 2 GB RAM.
We estimated the throughput for these values. All code was written in C++.
The computation times for GFPFH, GRSD, VFH and SAP were determined on
a mobile Intel I7 2.8 GHz Processor using only a single core. It shows that the
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Fig. 3. Comparison of different configurations of the SAP descriptor with varying
numbers of surface cuts and degrees of the approximating polynomials (a) on IPA-
1 database and (b) on IPA-2 database.

computation time of the SAP descriptor is almost four times slower than the
top performer Depth Buffer, however at the gain of 5% better categorization
rates. The runtime of SAP allows to compute the descriptor with over 17 Hz.
That is SAP could classify up to 17 objects in a scene within one second. VFH
suffers from a slightly longer computation time because of the preceding normal
computation. GFPFH and GRSD can only categorize one object per second.

4.3 Parameters and Properties of the SAP Descriptor

As explained in Section 3.2 the SAP descriptor has three parameters which are
supposed to have a significant influence on its descriptive power and cannot
be trivially chosen. Therefore, we examine the categorization performance with
respect to the numbers of cuts n, and n, parallel to the z- and y-axes and with
respect to the degree n, of the approximating polynomial. The number of cuts
is always kept equal for both dimensions, that is n; = n,, since objects can have
the same extent in both directions. It is not possible to reduce n,, for slim objects
because the employed classifiers expect descriptors of fixed length. Furthermore,
it is not suitable to divide a constant total number of cuts to variable numbers n,
and n,, either, as this approach means comparing parts of the descriptors which
contain spatially unrelated data for different objects or at least for objects from
different classes.

The dependency of classification performance on these parameters is illus-
trated in Figure 3(a) for the IPA-1 dataset and in Figure 3(b) for the IPA-2
dataset. Both diagrams report results for the binary classification problem of
separating one object class against the others as well as for the multi-class label-
ing task where each object view has to be assigned one of the class labels. The
general trend that polynomials with higher degree n, cause a lower categorization
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Fig. 4. Recall rates for the SAP descriptor with varying numbers of surface cuts and
a polynomial degree of 2 when the descriptor either contains the size information from
the PCA eigenvalues. Evaluated on the IPA-2 database.

performance becomes evident in the binary and multi-class case. Manual inspec-
tion of the descriptors suggests that higher order polynomials are less stable and
tend to model the noise from the sensor. As to expect, increasing the number of
cuts allows the descriptors to capture more details and improves the categoriza-
tion results. Furthermore, dataset IPA-1 contains less object classes than IPA-2
and consequently, the recall rates are higher with fewer classes. Finally, we can
conclude that SAP-7-7-2 is a reasonable choice considering the categorization
performance on both datasets and the computation time, Therefore, we selected
this configuration as standard for the comparison to other descriptors and within
the following experiments revealing further properties of SAP.

Besides a suitable configuration we also need to know whether it makes sense
to concatenate the absolute and relative size information from PCA with the
polynomial parameters to form the SAP descriptor. Thus, we analyzed both
components of the SAP descriptor alone. We found that using only the three
values of the size component the categorization performance decreases to 62.2 %.
On the other hand, there is a similarly significant drop in the recall rates if
only the polynomial parameters appear in the descriptor as Figure 4 indicates.
Consequently, combining both cues in the SAP descriptor proves to be resonable.

Next, the influence of the parameters of the SAP descriptor on the com-
putation time shall be dissected. Figure 5(a) displays the average computation
times for the computation of a SAP descriptor from one object view for increas-
ing numbers of g, n, and np. As the theoretical analysis in Section 3.2 predicts
there is a linear increase in computation time with rising numbers of surface cuts.
However, the influence of the degree of the polynomials is less visible because of
the very small differences in computation time. We therefore suppose, that the
SVD for polynomial fitting has a significantly lower impact on the computation
time than the effort for assigning points to the cuts, which is also linear with
ng +n, but independent of n,. We also display statistics about processed model
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Fig. 5. Dependency of (a) computation time and (b) throughput of the SAP descriptor
for increasing numbers of surface cuts and polynomial degrees measured on set IPA-2.

points per second in Figure 5(b) to provide a measure which is independent of
the number of points per object view. The general trend coincides with the com-
putation time result as throughput behaves essentially reciprocal to computation
time: the more surface cuts and the higher the degree of the polynomials, the
lower the throughput.

4.4 Scanning Distance and Rotation Invariance

The last part of the evaluation deals with the robustness or invariance of the
SAP descriptor against common transformations of objects. First, we analyze the
invariance against scale changes. This happens when the camera moves closer to
the object or farther away from it. Although the range sensors still capture the
real size of the objects because they provide metric measurements, the sampling
density of the point clouds decreases quadratically with the distance to the
camera. A consequence is that noisy pixels can have more impact since their
percentage of the measured points increases. SAP is computing regressions over
many points and should therefore naturally expose a high robustness to scale
changes. We simulated scale changes by randomly sampling decreasing amounts
of points from the original depth data. The recall rates reported in Table 4
indicate that SAP has indeed a high scale invariance. Please notice that sampling
25 % of the original points corresponds to doubling the distance to the camera
and sampling 10 % is approximately the triple distance. Up to this distance the
categorization performance does not decrease more than 3.0 %.

Rotations are another important kind of transformation that regularly occur
between objects in the real world and the camera. In Figure 6(a) we define three
kinds of basic rotations: pan, tilt and roll. Arbitrary rotations consist of these
three basic rotations. In the following, we examine to which extent SAP can
handle each of of them.
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Table 4. Effect of lower resolution point cloud data on the SAP-7-7-2 descriptor. The
resulting recall rates are a measure of robustness to scale changes.

Percentage of Points 100% 50% 25% 10% 625% 4%
Camera Distance Factor 1 1.4 2 3.2 4 5
Performance T7T9% 782% TT.1% T4.9% T48% 736 %
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Fig. 6. Analysis of the rotational robustness of the SAP descriptor: (a) definition of
the rotational axes and (b) robustness with respect to tilting rotations.

First, we evaluate the robustness to tilting rotations of the object. This kind
of rotation occurs for example when the camera watches the object from a dif-
ferent height and angle. To gauge the robustness of the SAP descriptor against
tilting rotations, we trained the categorization system with the original data
from the IPA-2 database and the same data from every object view tilted by
angle a against the camera. Then we measured the categorization performance
on object views of objects outside the training set which were tilted by angle
@/2. This way we can predict how many different tilt angles have to be present
in the data of training objects to allow for successful categorization at the in-
termediate tilt angles. In Figure 6(b) the recall rates are plotted against the tilt
angles of the test data. We can see that SAP can still categorize 73.0 % of the
test object views, which were tilted by 15°, while the training set only contained
object views at tilt angles of 0° and 30°. Consequently, it would suffice to capture
object views at different tilt angles every 30° of training instances to successfully
model a class.

A similar analysis can be done for pan rotations. As we already have 36 views
of each object around the pan direction in the [PA-2 database, an analysis about
the rotational stability around the pan axis can be conducted by excluding more
and more views from the training set. Testing is done with all views. Figure 7(a)
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Fig. 7. Analysis of the rotational robustness of the SAP descriptor along the pan axis:
(a) recall analyzed against the number of equally distributed views of the training
objects for three configurations of the SAP descriptor. (b) Averaged sum of squared
differences between SAP-7-7-2 descriptors obtained from different viewing angle offsets
for descriptors originating from the same object, objects of the same category and
random non-class objects.

shows the relation between utilized training views and recall rates. We learn that
18 views are enough to maintain a high recall rate of 77.0 %. This corresponds
to capturing depth images of the training objects in a pan distance of 20°.

Fig. 7(b) furthermore shows the results of descriptor repeatability tests on the
IPA-2 database which underline that the descriptor’s similarities of neighboring
viewing angles are very high. Similarity between two descriptors ¢; and c; is
measured as the sum of squared differences (SSD) S5D = ||¢; — n:g||in . Moreover,
with increasing angular offset the SAP descriptors are still much more similar
to the original object than to objects of any another class and also very similar
to descriptors from other objects of the same class.

SAP, as introduced in Section 3.2, has no means to compensate roll rota-
tions. This implies that SAP can only recognize instances of the learned classes
as long as they are standing in a similar upright position as the training ob-
jects. Of course, this is not generally the case in reality. Therefore, we devised
a rotational transformation which precedes the SAP computation. This trans-
formation compensates roll rotations of the captured object by projecting the
3D points into the image plane and computing a repeatable orientation. Then
the point cloud is rolled to a canonical orientation so that the following SAP
computation always runs on a well-adjusted point cloud. Several experiments
showed the success of this idea with recall rates around 77.0 %. A paper about
the analysis of this extension of the SAP descriptor is in preparation.
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5 Conclusions

In this paper we introduced the novel descriptor SAP for categorizing simple
household objects. SAP directly computes global features on possibly noisy point
cloud data. We showed that if SAP descriptors are sampled appropriately from
different views of training objects, SAP can obtain very good categorization
results of 78% within a short computation time of 57 ms per computation. These
results compare favorably to GFPFH, GRSD and VFH. Further experiments
proved the invariance of the SAP descriptor to scale, to tilt rotations up to £15°
and to pan rotations up to +10°. These results provide useful suggestions how
to sample views from the training objects to ensure a complete coverage.

We also discussed an extension for full rotation invariance around the camera
axis briefly. The results of our experiments are encouraging. Thus, future work
will be devoted to a careful evaluation of this approach. Furthermore, we plan
to analyze whether it is possible to create some artificial views automatically to
decrease the number of views which have to be captured from training objects.
Finally, the SAP descriptor shall be tested with the Kinect depth sensor on
numerous real world scenes.
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Abstract—The Surface-Approximation Polynomials (SAP)
descriptor has been shown to be an appropriate global surface
descriptor for object categorization tasks in robotic applica-
tions [1]. Nevertheless, in the original formulation the SAP
descriptor is not invariant against rotations around the camera
axis. This paper explains and evaluates two methods which
pre-process the input data to yield repeatably well-aligned point
clouds for the computation of the SAP descriptor. We show that
the SAP descriptor can be rendered robust against rotations
while retaining almost the full performance of the original
approach which is superior to GFPFH, GRSD and VFH.

I. INTRODUCTION

Understanding the elements of the environment is essential
for robots that are supposed to assist humans in their homes.
Only if robots are able to recognize objects in their surround-
ings, they can manipulate them in a useful way. However, the
large variety of objects in home environments turns instance-
based object recognition infeasible as the appearance of
each single object would have to be learned individually by
the robot. Object categorization instead strives to recognize
object classes. Hence, objects of a known class can still be
recognized even if a certain instance is completely new to
the robot. Moreover, the recognition problem becomes more
tractable since there are less classes than individual objects.

The Surface-Approximation Polynomials (SAP) descriptor
has been recently introduced as a global 3D surface descrip-
tor that is well-suited for the task of object categorization
with a robot [1]. The SAP descriptor approximates the
surface geometry of a single-shot view onto an object with
polynomials. The categorization system based on the SAP
descriptor can determine the category label of unknown
objects that are captured with a depth sensing device like
a PMD CamCube or a Microsoft Kinect. It has been shown
in [1] that the SAP descriptor is robust enough to compensate
smaller viewpoint changes up to 15° in pan and tilt direction.
However, roll rotations of the object or camera cannot be
handled at all with the basic approach. Especially, modeling
all possible roll rotations with sufficiently many training
views is infeasible as the number of required images would
explode. Please consult Fig. 1 for the definitions of rotations.

In the real world objects may occur in any arbitrary pose.
Consequently, the SAP descriptor should be able to cover
every object pose. In this paper we propose and carefully
evaluate two methods which align the input data canonically:
a full 6 DOF transformation based on Principal Component
Analysis (PCA) over the input point cloud as well as a
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Fig. 1.
robustness of the SAP descriptor and an example image with real catego-
rization results of variously aligned, previously unseen objects.

Definition of the rotational axes for the analysis of the rotational

roll compensation which only aligns the input data to a
common roll angle. We furthermore introduce a rule to obtain
a repeatable definition of the axis directions of PCA.

The outline of the paper is as follows. In Section II we
discuss relevant work to the topics of object categorization
and pose alignment. Section III explains the employed ap-
proaches, which are evaluated in Section IV. We conclude in
Section V with a summary and an outlook for future work.

II. RELATED WORK

Object categorization is a topic of high interest in robotics.
The most popular global descriptors that can be computed
fast enough for using them in robotics are Global Fast
Point Feature Histograms (GFPFH) [2], Global Radius-based
Surface Descriptors (GRSD) [3], and Viewpoint Feature
Histogram (VFH) [4]. GFPFH builds histograms on local
Fast Point Feature Histograms [5] which themselves are
histograms on the relative pose of local coordinate frames
determined at all point pairs within a neighborhood. The
GRSD descriptor is composed similarly to the GFPFH de-
scriptor from local RSD features, which basically represent
the local minimum and maximum curvature around a point.
VFH is very similar to GFPFH but supposed to also encode
the viewpoint at the visible object surface. VFH includes
the camera axis in the computation of FPFH histograms
to establish viewpoint dependent signatures for the trained
objects. The recently proposed SAP descriptor [1] instead
directly builds a global descriptor without computing local
features and produces categorization results superior to the
previous descriptors. We will provide a short description of
the SAP descriptor in Section III-B.
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As stated above, the problem of the original SAP descrip-
tor is the missing inherent invariance to roll rotations. Pose
normalization of 3D object models is an important topic in
the shape retrieval literature where it is applied to trans-
form objects into a canonical orientation w.r.t. translation,
size and rotation for the use with pose variant descriptors.
The most popular approach in this community seems to
be a PCA-based alignment [6]-[11] because of its simple
and fast computation and numerical robustness. However,
a serious problem with PCA is the repeatable definition of
the coordinate axis into positive or negative direction of the
principal axes. In [6] all four possible configurations were
tested and the orientation with the best similarity between
two query objects was chosen. However, our task does not
involve two previously known objects. Therefore, we define
the axis definitions according to the distribution of points of
the query object in the new coordinate system, This method
is similar to the approach of [12] where the axes are directed
to the side with a greater total area of the polygons. In [8]
continuous PCA is introduced to deal with different triangle
resolutions in polygon meshes. These problems do not occur
with volumetric or mass-based 3D models as we use.

A second classical method for pose alignment is Extended
Gaussian Images (EGI) [13]. This algorithm computes the
projections of the surface normals on a Gaussian sphere
around the object. In [10] maximum normal distribution is
proposed as another normal-based pose alignment method
for polygon meshes. The idea is to create a histogram over
the total area of surfaces which have the same distance to
the object center and the same surface normal. Then the
normal direction with the largest total area is picked as first
principal axis and the orthogonal normal with next largest
area as second. Since our input data does not contain meshes
we use a PCA-based full pose alignment with adequate axis
definitions and a roll compensation with PCA involved in
the computations.

III. METHODS

Besides the detailed description of the orientation align-
ment this section briefly summarizes the principle of the SAP
descriptor and the underlying categorization framework. The
next paragraph starts with a description of data preparation.

A. Data Acquisition and Segmentation

The SAP descriptor is a global descriptor which describes
the surface of objects. Therefore, segmented object data is
needed to compute the SAP descriptor. After capturing a
depth image the scene is segmented in three steps. First, the
amount of points in the input point cloud is reduced with a
voxel filter that has a leaf size of 7.5 mm. Then the larger
planes are iteratively estimated and removed from the input
point cloud. Third, the remainder of points is aggregated
with Euclidean clustering. Those clusters which contain more
than 50 points are then considered as object candidates and
forwarded to the SAP descriptor computation. The functions
for clustering base upon the PCL library [14].
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Fig. 2. Computation scheme of the SAP descriptor. The upper left image
shows the raw point cloud input. Following the arrows, pose and scale
normalization is applied, surface cuts are extracted (red and blue planes cut
the surface, cuts indicated as red points) and finally approximated with a
polynomial (original points in blue, the red line shows the polynomial).

B. The Surface-Approximation Polynomials Descriptor

The Surface-Approximation Polynomials (SAP) descriptor
has been described in detail in [1]. Therefore, we only pro-
vide a schematic summary of the algorithm at this place. The
basic idea behind the SAP descriptor is to represent object
classes by the shape of their surface. As shown in Fig. 2 this
is accomplished by normalizing the input point cloud P to a
common centroid and scale, cutting the surface with planes
perpendicular to the camera plane and approximating the
geometry of the cuts with polynomials via linear regression.
Having n, cuts along the z-direction of the camera plane and
n,, cuts along the y-axis this yields n;+n, parameter vectors
T ¢ = 1,... , Rz + ny, of the polynomial coefficients.
Furthermore, we compute a Principal Component Analysis
(PCA) to obtain the eigenvalues Xq, Az, A3 which serve as a
measure of object size within the three principal directions.
The SAP descriptor is a concatenation of these three size
parameters and the polynomial coefficients

M A2 Asgr

C=|—, 1,7, 8,
Y A A

To support a range of object sizes Az and A3 contribute only

with their relation to A;. A; is stored with an optional scale

parameter -y to incorporate one measure of absolute size.

,Pethval M

C. Extensions for Rotation Invariance

The unaligned SAP descriptor as described in [1] is
only invariant against translation and scale but not against
rotations, especially around the camera axis (roll). Although
it is possible to model viewpoints from different pan or tilt
angles with respective training images from a grid around
the object, there is no way to capture different poses in roll
direction without capturing a vast mass of images. To be able
to handle objects in arbitrary poses, rotation invariance has
to be accomplished by further measures. Here we propose a
full pose alignment with PCA that can compensate pan, tilt
and roll rotations of the captured objects as well as a roll
compensation method which still has a need for sufficient
coverage of training views regarding pan and tilt rotations.
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1) PCA-based Pose Normalization: To receive a repeat-
able, scale- and rotation-invariant description, the pose of the
point cloud is normalized by computing the mean m and
the principal axes v1, va, v3 via PCA. Every point p of the
camera coordinate system € with the axes X = (1,0,0),§ =
(0,1,0), and 2 = (0,0,1) is then translated to shift the
point cloud’s center into the origin, rotated such that the
eigenvectors are aligned with the coordinate axes and scaled
with the largest eigenvalue \; yielding the normalized point

1
P=m‘[vl va vi | -(p-m) . (@

Translating the center of the point cloud to the origin ensures
translation invariance w.r.t. the coordinate system of the
depth sensor while the rotation compensates for any object
rotation around the camera axis and for minor rotations
around the other two axes. The scaling operation effects that
the majority of the coordinates resides in the range of [-1,1].

As the sign of the direction of the eigenvectors obtained
from PCA does not necessarily coincide between several
recordings, we have to enforce a repeatable orientation
of the new coordinate system € with the coordinate axes
X = Vy,¥Y = Vg, and z = vg. Therefore, we first check that
the eigenvectors constitute a right-handed system which is
the case if the triple product

(Vl x Va) Vg > 0 (3)

is positive. If condition (3) is not met, we invert the co-
ordinates of eigenvector vg before transforming the point
cloud. Then, we obtain a repeatable coordinate system if the
following three rules are fulfilled:

1) The new z-axis, which has the coordinates z = vg,

must point towards the camera. Hence, the condition
%% < 0 must hold since the initial Z-axis of the camera
coordinate system with coordinates 2 = (0,0,1)T
points away from the camera.

2) The majority of points should have negative z-

coordinates in the new coordinate system €.

3) The new coordinate system € is a right-handed system.
These conditions are checked in the given order. If rule 1
is not fulfilled, we only change the signs of eigenvectors
vg and vy before transforming the point cloud to keep the
coordinate system right-handed. The second condition can
only be verified after the transformation of the points. If it is
not met, we have to negate the eigenvectors v, and v and
the z- and y-components of the transformed points to keep
the coordinate system right-handed at the same time. After
executing the preceding steps, rule 3 is already fulfilled. Rule
3 is always enforced in step 1 and step 2 by negating vz,
the y-axis, and the y-coordinates. After the verification of
all three rules, the eigenvectors v1,ve, and vg correspond
to the new coordinate axis x,y, and z, respectively. After
normalization, the surface of the object is aligned in a way
that the two dimensions with the largest extent correspond to
the z- and y-axes. We evaluate the success of this measure
in Sec. IV-B.
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2) Roll Compensation: The second approach to render the
SAP descriptor rotation invariant w.r.t. roll rotations does not
apply a full 3D transform to the point cloud but only aligns
its rotation around the camera axis. This way, roll rotations
of objects are made transparent to the algorithm. The roll
compensation is motivated by the possible misalignments
with full PCA (see Sec. IV-B) and was developed with the
goal to transform the point cloud as little as possible.

The roll compensation algorithm works as follows: first a
silhouette image is created from the projection of the point
cloud onto the camera plane. Then we compute the centroid
m of this 2D silhouette as well as the two principal axes
vy and va using PCA. Next the silhouette is rotated to be
aligned with the principal axes and it is counted whether
more points have positive z-coordinates than negative. If this
condition does not hold, the directions of the principal axes
are negated. This step ensures to have a repeatable definition
of the direction of the new coordinate system. Then we
compute the angle o between the first principal axis v, and
the image’s z-axis (1,0):

7=z L o]

cosq = . . . 4
v} + ol { Y12 0 @
Finally, we rotate every point  of the original point cloud
P by angle « around the camera axis Z:

cosa —sina 0
p=| sina cosae O |[(P—m)4+m . (5)
0 0 1

This yields a repeatable roll compensation for the input point
cloud so that the SAP descriptor can then be computed on a
point cloud with aligned roll angle. Section IV-C examines
how well the roll compensation works in practice.

D. Classification Framework

The object categorization framework is identical to [1]. It
is supposed to serve two purposes: first the system should
be able to search for instances of a certain class and assert
whether test objects belong to it. This is a binary classifica-
tion task. Second, it should be able to label unknown objects
with the correct class. This is a multi-class classification
problem. To be able to deal with both problems the classifi-
cation framework builds on binary Random Forest classifiers
[15] which separate each class against the remainder of
classes. Binary decisions are obtained by directly querying
these classifiers. A probabilistic multi-class extension is
employed for the labeling task, which directly computes the
labels from the likelihoods of the binary classifiers and their
decision reliabilities that originate from statistics.

IV. EVALUATION

The SAP descriptor of unaligned point clouds has already
been examined in [1]. In this paper we discuss the impact
of the PCA-based pose alignment and roll compensation and
compare the outcomes with those from unaligned input data.
All results reported on database tests are determined with a
10-fold leave out one object cross-validation.
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A. Database

Database tests are conducted with the database of house-
hold objects named IPA-2 in [1]. It contains 151 objects
from 14 classes. Among these classes are binders, bottles,
cans, cups, dishes, drink cartons, computer mice, pens,
silverware, etc. Each object was captured 36 times with a
PMD CamCube from a light tilt angle with an offset of
10° in the pan angle. The average number of points per
object is 26491. A detailed description of the IPA-2 object
database can be found in [16]. This set is publicly available at
http://www.kyb.mpg.de/nc/employee/details/browatbn.html.

B. PCA-based 6 DOF Pose Normalization

This section analyzes the robustness of the SAP descriptor
against rotations and camera distance of the captured objects
when the input point cloud is aligned with the PCA-based
approach (Sec. III-C1). The analysis of the basic SAP de-
scriptor in [1] shows that the SAP-7-7-2 configuration yields
very good results. Thus, all experiments in this section will
be conducted with this parameter setting if not mentioned
else. The naming scheme for SAP descriptors is SAP-n;-n,-
nyp, where n; and n, describe the number of cuts along the
z- and y-coordinate axes (after alignment of the point cloud)
and n,, denotes the degree of the approximating polynomial.

1) Theoretical Analysis: The function and power of PCA-
based pose normalization is demonstrated on a cuboid. Fig.
3(a) displays this cuboid as well as a multitude of camera
view points which pan in the range [5.625°,84.375°], tilt
within [15°,75°] and are depicted as black dots with a black
line indicating the camera axes. The black point in the middle
of the object is the real centroid of the cuboid whereas
the red points with the coordinate frames attached display
the object centers that are computed from the three visible
surfaces of the cuboid. The offset between the centroid that
we can estimate from the visible data and the real centroid
has an effect on the chosen translation compensation since
the position of the estimated centroid depends on the view
point. The locations of the estimated centroids differ since
the depth sensor samples the less points from a surface the
more the viewing angle onto the surface becomes acute.
Let § = {51,853, 53} denote the set of visible surfaces of
the cuboid. Then the theoretical centroid x of the visible
surfaces is computed as

Xs = X(91)A(S1) + x(S2)A(Sz2) + x(S3)A(Ss) (6)

where A(S) stands for the area of surface S and x(S) for
the centroid of S. However, depending on the viewing angle
the depth sensor can only capture a ratio of the maximum
amount of points that could be captured from a surface if
the camera axis was perpendicular to the surface. We model
this effect with the following ratios for the visible portions
of each area where « is the pan angle and 3 represents the
tilt angle:

S1: cos(a) cos(B),

Sp:  sin(a) cos(B),

S3:  sin(B) .
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The view-dependent centroids (red points in Fig. 3(a)) are
computed according to Eq. (6) where every area A(S;) only
accounts with the respective view-dependent ratio. It shows
that the perceived centroids still lie quite close to each other
when the change in viewing angle is below 15°, If the surface
of the object is sufficiently smooth this small translation of
the centroid will not affect the polynomial approximation
substantially given that the rotation can be compensated.

The rotation compensation is supposed to be accomplished
by the PCA-based alignment. The idea is to determine the
principal axes of the captured object, which are supposed
to be stable under minor rotations, and rotate the surface
to be aligned with these principal axes. While computing
the principal axes we obey the aforementioned ratios of
visible points on the object’s surfaces to obtain a realistic
result. The pose normalized coordinate system is assigned
to the principal axes in descending order of corresponding
eigenvalues, that is the new x-axis is the eigenvector with the
largest eigenvalue. The resulting pose normalized coordinate
axes for the cuboid example are displayed for all viewing
angles at the position of the estimated centroids in Fig. 3(a).
The red axis displays the z-axis, the y-axis is green and the
z-axis is blue. It is visible that the estimated principal axes
correspond roughly to the real principal axes of the cuboid
and all coordinate frames are similarly aligned over a wide
range of view points. To illustrate the latter fact, a compari-
son of the distribution of coordinate frames without and with
PCA-based pose normalization is provided in Fig. 3(b) and
Fig. 3(c), respectively. While the original coordinate frames
scatter a lot, the normalized coordinate frames have little
deviation over intermediate viewpoint changes and barely
follow the camera movements. Consequently, PCA-based
pose normalization will align object surfaces similarly within
an intermediate range of pan and tilt rotations and hence yield
similar SAP descriptors. Roll rotations are not considered in
this analysis because the PCA-based pose normalization and
the computation of repeatable axis directions yield the same
normalized pose for every roll angle while pan and tilt angles
are fixed.

Fig. 3. (a) The normalized coordinate frames are displayed at the estimated
centroids for the considered viewing angles, which are displayed as black
dots and lines. Collection of (b) the original coordinate frames and (c) the
normalized coordinate frames of the cuboid seen from those viewpoints.
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Fig. 4. Point cloud of a milk box captured from six neighboring viewing
angles. The first and the third row show the original data from the depth
sensor. Row two and four display the corresponding point clouds which are
aligned with PCA-based pose normalization. Two exemplary surface cuts
are drawn in each cutting direction into the pose normalized views.

To demonstrate the effect of PCA-based pose normaliza-
tion on real data Fig. 4 shows a sequence of views onto a
milk box. This box rotates on a rotary disc so that the camera
movement is effectively a pan rotation with an angular
offset of 10° between successive views. The first and third
row show the point clouds as captured by the sensor. The
second and fourth row display the corresponding views onto
the milk box after PCA-based pose normalization has been
applied. While the original point cloud rotates by 50° over
the sequence the pose normalized views look very similar in
all images as predicted by the previous analysis.

To back the claim that the SAP descriptors obtained from
pose normalized views are more similar to each other than
those obtained from the original views, Fig. 5 provides two
pieces of evidence. The first row of images displays the SAP-
7-7-2 descriptors of all views of the milk box from Fig. 4. In
detail, Fig. 5(a) contains all six SAP-7-7-2 descriptors from
the original views whereas Fig. 5(b) displays the SAP-7-7-
2 descriptors from the PCA-based pose normalized views.
To ensure a fair comparison between both cases the original
views are scaled to fit into the unit volume as well. To com-
pare the descriptors of both approaches please consider that
the axis definitions change through the pose normalization.
In the milk box example, the z- and y-axis definitions swap
between original and normalized view and consequently,
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Fig. 5. Analysis of the similarity of SAP descriptors: SAP-7-7-2 descriptors
from (a) the original snapshots and (b) the pose normalized point clouds of
the example views of the milk box. Averaged descriptor similarity between
views with varying angular offset on (c) the original data and (d) the pose
normalized data. Average similarity is measured against rotations of the
same object, objects from the same class and objects of other classes.

the SAP polynomial coefficients from the first half of one
diagram can be found in the second half of the other diagram.
The corresponding coefficients are inverted because the z-
axis direction switches through the pose normalization. Only
the first three size components of the descriptors correspond
in both cases and take the same values. We can observe that
the SAP-7-7-2 descriptors from a range of viewing angles of
50° do not differ much when PCA-based pose normalization
is applied whereas the descriptors obtained from the original
views exhibit a transition in the coefficients in the first half of
the descriptor. This steady decrease in magnitude is caused
by the pan rotation of the object which lets the surface appear
as a backwardly slanted plane at first and transitions to a
plane parallel to the camera in the end. The pose normalized
views present a parallel plane for all views instead which
results in very similar descriptor coefficients in all cases.

To show that this fact holds in general this analysis has
to be extended to the whole database. Figure 5 therefore
displays two plots in the second row in which the similarity
of SAP-7-7-2 descriptors of neighboring views is studied
on the whole dataset. Similarity between two descriptors
¢y and cp is measured as the sum of squared differences
(SSD) SSD = || *cﬂuiz- We can see in Fig. 5(c) that
the descriptor similarity decreases significantly with growing
offset between two views if the descriptors are computed
on the original point cloud. If computed on the normalized
data instead (see Fig. 5(d)), the similarity of descriptors from
neighboring views barely increases even for larger rotations.
This finding indicates that PCA-based pose normalization
helps to keep SAP descriptors computed from neighboring
views quite similar.
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Fig. 6. Comparison of different configurations of the SAP descriptor with

varying numbers of surface cuts and degrees of the polynomials. The input
data was aligned with (a) PCA and (b) roll compensation,

Although the preceding analysis has pointed out several
desirable properties of the chosen PCA-based pose normal-
ization it is well known that this kind of pose normalization
is problematic and possibly unstable if applied to objects
which do not have such canonical orientations as the cuboid
[17]. Therefore, we test the impact of pose normalization by
measuring the performance on the object categorization task.

2) Database Tests: According to the analysis in [1] the
influence of the numbers of surface cuts n, and n, as well
as the degree of the approximating polynomials needs to
be examined. Figure 6(a) displays the recall rates for the
binary classification problem of separating one object class
against the others as well as for the multi-class labeling task
where each object view has to be assigned one of the class
labels. The influence of the number of cuts is as expected and
coincides with findings of experiments with the unaligned
data: especially in the multi-class problem the recall rates
increase steadily with growing numbers of surface cuts. The
binary categorization performance, however, remains almost
constant independent of the number of surface cuts. Never-
theless, the increasing performance for the multi-class task
indicates that the binary decisions become more confident,
that is the probabilities for the respective decisions of the
binary classifiers grow with the number of surface cuts.

As in the unaligned case approximations of higher order
polynomials yield a worse performance. Manual inspection
of the descriptors provides an explanation for this observa-
tion: it shows that higher order polynomials are less stable
and tend to model the noise from the sensor. Besides these
qualitative observations we also confirm that the SAP-7-
7-2 configuration proves to be among the top performers,
however, with slightly lower recall rates than with unaligned
data. In the binary classification case the performance drops
from 94.9% with unaligned data to 91.7% with PCA-aligned
data and for the multi-class labeling task the performance
decreases from 77.9% to 73.2%. The good performamce in
the unaligned case is not surprising since the objects in the
database are already well-aligned. The decrease by almost
5% of multi-class recall indicates that the PCA alighment
introduces a significant number of misalignments.

Next, Figure 7(a) shows the average computation time
for one SAP descriptor and Figure 7(b) the respective
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Fig. 7. Dependency of (a) computation time and (b) throughput of the SAP

descriptor for increasing numbers of surface cuts and polynomial orders. The
input data is either aligned with PCA or with roll compensation.

computational throughput. These results resemble those of
the unaligned computation very much in qualitative and
quantitative aspects. Thus, the additional pose alignment does
not introduce significant overhead for the computation. There
is a linear increase in computation time with rising numbers
of surface cuts. The computation time for the SAP descriptor
is quite low as all examined configurations are determined
within less than 100 ms on one core of a 2.8GHz Intel 17
mobile processor with 6GB RAM. The runtime of the SAP-
7-7-2 configuration e.g. allows to compute the descriptor with
almost 21 Hz. That is SAP could classify up to 21 objects
in a scene within one second which is a respectable rate.

C. Roll Compensation

We will not provide a similarly extensive evaluation for
this approach of orientation compensation as the results
strongly resemble those of the unaligned approach. The
reason for this lies in the good alignment of objects in the
database which renders the input data almost equal for both
database tests. However, the success of roll compensation on
objects in other poses than those in the training data is proven
by the examples in Fig. 1 and 9, e.g. for cans, cups and the
binder. The following analysis indicates the equalities and
differences to the results of the unaligned approach.

The impact of parameters n;, n, and n, on the catego-
rization performance is shown in Fig. 6(b). The qualitative
results correspond with previous findings and the recall rate
of 77.0% of the SAP-7-7-2 descriptor with roll compensation
comes close to the 77.9% of the unaligned method. The
computation times with roll compensation are higher than
with PCA-based alignment or without alignment by 20 ms
to 30 ms as we can see in Fig. 7(a). Nevertheless, the SAP-7-
7-2 configuration still classifies almost 14 objects per second.
The linear dependency on the number of cuts remains.

D. Comparison of the Approaches

This paragraph compares the unaligned, PCA-aligned and
roll-compensated SAP descriptors according to their catego-
rization performance, runtime and robustness against rota-
tions and scale changes. Table I summarizes the categoriza-
tion performance and computation times of the three variants
of SAP descriptors and other descriptors from literature. It
shows that the SAP variant with roll compensation achieves
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TABLE I
COMPARISON OF SEVERAL DESCRIPTORS REGARDING MULTI-CLASS
CATEGORIZATION PERFORMANCE, AVERAGE COMPUTATION TIME PER
VIEW AND AVERAGE THROUGHPUT IN POINTS PER SECOND,

Descriptor Recall Time Throughput
Shape Distributions [16] 254 % 31 ms ~ 855 000 pts/s
Shape Index [16] 34.6 % 78 ms ~ 339 000 pts/s
Shape Context 3D [16] 552 % 234 ms ~ 113 000 pts/s
Depth Buffer [16] 72.9 % 16 ms ~ 1 656 000 pts/s
GFPFH [1] 54.4 % 921 ms 28 928 pis/s
GRSD [1] 56.1 % 957 ms 27 841 pts/s
VFH [1] 68.4 % 93 ms 205 883 pis/s
SAP-7-7-2

unaligned [1] 779 % 57 ms 463 439 pts/s
with roll compensation 77.0 % 72 ms 370 314 pts/s
with PCA alignment 732 % 48 ms 552 262 pts/s

almost the recall rate of the unaligned SAP descriptor but
needs 15 ms of additional computation time. The similar
recall rate indicates that roll compensation works with few
errors since the performance of the unaligned SAP descriptor
is kind of a limit for methods with pose alignment as the
database objects are already well-aligned. The recall rate of
the SAP descriptor with PCA alignment is almost 5% lower
than this limit suggesting that some misalignments occur. The
faster computation time compared to the unaligned method is
caused by the changed orientation which affects the number
of points on surface cuts. All runtime measurements were
taken on one core of a mobile I7 2.8 GHz machine with
6GB RAM. A confusion matrix for the categorization with
roll compensation is provided in Fig. 8(d). Many class labels
are found quite reliably whereas the occurring confusions can
usually be easily explained, e.g. bottles and dishliquids have
a similar shape and silverware and scissors look the same
when seen from the slim side.

The next analysis evaluates the robustness of the variants
of SAP descriptors against rotations of the object in pan
and tilt direction. For the evaluation on pan rotations we
just exclude the respective views from the training data to
yield sparser object models sampled only every o degrees
in the pan direction. Fig. 8(a) reports on the recall rates
obtained with respect to the angular offset /2 of the views
of unknown test objects. This means, the angles reported in
the diagram correspond with the maximal angular offset to
the closest view on another object of this class available in
the training set. It is remarkable that in all three cases the
performance is still around 60% when the training data only
consists of 4 views of each object. We also notice that the
recall rate virtually remains constant up to an offset of 15°
for the PCA-aligned SAP descriptor and up to 10° for the
other two variants. The gap between the PCA-aligned and
the unaligned descriptor remains almost constant over the
whole range and is surprising as the pose alignment should be
benefitial with few views. Apparently the misalignment rate
of the PCA-based approach eats up this potential advantage.
The performance of roll compensation begins at the same
level as the unaligned approach but degrades with growing
angular offset towards the performance of PCA alignment.
A similar analysis has been carried out for tilt rotations.
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Fig. 8. Robustness of the three variants of the SAP descriptor with respect
to (a) pan and (b) tilt rotations as well as (c) camera distance. (d) Confusion
matrix for categorization with the SAP descriptor and roll compensation.

Lacking real data from all tilt angles, the experimental setup
for tilt rotations is different: the original point clouds are
tilted by angle S and because of the changed perspective
only a ratio of cos 3 points are kept in the model. The system
is trained with data from tilt angle 0° and /3. The test data
only contains point clouds tilted by 3/2. Fig. 8(b) displays
the recall rates with respect to /2. Up to tilt angles of 35°
the performance keeps above 67% with all three approaches
which is quite high. For PCA-based alignment, the recall
rate remains almost constant up to that point, for roll com-
pensation it converges to the level of the aforementioned
method. For the unaligned data recall decreases steadily and
falls below the other methods at tilt offsets of 15°.

The last experiment evaluates the robustness of the three
variants of SAP descriptors against varying camera distance
to the objects. To emulate different distances between ob-
ject and camera we downsample the original point clouds
randomly to different distance levels, e.g. to simulate the
double distance we only keep 25% of the original points.
Fig. 8(c) shows the recall rates for various distances. The
unaligned and roll compensated SAP descriptors can retain
their performance over almost the whole range of analyzed
distance factors. The recall rates of PCA-based alignment,
however, decrease significantly after the distance doubles.
Apparently, the impact of noise in the point measurements
grows larger if less points are available and this affects the
stability of the PCA-alignment.

The robustness analysis has also been conducted for VFH
to allow for a comparison. The rotational robustness is
similar to the SAP descriptors but the robustness to camera
distance is lower as visible in Fig. 8(a), 8(b) and 8(c).

Finally, we demonstrate the categorization system on real
scenes with previously unseen objects in Fig. 1 and Fig. 9.
We selected the roll compensation approach for point cloud
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Fig. 9.
diverse poses. The objects are not part of the training set. The point clouds
are aligned with roll compensation before the SAP descriptor is computed.
The right column shows the corresponding object clusters of the point cloud.

Exemplary real world scenes with objects from various classes in

alignment to benefit from the higher recall rates and the good
robustness against transformations including roll rotations,
which are not covered by the unaligned SAP descriptor.
We placed the objects in different distances to the camera
and turned them in various pan, tilt and roll directions. The
recognized object classes are denoted on top of each object
with the probability mass for this label in brackets. Although
the probability is only in the range of 20% for several objects
the alternatives often have significantly lower probabilities.
Please notice that a probability of 50% means that no other
object can be more likely. Consequently, probabilities of 40%
are already strong assertions.

V. CONCLUSIONS AND OUTLOOK

The analysis of the two proposed pose normalization
methods has shown that the PCA-based full pose align-
ment of the input point cloud is regularly inferior to the
approach with roll compensation which can almost achieve
the performance of the unaligned SAP descriptor on aligned
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data. For modeling object classes with the SAP descriptor
we therefore recommend to pre-process the input data with
roll compensation and capture training images every 20° in
pan and tilt direction to obtain optimal performance. If a
performance drop up to 5% in the worst case is acceptable,
objects can be modeled with 38 views: 12 images per pan
rotation at tilt angles -45°, 0°, and 45° as well as one shot
from the top and the bottom.

For future research on the SAP descriptor it is planned
to substitute the polynomial approximations with splines.
Furthermore, we like to add a size parameter to each cut to
represent the length of the approximated curves. A transition
to part-based models is also planned to cope with occlusions.
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