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Short description 

In this deliverable report, we introduce the system that has been developed in the 

completion of T4.1: Data fusion for robust detection and identification objects and users. 

For object recognition, we fuse data from different modalities to improve the quality of 

available data for object modelling and detection. Concretely, the colour image data of a 

colour camera is combined with the depth information gained from stereo vision that is 

improved with the depth data of a time-of-flight sensor. The result is a dense coloured 

point cloud at a high resolution. This data is applied in the object recognition system that 

models the shape and texture of objects to facilitate robust re-detection of those objects in 

real scenes. In order to avoid the modelling of thousands of objects, the object recognition 

system is accompanied by an object categorization component that predicts the object’s 

class if no model is available in the recognition module. 

In our person detection, tracking and identification system, the ambient cameras are 

mounted on the ceiling of the Robot House, and their locations are fixed to the world 

coordinates frame defined by the room. We calibrate the static cameras with OpenCV to 

facilitate the transfer between the image coordinates and the world coordinates. Since the 

localization module of the Care-O-bot also runs in the same coordinates system, the data 

from the ambient camera and the robot can be fused seamlessly. We expect in this way 

the camera calibration to be more robust than the method that finds correlation of feature 

points among the different camera images, as the features points are usually rather 

unstable due to occlusions and rotation of the object. 

This report also describes a probabilistic framework for the fusion of data from a laser 

range finder on a mobile robot and an overhead camera fixed in a domestic environment. 

The contribution of the framework is that it enables seamless integration with other 

sensors. For tracking multiple people it is possible to use a probabilistic particle filter 

tracker. We show that the fusion improves the results of the individual subsystems.  

For person identification, the cameras mounted at Care-O-bot’s head are used because of 

their higher resolution. The identification module is based on data fusion between the time-

of-flight sensor and a colour camera as well. The depth image is exploited to detect heads 

in the range of sight of the robot and those regions are inspected in the colour image for 

the appearance of faces. All detected faces are put into an identification module that 

asserts the name of the found person. Together with the person tracking via cameras in 

the environment it is possible to fuse both kinds of information to obtain trajectories of 

person movements that are labelled with the person’s name. Amongst others, this enables 

the robot to find a target person in the house quicker than with random search. 
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1. Introduction 

As the baby boom generation is coming to retirement age, the number of elderly citizens over 

60 years of age is expected to grow further to a proportion of 1 out of 3 by the year 2030. 

Alongside this growth in the elderly population, we face short and long-term labour 

shortages, especially in the health-care sector. Robots may offer a solution for making elderly 

care affordable by using them for physical [1], cognitive [2] or social [3] support. All these 

studies share a common foundation that the robots interact intensively with humans, and 

locations, of both the person and the robot, are estimated robustly. 

Robust people detection and localization is a prerequisite for many applications where 

service robots interact with humans. Future robots will not be stand-alone any more but will 

operate in smart environments that are equipped with sensor systems for context awareness 

and activity recognition. 

Sensing systems for robot localization or people localization are usually mounted either on 

the robot or are fixed in the environment. In this report we describe a probabilistic framework 

for the fusion of data from robot and fixed sensors. Here we restrict ourselves to a laser 

scanner on the robot and an overhead camera fixed in the room. The contribution of our work 

is that by mapping all information into a probabilistic model, the system can be easily 

extended with other sensors such as multiple cameras or RGB-D cameras, and is robust to 

the absence of sensors. 

2. Data Fusion for Object Detection and Identification 

This section explains the system for object recognition and its prerequisites. To improve the 

quality of data available to the recognition system, a fusion of different modalities is applied. 

This preceding step combines the colour image data from a colour camera, computes a 

depth map of the colour image with the help of the image of a second camera and improves 

the quality of the depth estimate by integrating the output of a time-of-flight sensor. After the 

description of this process in Section 2.1 we introduce the system for object recognition in 

Section 2.2. The object recognition system is able to detect previously learned objects in the 

scene. However, as the number of occurring objects in a household might be quite large and 

since nobody is keen to introduce hundreds or thousands of objects to the robot, we also 

developed an object categorization method. This module is meant to recognize the class of 

objects that have not been introduced to the robot beforehand. This way the robot can even 

make sense for many unseen objects without having to learn them in advance. The 

categorization system gets explained in Section 2.3. 

2.1 Fusion of Stereo Cameras and a Time-of-Flight Sensor 

The combination of sensor data from different sources aims at creating information that 

exceeds the quality of each individual source. In terms of quality one usually relates to 

accuracy, completeness or confidence. The data sources considered in this case are two 

colour cameras used for stereoscopic vision and one Time-of-Flight sensor that directly 

deliver 2.5D range data. This work aims at combining both modalities to create accurate 3D 
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point clouds with associated colour information even in unstructured image areas. In the 

following, the characteristics of the two sensor modalities are described, beginning with the 

Time-of-Flight sensor. 

Time-of-Flight cameras emit modulated near infra-red light to illuminate a given scene. The 

reflection of the modulated light is collected in a CMOS matrix. By comparing the returning 

signal to the camera’s source modulation, the phase shift is measured which is a linear 

function of distance to the reflecting surface. Using the described procedure, the Time-of-

Flight sensor is able to operate in real time at about 30 Hz. It creates dense point clouds, 

however with a limit spatial resolution. As the measurement principle assumes perfectly 

sinusoidal signals, which are not achievable in reality, the measured distance is subject to 

noise. It comprises about 1% of the measured distance. Also the measurement principle is 

biased as a function of object albedo, resulting in poor performance on textured scenes. A 

prominent example is the distance measurement of a checkerboard, where the black squares 

seem closer to the camera than the white squares. Additionally, the quality of the measured 

intensity image is low. 

Stereo vision estimates depth through triangulation on point correspondences across image 

pairs and the knowledge of the cameras’ intrinsic and extrinsic parameters. On most textured 

scenes, stereo is able to provide high resolution point clouds. However, in the absence of 

features, the system fails to measure depth. Due to the different viewing angles of the two 

cameras, stereo vision is also prone to occlusions. Additionally, low frequency distortions 

often disturb the feature association, leading to false depth measurements. Current state-of-

the-art stereo matching algorithms achieve accurate dense depth maps only when using 

global optimization algorithms, needing up to a minute of computation time. Only local 

correlation based methods are fast enough for real time applications, at the cost of less 

accuracy and sparse depth maps. 

With the combination of a Time-of-Flight camera and a stereo rig, we aspire to unite the 

advantages of both approaches, that is having dense point clouds with a high resolution 

within an acceptable computation time. A review of related work has been presented in D4.1. 

The sensor setup as mounted on the head of Care-O-bot 3 is displayed in Figure 1. 

  

Figure 1 Sensor setup consisting of two colour cameras and one time-of-flight sensor 
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2.1.1 Method 

The first step for successful data fusion from multiple vision sensors is the proper calibration 

of the sensor rig. This process includes the intrinsic calibration of each single device as well 

as the pairwise calibration between all sensors. For intrinsic and extrinsic calibration the 

method of Zhang [18] is applied to all cameras using Bouguet’s Matlab calibration toolbox 

[19]. To increase the calibration quality of the time-of-flight sensor we follow the ideas of 

Lindner and Kolb [20]. The extrinsic calibration results are used to associate depth 

measurements from the time-of-flight sensor with the corresponding measured disparity from 

stereo vision or the corresponding colour pixel of one colour camera. The stereo rig is 

initialized using the extrinsic and intrinsic colour camera parameters. The resulting colour 

camera’s stereo rectified projection matrix enables an association of 3D data with 2D colour 

image coordinates. 

   

Figure 2 Colour images from the left and right camera as well as the corresponding depth image of the 
range sensor 

Figure 2 displays the source data from the colour cameras and the time-of-flight sensor that 

becomes combined during the sensor fusion process. Before we can describe the fusion 

algorithm, some pre-processing is necessary as the time-of-flight sensor produces noisy 

measurements and flying pixels at edges as visible in the side view displayed in the left 

image of Figure 3. Another source of noise is data that exceeds the non-ambiguity range of 

the sensor, which lies between 0 m and 5m. To filter the latter source of noise we apply fixed 

amplitude thresholding [21]. The flying pixels, however, need to be removed with a more 

sophisticated technique. Therefore, the following wave front propagation  

 

 

    

Figure 3 Time-of-flight sensor data before (left image) and after (right image) pre-processing 
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algorithm is applied after amplitude thresholding. We iteratively expand the neighborhood of 

each pixel until a maximal depth threshold   , relative to the reference pixel is exceeded. The 

size    of the pixel  ’s neighborhood is compared against a speckle threshold   . When 

        the pixel’s range value is labeled as invalid. Otherwise, it is considered as a valid 

range value. Using wavefront propagation, only range values of pixels with a sufficient 

number of close-by (in terms of depth differences) neighbors will survive. This directly 

corresponds to the smoothness assumption made for global stereo vision. The results of 

filtering the 3D Time-of-Flight data using wave front propagation is shown in the right image 

of Figure 3. 

The filtered 3D measurements from the time-of-flight sensor are now projected into the 

image plane of the left colour camera. Let   
  be the extrinsic rotation matrix and   

  the 

extrinsic translation vector that describe the relative pose of the left colour camera to the 

Time-of-Flight sensor. A 3D measurement               of the time-of-flight camera directly 

corresponds to the 3D point      
       

  in the coordinate frame of the left colour camera. 

Based on the intrinsic calibration of the left colour camera we can now employ the 4-by-4 

projection matrix   , that transforms 3D points    measured in the camera’s coordinate frame 

to 2D points             measured on the camera’s image plane as well as the disparity 

value  . The calculation                          uses homogeneous coordinates, that 

means that the actual values of    and   are recovered through division by scale parameter 

 :                       . The projection of the low-resolution time-of-flight 

measurements to the high-resolution colour image covers only a part of all colour pixels and 

the coverage has gaps. To be more useful for the optimized depth value computation later, 

the depth information of the projected time-of-flight measurements is spread to neighbouring 

pixels at the resolution of the colour image by wave front propagation. To reduce 

computation time, the propagated range values are not interpolated and copied as they are. 

However, to express this kind of inexactness an uncertainty value is assigned to the 

estimated depth measurement that is proportional to the distance of its origin. 

  

Figure 4 Original greyscale image (left) and time-of-flight measurements projected into it (right). 

After the preparation of the raw data from all sensors, we can now fuse the information to a 

high-resolution coloured point cloud. The projected time-of-flight measurements serve as a 

first guess for the disparity computation from the rectified stereo images. As it is common for 

the computation of disparities in pure stereo vision algorithms we first have to define 

matching costs that represent how likely two measurements from different sensors are to 

originate from the same point in the real world. Then we can use this measure to verify the 

quality of the estimates from the depth sensor. The pixelwise matching costs          of 
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pixel           and disparity   are computed as block matching, which is the accumulation 

of similarity measures within a pixel’s square neighbourhood of size      pixels side 

length. 

 
          ∑ ∑             

 

    

 

    

 Equation 1 

As similarity measure        we have chosen the method of Birchfield and Tomasi [22] 

which determines the difference of intensities in the range of half a pixel along each direction 

of the epipolar line. When computing the matching costs          for each pixel   of the 

colour image and the estimated disparity   from the time-of-flight sensor, we can gauge the 

validity of the initial depth estimate by considering a pixel’s depth estimate as invalid when 

         exceeds a fixed threshold    . Now we have two cases: first, there are pixels that 

come with some valid depth estimate, i.e. pixels whose time-of-flight measurement does not 

contradict with the local texture in the colour image, and second, there are pixels without a 

valid depth estimate. In the latter case, we do not have a reliable time-of-flight measurement 

for the pixel and just use the block matching cost function          from stereo vision. In the 

first case, we acknowledge that the valid depth measurement is subject to noise. The cost 

function is chosen as a reversed Gaussian distribution                to model this 

uncertainty, where   represents the initial depth estimate and         stands for the 

expected sensor noise which is set to be 2% of the measured distance  . Since the depth 

measurements have been propagated to pixels without depth measurement in the 

neighbourhood by copying the value instead of interpolation, the uncertainty   is increased 

for those cases. To accelerate computation and to incorporate the possibility that Time-of-

Flight based disparity guesses may still be wrong, the cost function becomes constant as 

disparity differences become larger than   . This yields the cost function for matched pixels 

with valid time-of-flight measurement 

 
           {

 (       )     |   |    

           
 Equation 2 

Factor   provides the possibility to scale the maximal costs to a desired value. The total 

matching cost function is then 

         {
                                         

                  
 Equation 3 

The optimal disparity         for each pixel   is not taken as the value that produces minimal 

costs       , because this would yield many false predictions and a very discontinuous 

disparity image. Instead, we assert a local smoothness assumption and apply the semi-

global disparity optimization approach of Hirschmüller [23]. The smoothness constraints 

are supposed to avoid ambiguous matching costs for different disparities and are formulated 

as the energy function 

 
     ∑( (    )  ∑    [|     |   ]

    

 ∑    [|     |   ]

    

)

 

 Equation 4 
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Therein, function      evaluates to 1 if its argument is true and to 0 otherwise.  (    ) 

represents the cost function from Equation 3 for pixel   with the disparity estimate   . The 

other two terms enforce smoothness of the disparity values within the neighbourhood    of 

point  : the second term penalizes disparity differences of 1 to a neighbouring pixel   with the 

additional costs   and the third term penalizes larger differences in disparity with the costs 

     . Minimizing this energy function over the whole image is a global optimization 

problem in 2D and known to be NP-complete. The minimization in individual 1D directions is 

can be computed in polynomial time with dynamic programming, but it generates streaking 

effects in the direction of optimization. The solution of Hirschmüller performs the 1D 

optimization from 16 directions surrounding each pixel and hence avoids the streaking effect. 

An individual cost path is defined by 

 

                  

(

 
 

          

               

                

    
 

            
)

 
 

    
 

          Equation 5 

where   represents the traversed direction of the individual cost path and   traverses over all 

disparities except for          and    . The first minimization term adds the minimal cost 

of the preceding pixel for the current optimization direction  , when selecting disparity   for 

the current pixel. The costs of the preceding pixel are penalized depending on its disparity 

difference to the currently selected disparity   as explained for Equation 4. To prevent the 

value of         from constantly growing while traversing the cost path, the minimum path 

cost of the preceding pixel is subtracted from the equation. The overall costs are the sum of 

all cost paths 

        ∑        

 

 Equation 6 

while selecting the minimum            yields the desired disparity for pixel  . We are using 

the cost function from Equation 3 within this semi-global optimization framework so that the 

disparity optimization can benefit from both data sources, stereo vision as well as the time-of-

flight measurements. 

Finally, some standard post-processing procedures are utilized to improve the disparity 

estimates after optimization. First, if there are multiple disparities minimizing        the 

disparity estimate is rejected for its ambiguity. Furthermore, a left-right consistency check 

ensures that the disparities in the left and right camera image correspond so that the 

uniqueness of the disparity estimate is likely. Eventually, the final disparity estimate is 

interpolated based upon the costs of neighbouring disparities at pixel   by 

        
                 

                            
 Equation 7 

The whole sensor fusion procedure is summarized in the scheme that is displayed in Figure 

5. 
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Figure 5: Schematic overview over the sensor fusion of a time-of-flight sensor with stereo vision. 
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2.1.2 Results 

The sensor fusion system has been tested with the SwissRanger SR4000 time-of-flight 

camera and the AVT Prosilica stereo camera pair mounted on the head of Care-O-bot 3. The 

two colour cameras have a resolution of 1388x1038 pixels, the SwissRanger SR4000 

operates with an image resolution of 176x144 pixels. The cost function has been evaluated 

for 176 different disparities. Using this setup, the sensor fusion can be computed at a rate of 

0.3 Hz when the code is implemented with SIMD based parallelization. 

One important factor for the quality of the results is the proportion of projected time-of-flight 

depth measurements relative to the number of all pixels in the high-resolution fused image. 

This number can be affected by the size of wave front propagation of time-of-flight 

measurements to neighbouring pixels without time-of-flight data. Figure 6 illustrates this 

relation. The upper left image shows a disparity map of the scene from Figure 2 which is 

purely based on stereo vision. Hence, only textured areas yield depth estimates whereas the 

depth of plain-coloured surfaces cannot be estimated. The upper right image shows the 

disparity map when stereo vision is combined with time-of-flight data that was allowed to 

propagate its depth values in a 1x1 neighbourhood. The depth map is quite similar to the 

purely stereo vision-based approach since the time-of-flight measurements are outnumbered 

by the stereo depth estimates so that the latter dominate the semi-global optimization. The 

numbers of depth estimates from the time-of-flight sensor and stereo vision are better 

balanced in the lower left image which represents the sensor combination results for a 3x3 

propagation neighbourhood of time-of-flight  

  

  

Figure 6 Disparity maps from stereo vision (upper left) and from sensor fusion with time-of-flight data 
propagation in a 1x1 (upper right), 3x3 (lower left) and 5x5 neighbourhood (lower right). 
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measurements. This time both sources of information are incorporated to yield a dense depth 

image. Using a 5x5 neighbourhood renders the stereo map even slightly denser as visible in 

the lower right image. Nevertheless, the time-of-flight measurements should not be 

distributed too far as they would overwrite the more accurate stereo depth estimates where 

they are available. Figure 7 displays several depth maps obtained from the fusion algorithm 

when using a 5x5 neighbourhood and compares them to estimates from stereo vision only. 

 

 

Figure 7 Some examples for the sensor fusion algorithm: the left column shows the original image, the 
center column displays the depth map from stereo vision and the right column the denser result of the 

sensor fusion algorithm. 
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2.2 Object Recognition 

This section discusses a system for object recognition that uses the colour and depth data of 

the previously described sensor fusion algorithm. Object recognition is a necessary 

prerequisite to enable Care-O-bot for detecting the location of objects and grasping them. 

The current approach operates on data from a single perspective and is suitable for detecting 

objects with occlusions and multiple occurrences in highly cluttered scenes 

2.2.1 Methods 

The detection of objects is based on previously learned models that comprise texture 

information of outstanding feature points with the 3D location of their occurrence on the 

object. The model learning step requires the object to be placed on a rotary table with 

attached sensors for model capture or in the gripper of the robot. In both cases, the object is 

turned so that it can be recorded from different perspectives. For each perspective, STAR 

[24] feature points are searched within the colour image and a BRIEF [25] descriptor is 

computed for each feature point (see Figure 8). An accurate 3D location of each feature point 

is provided by the fusion of stereo and time-of-flight depth information as described in the 

previous section. The individual perspectives are written into a common object model that 

contains all detected featured points at their 3D location. Each recording can be related to 

this common model using the odometry of the rotary table or the robot’s gripper. 

Nevertheless, the odometry is not precise enough to register each view at the correct 

position in the object model. Hence, an optimization step based on bundle adjustment follows 

the first model generation pass that is based on pure odometry. The resulting model contains 

the detected feature points from all perspectives written into a common 3D model of the 

object. One difficulty for the bundle adjustment is the ambiguity of feature points at repetitive 

patterns like company labels that are common for many food packages. This problem is 

tackled by accepting only those feature point registrations that correspond approximately with 

the measured odometry. Furthermore, the resulting feature point model may contain up to 

20,000 points which is a burden for storage and later processing operations. Indeed, many of 

those points describe the same point on the object but are captured from different 

perspectives. To reduce the number of feature points, the model points are clustered with 

mean shift filtering. This results in single centre points for smaller groups of features which 

relate to the same location. Only the centre points are kept in the model together with the 

mean descriptor values. The descriptor values, however, are discretized to 0 or 1 after mean 

shift filtering to keep the data format of the original BRIEF descriptors. This measure reduces 

the number of model points by around 75%. 

                      

Figure 8 Object modeling with the robot (left), colour image image of the object (middle) and detected 
feature points. 
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The recognition of learned objects in captured scenes proceeds simply spoken by the 

computation of feature points and their descriptors and by the search for object models that 

fit clusters of the found feature points in their texture and 3D shape appearance. First, STAR 

features are searched over the colour image and at each feature point we compute a scale 

and rotation invariant version of the BRIEF descriptor. Rotation invariance is introduced by 

using the ORB [26] extension and scale invariance can be obtained when relying on the 

scale computed by the STAR feature point detector or by relating the measured distance of 

the object to the patch and kernel size of the BRIEF descriptor. The binary BRIEF descriptor 

itself is computed by    comparisons of randomly chosen pixel pairs within the patch of size 

48x48 pixels around a feature point. For increased robustness, not only individual pixels 

become compared but the sum of intensities      within a 9x9 neighbourhood around each 

sampled pixel   contribute to the comparison. Consequently, the BRIEF descriptor is 

assembled as follows 

      ∑                

      

 Equation 8 

            {
              

           
 Equation 9 

For the feature point matching procedure between feature points from previously learned 

objects and feature points from the current scene it is not sufficient to go the usual way, this 

is to take the closest two matches, compute the ratio of their distances and accept the match 

if the ratio stays below 0.8. We apply a more sophisticated method since the standard 

approach fails if the same object appears multiple times in the scene. In that case the ratio 

would always be close to 1 and many good matches would be discarded. Instead, we create 

two classes of matches: strong matches that have a distance between both descriptors lying 

below threshold        are collected in the set        and weak matches whose matching 

distance is bigger than        but smaller than a second threshold             go into set 

    . We now check each detected feature point of the scene against every trained object 

instance    whether it is a strong, weak, or no matching and put matches into the sets    

      

and    

   
, respectively. This allows each feature point to have multiple active object 

association hypotheses after descriptor matching and before the final object model selection. 

To localize all existing objects in the scene we then process the sets    

      and    

   
 for 

each object instance    individually. First, these sets become sorted by matching distance. 

Then we down-sample    

      spatially to a grid of cell size   (where     in our 

experiments) by keeping only the strongest matching per cell. This operation yields the set 

   

      
 that contains uniformly distributed matches with a high matching quality. Following, 

we consider each matching feature point       

      
 as a seed point for object localization 

by putting feature points    {   

         

   } of the local 2D neighbourhood of    into the set 

   

      of potential matches for an object. Then, the PROSAC [27] algorithm is employed for 

guided drawing of point triplets, the model pose estimation based upon those points and 

verification of the model with the remaining points of    

     . PROSAC terminates either with 

a valid estimate that satisfies the non-randomness condition or asserting that there is no valid 

match between object model and scene points.  After processing all seed points       
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according to this procedure, we filter object detections with intersecting bounding boxes by 

removing the one that fits the model worse. 

2.2.2 Results 

The obtained object detection and pose estimation algorithm has several desirable 

properties: it can detect and localize objects in any pose, at different distances to the camera 

and even if large parts are occluded. If multiple instances of the same object occur in the 

scene, they can be all detected and localized individually. The procedure can recognize all 

occurring objects in a scene within a second on a modern laptop computer when the 

database of known objects contains 10 objects. Some exemplary images of detected objects 

in a scene are displayed in Figure 9. The bounding box is drawn around every detected 

object in order to highlight the estimated pose. 
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Figure 9 Object detection and localization in real scenes mastering variance in object pose and 
occlusions. 

2.3 Object Categorization 

In order to enhance the usefulness of the previously discussed object recognition method, we 

also developed an object categorization algorithm that can determine the category of a 

formerly unseen object. This method is complimentary to the object recognition approach as 

is can be used for learning new objects automatically in future applications or as a hint of 

present objects even when they are not known to the robot, yet. Hence, the versatility of the 

robot increases because it can deal with a greater selection of objects whose manual training 

would have been very tedious for the user. 

The work on object categorization so far has been published at two conferences: 

1. R. Bormann, J. Fischer, G. Arbeiter, and A. Verl, “Efficient Object Categorization with 

the Surface-Approximation Polynomials Descriptor,” in Spatial Cognition VIII (C. 
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Stachniss, K. Schill, and D. Uttal, eds.), vol. 7463 of Lecture Notes in Computer 

Science, pp. 34–53, Springer, 2012. 

2. R. Bormann, J. Fischer, G. Arbeiter, and A. Verl, “Adding Rotational Robustness to 

the Surface-Approximation Polynomials Descriptor,” accepted for publication in 

Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids 

2012), Osaka, Japan, November 2012. 

The papers are attached in Appendix A and provide a comprehensive description and 

evaluation of the developed object categorization system. 
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3. Data Fusion for Human Detection and Localization 

In this section, we introduce the data fusion method of fusion robotic sensors with ambient 

camera to detect and localize person robustly.  

3.1 Camera Sensory Network 

The Robot House is the test environment of our project where participants will be invited to 

perform various activities related to carrying out household chores. After developing and 

testing the human localization software in local base at the University of Amsterdam (UvA), 

UvA installed the human localization component to the Robot House in the University of 

Hertfordshire (UH).  

 

Figure 10: Camera Locations in the Robot House 

Two types of cameras have been used in the Robot House. Figure 10 gives an overview of 

the cameras that are mounted there. The main area is the living room which is the largest 

area of the Robot House. To localize persons in such an area, two fish-eye cameras (GV-

FE4211) are mounted on the ceiling, covering the whole living room as well as part of the 

kitchen and corridor. The fish-eye camera gives an omnidirectional view of the environment 

and enables us to monitor all angles of a location with less occlusion. 

                                                

1
 www.geovision.com.tw/english/Prod_GVIPCAMH264Fisheye4.asp 

file:///C:/Users/ninghang/Desktop/www.geovision.com.tw/english/Prod_GVIPCAMH264Fisheye4.asp
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The kitchen area of the robot house is relatively small, and a Microsoft Kinect sensor2 is 

considered to be sufficient for monitoring users in the relatively small space. The Kinect 

sensor is mounted on the left side of the kitchen above the window to avoid the direct 

sunlight from the window and also keeps a whole field of view of the kitchen. In the current 

work, only the colour component of the Kinect is used for localizing humans in the kitchen. 

But we expect the depth component would be more useful in the next step of our research to 

recognize human activities.  

Figure 11 gives an overview of how the devices are connected in our localization system. 

Each of the camera sensors is connected with a dedicated PC via a fast wired connection. 

After receiving image streams from the camera, the PC processes the data and generates 

intermediate products for data fusion. All three dedicated PCs are connected to a network 

switch and a wireless Router, to enable data communication with the Care-o-bot and other 

PCs. 

 

Figure 11: sensory system network 

The Robot Operating System (ROS) are used as the software framework when building the 

human localization module. With ROS, the messages from the Robot can be easily accessed 

from the dedicated PCs, facilitating the data fusion of ambient cameras and robot sensors. 

3.2 Camera Calibration 

Benefiting from the fish-eye effect, our cameras have an Omni-directional field of view of the 

environment. However, the images from the fish-eye cameras are highly distorted and cannot 

                                                

2
 www.xbox.com/KINECT 

file:///C:/Users/ninghang/Desktop/www.xbox.com/KINECT
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be used directly for localizing people. The intrinsic parameters of the cameras, therefore, 

have to be estimated to eliminate the image distortion. After the intrinsic parameters are 

calibrated, we then find the rotation and position of the camera in the world coordinate frame 

by extrinsic calibration. In this section, we introduce our method of estimating the two set of 

parameters that are necessary for transferring coordinates between the image frame and the 

world coordinate system. 

3.2.1 Intrinsic Calibration 

The Intrinsic model of the camera defines the curvature of the lens in the fish-eye cameras, 

i.e. in which way the lens is distorted. The OpenCV library [4] provides functions that 

calibrate the intrinsic parameters of the cameras using the checker board pattern3.  

 

Figure 12: the checkerboard pattern used to calibrated intrinsic parameters of the camera 

The intrinsic calibration involves of estimating two parameters of the camera: a camera 

matrix and the distortion coefficient. The camera matrix defines the location of the optical 

centre of the camera and the focal length expressed in the pixel coordinates. The distortion 

coefficient controls how the distortion spreads over the image space.  

Figure 12 shows a sample image of the checkerboard pattern that is used in calibrating the 

intrinsic parameters of the fish-eye camera. Our calibration software finds out where the 

corner points of the checker board pattern locate in the image coordinates, and use them to 

approximate the camera matrix and the distortion coefficient. Each pattern gives a set of 

locations of the corner points and generates a function of the intrinsic parameters. By using a 

number of such images with different attitude and positions, we can compute the intrinsic 

parameters that fit the functions optimally. 

                                                

3
 The documentation for the camera calibration and the environmental setup is available at 

http://basterwijn.nl/ninghang/robot_house/ 

http://basterwijn.nl/ninghang/robot_house/
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3.2.2 Extrinsic Calibration 

The extrinsic parameters of the camera define the location of the camera in the room and 

how the camera is oriented. After apply the image with intrinsic parameters, we are able to 

transfer coordinates between the undistorted image space and the locations on the floor of 

the Robot House. 

 

Figure 13: markers are attached on the floor of the Robot House for extrinsic calibration 

We made a set of markers on the floor as shown in Figure 13. The markers were put with an 

interval of one meter and their locations were manually annotated from the image. Combining 

their corresponding locations in the world coordinate frame, we are able to compute the 

translation and rotation matrix between the two coordinate systems. Thereby the extrinsic 

parameters are estimated. 

3.3 Data Fusion for Human Localization 

3.3.1 Related Work 

There is a long tradition of research in the field of people detection and localization in robot 

applications. Many studies concentrate on people detection using the sensors on the mobile 

robot. Relatively simple sensors such as laser range finders were used for detection and 

localization [5][6]. People are extracted from range data as single blobs or found by merging 

nearby point clusters that correspond to legs. Probabilistic techniques such as multi-

hypothesis trackers are used for tracking multiple objects [7]. 

Instead of using the laser range systems on the robots, vision systems have also been used 

for people detection. Since robot-mounted cameras are moving, the detection cannot be 

based on background modelling methods, and local characteristics such as colour 
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histograms or local features have been used [8][9]. To make detection more robust, the 

fusion of different modalities of robot sensors is suggested. Leg detection by laser range 

finders in combination with face detection has shown to be more robust than individual 

modalities [9] [10]. In [11], Viola-Jones type of visual detectors are used to recognize body 

parts and are combined with laser range data. 

However, future robots will operate in smart homes that are equipped with sensors, and it 

seems obvious to use these sensors also for person detection. One advantage is that the 

system may be more robust: noise or deviations in a sensor may be detected and corrected. 

Another advantage is that the robot does not need to keep monitoring the persons all the 

time. The robot may be required to finish other tasks from time to time, rather than allocating 

its resources to the task of tracking each person all the time. 

Person tracking systems that are mounted in domestic environments are usually based on 

vision systems, although there are some exceptions using laser range finders [12] or speech 

[13]. Overhead cameras are often used, which are usually mounted very high, and have a 

very wide angle of view, covering most of the areas in the room. Since they look down from 

above, it turns out that human users are less likely to be occluded compared with cameras 

mounted on the side. An application in a kids playroom is given in [14]. 

In our set-up we combine an overhead camera with the laser range finder on the robot. In 

order to have a sound probabilistic framework we build on the approach of [15], who uses a 

probabilistic foreground segmentation with a template based detection. The result is a 

posterior distribution on the locations of the persons in the room. This is combined with a 

distribution based on the laser range finder. 

3.3.2 System Overview 

Our proposed system is used to detect and localize the elderly people in chores of robot 

home-care. With our system, the robot is able to obtain accurate locations of the users in the 

room, and thereby it can interact with the human users precisely. The robot we use 

possesses multiple on-board sensors, including a Microsoft Kinect camera, a stereo camera, 

and a laser range finder. 

In the recent work, most of the robots are designed for following the targets. These 

approaches, therefore, require that the users are always in the range of the robot sensors. In 

the case of home care, however, the robot moves around in the room to execute a variety of 

tasks, and at some points the robot sensors will loss the track of the human user, e.g. the 

robot is asked to get an object that is in an opposite direction to the user. To overcome such 

a problem and enable continuous human localization, we adopt an ambient camera and 

mount it on the ceiling of the room. The advantage of the ambient camera is twofold: (1) that 

it gives a top view of the whole room, and (2) that people in the room are less likely to be 

occluded compared with the robot cameras. Since it covers the whole area of the room, the 

ceiling-mounted camera is able to localize persons continuously when the users are present 

in the room, so that when the robot sensors fail to detect the users, the ambient camera is 

still able to report the correct location to the system. Besides, the robot sensors and the 

ambient camera observe the persons from different directions, giving complementary cues 

for the human detection and localization. The fusion system can, therefore, obtain a better 

estimate of the location of the users compared with the approaches using single modality. 
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To combine the robot sensors and the ambient camera, we propose a Bayesian fusion 

framework. Next, we formulate the problem and introduce our fusion framework. 

3.3.3 Approach 

The Bayesian approach provides an elegant way of fusing between different sensor sources 

as well as dealing with noise and uncertainty in sensor measurements [16]. 

Assume    is the observed data from the robot sensor, and    is observed from the ambient 

camera, i.e. the overhead camera. Given    and    , we aim to find a robust estimation of the 

location of multiple persons   , the location of the robot    , and the orientation of the robot 

   . In the context of a Bayesian framework, the posterior distribution           |       is the 

target we would like to know by the end. 

Using the Bayesian Theorem, the posterior probability can be derived as 

            |               |                        Equation 10 

where                                 is the prior distribution that is known before the 

sensory data is observed. These priors can be estimated either from separate training data, 

or from prior knowledge of the problem. In our case, we simply assume a uniform distribution 

over the ground area of the floor, and a uniform distribution over the angles of the orientation. 

       |          is the likelihood. 

By assuming    and     are measured independent with separate sensors, and     is not 

dependent on the rotation of the robot   , the likelihood probability of Equation 11 can be 

decomposed as 

        |              |             |       Equation 11 

where     |          is the likelihood of generating the image    given the combination of    

,   , and   , while     |       represents the likelihood of the ambient camera that 

generates the observation    . 

Again, our goal is to find the optimal combination of   
 ,   

  and   
  that maximizes the 

posterior distribution           |      , which is a typical MAP problem that can be solved by 

particle filtering [17]. 

The camera likelihood     |      is used as the proposal distribution to sample particles, 

and the particles are weighted by the corresponding likelihood of the laser data 

    |         . The optimal combination of   
 ,   

  and   
  is considered as the particle that 

holds the highest weight. In a Bayesian framework, however, we find the expectation of the 

parameter values rather than the most probable value. Therefore, rather than choosing one 

particle that maximizes the joint distribution, we compute the solution as a weighted sum of 

all the particles. 

The remaining is to compute the two likelihood terms in Equation 11. In the following two 

sections, we introduce the methods of estimating the two likelihood items separately. Here, 

we will focus on modelling the likelihood of the robot sensor. For the camera, we adopt the 

algorithm from [15]. 
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Measuring Likelihood of Robot Sensors 

In our data fusion framework, the state is to be estimated is a triplet of           . The 

likelihood of the robot sensors measures the probability of generating the observation     

rather than all the observations that can be possibly generated from such a triplet, given such 

a state triplet, i.e.     |         . 

In this report, we adopt the Laser Range Finder as our robot sensor. The Laser Range Finder 

scans in a plain and detects the distance to the objects in range. In the context of human 

localization in a home setting, the detected objects can either be objects that exist in the 

room or be part of the human in the room. In this report, we use the background model and 

the human model, respectively, to model the probability that a region is occupied by either of 

these two objects. Then we can compute the occupancy map of the room, i.e. the probability 

that the area is occupied by either the background object or by a human. 

The occupancy maps are used to estimate the probability of the robot sensor generating a 

certain set of observations, i.e. the robot sensor's likelihood. 

Probabilistic Background Model 

To find out what the room looks like in terms of background obstacles, the robot is first driven 

around to build a background model of the room. 

 

For each time stamp, the robot sensor fires a set of laser beams                 . Whenever 

there is an object in the way, the laser is reflected back to the base and thereby the distance 

to the background objects is detected. Given the coarse location of the robot, we are able to 

find the approximate locations of these laser detections. But due to the uncertainty in the 

location of the robot as well as the noise in laser data, these locations are not fully reliable. 

Therefore, simply giving a Boolean answer to the occupation of the local region is not an 

elegant solution, and a probabilistic way of modelling the background is required. 

In our approach, the ground plane is first discretized into small cells of equal size. We denote 

k as the index of the cell on the ground plane. Then for each cell k, we aim to estimate the 

probability that the cell is occupied by a part of the background. Collectively, these 

probabilities form the background model        

In this report, the background model        is measured as the number of times the laser 

scanner observes an occupied cell normalized by the number of times that the cell is in the 

range of the laser scanner. To formalize the problem, we define three patterns that can be 

observed given a scan l and a cell k, see Figure 14Figure 14: The relation between a laser 

beam and a cell can be summarized into three patterns. In the left pattern   
   , the laser is 

blocked by the cell, referring that the cell is occupied by certain background objects. The 

middle pattern   
  𝟐 shows the laser has passed through the cell, indicating the cell is 

empty.  As for the third pattern, however, the laser beam is blocked before it reaches the cell. 

Therefore, no clue about whether the cell is occupied can be deduced from the third pattern.. 

We use a random variable   
  to denote the index of the three patterns. The first pattern 

refers that the cell k is detected by l as an occupied cell. The second pattern denotes that the 

cell is observed as an empty cell. As for the third pattern, no information about the cell can be 

inferred since the cell is either occluded by other background objects that are in front of the 

cell, or the laser is not fired in the direction of the cell. Therefore, the third pattern does not 
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contribute to the background model while only the first two do. Next, we estimate the 

background model by 

 

Figure 14: The relation between a laser beam and a cell can be summarized into three patterns. In the left 

pattern   
   , the laser is blocked by the cell, referring that the cell is occupied by certain background 

objects. The middle pattern   
  𝟐 shows the laser has passed through the cell, indicating the cell is 

empty.  As for the third pattern, however, the laser beam is blocked before it reaches the cell. Therefore, 
no clue about whether the cell is occupied can be deduced from the third pattern. 

 
      

∑     
     

 ∑     
         

     

 
Equation 12 

where   is a Kronecker delta function, and the equation sums over all the lasers that pass 

through the cell k. 

Learning Human Model 

The human model    reflects how the human looks like from the robot sensors in the world 

frame. It is learned by accumulating the laser points that locate in a small region around the 

center of the person. Each pixel in such a region holds a value indicating the probability that 

the cell is occupied by the person, i.e. a higher value means the cell is more likely to be 

detected by the robot sensor due to the occurrence of the human. 

Similar to training the background model, we learn the human model    by calculating the 

number of laser beams that either have a positive detection at the cell or pass through the 

cell. Again, we adopt the Equation 12 for computing the human model   . 

Given the person locating in cell k, the local human model    can be translated into the world 

frame to generate a human model map      . 

 

Occupancy Map 

Knowing the background model and the human model, we are able to compute the 

probability of occupancy for each of the cells on the ground plane. Note that the cell cannot 

be occupied by both the human and the background obstacle at the same time, therefore the 

occupancy map is computed as 

 
      

      ̂           ̂    

            
 

Equation 13 

where 

 
 ̂               

Equation 14 
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Likelihood of Laser Range Finder 

The likelihood of the Laser Range Finder denotes the probability of generating the current 

observation given the state           .    represents a vector of the laser range data. 

Assume    contains N independent measurements    
    

        
        

  . Suppose the 

direction of the range measurement   
  is defined by   

 . Therefore 

 
    |          ∏    

  |        
  

 

   

 
Equation 15 

    and   
  define a robot at the location    , and the robot fires a laser beam in the direction 

of   
 .    refers to the location of multiple persons. 

 

Figure 15: The laser beam (Arrow) passes through m-1 empty cells and finally reaches the cell at   . The 
maximal range of the laser covers M cells 

Suppose the laser beam   
  passes through a set of cells in a straight line, e.g. 

                , and then it detects a certain object at the cell   .    denotes the maximal 

range that the laser can reach. See Figure 15. Then the probability of obtaining detection at 

cell    rather than the other locations can be computed by 

 
    

 |        
   

   
∏  ̂         

∑          ∏  ̂         
 

Equation 16 

Since multiplications of the probabilities can result in very small numbers which lead to 

floating point overflows, we compute the log-likelihood instead 

 

    
  |        

        ∑   

     

 

Equation 17 

where 

 
            

   ∑      ̂  
 

   

   

 
Equation 18 

Likelihood of Ceiling Mounted Camera 

The likelihood of overhead camera is computed the same way as in [15]. Assuming the pixels 

are independent from each other given the image taken by the ceiling mounted camera, the 

likelihood     |      can be derived as 
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     |       ∏     
 |      

     

 Equation 19 

We build a specific polyhedron to model the 3D shape of both the human and the robot. 

Given the location of the human    and the robot    , the polyhedrons are projected into the 

image space, generating a foreground mask M. For each pixel location     
   on the image, 

we look up in the mask and use    to determine whether the pixel is a part of the foreground 

or background. Then the likelihood can be computed as 

     
 |              

            
         Equation 20 

where      
   is the background model which is learned beforehand using the background 

images.      
   is the foreground model, and in our case we apply a uniform distribution over 

the colours. 

3.3.4 Experiment and Results 

The proposed data fusion framework was evaluated on data collected with a Nomad robot 

platform and an overhead camera, see Figure 16. The overhead camera is mounted centrally 

on the ceiling and gives a panoramic view of the room. The frames that are captured with the 

camera are highly distorted due to the fish-eye effect. The camera's lens parameters are 

calibrated with the OpenCV module [4]. 

  

Figure 16: An overview of the experiment room and the observed data. Left: captured by the over head 
camera; Right: laser detection points (red dots) 

On the Nomad robot platform, a Laser Range Finder, a Kinect camera and a stereo camera 

are mounted on the robot. For the present experiments, we restrict ourselves to test the 

framework by using the Laser Range Finder, mounted at a height of 20 cm. The robot is 

remote-controlled and manually driven around in the room. The robot records its odometry 

information by measuring the rotations of its two wheels. The odometry data are then 

adopted for generating the orientation and location of the robot. The Nomad robot runs on 

the Robot Operating System (ROS), and all data captured on the robot site is time stamped 

in ROS. 

The exact time stamp of each frame collected with the overhead camera is obtained by 

means of a stopwatch mounted close to the camera. We use a nearest-neighbours classifier 
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to recognize digits in the image to recover the time stamp. We synchronized the robot 

sensors and the overhead camera based on specific time points, where an event (e.g. the 

puncturing a balloon in front of the Laser Range Finder) was observed by both the robot 

sensor and the overhead camera. 

The ground plane is subdivided into small cells of 50x50mm. In a first training run, the robot 

was remote-controlled to generate the background model. Second, the human model is 

trained according to Equation 12 . During testing, the two models are combined 

probabilistically into an occupancy map given the particles, as depicted in Figure 17. Here 

each pixel of the occupancy map reflects the probability that that location is occupied, either 

by a person or by a background object in the room. 

 

Figure 17: The occupancy map is generated from combining the human model and the background 
model. For each set of locations of persons, i.e. a particle, an occupancy map is estimated. Left: Human 
model. Middle: Background model. Right: Occupancy Map given the hypothetical location of persons 
(green crosses) 

We evaluate the systems by measuring the Euclidean distance between the detection results 

and the ground truth locations of persons. In this report, three localization approaches are 

tested and compared: a) with a single Laser Range Finder; b) with a single overhead 

camera; c) with our proposed fusion framework. We evaluate the proposed system and the 

single modality approaches on 165 camera frames together with synchronized laser data. 

For each of these frames, volunteers manually annotated the locations of the persons in the 

ground plane, based on physical markers that were positioned on the floor during the 

recording, and these markers were used as reference to compute the ground truth location. 

A particle sampling approach is applied both in the single laser and the data fusion approach. 

An equal number of 800 particles are sampled. Due to the fact that humans are not likely to 

be too close to each other, we define the safe distance between two persons as 500mm. We 

incorporate such assumption to reduce the space when sampling particles, i.e. the sampled 

point is always at least 500mm away from each of the points the previous sample set. 

The single laser approach detects the foreground laser points by set a threshold to their 

probability in the background model. The threshold in our experiment is empirically set to 0.3. 

The particles are sampled from the foreground laser points with a Normal distribution on the 

location of the points. The weights are assigned by the likelihood of the laser data given the 

particles, and they are quantized in the sub-divided cells on the ground plane according to 

the locations of the particles. The human is then localized by recursively finding the cell that 

has the largest sum of weights as in [15]. 

In the approach with a single camera, we adopt the human detection algorithm from [15]. For 

each candidate location of the persons on the ground plane, the likelihood of the camera 
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frame is measured. The locations of the multiple persons are found by choosing the locations 

that maximize the likelihood of the camera image. 

The proposed approach combines the overhead camera and the robot Laser Range Finder in 

a probabilistic Bayesian framework. After persons are localized with the single camera, the 

particles are sampled around the location of the persons with a Normal distribution. These 

particles are then weighted by the likelihood of the laser observations. The final detection is 

computed by the weighted sum of the particles that are sampled from the same person. 

Figure 18 shows the detection results of our data fusion system comparing with the approach 

using single modality. The proposed fusion system consistently outperforms the single-

camera and the single-laser approach, and approximately 80 percent of the detections are 

less than 200 mm from the ground truth location. In contrast, only 70% of the camera-only 

detections and 27% of the laser-only detections are within such distance of the ground truth.  

 

Figure 18: Comparing the proposed data fusion approach and the single modality approach 
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4. Face Recognition and Tracking 

The person recognition and tracking system so far bases upon the data from cameras 

mounted at the ceiling of the room that have a wide viewing angle. Consequently, it is not 

possible to recognize the identity of a person because of the low resolution and because of 

the inappropriate perspective for this task. Nevertheless, person identification is highly 

desirable for human-centred and individualized tasks like reminding to medicine or bringing 

some ordered item to the user. The cameras that are placed in the robot’s head are well-

suited for the identification of faces as they capture persons from an adequate perspective 

and have the necessary resolution to record details. Therefore, the identification of persons is 

realized with the movable Care-O-bot. By using the robot’s localization in the map of the 

house and the calibration of the ceiling cameras to that map, the data can be streamed as 

the trajectories of persons that are attached with name tags. The component described in 

this section is already available as open-source ROS package at 

http://www.ros.org/wiki/cob_people_perception. 

4.1 Methods 

The face identification module has three parts: first, there is the localization of faces in the 

image, then follows the identification of those detected faces and finally we have a 

component that organizes some tracking of found faces to render the labels more robust. 

4.1.1 Face detection 

The first step is face detection, which is the localization of regions in the image that contain a 

face. The standard approach for this task is the robust and fast method of Viola and Jones 

[28] that employs a classifier cascade based on Haar-like features to reject non-face regions 

on an image of a colour camera. We use this approach because of its reliability and efficient 

computation but modify it to reduce the number of false positives. Our modification uses the 

possibility to rely on depth data as well that originates from the sensor fusion algorithm 

presented in Section 2.1 or directly from a RGB-D sensor device like the Asus Xtion Pro live. 

The idea is to search for heads on the depth image with the procedure of Viola and Jones, 

first, to lower the chances of false positive face detections in the subsequent application of 

the Viola-Jones classifier to the colour image. The two classifier cascades are trained with 

exemplary heads regions found in depth images and face regions from the colour image, 

respectively. The head regions, however, contain a significant amount of background which 

is a problem for detection at other places. We hence generated a plethora of random 

background patterns automatically and placed them in the background of the training images 

for the cascade classifier. Figure 19 illustrates the process of two-staged face detection: first, 

the depth image is searched for head regions using the Viola-Jones classifier (1) and only for 

those regions that probably contain a head, we process the colour image with the Viola-

Jones classifier for faces (2). 

http://www.ros.org/wiki/cob_people_perception
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Figure 19 Face detection and identification. 

4.1.2 Face identification 

After the selection of face regions in the colour image the identification of these image 

patches follows. We use the Eigenfaces [29] algorithm which identifies a face by projecting it 

into a space of eigenfaces. Those eigenfaces are obtained as the principal axes when 

applying PCA to a large set of images depicting human faces. The eigenfaces that 

correspond to the largest eigenvalues can be considered as the most important prototypes 

for assembling an image of a human face. For training a recognition model of person   we 

capture several images of  ’s face and project them into the space spanned by the   most 

prominent eigenface vectors. The factors obtained from the projection represent the model of 

person  . If we are to recognize a person from a detected image patch of a face, this image 

is projected into the same eigenface space and the factors of the projection are compared 

with the known models of persons. If the distance to a face model is close enough, the 

respective label is assigned. However, if no model can be found close to the computed 

projection, the algorithm asserts that it does not know the depicted person. The identification 

is illustrated as step (3) in Figure 19 with the placement of a name tag. 

4.1.3 Face tracking 

Although the detection of faces and the identification only need a single RGB-D snapshot of 

the scene it is highly desirable to increase the confidence of an  identification if it can be 

verified over several frames or to keep track of a person even though the face is not visible at 

the moment. The tracking component supports exactly these purposes by assigning 

detections at time    to the previously recognized faces at time     . This allows increasing 

the confidence for an identified face with each redetection and lowering the confidence at 

each time when no detection can be associated with that face. In doing so, it is possible to 

assert face identification not before a certain threshold of confidence is reached. 

Furthermore, people regularly move their heads in a way that the face is not continuously 
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visible. Nevertheless, if we can identify the face once and still track the head in the following 

seconds, there is no reason why the label should not stay attached to the detected head. The 

tracking component facilitates exactly this behaviour and does not decrease the confidence 

of identification as long as the head is visible but not the face. The recognition confidence is 

hence only lowered when neither a head nor a face can be associated with the previous 

detection. 

4.2 Results 

Within experiments evaluating the power of the face detection component, a set of 120 faces 

from 10 persons and 424 non-face regions were used to train the classifiers. It has been 

taken care to capture different viewing angles and different mimics with the training set. The 

classification performance of the proposed method has been measured by processing 360 

images each containing one face. The classification results are compared with the 

classification performance of the original Viola-Jones algorithm applied on colour images, 

only. The results are shown in the left diagram of Figure 20. It becomes visible that our 

approach has the advantage of a very low false positive rate (1.1%) compared to the 24.1% 

of the original approach, which means that every fourth face detection would be a false 

alarm. At the same time, the detection rate of our method is almost equally high as for the 

original classifier with 98.0%. Furthermore, as depicted in the right image of Figure 20 the 

computation time of our variant is only little higher than half of the original approach, which is 

already very fast. 

 

   

Figure 20 Comparison of detection rate, false positive rate and false negative rate for the Viola-Jones face 
detector in the original and our version (left) and comparsion of the computational effort of both variants 

(right). 
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Figure 21 Examples of the application of face detection and identification to real scenes. 

Besides these quantitative results, we also demonstrate the successful application of the 

face recognition system in Figure 21.  
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5. Summary of the Applied Sensor Fusion Techniques 

As the description of work for WP4 puts emphasis on the fusion of sensory information from 

the sensors placed in the environment with sensory information generated on the mobile 

Care-O-bot, we like to summarize and highlight the employed strategies in this separate 

section. 

The original idea for the implementation of sensor fusion as stated in the description of work 

has been identified to be impractical and of very limited use for the following two reasons. 

First, the continuous calibration of multiple colour cameras is neither robust nor fast to 

compute. The calibration lacks robustness since the lens characteristics of the objectives put 

on the fish-eye camera and those of the cameras mounted on Care-O-bot differ by a large 

extent and furthermore, both kinds of cameras observe the scene from very different 

perspectives so that it is fairly complicated to find a sufficiently large and stable set of unique 

correspondence points which is a prerequisite for successful camera calibration.  

Furthermore, using present people as calibration landmarks, as proposed in the description 

of work as an alternative, is quite unreliable as well because it is neither guaranteed that 

there is any person visible in the images of all cameras nor can the pose estimation of body 

parts of detected people be accurate enough for a good calibration. Besides, the number of 

correspondence points that originate from people in the scene would be fairly limited and 

badly-distributed over the image which is another criterion of exclusion for this approach. 

Concerning the computational speed of continuous calibration it is easy to see that the 

extraction of robust feature points and their reliable matching are procedures that take at 

least one second if not more on a modern computer what turns this approach inapplicable for 

most purposes. Moreover, the computational power on the robot is limited so that this 

valuable computational effort should rather be available for other tasks. The second reason 

for abandoning the original idea of continuous calibration between robot and environment 

sensors is the restricted usefulness. A high precision camera calibration between robot and 

fish-eye cameras in the environment could only be beneficial for object recognition; however, 

this application requires high-resolution images of the objects which are to be detected. 

Because of their wide viewing angle the ceiling cameras are not in the condition to deliver 

this kind of data. Hence, there is no use for the cost-intense high-precision calibration of the 

mobile and fixed vision sensors. 

Nevertheless, the fusion of higher-level information, which originates from the robot and the 

cameras in the environment, is indeed of high value but requires a relative calibration with an 

acceptable accuracy in the range of   cm. This level of accuracy is achievable with simpler 

technologies that are already available for the environment cameras and the robot. The 

strategy for data fusion that we pursue in the current work is to fuse data with the help of a 

map of the robot house that has a fixed coordinate system. This approach is very feasible as 

all data processing of any sensor delivers information with spatial coordinates that can be 

easily transformed into that fixed map coordinate frame. At the one hand, the cameras in the 

environment need to be calibrated against the fixed map coordinate system once in advance, 

at the other hand, the Care-O-bot is continuously localized with its laser scanners with 

sufficient accuracy. All the coordinate frames are then put into the transformation tree (tf) of 

the robot operating system ROS so that coordinates can be transformed easily and 

computationally cheap from any sensor into the map coordinate frame or between any two 

sensors. 
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Specifically, this strategy is implemented for object recognition and categorization in the 

following way. Although the fish-eye cameras are not useful for object recognition and 

categorization, the presented systems can deal with the coloured point cloud data from 

modern RGB-D sensors like the Asus Xtion Pro Live. Hence, object recognition and 

categorization may run on any PC that has a calibrated RGB-D device attached and deliver 

object localizations in the detection range of the sensor. The detections can then be 

transformed to the map coordinate frame and stored in the common object database of the 

whole system. Consequently, this type of data fusion is transparent to the source of object 

detections, sensors in the environment may contribute with detections in the same way as 

the robot. 

The fusion of information is even tighter for the application case of person detection as the 

ceiling cameras deliver a different type of information than the cameras on the robot. The 

ceiling cameras have advantage of observing the whole house continuously; moving persons 

are thus always tracked and localized. However, the ceiling cameras do not have the 

perspective or the resolution for person identification, but the robot can do so with its own 

sensors. Again, sensor fusion is implemented successfully within the common map 

coordinate frame based on common spatial coordinates for both sensor’s detections at given 

points in time. This means, we fuse the trajectory and immediate location of a tracked person 

(information from the ceiling camera) with identity recognized by the robot. 

In conclusion, this procedure of information fusion is accomplishable with negligible 

computational overhead while generating a central map that collects all information from 

various recognition systems. Higher-level applications can directly benefit from this central 

map representation. 
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6. Conclusion and Future work 

In this deliverable, we have described a method that allows for the fusion of stereo camera 

data with the measurements of a time-of-flight sensor. This procedure generates more 

accurate depth maps than a time-of-flight sensor alone whenever stereo data is available and 

delivers denser depth maps than those which can be obtained from stereo vision alone. The 

sensor fusion algorithm is used to yield a better input for our object recognition system, which 

is able to detect and localize previously modelled objects in cluttered scenes even if they are 

occluded to larger extents. The object recognition system is accompanied by an object 

categorization module that can detect the class of objects that are not known to the robot, 

yet, and hence cannot be detected with object detection. Future work will address the 

extension of the object recognition method to apply to untextured objects as well. 

Furthermore, we would like to integrate more properties for the object categorization to model 

classes. It is also targeted to use object categorization for automatic learning of new objects 

whose initial label would be related to the detected class and could be specified later by the 

user. 

We furthermore have proposed a novel probabilistic fusion framework for the localization of 

humans using ambient cameras and robot-mounted Laser Range Finders. Our experiments 

show substantial improvements in the accuracy of the localization, thus enabling more 

precise interaction between robot and humans. Due to its probabilistic nature, our framework 

can deal with occlusions and the absence of measurements in a principled way. As a result, 

the localization of humans is more robust, and natural interaction becomes possible even in 

challenging conditions. 

In our current experimental work, the orientation and the location are not considered as part 

of the particle, but only the location of multiple persons are sampled. But we expect the 

performance can be improved by incorporating robot location and orientation into particles. 

We plan to specifically address occlusions and missed detections in one of the sensors. We 

will also extend the method to use more and different sensors, including the robot-mounted 

Kinect camera, as well as multiple overhead cameras. 

Finally, a simple method for multimodal face detection has been implemented that allows 

decreasing the number of false positives while keeping recall very high. In conjunction with 

the Eigenfaces approach for the identification of a face and the tracking over several frames, 

the current system can assert face labels for a low number of people with a high confidence. 

Upcoming work at this topic focuses on improving the robustness of the face identification 

approach to different lighting and higher numbers of distinguishable persons either by 

replacement with a different method or by better data pre-processing. 
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