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Short description

This deliverable reports on the data fusion and the activity recognition in household chores in
WP4 of the ACCOMPANY project.

At the beginning of the project we focused on data fusion for person detection and
localization. In the second year we extended the person detection to human posture
recognition. The basis of our work is the use of probabilistic graphical models. For the
posture recognition with a top view camera we developed a novel method for posture
recognition. When compared to a state-of-the-art approach of pose estimation, our posture
descriptor does much better. The results show that our method is able to correctly classify
79.7% of the test sample, which outperforms the conventional approach by over 23%.

We also worked on a more robust person detection and identification, which is needed in a
multi-user environment. We developed a system that seamlessly integrates the information
from the robot camera and fixed external top view camera. The results show improved
efficiency when the robot system is aided by the localization system of the overhead
cameras.

Most effort was on our research on activity recognition. We developed a novel discriminative
model for the recognition of human activities. The novel model was tested on the (CAD-120
benchmark standard benchmark data set. Experimental results on this data set indicate that
our model outperforms the current state-of-the-art approach by over 5% in both precision and
recall, while our model is more efficient in terms of computation.
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1 Introduction

This deliverable focuses on the activity recognition in the ACCOMPANY project. In the
previous deliverables we focused on the fusion of depth data (either with Kinect or with a
laser scanner) with the image information (D4.2) for object detection and person detection. In
deliverable D4.3 we presented a system design that was targeted to combine head tracking,
and head pose estimation in order to get a more robust localization and posture estimation
system.

In year 2 of the project we continued with the posture estimation. The environment where we
do the ACCOMPANY experiments is equipped with a top-view camera for monitoring human
activities. This setup is very useful because top-view cameras can provide accurate
localization and also limit inter-occlusion between persons. However, they also suffer from
body parts being frequently self-occluded. Conventionally, posture recognition relies on good
estimations of body part positions, which turns out to be unstable in the top-view due to
occlusion and foreshortening. In our approach, we learn a posture descriptor for each
specific posture category. The posture descriptor encodes how well the person in the image
can be ‘explained’ by the model. The postures are subsequently recognized from the
matching scores returned by the posture descriptors. In chapter 2 of this report we describe
the model we developed.

We also worked on data fusion, where we made progress in the fusion of information from
the top-view camera and the camera on the Care-o-Bot. Finding people is one of the most
fundamental tasks in robot home care scenarios and it consists of many components (e.qg.
people detection, people tracking, face recognition, robot navigation etc.). Researchers have
extensively worked on these components in isolation. But surprisingly, little attention has
been paid on bridging these components as an entire system. In chapter 3 we describe our
system and the evaluation of the entire system in a robot-care scenario.

The most important part of the work was carried out in activity recognition. Originally we
planned to apply HMM and DBN to the fusion of data from sensor networks and image
information, we decided to focus on activity recognition from the visual modality. The reason
for this is that we wanted to go beyond the state-of-the-art in activity recognition algorithms,
and explore novel methods. Probabilistic Graphical Models have been widely used for
recognizing human activities in both robotics and smart home scenarios. The graphical
models can be divided into two categories: generative models and discriminative models.
The generative models require making of assumptions on both the correlation of data and on
how the data is distributed given the activity state. The risk is that the assumptions may not
reflect the true attributes of the data. The robotic and smart environment scenario
environments are usually equipped with a combination of multiple sensors. Some of these
sensors may be highly correlated, both in the temporal and spatial domain (e.g. a pressure
sensor on the mattress and a motion sensor above the bed). , In contrast, the discriminative
models only focus on modeling the posterior probability regardless of how the data are
distributed. In our scenarios, the discriminative models provide us with a natural way of
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implementing data fusion for human activity recognition. In chapter 4 we describe a novel
discriminative model for the recognition of human activities.

The report is structured as follows: Chapter 2 describes our work on pose estimation. A
paper on this work has been accepted for IROS13. Chapter 3 describes our system that
integrates the information from the overhead camera with the camera on the Care-O-bot.
This work has been submitted to ICRA14. Chapter 4 describes our new approach for activity
recognition. This work has also been submitted to ICRA14. The full papers and submissions
are attached as appendices A, B and C.
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2 Posture Recognition with a Top-view Camera

Human posture recognition is one of the most important tasks for human-robot interactions
(HRI), as it provides a solid base for human activity recognition [5]-[7]. There are many
papers on recognizing human posture with robot sensors or ambient cameras in 2D [8], 2.5D
(RGB+Depth) [9] and 3D [10]. Most of the 2D approaches observe humans from a side-view
however, and recognizing human posture from the top-view still remains a challenging and
unsolved problem.

For the purposes of our work, posture recognition is defined as the process of assigning
semantic posture labels to people in an image (e.g. whether people are standing, sitting,
bending or pointing). In contrast, pose estimation estimates the configuration of the body
parts [11], and so focuses on getting accurate body part locations rather than on posture
labeling. Similarly, pose refers to a configuration of the body parts, and posture refers to a
category of poses that bear the same semantic label.

» standing

q pointing

sitting

input image body part locations classification posture

(a) traditional approach

standing

" pointing

sitting

input image posture descriptors classification posture

(b) our approach

In this section, we present a system that recognizes human postures from the still images
captured by a top-view camera. An overview of our system is shown in Figure 1. Our interest
in this problem stems from a robot assisted living scenario, where we use ceiling-mounted
cameras as part of a domestic monitoring system to inform the robot on the human activities.
Compared with robot-mounted sensors, top-view cameras give a good overview of the
overall scene and a large amount of information about the person. Also, top-view cameras
provide a better estimation of the human locations and allow for far less inter-occlusion
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between persons when compared to side-views and robot mounted sensors. Top-view
cameras do, however, suffer more from self-occlusion as compared to side view cameras.

-

(a) top-view (b) side-view

We distinguish between two types of occlusion: inter-occlusion and self-occlusion. Inter-
occlusion refers to an object being blocked by another. For example, the view of a person
can be partially blocked by the person in front. In contrast, self-occlusion means that the
object is occluded by itself (e.g. the limbs are occluded by the head and the torso). The two
types of occlusions both happen in the side-view and top-view, but at different levels. The
inter-occlusion is more frequent in the side-view because other persons also stand at the
same height level. In contrast, self-occlusion is more severe in the top-view (see Figure 2).
Most literature on posture recognition addresses the side-view and neglects the problem of
top-view occlusion.

In our work, we focus on recognizing human postures under the severe self-occlusion seen
in top-view images. The conventional approach is to firstly estimate the human pose
configuration, and then classifies postures based on the body part positions [8]. In top-view
images, people are largely self-occluded. With little information about the body part locations,
recovering an articulated pose from these images is a difficult task even for human
annotators, let alone to further derive the posture category based on the ambiguous body
part locations.

Recent work shows that, when the joint positions are accurately known, the best
performance in posture recognition is obtained from the 3D joint positions [8]. In our
approach, we recognize the human posture without explicitly knowing the exact location of
body parts, and we will show that, in the case of heavy self-occlusion, this approach
outperforms joint position based posture recognition. Unlike the conventional approach which
classifies postures based on the body part locations, our idea is to use posture descriptors
instead for classification. A posture descriptor provides a mapping from image features to the
matching score of a posture category. Given a new test image, each posture descriptor gives
a matching score that measures how well the person can be explained by that posture
descriptor. For example, the standing posture descriptor returns a higher value when applied
to standing people, and lower values on the others. Note that the posture categories overlap.
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For instance, a standing person may be also pointing. Our posture descriptors encode such
attributes in a natural way by enabling multiple data labels to be applied to a single image.
Figure 1 compares our proposed system with the conventional approach.

In this work, we address the following research questions:

1) Is 2D pose competitive with 3D pose for posture recognition? Posture recognition
from (perfect) 3D pose has been shown to outperform appearance-based
approaches. We show that the performance of posture recognition with 2D pose is
virtually identical to 3D pose, including those derived from top-view image projections.

2) How accurately can we obtain 2D pose from top-view images? To investigate this, we
apply a state-of-the-art 2D pose estimation algorithm to the top-view images. We
show that the performance is generally very low, but the specific models that are
trained on a particular posture category perform comparably better.

3) How accurately can we recognize posture from imperfect 2D pose, and how does this
performance compare to our proposed model? We show that our proposed model
based on posture descriptors significantly outperforms the baseline, which consists of
two state-of-the-art approaches.

For details of the paper, please refer to Appendix A.
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3 Multi-User Identification by Fusing Robot and Ambient Sensors

Two fundamental tasks in robot home care scenarios are people localization and people
identification. They are also the elemental components for more advanced tasks such as
activity recognition [1]. In recent years, researchers have been extensively working on the
tasks of people detection [2], people tracking [3], face recognition [4], robot navigation, and
robot controls, but mainly as isolated tasks instead of combining these systems for real life
applications.

Hello Richard!
How may |
help you?

In our work, we study these tasks jointly, and we introduce a unified system that integrates
these components in our scenarios, see Figure 3. The system is very efficient and suitable
for real-time applications. Moreover, the components are complementary to help improving
the robustness of the entire system. Commonly used sensors for these tasks include
overhead cameras and RGB-D sensors on mobile robots. The overhead cameras are usually
fixed at the ceiling, covering most of the areas in the room. The cameras only need to be
calibrated once so that the coordinates of the detected person can be transformed easily
from the image space to the ground-plane of the room. As the camera is mounted on the
ceiling, people in the video are less likely to be occluded by each other. The overhead
camera commonly has a wide field of view. Thereby one camera is often sufficient for
detecting and tracking people in the whole room. Despite these benefits, it is very difficult for
the overhead camera to recognize people’s identity. Faces can hardly be seen at many
locations. The most prominent parts of people are the clothes, but they may be changed from
session to session.

The overhead camera may be enough to locate a person, but it is not sufficient for people
identification. The sensors on the robot, (e.g. Microsoft Kinect etc.) provide a complementary
view to the overhead camera. The on-board cameras are commonly mounted at a level that
keeps the human face in sight. The RGB-D sensor provides both the color image from a
color camera and the depth image from a range camera. By fusion of the depth image and
color image, a face can be recognized robustly [4]. However, the RGB-D sensor is limited in
both the range and the view angle. When people are too close, the face is outside the field of
ACCOMPANY Deliverable D4.4 Report Page 10 of 36
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view; when they are far away, the accuracy and resolution of face data drops quickly. An
advantage of the combination with ceiling cameras for tracking is that the robot itself does not
need to keep monitoring the persons all the time. Hence, the robot may carry out other tasks,
rather than allocating its resources to the task of tracking each person. In this section, we
introduce the system that is used in the ACCOMPANY project.

The architecture of the proposed system is
shown in Figure 4. Our system consists of
three modules, a) people detection and
tracking, b) people identification, and c¢) a joint
tracker that combines both of the systems. The
first module finds multiple people that are
present in the room using two overhead
cameras. The background probabilities are
modeled with a dynamic probabilistic
background model. Using the background
model, people in the room are detected with a
Bayesian people detector. After that the
detection is associated with the tracks by
comparing cues of appearance and the
positions. The second module identifies people
using a Kinect sensor that is mounted on the
robot. We apply a fast search for all head-
shaped objects using the depth camera,
generating a set of candidate face locations.
These candidate locations are evaluated in the
color image for face detection. Once the
candidate is verified as a face, features are
extracted from the face for face identification.

The third module collects information from the
first two modules and associates tracks with

People Identification

People Detection and Tracking

RGB-D Camera of Robot

: 3
depth image

Head Detection

inside head areas in depth image

Face Identification

Q )
£N head pose correction

illumination ™~
i
normalization » N

C:I ‘h'e :‘:R

N S R
probability distri-  projection into
bution over names  Face Space

Identification Tracking

Ceiling Cameras

human identities. Every time a new person is recognized, the joint tracker finds the closest
tracks and labels the track with the respective name.

For details of the paper, please refer to Appendix B.
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4 Learning Latent Structure for Activity Recognition

Robotic companions which help people in their daily life are currently a widely studied topic.
In Human-Robot Interaction (HRI), it is very important that the human activities are
recognized accurately and efficiently.

In this section, we present a novel graphical model for human activity recognition. The task of
activity recognition is to find the most likely underlying activity sequence based on the
observations generated from the sensors. Typical sensors include ambient cameras, contact
switches, thermometers, pressure sensors, and the sensors on the robot, e.g. RGB-D sensor
and Laser Range Finder.

.. Latent-state layer

* Target-state layer

* Observation layer

Probabilistic Graphical Models have been widely used for recognizing human activities in
both robotics and smart home scenarios. The graphical models can be divided into two
categories: generative models [12], [13] and discriminative models [1], [14], [15]. The
generative models require making assumptions on both the correlation of data and on how
the data is distributed given the activity state. The risk is that the assumptions may not reflect
the true attributes of the data. The discriminative models, in contrast, only focus on modeling
the posterior probability regardless of how the data are distributed. The robotic and smart
environment scenarios are usually equipped with a combination of multiple sensors. Some of
these sensors may be highly correlated, both in the temporal and spatial domain, e.g. a
pressure sensor on the mattress and a motion sensor above the bed. In these scenarios, the
discriminative models provide us a natural way of data fusion for human activity recognition.

The linear-chain Conditional Random Field (CRF) is one of the most popular discriminative
models and has been used for many applications. Linear-chain CRFs are efficient models
because the exact inference is tractable. However, they are limited in the way that they
cannot capture the intermediate structures within the target states [16]. By adding an extra
layer of latent variables, the model allows for more flexibility and therefore it can be used for
modeling more complex data. The names of these models are interchangeable in the
literature, such as Hidden-Unit CRF [17], Hidden-state CRF [16] or Hidden CRF [18].
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In this section, we present a latent CRF model for human activity recognition. For simplicity,
we use “latent variables” to refer to the augmented hidden layer, as they are unknown either
in training or testing. The “target variables”, which is observed during training but not testing,
represent the target states that we would like to predict, e.g. the activity labels. See Figure 5
for the graphical model and the difference between latent variables and target variables. We
evaluate the model using the RGB-D data from the benchmark dataset [14]. The results
show that our model performs better than the state-of- the-art approach [14], while the model
is more efficient in inference.

Our contributions can be summarized as follows:

1) We propose a novel Hidden CRF model for predicting underlying labels based on the
sequential data. For each temporal segment, we exploit the full connectivity among
observations, latent variables, and the target variables, from which we can avoid
making inappropriate conditional independence assumptions.

2) We show an efficient way of applying exact inference in our graph. By collapsing the
latent states and the target states, our graphical model can be considered as a linear-
chain structure. Applying exact inference under such a structure is very efficient.

3) Our software is open source and will be fully available for comparison.

Details of this work can be found in Appendix C.
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5 Conclusion and Future Work

The problem of posture detection from a top-view camera was studied and a novel method
for posture recognition was developed. When compared to a state-of-the-art approach of
pose estimation our posture descriptor does much better. The results show that our method
is able to correctly classify 79.7% of the test sample, which outperforms the conventional
approach by over 23%.

The identification and localization of multiple persons in a robot home setting was solved by
developing a system that seamlessly integrates the information from robot camera and top
view camera. The results show largely improved efficiency when the robot system is aided by
the localization system of the overhead cameras.

The novel model for activity recognition was tested on a standard benchmark data set (CAD-
120 benchmark). Experimental results on this data set show that our model outperforms the
state-of-the-art approach by over 5% in both precision and recall, while our model is more
efficient in computation.

We are currently extending our system with a hierarchical model that can jointly estimate
both high-level activities (e.g. cooking, drinking, etc.) and low-level activities (e.g. grasping,
placing, eating, drinking, etc.). As the observations may not be complete in practice, we will
also look into developing a model that can handle partially observed data.
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Posture Recognition with a Top-view Camera

Ninghang Hu', Gwenn Englebienne!, and Ben Kriise!'-?

Abstract— We describe a system that recognizes human
postures with heavy self-occlusion. In particular, we address
posture recognition in a robot assisted-living scenario, where
the environment is equipped with a top-view camera for
monitoring human activities. This setup is very useful because
top-view cameras lead to accurate localization and limited inter-
occlusion between persons, but conversely they suffer from
hody parts being frequently self-oceluded. The conventional way

of posture recognition relies on good estimation of body part
positions, which turns out to be unstable in the top-view due
te occlusion and foreshortening. In our approach, we learn

a posture descriptor for each specific posture category. The
posture descriptor encodes how well the person in the image
can be ‘explained’ by the model. The postures are subsequently
recognized from the matching scores returned by the posture
descriptors. We select the state-of-the-art approach of pose
estimation as our posture descriptor. The results show that our
method is able to correctly classify 79.7% of the test sample,
which outperforms the conventional approach by over 23%.

I INTRODUCTION

Human posture recognition is one of the most important
tasks for human-robot interactions (HRI), as it provides a
solid base for human activity recognition [1], [2], [3]. There
are many papers on recognizing human posture with robot
sensors or ambient cameras in 2D [4], 2.5D (RGB+Depth)
[5] and 3D [6]. Most of the 2D approaches observe humans
from a side-view, however, and recognizing human posture
from the top-view still remains a challenging and unsolved
problem.

For the purposes of this paper, posture recognition is
defined as the process of assigning semantic posture labels to
people in an image, £ g. whether people are standing, sitting,
bending or pointing. In contrast, pose estimarion is to esti-
mate the configuration of the body parts [7], which focuses
on getting the accurate body part locations rather than on
posture labeling. Similarly, pose refers to a configuration of
the body parts, and posmre refers to a category of poses that
bare the same semantic label.

In this paper, we present a system that recognizes hu-
man postures from the still images captured by a top-view
camera. An overview of our system is shown in Fig. 1b.
Our interest in this problem stems from a robot assisted-
living scenario, where we use ceiling-mounted cameras as
part of a domestic monitoring system to inform the robot on
the human activities. Compared with robot-mounted sensors,

The msearch has received funding from the Ewropean Union’s Sev-
enth Framework Programme (FPT/2007-2013) under grant agreement
No. 287624, and partly from the SIA project BALANCE-IT.

1 M. Hu, G. Englehienne, and B. Krise are with Intelligent Sysem Lab
Amsterdam, University of Amsterdam, 1098XH Amsterdam, The Nether-
lands {n.hu, g.englebienne,b.j.a.krose} @ uva.nl

2 B. Kréize is also with the Amsterdam University of Apphed Scence
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Fig. 1. A companson of the (a) traditional approach and (b) our approach.
The traditional spproach classifies postur: caiegones hased on the estimated
body part locations. In contrast, our proposed sysiem uses the matching
scores from the posture descriprors. By combining the matching score:
from all posture descnptors inio a single feature vector, we apply a binary
classifier to defermine whether the image belongs to a ceriain postur
calrgory or nok

top-view cameras give a good overview of the overall scene
and a large amount of information about the person. Besides,
the top-view cameras also provide a better estimation of
the human locations and allow for far less inter-occlusion
between persons when compared to side-views and robot-
mounted sensors. Top-view cameras do, however, suffer more
from a different form of occlusion than side-view cameras,
i.e. self-occlusion.

We distinguish between two types of occlusion: inter-
occlusion and self-occlusion. Inter-occlusion refers to an
object being blocked by another, e.g. when the view of a
person is partially blocked by the person in front. In contrast,
self-occlusion means that the object is occluded by itself, e g.
the limbs are occluded by the head and the torso. The twa
types of occlusions both happen in the side-view and the
top-view, but at different levels. The inter-ccclusion is more
frequent in the side-view because other persons also stand
at the same height level. In contrast, self-occlusion is more
severe in the top-view (see Fig. 2). Most literature on posture
recognition addresses the side-view and neglects the problem
of the top-view.

In this paper, we focus on recognizing human postures
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(a) top-view {b) side-view

Fig. 2 Posture recognition from the top-view (a) is a more challenging
task than from the side-view (b) due to the seven: self-occlusion.

under the severe self-occlusion seen in top-view images. The
conventional approach is to firstly estimate the human pose
configuration, and then classifies postures based on the body
part positions [8]. In top-view images, people are largely
self-occluded. With little information about the body part
locations, recovering an articulated pose from these images
is already a quite difficult task even for human annotators,
let alone to further derive the posture category based on the
ambiguous body part locations.

Recent work shows that, when the joint positions are ac-
curately known, the best performance in posture recognition
is obtained from the 3D joint positions [8]. In our approach,
we recognize the human posture without explicitly knowing
the exact location of body parts, and we will show that, in the
case of heavy self-occlusion, this approach outperforms joint
position based posture recognition. Unlike the conventional
approach which classifies postures based on the body pan
locations, our idea is to use posture descriprors instead for
classification. A posture descriptor provides a mapping from
image features to the matching score of a posture category.
Given a new test image, each posture descriptor gives a
matching score that measures how well the person can be
explained by that posture descriptor. For example, the stand-
ing posture descriptor returns a higher value when applied to
standing people, and lower values on the others. Note that the
posture categories overlap. For instance, a standing person
may be also pointing. Our posture descriptors encode such
attributes in a natural way by enabling multiple data labels to
be applied to a single image. Fig. | compares our proposed
system with the conventional approach.

In this work, we address the following research questions:

1) Is 20} pose competitive with 3I} pose for posiure
recognition? Posture recognition from (perfect) 3D
pose has been shown to outperform appearance-based
approaches. We show that the performance of posture
recognition with 2D pose is virtually identical to 3D
pose, including for top-view projections.

2) How accurarely can we obtain 2D pose from rop-view
images? To investigate this, we apply a state-of-the-art
2D pose estimation algorithm to the top-view images.
We show that the performance is generally very low,
but the specific models that are trained on a particular

ACCOMPANY Deliverable D4.4 Report

Contract number: 287624

ACCOMPANY

posture category perform comparably better.

3) How accurately can we recognize posiure from imper-
fect 20D pose, and how does this performance compare
ro our proposed model? We show that our proposed
model based on posture descriptors significantly out-
performs the baseline, which consists of two state-of-
the-art approaches.

II. RELATED WORK

Previous work on human posture recognition is mostly
based on the images taken from the side-view. The top-view,
which has been extensively used in domestic monitoring,
recelves surprisingly little attention.

Only recently did researchers start to work on the top-view
to classify human postures [9], [10]. These approaches use
the silhouettes of humans, which are extracted by background
subtraction and represented as a vector of features. The
features include the height-width ratio, the position, and the
polar histograms of the silhouettes. These approaches rely on
accurate foreground-background segmentation, which is dif-
ficult to obtain in practice due to noise, the change of lighting
conditions or incorrect segmentation of the foreground blobs.

The more conventional method of posture recognition
relies on side-view images to perform pose estimation and
then predicts posture categories based on the estimated
articulated pose. The state-of-the-ant approach estimates body
part locations using the Histogram of Oriented Gradient
(HOG) features [11], and fits a human skeleton model to
still images. In the human skeleton model, the joints of
articulations are represented as body part detectors, and two
joints are positioned in a way that the deformation costs are
minimized.

To perform posture recognition, [8] assumes that the body
part locations are known and transforms the 3D body part
locations into a feature vector of geometric distances. The
postures are then recognized using a random forest. The
results are compared with the approach in [3]. where a Hough
Forest [12] was trained to learn the mapping from appearance
patches to action labels. The results show that the pose-based
distance features outperform the appearance-based features.

From the top-view, the body parts become largely self-
occluded, which makes conventional approaches less suit-
able. It is very difficult to estimate the body part locations
accurately from top-view images, and the resulting pos-
ture recognition performance is substandard. To solve this
problem, we perform posture recognition with the matching
scores from [11] instead of using the estimated poses. In this
way, the exact body part locations need not to be extracted
accurately for recognizing the postures.

III. APPROACH

Our system consists of two parts. First the image is
transformed into a vector of posture scores by using the
posture descriptors. These posture scores are then used as
features by a posture classifier, which returns the final posture
label.
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A. Posture Descripror

The posture descriptor is a component that transforms
the imput image into a vector of features that can be used
for posture recognition. Normally, the posture descriptor
consists of body part locations [8] or transformed low-
level features [13]. In this paper, we capture the posture
descriptor at a higher level. Each posture descriptor is a
measurement of how likely the input image belongs to a
certain posture category. Specifically, we adopt the posture
descriptor from the state-of-the-art approach in human pose
estimation [11], where the poses are estimated by finding
the optimal skeleton configuration with respect to the local
body part detection. Similar to the structure of a Support
Vector Machine (SVM), each posture descriptor returns a
matching score along with the estimated body part positions.
Since the body part positions are often unknown due to the
occlusion, we disregard them and use only the matching
score to perform posture recognition in our approach.

We now formulate the problem and give a brief introduc-
tion to the posture descriptor. For more details, please refer
to [11].

Let [ be an input image, and k is a posture category that
follows € {1,..., K'}. Given the input image, each posture
descriptor gives a matching score Si(/) by maximizing
the energy function (Ji(1,1,1) over all possible body part
locations I and all types of the body parts T'

Si(l) = :ET?"E:—Q"”'-M (n

where [ is a vector of body part locations in the discretized
image space and t is a vector of type assignments over all
the body parts.

Solving a general problem of (1) takes exponential time.
But when () are computed within a tree structure, the
non-max imum suppression of the function can be computed
efficiently using dynamic programming [14]. We define a tree
structure following the human skeleton, where the vertices
V' of the tree are the body parts and the edges £ are the
pair-wise connections between the vertices.

We write the energy function of the tree structure as

Qe(L1t) =3l oL 1) + ¥ wit (L, 1) + S(t)
= ijER 2

where w!* - #(1.1;) is a linear filter of the body parts. It
gives high scores if the image at location [; looks like the
type f; of the i** body part. The second term w:;!’ -(l;, 1;)
is a quadratic spring model that makes connections between
two body paris with a spatial deformation cost. S(2) is the
bias that models the prior of seeing a particular type as well
as the prior of seeing the pair-wise type combination. The
term of the bias is formulated as

S(t) =3 b+ > b3" 3)
iV ijeE
Note that (2) is a linear equation that is parameterized by
w and b, therefore it can be rewritten as
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Qe(l,1.t) = By - ®(1, 1) )

where [ is the concatenation of w and b. Knowing 3, we
are able to solve Sk([) in polynomial time [11].

The parameter 5 can be learned from the training data
within a structured-SVM framework [15]. Note that Si(])
is bounded by (J¢ (I, 1. ) with respect to all combinations of
I and ¢, therefore the constraint equation of the SVM can
be drawn as: a) QJr(l,1,t) needs to be larger than or equal
to 1 on all positive examples. b) For all negative samples,
(1,1, ) should be smaller than or equal to —1 with respect
to all possible [ and ¢. Under such constraint, we would like
to maximize the margin between two classes, which is a
typical optimization problem that can be solved by using
quadratic programming (QP) [16].

B. Posture Recognirion

We learn a separate posture descriptor with respect to
each of the posture categories by selecting and training
the descriptors on specific subsets of the training data. The
posture descriptors estimate the body part locations in the
image and simultaneously generate a score associated to the
best approximation of the pose articulation. We note that the
quality of generated part positions is extremely low due to
the severe self-occlusion. Rather than using the positions,
we use the cormesponding scores for posture recognition.
After applying the set of posture descriptors to the input
image, we get a vector of scores {S¢(1), ..., Sx (1)} from the
descriptors. The score reflects the confidence of that image
belonging to a certain posture category. One straight-forward
way of recognizing posture from these scores would be to
apply non-maximum suppression over the scores. However,
the scoms cannot be guaranteed to have the same scale
and are, therefore, not comparable to each other. Moreover,
the output of multiple descriptors may be informative of a
posture, so that it makes sense o combine them.

Our solution is to treat the descriptor scores as a vector
of features in a classification problem. We compute a classi-
fication result Py (1) = We(Si(I), ..., Sg (1)), which could,
in general, be a binary label or a probabilistic measure of
the predicted label. For the purposes of this work, we used
a standard SVM [17] with Gaussian kernel.

IV, EXPERIMENT AND RESULTS

In this section, we evaluate both the conventional approach
and the proposed approach in the context of the top-view.
We firstly describe the two datasets that are used for evalu-
ation. We conducted three experiments, each of which gives
answers to the one of the research questions introduced in
Section L.

A. Dara

1) TUM Kirchen Daraser: The first dataset that we use
is the publicly available TUM Kitchen Dataset [18]. The
dataset is recorded in a home-monitoring scenario where
the actor performs daily activities in a kitchen. The dataset
consists of 10 typical posture classes, including standing,
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walking, reaching, taking objects, etc. The postures have
been annotated for each of the frames. The dataset also
provides the ground-truth body part locations in 3D, so that
we can freely project these points to any camera view that
we want.

The TUM Kitchen Dataset also contains image sequences
that are captured with four cameras. However, like most
benchmark datasets [19], [20], the TUM Kitchen Dataset
contains only the side-view images. We therefore collect our
own dataset to be able to evaluate in the top view scenarios.

2) Our Daraser: The dataset is recorded with an omni-
directional camera that is mounted on the ceiling. The
persons in the frames are seen from the top-view and the
body parts strongly occlude each other (see Fig. 5). To get
the ground-truth body part locations, we mounted a Kinect
sensor to capture the side view of the person, and we apply
OpenNI skeleton tracking on the Kinect data. From the depth
image, we use the skeleton tracker to generate a human
skeleton that consists of 15 joint points. ie. head. neck,
torso, shoulders, ankles, hips, knees and feet. Since both the
Kinect sensor and the omni-directional camera are calibrated
within the same world coordinate system. we amre able to
project these joint points from the coordinate system of the
Kinect sensor onto the omni-directional image plane. These
projected points in 2D are manually comrected for errors,
and they are used as the ground-truth body part locations for
training.

The dataset contains 8 videos, and each of them has
about 3000 frames. We annotated the posture labels every
10 frames (about | second)and the labels are as follows:
standing. bending, sitting. pointing, stretching, and walking.
Note that in our dataset one frame can be associated with
multiple posture labels, e.g. a person may be standing and
pointing at the same time.

Next, we introduce the three experiments that we con-
ducted. In the first experiment, we evaluate on the TUM
Kitchen Dataset as their ground-truth pose are well annotated
in 31 In contrast, 3D poses in our dataset are less accurate
as they are annotated in an automatic way using the Kinect.
For the second and third experiments, we use our own dataset
because the TUM Kitchen Dataset contains only persons with
the side view.

B. Is 2D pose competitive with 3D pose for posture recog-
nirion?

Our first experiment is 1o evaluate the performance of
posture recognition with respect to different camera angles.
In this experiment, we use the TUM Kitchen dataset because
it allows for easy comparison with the state-of-the-art 3D-
based posture recognition approach. and also because the
ground-truth locations in 3D are more accurate, compared
with the points detected by Kinect in our own dataset.
Following the work of [8], firstly we compute the geometric
distance between the 3D body part locations. The geometric
distances are computed within a certain temporal window,
in such a way that the temporal changes of the body part
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aid of acouracy (%)

{b) standard deviation

Fig. 3. Performance of posture mcognition with 3D locations and with
different 2I¥ projections based on the TUM Kitchen dataset {a) shows the
mean of the performance, and (b} shows the standard deviation. In the case
of 2D, the performance drops graduslly as the camera angles changes from
the: side-view (07} to the top view {907},

locations are also encoded. We apply these distance mea-
surements as the features, and the postures are recognized
by using the Random Forest [12] classifier. Furthermore,
we manually define a set of mock cameras that captures
different views of the humans. Following the positioning
these cameras. we project the 3D body part locations onto
the image plane, and then we evaluate the system in a 2D
space.

We set the camera angles from 07 (side-view) to 907 (top-
view) with the step-size of 30°. For this experiment, we
use the posture recognition approach as described in [8].
Fig. 3 demonstrates the classification rate of postures over
different camera angles. The results show that recognizing a
posture becomes more difficult with the increasing camera
angles. Notably, the mean drops by over 2% when the
camera shifts from the side-view to the top-view. Also, we
note that the side-view (2D) outperforms the 3D, which is
rather surprising as projecting from 3D to 2D results in data
loss. We infer that the data loss here contains mostly the
noise in 31. After projection, the 2D points in the side-
view still hold the most discriminative information which
can facilitate posture recognition. It is analogical to applying
noise reduction using Principle Component Analysis (PCA),
which reduces the dimension of the data from 3D o 2D,

This experiment shows that top-view is a more difficult
task compared with the side-view. Again, the approaches are
evaluated based on the ground-truth locations. In practice,
however, getting the comect body part locations is already a
very challenging task by itself. Next, we evaluate the state-
of-the-art pose estimation approach on our top-view data to
see how well the 2D pose can be estimated from the top-
view.
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C. How accurately can we obrain 2I} pose from top-view
images?

In this experiment, we evaluate on our own dataset to see
how well the state-of-the-art approach can estimate body part
locations from the top-view images. We randomly select 10%
samples per posture category as the test set, and the rest are
kept as the data for training. The positive training examples
are the top-view images together with the associated body
part locations. The negative training examples are taken from
the INTRA dataset [21], which contains random background
images with no person. To generate more positive training
images, we mirmored and added slight rotation to the training
examples.

We adopt the state-of-the-art approach [11] for estimating
body articulations. We use the Histogram of Oriented Gra-
dient (HOG) as our image features. We evaluate the system
with the standard evaluation criteria of pose estimation, i.e.
the probability of a correct pose (PCP). The PCP computes
the percentage of comrectly localized body parts. The results
on the test set are shown in Fig. 4 The performance in
general is rather bad, which is mainly caused by the self-
occlusion. The single descriptor in the graph refers to the
posture descriptor that is trained on all the data instead
of a specific posture category. We compare the results of
the posture descriptors with the single descriptor. We show
that the posture descriptor always outperforms the single
descriptor when evaluated on its specific posture class. This
is because the single descriptor tries to model all the data
which bare large vanation over different posture classes.
Note that the posture descriptor performs much better on its
own posture category than on the others. It exhibits notable
potential of distinguishing among posture categories using
the posture descriptors, which can be very helpful for posture
recognition.

D. How accurarely can we recognize posture from imperfect
2D pose, and how does this performance compare io our
proposed model 7

This section compares the performance of posture recogni-
tion between our proposed system and the baseline approach
on our top-view dataset.

In our approach, we adopt the method from [11] as our
posture descriptor. The posture descriptor is leamed from
each of the posture categories. For classification, we train
a Support Vector Machine (SVM) [17] with the RBF kemel
per posture class. Using the matching scores from all posture
descriptors, the SVM gives a binary decision on the posture
label.

To compare with our proposed system, we form the base-
line approach by combining two state-of-the-art approaches
in pose estimation and posture recognition. Specifically, we
follow the approach of [11] for pose estimation. We leamn a
single descriptor over all the data. Then we use the single
descriptor to estimate body part locations. After that, we
follow [3] to extract the geometric features from the 21D body
part locations, and we infer the posture labels using random
fomest.
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types of posture descriptors

Fig. 4 The PCP performance of body part estimation over posture
descriptors (columns) and postune classes of the kst data (rows) on the top-
view dataset. The first six posture descriptors are trained with the specihic
posture data. In contrast, the last “single” posture descriptor s trained on
the mixing of all the training data, and therefore it 1s a general model that
learned from all the data regardless of the posture categories. We show that
when the posiure descnptors are evaluated on iis own posture category, the
results (diagonal) always outperform the “single” mode] (last column),

Note that the geometric features in [8] are extracted
within a short sequence of frames, therefore the temporal
information are encoded in the baseline approach. In contrast,
our proposed system is evaluated on still images, and we
believe the performance can be further improved by adding
temporal filtering to our current system. This is left as future
work.

The performance of posture recognition is shown in Ta-
ble L The results show that our approach outperforms the
conventional approach on all posture categories, and the
average performance is better than the conventional approach
by over 23%. In particular, the performance is improved
by 69% on the bending data. This is because when people
are bending, occlusion is more severe compared with the
other postures, e.g. the limbs are most likely to be fully oc-
cluded by the torso when bending. Estimating the body part
locations from these missing limbs becomes an extremely
difficult task. Benefiting from the posture descriptors, our
approach does mot require the body part locations to be
comectly localized and therefore our system still shows very
high performance on the bending data. From our results, we
believe our system is more robust to the self-occlusion as
we do not rely on the body part locations which are rather
unstable when estimated under the top-view. Moreover, we
believe our system can be further improved after adding
the temporal information. Finally, we show some sample
postures recognized by our system in Fig. 5 which gives
an illustration of our results.
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TABLE |
RESULTS OF POSTURE RECOGNITION: F-SCORE

standing bending  sitting  pointing  stretching walking  avg.
Baseline [8]+{11] 93.65 20.69 93.51 43.87 2553 6043  56.28
Our approach 95.53 80.00 096.83 62.69 58.90 7553 7975

Fig. 5. Results of the posture recognition based on our top-view dataset.
The example 1mages are randomly sampled from the testing results. The
text on the left indicates the ground-truth posture label of the images in
the row. Postures that are comrectly recognized are in green rectangles, and
postures are in red rectangles if wrong labels are predicted.

V. CONCLUSION

In this paper. we proposed a novel method to classify
human postures from the top-view cameras. Using the pos-
ture descriptors, we get a vector of matching scores, and
we use the scores for posture recognition instead of the
conventional way which use the body part locations. The
results show that leveraging the posture descriptors provides
superior classification results in images with self-occlusion.
We believe the posture descriptors can be further leveraged
by enabling temporal filtering for activity recognition.
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Multi-User Identification and Efficient User Approaching by Fusing
Robot and Ambient Sensors

Ninghang Hu*, Richard Bormann®*, Thomas Zwdélfer, and Ben Krise

Absiraci—We describe a novel framework that combines
an overhead camera and a robot RGB-D sensor for real-time
people finding. Finding people is one of the most fundamental
tasks in robot home care scenarios and it consists of many com-

ponents, £.g. pmple detection, people tracking, face recognition,
rohot navigation. Researchers have extensively worked on these
components, but as isolated tasks. Surprisingly, little attention
has been paid on bridging these components as an entire system.
In this paper, we integrate the separated modules seamlessly,
and evaluate the entire system in a robot-care scenario. The
results show largely improved efficiency when the robot system
is aided by the localization system of the overhead cameras.

[. INTRODUCTION

Globally, aging of populations is becoming a potential
problem. The growing group of elderly people requires
efficient and accurate care-giving at an affordable level,
and robots may offer a solution in future. In recent vears,
researchers have been extensively working on the tasks of
peopke detection [1], people tracking [2]. face recognition
[3]. robot navigation, and robot controls, however, mainly as
isolated tasks instead of combining these systems for real life
applications. In this paper, we study these tasks jointly, and
we propose a unified system that integrates these components
in a home care scenario, see Fig. 1. The system is very
efficient and suitable for real-time applications. Moreover,
the single components are complementary to help improving
the robusiness of the entire system.

Two fundamental tasks in robot home care scenarios
are people localization and people identification. They are
also the elemental components for more advanced tasks,
e.g activity recognition [4]. Commonly used sensors for
these tasks include overhead cameras and RGB-D sensors
on mohile robots. The overhead cameras are usuvally fixed
at the ceiling, covering most of the areas in the room.
The cameras only need to be calibrated once so that the
coordinates of the detected person can be transformed easily
from the image space to the ground-plane of the room. As
the camera is mounted at the ceiling, people in the video
are less likely o be occluded by each other. The overhead
camera commonly has a wide field of view. Thereby one
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Fig. 1. Fusion of robot and environment cameras for direct user approach.

camera is often sufficient for detecting and tracking people
in the whole room. Despite these benefits, it is very difficult
for the overhead camera to tell people’s identity. Faces can
hardly be seen at many locations. The most prominent parts
of people are the clothes, but they may be changed over time.
Consequently, the overhead camera may be enough to find
the person, but it 1s not sufficient for people identification.
The sensors on the robot, eg the Microsoft Kinect,
provide a complementary view to the overhead camera. The
on-board cameras are commonly mounted at a level that
keeps the human face in sight. The RGB-D sensor provides
both the color image from a color camera and the depth
image from a range camera. By fusion of the depth image
and color image, the face can be recognized robustly [3].
However, the RGB-ID sensor is limited in both the range and
the view angle. When people are too close, the face is outside
the field of view: when they are far away, the accuracy and
resolution of face data drops quickly. An advantage of the
combination with ceiling cameras for tracking is that the
robot does not need to keep monitoring the persons all the
time. Hence, the robot may carry out other tasks, rather than
allocating its resources to the task of tracking each person.
In this paper. we propose a system that combines the
robot RGB-D sensor and the overhead cameras for real-
world applications. The architecture of the proposed system
is shown in Fig. 2. The system consists of three modules: a)
people detection and tracking, b) people identification, and
c) a joint tracker that combines both kinds of information.
The first module finds multiple people that are present in
the room using two overhead cameras. The second module
identifies people using a Kinect sensor that is mounted on the
robot. The third module collects information from the first
two modules and associates tracks with human identities.
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Peopde Identification

People Detection and Tracking

REE-D Camers of Rooot Ceiling Cameras

Fig. 2. An overview of the combined tracking and recognition system.

The contributions of the paper are:

1) We propose a system that integrates the overhead
cameras with the RGB-D sensor for human localization
and identification tasks. All components of our system
follow a probabilistic approach so that the system is
more robust to noise. The experiments show that the
system is very efficient and can be applied in real-time.

2} Instead of evaluating the components as isolated tasks,
we evaluate the effectiveness of the whole system
together with robot path planning and navigation in
a real life scenario, ie. finding one or more persons.

3} We show a novel way of associating the faces with
human tracks. We represent the face locations as
weighted particles and the faces are associated with
the tracks by evaluating the weighted particles in a set
of Kalman Fillers.

The remainder of the paper is structured as follows.
We review the related work in Section II. Afterwards, we
introduce three main components of the system, i.e. people
localization and tracking in Section I, people identification
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in Section IV, and the joint tracker in Section V. We show
the results of our experiments in Section VIL

II. RELATED WORK

In the past few years, there has been considerable work on
people detection and people tracking using computer vision
techniques. Most of the work only adopts a single type of
sensor, £.g. color cameras [3], [6], [7]. depth cameras [8],
[9], or laser range finders [10]. More recently, researchers
worked on combining different sensors to make the tracking
system more reliable. Cui et al. [11], Krnistou et al. [12] and
Kobilarov et al. [13] utilize a mobile robot platform to detect
people with a laser range finder and video cameras. Luber
et al. [14] fuse the data from a depth camera and a color
camera. Nakazawa et al. [15] combine multiple cameras for
multi-people tracking. For people detection, we employ a
similar approach as in [16] and [17]. Instead of fusing the
on-board laser range finder and the ambient camera, we
combine the Kinect sensor with ambient cameras. We use
the Kinect sensor for identifying people and ambient cameras
for tracking. The results from the two components are fused
in a probablistic way by a joint tracker.

Face recognition is usually split up into the detection
of face regions in an image and the actual identification
of the detected face image patches. The former task has
been approached on color images using the Viola-Jones
classifier [18]. Later, many extensions have been introduced
[5], [19]. Face detection is tackled on point clouds using
local curvature features [9]. An RGB-D fusion system for
combined head detection in depth images and face detection
in color images [20] is used for face detection in this paper.

There exists a large variety of methods for face identi-
fication that might be divided into projection methods [6],
[21], [22], [23], local pattern-based methods [24], [25],
generative models [26], [27], and sparse representations [28].
The latter represent the space of known faces with a set of
carefully chosen gallery images whereas generative methods
construct an illumination and pose model for each individ-
ual from training data recorded under specialized lighting
conditions. Both kinds of methods suffer from long training
and/or recognition times. Given the robustness and real-
time demands of robotics applications, projection methods
like Eigenfaces [21] or Fisherfaces [6]. or local pattern-
based methods are preferable. The first construct a handy
representation of identities by projecting the high dimen-
sional face image matrix into a low-dimensional subspace,
which commonly reduces intra-class variance and amplifies
inter-class differences. Local pattern-based methods compute
dense local binary patterns [24] or local temary patterns
[25] which become accumulated im histograms over spa-
tially constrained areas. The robustness of these methods
can be improved by applying illumination normalization
techniques like histogram equalization, logarithmic transform
[29], gamma correction [30], discarding the low-frequency
Discrete Cosine Transform coefficients [31], Difference of
(Gaussians filtering, or contrast equalization [25] to the face
image in advance. Compensation measures for varying head
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pose such as multiple orientation modeling on the training
data [26], [32] or face plane estimation [9], [33], [34] also
increase the robustness of the identification system. The face
recognition module used for this work bases on our earlier
work on robust real-time face recognition systems [3].
Most of the previous work focuses on solving only one
type of the tasks and little work has been done on combining
modules and evaluating the system as a whole. In this
paper, we work on bridging the gaps between the different
components and build an integrated tracking and recognition
system that is suitable for real home care scenarios.

ITI. PEOPLE LOCALIZATION AND TRACKING

In this section, we introduce the sub-system for people
localization and tracking. The pipeline of the sub-system is
shown in Fig. 2 (red panel).

A. People Localizarion

The ground-plane area is discretized into small regions
for localizing people. Our goal is to find in which regions
the people are located. We define k as a random variable to
indicate the index of a region, and X = {X1, X2, ... X}
as a set of images that are observed from the overhead
cameras. We formulate the people detection problem in a
Bayesian fusion framework [35].

C
P(k|X) oc P(k) [ P(Xclk) (N

=1

where P(k) is the prior distribution of seeing a person
located at region k., and P{X .|k] is the likelihood of seeing
the image X given there is a person at location k. Here
we assume images captured from different cameras are
conditionally independent given the location of the person. In
this paper, we make a simple assumption that P({k) follows
uniform distribution, although it can also be lkeamed from
the training data

The likelihood term P{X.|k) in (1) computes the joint
probability of all pixels from a single camera given that a
person is located at k.

PXck)= Y Przd+ Y Plz) @

z-Ed(k) e E(E)

where x, is a pixel valuoe in X _. Fy(z.) computes the
background probability of the pixel ., and Py(z_) computes
the foreground probability. As we do not know any prior
knowledge about how a person looks like, the foreground
probability is a constant for all pixels. The background
probability is estimated by the Adaptive Gaussian Mixture
Model [36], see Fig. 2. @(k) is a binary mask where the
ones indicate the foreground pixels and zeros the background
pixels. The mask is generated by evaluating a 31} human-
shape template at location k& and then projecting the 3D
template onto the image plane. Pixels within the area of the
projection are considered as the foreground, and otherwise
the pixels are labeled as the background. We sum up the
foreground and background probabilities over all pixels in
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the image, and then we are able to evaluate the product of
the likelihood terms with respect to all cameras as in (1).

We evaluate the posterior probability using (1) for all the
regions on the ground-plane. People are detected at regions
with local maximal posterior probabilities. The algorithm
is implemented using logarithm likelihood probabilities to
avoid numerical problems.

Mext, we introduce the algorithm that generates tracks out
of the frame-based detections.

B. Tracking

We use an online tracker that updates tracks every frame.
The tracker associates the detected people with the exist-
ing tracks by evaluating the matching scores between the
detection and the model of the tracks. After that, the new
detection is appended to the corresponding track and tracks
gel updated separately using a Kalman Filter [37].

We compute the matching score using two cues, ie the
appearance of a human and the location. Assume there are
M detections and [V tracks generated at time {. The matching
score between the m™ detection and n® track is computed
as

Si(m,n) = Uy(h{o! ), RN Waiel st ulmh) ()

where o!_ is the location of the detected person. st~ ! is the
previous tracked location, and vi~! is the velocity of the
track. Both 5! and v!~! can be estimated by the Kalman
Filier. "y measures the similarity between the appearance
template h2~! and the histogram extracted at the detected
location h{a! ). Here we use the Bhattacharyya distance [38]
for comparing two color histograms

Wy (h(ol), k1) = le —~
V

'3 measures the consistency between the observed location
! and the new location predicted by the Kalman Filter

e T T B i ) I )

We can evaluate the matching score using (3) for all track-
detection pairs. Finding the optimal assignment from the
table of matching scores can be efficiently solved using the
Hungarian Algorithm [39].

IV. PEOPLE IDENTIFICATION

The system for recognizing people with the robot’s RGB-
D camera consists of a head and face detection module, a
face recognition module, and a face identification tracker, see
Fig. 2 iblue panel).

A. Face Detecrion

The detection modulke searches for face images using the
Kinect sensor. The detection has two stages: first, a Viola-
Jones detector [18] is applied in the depth image for finding
the objects that look like a human head. These candidate
regions are then verified in the color image using another
Viola-lones classifier that is trained on color images. The
whole detection procedure is detailed and evaluated in our
previous work [3], [20].
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B. Face Idenrificarion

Subsequently, those image patches which contain a face
are processed by the recognition module. The recognition
starts with pre-processing the face image with a gamma
transform (v = 0.2} and a downscaling of the first 5
coefficients of the Discrete Cosine Transform on the gray
scale image by a factor of 50. This realizes an illumination
normalization which renders the recognition algorithm more
robust against lighting conditions that are different from
the training data Then, the algorithm tries to detect facial
features like the eyes or the nose with a Viola-Jones classifier
and generates a virtual frontal perspective on the recorded
face if those face features can be identified successfully. This
measure diminishes negative effects on recognition stemming
from a badly aligned face image. Eventually, the recognition
is conducted by projecting the pre-processed face image into
a lower-dimensional space which minimizes the variance of
training face images of the same person and maximizes the
inter-class variance according to Fisher's Linear Discriminant
[6]. The identity estimate is found as the nearest neighbor
from training data in this space or as a probability distribution
constructed from the labels of the meighborhood. Again, a
thorough explanation and evaluation of those methods is
given in [3].

C. Idenriry Tracking

The detector and recognizer work based on single image
frames. However, due to noise or misalignment, only using
the frame-based recognition may be problematic. Therefore,
the recognized identities are fillered by a tracking module
for stable identity estimation.

The tracker firstly matches the recognition results in con-
secutive frames. The matching score is computed between
the previous detection ¢ and current delection j:

C(i,5) = X = Xjllg, +allPi — Byl + B H: — Hjl 2
i6)

where X denotes the 3d face coordinates in space, P is
the probability distribution over all labels, and H is the
histogram of local binary patterns of the head region. o
and 3 are optional weighting factors for the single metrics.
The first term measures the distance to the last detection,
the second term computes the similarity in label predic-
tions, and the third one establishes visual similarity of the
tracked image regions. The global minimum cost assign-
ment between previous and current recognition is found
with the Hungarian method [39]. New detections in the
current set are added afierwards and initialized with their
estimated label probability distribution. To smooth sporadic
false recognitions, the estimated probability distributions are
filtered temporally with a Hidden Markov Model (HMM).
The final identity assignment is estimated for each frame
by considering the label probabilities for each detection as
inverse costs and computing the globally optimal assignment
with the Hungarian Method.
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V. JOINT TRACKER

So far we have introduced two systems. One system
detects, localizes, and tracks all persons in the room. The
system, however, only gets the track 1D and does not know
who the person is. The other system identifies the person
using the robot sensor, but the robot has to keep the person in
sight all the time. The joint tracker solves the problem of the
two separate systems by combining both of the sensors. The
joint tracker assigns the tracks as unknown persons when
they have not been recognized by the robot. Once people
are identified by the robot, names of people are immediately
associated with the tracks.

To increase the robustness of the system, we fuse data from
the two sensors in a probabilistic way. In robotic scenarios,
both the locations of the tracked persons and the locations of
the robot can be very noisy. Our robot is localized using the
SLAM approach [40], and the robot location is represented as
a set of weighted particles. As the Kinect sensor is registered
in the robot’s transformation tree, we can always transform
the face locations that are detected by the Kinect sensor into
the particle representation in world coordinates. Let the set of
the particles be L = {(wy,l1), (w2, ls)...(wy, In)}, where
[ is the location of a particle in world coordinates and w is
the weight of the particle.

The posterior distribution of the human location returned
by the Kalman Filter is a Gaussian distribution, with its
mean indicating the most likely position of people and
variance indicating the uncentainty. The set of Kalman Filters
from different tracks proposes multiple Gaussian density
distributions at each time step. Our goal is to associate the
detected faces with those Gaussian PDFs. We compute the
score of associating the i track with the j7 face as

N
i,7)= I exp (I — AT HE — )
Qli,J) ;Uvﬂﬂ_fl p (] — ) (I = )
(M
where g, is the mean location and X; is the covariance
matrix of the i track. ' is a constant that does not affect
the assignments. The best assignments between the tracks
and the detected faces are calculated in the same way as in
peopke tracking. Once the track has been associated with the
face, the name of the person is attached to the track until a
new face is detected for that track. In such a way, the correct
name can be recovered if a person is wrongly recognized at
the beginning.

VI. STRATEGIES FOR USER RECOGNITION AND
APPROACHING

There are two fundamental tasks in Human-Robot Inter-
action (HRI). The first task is that the robot needs to identify
unknown users that are present in the room. The other task
is that the robot is asked to approach a specific person,
e.g for completing a delivery. This section presents different
algorithms for tackling these two tasks. For each of the tasks,
we compare two algorithms a) using the robot only, b) the
robot assisted by an overhead camera.
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1) Uninformed User Identificarion: Algorithm | describes
the case when the robot has to identify all present people
without help from an external system. The robot stans
searching for users by successively moving to random lo-
cations and tumning around by 360° each time. In a real
situation, users can be supposed to move around so that
a systematic search should not bear any advantages over
a random strategy. Every found user is stored internally
and announced via speech. The terminating condition may
be application-driven, e.g finding a certain set of people.
searching for people at a given place, searching for 5
minutes, etc. The moveTo and rorare360 functions interrupt
if all people are found.

Algorithm 1 Uninformed recognition of present users.
function IDENTIFYUSERSUNINFORMED
recognitions +—
while TerminatingCondition = False do
goal + compuleAccessibleRandomPosition()
recognition +— move ToAndRotate 360(goal)
recognitions < {recognitions, recognition}

refurn recognitions

2) Informed User ldeniificarion: The combined system
allows approaching each human detected by the external
tracking system directly and recognizing the face (see Algo-
rithm 2). In contrast to Algorithm 1, this algorithm is aware
of having labeled all present users.

Algorithm 2 Informed recognition of present users.
function IDENTIFYUSERSINFORMED

detections +— getTrackedHumans()

recognitions +— @

for all detections do
goal + computePositionOnPerimeter(detection)
recognition +— move To(goal)
recognitions < {recognitions, recognition}

return recognitions

3) Uninformed User Approach: Algorithm 3 displays the
method to approach a specific user using the sensors of the
robot only. As with Algorithm 1. a random search strategy
is employed to navigate the robot through the environment
searching for the desired person.

Algorithm 3 Uninformed search for a specific user.
procedure APPROACHUSERUNINFORMED(targetName)
targetLocation + @
while robotLocation # targetLocation do
zoal + computeAccessibleRandomPosition()
recognitions +— move ToAndRotate 360{goal)
targetLoe. +— checkForUser(recognitions, targetMName)
If targetLocation # {§ then
move To(targetLocation)
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4) Informed User Approach: Algorithm 4 utilizes the
additional sensory information from the external cameras to
approach the specific person directly given that he or she has
been recognized previously and tracked in the meantime.

Algorithm 4 Informed search for a specific user
procedure APPROACHUSERINFORMED(targetName)
detections +— getTrackedHumans()
targetLocation + checkForUser(detections, targetName)
Il targetLocation = §l then
APPROACHUSERUNINFORMED(targetName )
else

move To{targetLocation)

VII. EXPERIMENT AND RESULTS

In our experiments, the robot is asked to complete two
different tasks. both of which occur frequently in home care
scenarios with robot assistance. The first task is to let the
robot identify all the people that are present in the room.
The second one is to ket the robot find a specific person. We
evaluate the efficiency of the integrated system by measuring
the average time that the robot needs to complete the tasks.

A. Experiment Serup

The experiments are setup in a domestic environment, see
Fig. 3 and 4. There are two GV-FE420 cameras mounted
on the ceiling, one above the sofa area and the other one
in the kitchen. Both cameras are calibrated with the highest
resolution (2048 x 1944 pixels). For people detection and
tracking, we use only 1/4 of the full resolution for efficient
processing and we find that is sufficient to give stable tracks.
The cameras have a very wide field of view (over 130
degrees), and provide a good overview of the entire room. We
adopt a PC with an Intel Core i7-3770K (3.50GHz) processor
for people detection, tracking and also fusing the incoming
face recognition data provided by the robot. The processing
rate of this system is around 9 Hz.

The mobile service robot is a Care-O-bot® 3 which
features an omni-directional mobile base with a flexible
torso, a 7 DOF manipulator and a movable sensor head
that contains a pair of stereo cameras and a Kinect RGB-D
camera. The control script, navigation and person recognition
software are run on two build-in PCs. The people detection
and recognition module processes the RGB-D data from
the Kinect camera at a resolution of 640x480 pixels. The
module uses an Intel Core i7-E610 (2.53GHz) PC and
delivers recognition results at 6 He.

For each experiment. the robot was commanded by a
control script whose functionality corresponds to the search
strategies proposed in Section VI. Both experiments were
conducted with 5 different subjects. To demonstrate the
advantages of the combined recognition and tracking system,
we carried out the experiments in two flavors, Le. once with
the robot sensor only and once combining the robot sensor
with the ceiling-mounted cameras. The environment setup of
the two experiments was always the same for comparison.
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Fig. 3. Floor plan of the expenimentation sie with user locations a-f
highlighted and the coordinate systems of the ceiling and robot cameras,
the navigation and camera maps and the robot base drawn nto,

Besides the sofa area, we further defined six locations in
the room, see the labels a-f in Fig. 3. These points indicate
the test locations where people were standing duning our
experiments.

B. ldentification of All Present Users

The first experiment measures the performance of system
on identifying and tracking all present users in the room.
This is a prerequisite for tasks like activity recognition of
multiple users or fast reacting to an individual call from one
of the human users. The setup is that two or three subjects
are distributed in the environment among positions a-f. We
ask the users to look at the robot when it approaches so
that the robot can recognize their faces. In a real scenario,
the robot can either attract a user’s attention by speech or
move around the person until the face becomes visible. These
options have been excluded from the experiments to avoid
subjective factors in the results.

As a baseline, the robot is asked to find all users with
its own sensors only. Algorithm 1 is applied to navigate
the robot randomly until all people have been identified.
This scenario is evaluated under 10 combinations of user
locations, see Table I. We report both the time for finding
all users and the number of wrongly identified persons.
The baseline results vary largely in the time for finding all
persons. It can be as fast as within one minute but it may
also take more tham 5 minutes. On average, all subjects are
identified within 2 minutes and 10 seconds. All of the 26
persons within the 10 sessions have been labeled comectly,
and only 3 people were wrongly identified initially but
comected after a couple of seconds. This yields an initial
recognition rate of almost 90%. The two main drawbacks
of the baseline approach are: a) the algorithm needs to be
terminated manually as the robot never knows whether all
present subjects have been found and b) the robot has to
keep all users constantly in sight in order to keep track of
them, which is not desirable for real-world applications.

The ambient camera system can detect and track humans.
The information is shared with the robot via wireless con-
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TABLE I
RESULTS FOR FINDING ALL PRESENT USERS.

Dissemination Level: PP

user robot only combined sysiem
locations tme  rec ermors | tme  recoermors track. emors
b, c, d 548 [i] 1:10 [1] [1]
b, c. e 18 1] 1:05 0 i
b, c, f 1:14 1 1:27 0 0
c.de 1:28 /] 0:40 0 0
c.d f 256 0 1:20 0 1
d,oe 58 0 1:35 0 1
b, e 1:30 2 0:53 0 0
b, f 200 i} 1:04 0 1
c f 1:00 /] 0:40 0 1
b, d 230 0 0:51 0 0
average p) | ZIT 118 I:13 [T ES IR
average (2p) | 1:45 23 0:52 VE e
average (all) | 2:10 326 1:05 26 426
stddey (all) 1:26 19

nection so that the robot stays informed about the locations
of all present persons along with their identities attached to
the tracks, even when people are not visible to the robot. We
use Algorithm 2 in our second experiment. After all persons
have been visited and identified, this algorithm terminates
automatically and announces that all users have been found.
The times that are needed to identify all present users are
listed in column “combined system”™ of Table L. The results
show that the combined system is significantly better than
the random search. The combined system requires only 1
minute and 5 seconds on average to complete the task. In
contrast, the baseline approach takes twice the time than the
combined system. The standard deviation of the combined
system 15 around 19 seconds. which is much more stable
than the time of | minute and 26 seconds in random search.
In our experiments, the performance of the face recognition
system is very stable as the guided approach can nmavigate
the robot into an advantageous distance to the subjects so
that the faces are captured with high quality. The ceiling-
camera system fails at detecting people at position f for 4
times because people at that location are heavily occluded
by the robot from both of the ambient cameras. Apart from
these errors, the system performs outstanding, yielding an
accuracy of comectly tracked and identified people of 83%.

C. Approaching a Specific User

The second experiment evaluates the performance of our
system on approaching a specific user, which is widely used
in delivery tasks. In our scenario, the user is sitting on the
couch, calling the robot, and ordering something. The robot
then goes to the kitchen and in the meantime the user stands
up and moves to another place. The task of the robot is to
find the user for delivery. The experiment is conducted at
three levels of difficulty: 1) with a cooperative user facing
the robot all the time, 2) with a busy user facing a fixed
direction, and 3) with two users facing the robot constantly.

The results of the first session are shown in the upper
part of Table II. Column “robot only”™ comresponds to the
baseline case when only the robot sensors are used, see
Algorithm 3. We report the times that are spent by the robot
on approaching the user among positions a-f as well as the
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TABLE 1l
RESULTS FOR SEARCHING A SPECIFIC USER.
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user robot only combined sy stem
location(s) e mo. ermors | Gme mec oo rack ermors
with one user facing the robot constanily

sofa 028 i [1 345 1] []
a 1:28 i 34 ] L]
b 040 0 k18 ] 0
c 0:33 0 k21 ] 0
d 0:28 0 k18 ] 0
c 0:35 0 29 ] 0
f 1:18 0 k31 ] ]
avcrage 04T W7 (i3] wr [17]
with one user facing a fixed direction

a (+x) 11T i B33 1] []
a (-y) 7:37 i} 43 ] L]
b (-x) 0:26 i} 21 ] L]
b (¥} 9:501 i} 17 ] L]
c (%) 0:29 i} 20 ] 1
c (-y) .27 i} 20 ] L]
d (x) 2.3 i} k16 ] L]
d (+¥) 2:56 i 020 ] L]
e (+x) A2 1} k28 1] L]
e l+y) 25 1} k28 1] L]
f (+x) 1:39 o 31 ] 0
f (+¥) 0:55 0 k31 ] ]
avcrage 230 Wiz (i3] Wz 12
‘with swo users facing the robot constantly

b.a 0:38 i [ 3 K] 1] []
b.c 217 i} 20 ] L]
b.d 1:12 i} 21 ] L]
c,d 0:22 i} 17 ] L]
d.a 043 i} k16 ] L]
d. f 0:37 i 14 ] L]
e, 8 1:03 0 k26 ] 0
e b 1:21 1 k22 ] 0
b 143 0 052 ] 0
Le 1:10 0 027 1 ]
avcrage T.07 L] 23 1730 w2o
average (all) | T:H fTEY [1 354 7% 1739
stddev (all} 1:44 09

I ahorted after 10 minukes of search, excluded from cumulative statistics

sofa area after leaving the kitchen area. All delivery times
are quite fast with an average of 47 s. The delivery tasks are
accomplished successfully as all of the users are comectly
recognized. These results are compared with the performance
of the “combined system”™ that keeps tracking the user after
being identified. The times of delivery using Algorithm 4
are a little more than half of Algorithm 3, with only 26 s on
average and deliveries are all successful.

The second session of this experiment requires the users to
face a fixed direction. This makes the approaching a harder
problem as the robot may not obtain a good perspective of the
face. In Table I1, signs + and - refer to the user’s orientation,
e.g “a (+x)" means that the user stands at location a, facing
the positive direction of the x axis. The results show that the
combined system significantly outperforms the system that
only uses the robot sensors. The average search time for the
robot-only system is 2 minutes 30 seconds which is 5 times
longer than the 26 seconds when using the combined sy stem.
The worst case of the robot-only system occurs at “b (-y)",
which has to be manually terminated after 10 minutes of
unsuccessful search. For the combined system, the results of
the second session are similar to those of the first session.
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Fig. 4.
random search and (b) assisted with the external tracking sysem.

Robot trajectories of finding a specific person when (a) using

This is because the user's gaze direction is irmelevant when
the position is known from the overhead cameras. For both
systems, no recognition error is observed, but the tracking
system loses the user once after delivery in case “c (-x)".

The third session is a more realistic situation where
multiple people are presemt and the robot is required to
approach the correct person. The lower part of Table 11
presents the results of 10 experiments with two users. The
user who has ordered in the sofa area goes to the position
that is underlined in Table II, the other user is located at
the second position. Both users are told to face the robot
constantly. Accordingly, the average time of approaching
is 1:07 for the robot-only system, which is similar to the
experiments with only one user. A recognition error occurs
once when the order is delivered to a wrong person. Using
the combined sensor system, the robot can be guided to the
comect person in approximately the same time as in the tests
before. Apart from one recognition error during delivery, the
tasks are successfully completed.

In conclusion, the delivery tasks can be accomplished with
the accuracy of 96.5% using both strategies of approaching.
With the combined system, however, the delivery is three
times faster than the unguided search, and the results have a
smaller deviation. Hence, using the combined system is more
efficient and more stable than just using the robot sensors for
our tasks.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we use ambient cameras for detecting and
tracking people, and we use a robot-mounted RGB-D sensor
for identifying people. The information from the both sensors
is combined in a joint tracking system for efficient and
accurate people finding. The results show that by leveraging
these two complementary types of sensors, the robot can
be guided to approach people directly instead of searching
through the room. This significantly reduces the approaching
time and provides a more intuitive and comfortable way for
the users.

Based on the people tracking and identification system
proposed in this paper, we are currently working on activity
recognition and prediction for multi-users. The working
system allows the robot for deliberately offering assistance
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on critical tasks and may serve for long-term medical check-
ups by detecting deviations from the user’s daily activity
schemes. We furthermore plan to enhance the approaching
algorithms with proxemics, i.e. having the robot to approach
the user in a human-acceptable way.
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Learning Latent Structure for Activity Recognition™

Ninghang Hu', Gwenn Englebienne!, Zhongyu Lou! and Ben Kriise!-?

Absiract—We present a novel latent discriminative model
for human activity recognition. Unlike the approaches that
require conditional independence assumptions, our model is
very flexible in encoding the full connectivity among observa-
tions, latent states, and activity states. The model is able to
capture richer class of contextual information in both state-
state and observation-state pairs. Although 'oops are present
in the model, we can consider the graphical model as a linear-
chain structure, where the exact inference is tractable. Thereby
the model is very efficient in both inference and learning.
The parameters of the graphical model are learned with the
Structured-Support Vector Machine (Structured-SVM). A data-
driven approach is used to initialize the latent variables, thereby
no hand labeling for the latent states is required. Experimental
results on the CAD-120 henchmark dataset show that our
model outperforms the state-of-the-art approach by over 5%
in both precision and recall, while our model is more efficient
in computation.

I. INTRODUCTION

Robotic companions to help people in their daily life are
currently a widely studied topic. In Human-Robot Interaction
{HRI) it is very important that the human activities are rec-
ognized accurately and efficiently. In this paper, we present
a novel graphical model for human activity recognition.

The task of activity recognition is to find the most likely
underlying activity sequence based on the observations gen-
erated from the sensors. Typical sensors include ambient
cameras, contact switches, thermometers, pressure sensors,
and the sensors on the robot, e.g. RGB-D sensor and Laser
Range Finder.

Probabilistic Graphical Models have been widely used
for recognizing human activities in both robotics and smart
home scenarios. The graphical models can be divided into
two categories: generative models [1]. [2] and discriminative
models [3], [4], [5]. The generative models require making
assumptions on both the comelation of data and on how the
data is distributed given the activity state. The risk is that
the assumptions may not reflect the true attributes of the
data. The discriminative models, in contrast, only focus on
modeling the posterior probability regardless of how the data
are distributed. The robotic and smart environment scenarios
are usually equipped with a combination of multipke sensors.
Some of these sensors may be highly correlated, both in
the temporal and spatial domain, e.g a pressure sensor on

*The research has recerved funding from the European Umion's Sev-
enth Framework Programme (FPT/2007-2013) under grant agreement
Mo, 2ET7624.

1 N. Hu. G. Englebienne. 7. Lou and B. Krtse are with Intelligent System
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Fig. 1. The proposed graphical model. Nodes that mpresent the observa-
tions & ar rendered in black, and they are observed both in training and
testing. Grey nodes i are only observed dunng traiming but not testing, and
they represent the target labels to be predicted, eg activity labels. Wik
nodes z mfer to the latent variables, which are unknown either in training
or testing. Mote that &y, Ye. 25 are fully connected in our model, and also
for nodes of transition.

the mattress and a motion sensor above the bed. In these
scenarios, the discriminative models provide us a natural way
of data fusion for human activity recognition.

The linear-chain Conditional Random Field (CRF) is one
of the most popular disciminative models and has been
used for many applications. Linear-chain CRFs are efficient
models because the exact inference i1s tractable. However,
they are limited in the way that they cannot capture the
intermediate structures within the target states [6]. By adding
an extra layer of latent variables, the model allows for
more flexibility and therefore it can be used for modeling
more complex data. The names of these models are inter-
changeable in the literature, such as Hidden-Unit CRF [7],
Hidden-state CRF [6] or Hidden CRF [8].

In this paper. we present a latent CEF model for human
activity recognition. For simplicity, we use “latent variables™
to refer to the augmented hidden layer, as they are unknown
either in training or testing. The “target variables”, which is
observed during training but not testing, represent the target
states that we would like to predict, e.g. the activity labels.
See Fig. | for the graphical model and the difference between
latent variables and target variables. We evaluate the model
using the RGB-D data from the benchmark dataset [3]. The
results show that our model performs better than the state-
of-the-art approach [3]. while the model is more efficient in
inference.

The contributions of this paper can be summarized as
follows:

1) We propose a novel Hidden CRF model for predicting
underlying labels based on the sequential data. For
each temporal segment, we exploit the full connectivity
among observations, latent variables, and the target
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variables, from which we can avoid making inappro-
priate conditional independence assumptions.

2) We show an efficient way of applying exact inference
in our graph. By collapsing the latent states and the
target states, our graphical model can be considered
as a linear-chain structure. Applying exact inference
under such a structure is very efficient.

3) Owr software is open source and will be fully available
for comparison',

The rest of the paper is organized as follows. We describe
the related work in section II. We formalize the model and
present the objective function in section III. The inference
and leaming algorithms are introduced in section IV and
section V. We show the implementation details and the
comparison of the results with the state-of-the-art approach
in section VI

II. RELATED WORK

Human activity recognition has been extensively studied
in recent decades. Different types of graphical models have
been applied to solve the problem, e g Hidden Markov Mod-
els (HMMs) [1]. [2]. Dynamic Bayesian Networks (DBNs)
[9]. linear-chain CRFs [10], loopy CRFs [3]. Semi-Markov
Models [4]. and Hidden CEFs [11]. [8].

As has been discussed in the introduction, the discrimi-
native models are more suitable for data fusion tasks which
are very common in HRI applications, where many different
sensors are used. Here we focus on reviewing the most
related work that uses discriminative models for activity
recognition.

Recently Koppula et al. [3] presented a model for the
temporal and spatial interactions between human and objects
in loopy CRFs. Mome specifically, they built a model that
has two types of nodes to represent sub-activity labels of the
human and the object affordance labels of the objects. Human
nodes and objects nodes within the same temporal segment
are fully connected. Over time, the nodes are transited to the
nodes with the same type. The results show that by modeling
the human-object interaction, their model outperforms the
earlier work in [2] and [12]. For inference in the loopy
graph, they solve it as a quadratic optimization problem
using the graph-cut method [13]. Their inference method,
however, is less efficient compared with the exact inference
in a linear-chain structure as the graph cut method takes
multiple iterations before convergence, and usually more
iterations are preferred to ensure of a good solution.

Other work [14] augments an additional layer of latemt
variables to the linear-chain CRFs. They explicitly model
the new latent layer to represent the duration of activities.
In contrast with [3], Tang et al. [14] solve the inference
problem by reforming the graph into a set of cliques, so that
the exact inference can be solved efficiently using dymamic
programming. In their model, the latent variables and the
observation are assumed to be conditionally independent
ziven the target states.

IThe source code will be fully available at https: //github. com/
ninghang/activity_recognition.git
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Our work is different from the previous approaches in both
the graphical model and the efficiency of inference. Firstly,
similar to [14], our model also uses an extra latent layer. But
instead of explicitly modeling what the latent variables are,
we learn the latent variables directly from the data. Secondly,
we do not make conditional independence assumptions be-
tween the latent variables and the observations. Instead, we
add one extra edge between them to make the local graph
fully connected. Thirdly, although our graph also presents a
lot of loops as in [3]. we are able to transform the cyclic
graph into a linear-chain structure where the exact inference
is tractable. The exact inference in our graph only needs
two passes of messages across the linear chain structure
which is much more efficient than [3]. Finally, we model
the interaction between the human and the objects at the
feature level, insiead of modeling the object affordance as
target states. In such a way, the parameters are leamed to be
directly optimized for activity recognition rather than making
the joint estimation of both object affordance and the human
activity. As we apply a data-driven approach to initialize the
latent variables, hand labeling of the object affordance is not
necessary in our model. Our results show that the model
outperforms the state-of-the-art approaches on the CAD120
dataset [3].

III. MODEL

The graphical model of our proposed system is illustrated
in Fig. I. Let # = {z,x9,...,zx} be the sequence
of observations, where K is the total number of temporal
segments in the video. Our goal is to predict the most likely
underlying activity sequence y = {yi,y2,...,yx |} based
on the observations. We define z = {24.22,..., 25} to be
the latent variables in the model. We assume there are N,
activities to be recognized and N, latent states.

Each observation xp itself is a feature vector within the
segment k. The form of zp is quite flexible. It can be
collections of data from different sources, e.g. simple sensor
readings, human locations, human pose, object locations.
Some of these observations may be highly correlated with
each other, e.g. the wearable accelerate meters and the
motion sensors. Thanks to the discriminative nature of our
model, we do not need to model such correlation among the
observations.

A. Objecrive Funcrion

Our model contains three types of potentials that in
together form the objective function.

The first potential measures the score of seeing an obser-
vation @y with a joint-state assignment (zk, yr). We define
${xz) to be the function that maps the input data into the
feature space. w is the vector of parameters in our model.

U1 (Y, 26, ey wi) = wi(ye, 2x) - Plxk) (0
This potential models the full connectivity among yk,
zg and @, avoiding making any conditional independence

assumptions. It is more accurate to have such a structure
since zp and xy may not be conditionally independent over
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a given yp in many cases. To make it more intuitive, one
could imagine that y; refers to the activity drinking coffee
and zp defines the progress level of drinking. The activity
drinking coffee starts with human grasping the coffee cup
(zz = 1), then drinking (zz = 2). and then putting the
cup back (zp = 3). Knowing it is a drinking activity, the
observation x; varies largely over different progress level
LT

The second potential measures the score of coupling gy
with 2. It can be considered as either the bias entry of (1)
or the prior of seeing the joint state (yg, zg).

Yalyk, 25 wa) = walyg, k) (2)

The third potential characterizes the transition score from
the joint state (yg—1,2g—1) to (yg, 2k ). Comparing with the
normal transition potentials [8]. our model leverages the
latent variable z; for modeling richer contextual information
over consecutive temporal segments. Not only does our
model contain the transition between states yg. but it also
captures the sub-level context using the latent variables.
Intuitively, our model is able to capture the fact that the
start of reading a newspaper is more likely to be preceded
by the end of the drinking activity rather than the middle
part of the drinking activity.

Ua(yr—1: 251, ¥k 285 ws) = wa(yp 1,261, ¥k, 2)  (3)

Summing all potentials over the whole sequence, we can
write the objective function of our model as follows

K
Fly,z,zw) =Y {wilyk, 2e) - D(zx) + walye, 24)}
k=1K
+ 3 walye-1,2k-1, Y%, 2) )
=2

The objective function evaluates the matching score be-
tween the joint states (y, z) and the input x. The score equals
to the un-normalized joint probability in the log space. The
objective function can be rewritten into a more general linear
form Fly,z x;w) = w- ¥(y,z,z). Therefore the model
is in the class of the log-linear model.

Note that it is not necessary to model the latent variables
explicitly, but rather the latent variables can be learmed
automatically from the training data Theoretically, the latent
variables can represent any form of data, e g. time duration,
action primitives, as long as it can help with solving the task.
Optimization of the latent model, however, may converge to
a local minimum. The initialisation of the random variables
is therefore of great importance. We compare three initial-
ization strategies in this paper. Details of the latent variable
imitialization will be discussed in Section VI-D.

One may notice that our graphical model has many loops,
which in general makes the exact inference intractable. Since
our graph complies with the semi-Markov property, next,
we will show that how we benefit from such a structure for
efficient inference and learning.

ACCOMPANY Deliverable D4.4 Report

Contract number: 287624

ACCOMPANY

IV. INFERENCE

Given the graph and the parameters. the inference is to
find the most likely joint states y and z that maximizes the
objective function.

(y*.z*) = argmax Fly,z,z;w) (5)
(yz)eY¥=2
Generally, solving (5) is an NP-hard problem that requires
evaluating the objective function over an exponential number
of state sequences. Exact inference is usually preferable as it
is guaranteed to find the global optimum. However. the exact
inference usually can only be applied efficiently when the
graph is acyclic. In contrast, approximate inference is more
suitable for loopy graphs, but may take longer to converge
and is likely to find a local optimum. Although our graph
contains loops, we show that we can transform the graph
into a linear-chain structure, in which the exact inference
becomes tractable. If we collapse the latent variable zp with
the activity state yy into a single node, the edges between zy
and y; become the internal factor of the new node and the
transition edges collapse into a single transition edge. This
results in a typical linear-chain CRF, where the cardinality
of the new nodes is N, » N.. In the linear-chain CRF, the
exact inference can be performed efficiently using dynamic
programming [15].
Using the chain property, we can write the following
recursion for computing the maximal score over all possible
assignments of y and z.

Vilye.z) = wilyn, 2i) - Plxx) + walye, )+

max {walye—1, 2e—1, ¥, 2) + V11, 2-1)}

(We—1. 21 )EY=E

(6)
The above function is evaluated iteratively across the whole
sequence. For each iteration, we mecord the joint state
(%k—1,2%—1) that coniributes to the max. When the process
has reached the last segment, the optimal assignment of
segment K can be computed as

Vi (i, 2x) i7)

argmax
(e =x)EF=E
Knowing the optimal assignment at K, we can track back
the best assignment in the previous time step K — 1. The
process keeps going until all y* and z* have been assigned.
i.e. the inference problem in (5) is solved.

Computing (6} once involves (N, N ) computations. In
total, (6) needs to be evaluated for all possible assignments
of (g, zk). so that it is computed N, N, times. The total
computational cost is, therefore, O(NENE K). Such com-
putation is manageable when N, N is not very large, which
is usually the case for the tasks of activity recognition.

Next, we show how we can learn the parameters using the
max-margin approach.

. e
Ygs T =

V. LEARNING

We use the max-margin approach for leamning the pa-
rameters in our graphical model. The observation sequences
and ground-truth activity labels are given during training
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Fig 2. Activity composition of the CAD120 dataset

CADI20 dataset. More than half the instances of the dataset
are “reaching™ and “moving”. Therefore we consider preci-
sion and recall to be relatively better evaluation criteria than
accuracy, as they remain meaningful despite class imbalance.

C. Baseline

Our baseline approach uses only one latent state in our
model (N, = 1), which is equivalent to a linear-chain
CRE The parameters of the baseline model are leamed with
the standard Structured-SVM. We use the margin rescaling
surrogate as the loss and Ll-norm for the slacks. For op-
timization we use the l-slack algorithm (primal} as being
described in [22].

We apply a grid search for the best SVM parameters of C'
and e. (' is the normalization constant that is the trade-off
between model complexity and classification loss. e defines
the stop threshold of optimization. When ¢ is small, the
learning process takes longer time to converge and the trained
model contains more support vectors. We show results of the
grid search in Fig. 3. In Fig. 4 we show the curve of accuracy
when keeping one of the parameters fixed.

Based on these results, we choose O = 0.3 and £ = 0.25
for our experiments.

D. Inirialize Latent Variables

In the our latent model, we choose the same € and ¢
as in the linear-chain CRF. Parameters of the model are
initialized as zeros. To initialize the latent states. we adopt
three different initialization strategies. a) Random initializa-
tion. b) A data-driven approach. We apply clustering on
the input data & The number of clusters is set to be the
same as the number of latent states. We mun K-means for
10 times. Then we choose the best clustering results that
with the minimal within-cluster distances. The labels of the
clusters are assigned as the initial latent states. c} Object
affordance. The object affordance labels are provided by the
CADI120 dataset. which are used for training in [3]. We apply
the K-means clustering upon the affordance labels. As the
affordance labels ame categorical, we use 1-of-N encoding
to transform the affordance labels into binary values for
clustering.
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Fig. 3. Performance of the baseline approach (N: = 11 We apply a gnd
search to choose the best O and €. The mesults are averaged on multiple runs
of 4-fold cross-validation. The nan entry in (b) means that at least one of
the classes gets no positive detection. Based on the gnd search, we choose
' =0.3 and £ = 0.25.
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Fig. 4. Another view of the gnd search for the best © and «. (a) shows the
change of classification rate over € when C' 15 fixed to 0.3. When ¢ is small,
@ large number of support vectors is added and the model overfits. When £ ool may be too complex and overfits the data. Therefore
15 too large, the model 15 underfiting and the ierations stop too early, with R R

too few support vectors. (b) shows the change of classification raie over C choosing the number of latent states is also data related. If
when ¢ is fixed to 0.25. When (7 is small, the leaming algorithm tries o~ We use a more complex dataset, more latent states need to
find a8 model as simple as possible, so that the performance is very low. be used.

When ' 15 very large, the model overfits and the performance drops.

Fig. 5 shows the confusion matrix of activity classification.
We can see that higher values present on the diagonal
E Results of the confusion matrix, and they represent the activities
that are comectly classified. The most difficult classes are
eating and scrubbing. Eating is sometimes confused with
the drinking, and scrubbing is likely to be confused with
reaching, drinking and placing.

Our best performance is obtained when we use 2 latent
states and the model is initialized by clustering on the input
data. We get 59.2% on the average precision and 83.17%
on the average recall. which outperforms the state-of-the-
art by over 5% on both precision and recall. We believe the
performance can be further improved if we apply grid search
for the optimal learning parameters of the lalent-state model.

Table | compares the activity recognition performance
between our model and the state-of-the-art approach in [3].
We evaluate the model with different number of latent
states, feo latent-2, latent-3 and latent-4. as well as the
different initialization strategies, Le. random, data-driven and
affordance.

We show that with the optimal SVM parameters, the
baseline performs better on the precision and recall compared
with [3]. but worse on the accuracy. This is because the
baseline does not model the object affordance as target
variables, and the parameters are optimized directly for

minimizing the loss in activity recognition. The other reason VII. CONCLUSION AND FUTURE WORK
is that the baseline model follows a linear-chain structure, In this paper, we present a novel Hidden-state CRF model
and it is guaranteed to find the global optimal solution. for human activity recognition. We use the latent variables

By adding the laient vanables. our model can achieve (o exploit the underlying structures of the target states. By
better results than the baseline, but only when the latent making the observation and state nodes fully connected,
variables are properly initialized. When the latent variables  the model do not require any conditional independence
are randomly initialized, the average performance is much  assumption between latent variables and the observations.
worse in most of the cases and shows a large variance as it The model is very efficient in that the inference algorithm is
most likely to have converged to a local minimum. We note  applied to a linear-chain structure. The results show that the
that the data-driven initialization (clustering on ®) performs proposed model outperforms the state-of-the-art approach.
as good as the initialization with the hand-labeled object  The model is very general that it can be easily extended for
affordances. other prediction tasks on sequential data.

We also compare the model when different numbers of
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