

 Page 1

Reality Sensing, Mining and Augmentation for Mobile Citizen–Government Dialogue

FP7-288815

D3.2
 eGovernance augmented reality application

Dissemination level: Public (PU)

Contractual date of delivery: Month 33, 2014-10-31

Actual date of delivery: 2014-10-31

Workpackage: WP3 - Mobile Augmented Reality

Task: T3.2 – eGovernance augmentation layer

Type: Prototype

Approval Status: Final

Version: v0.7

Number of pages: 126

Filename: D3.2-eGovernance augmented reality

Abstract

D3.2 reports on the activities performed during the second phase of the project in the context of
WP3. During this period, there has been mainly three different activity tracks constituting WP3
contribution to Live+Gov, namely: a) the enhancement of the platform for mobile augmented reality
and the generation of the eGovernance augmented layers, b) the development of a mechanism for
personalized content delivery, and c) the review of methods and tools for data aggregation and
visualization, as well as the thorough presentation of the analytic tools that have been developed to
facilitate the decision makers in making more informed decisions. All three activity tracks are
presented in detail placing emphasis on the reasons that have motivated our work and the concrete
outcomes of our developments.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

This work was supported by the EU 7th Framework Programme under grant number IST-FP7-
288815 in project Live+Gov (www.liveandgov.eu)

 Page 2

Copyright

© Copyright 2013 Live+Gov Consortium consisting of:

1. Universität Koblenz-Landau
2. Centre for Research and Technology Hellas
3. Yucat BV
4. Mattersoft OY
5. Fundacion BiscayTIK
6. EuroSoc GmbH

This document may not be copied, reproduced, or modified in whole or in part for any purpose
without written permission from the Live+Gov Consortium. In addition to such written permission
to copy, reproduce, or modify this document in whole or part, an acknowledgement of the authors
of the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

 D3.2 – Final

Page 3

History

Version Date Reason Revised by

0.1 2014-05-27 Draft skeleton - alpha version S. Nikolopoulos and Y.
Kompatsiaris

0.2 2014-09-03 Version for collecting input S. Nikolopoulos, D.
Ververidis, G. Liaros, A.
Papazoglou-Chalkias, E.
Chatzilari, A.
Maronidis, G. Chantas

0.3 2014-09-27 Version incorporating the first round of inputs L. Niittylä, C. Schaefer

0.4 2014-10-15 Version incorporating the second round of inputs
– beta version

L. Niittylä, C. Schaefer,

D. Ververidis, G. Liaros,
P. Minnigh, M.
Terpstra

0.5 2014-10-24 Version incorporating the comments from
internal review

S. Nikolopoulos

0.6 2014-10-30 Added a section on the sentiment analysis of
social content

S. Nikolopoulos and A.
Papazoglou-Chalkias

0.7 2014-10-31 Proof editing and additional refinements – final
version

S. Nikolopoulos and Y.
Kompatsiaris

Author list

Organization Name Contact Information

CERTH Dimitrios Ververidis ververid@iti.gr

CERTH Elisavet Chatzilari ehatzi@iti.gr

CERTH Giorgos Liaros geoliaros@iti.gr

CERTH Tasos Papazoglou Chalikias tpapazoglou@iti.gr

CERTH Spiros Nikolopoulos nikolopo@iti.gr

CERTH Yiannis Kompatsiaris ikom@iti.gr

CERTH Giannis Chantas gchantas@iti.gr

CERTH Anastasios Maronidis amaronidis@iti.gr

YCT Pieter Minnigh p.a.minnigh@yucat.com

YCT Marjolein Terpstra m.terpstra@yucat.com

UKOB Christoph Schaefer chrisschaefer@uni-koblenz.de

MTS Laura Niittylä Laura.Niittyla@mattersoft.fi

BIZ Maite de Arana komunikazioa.tekniko1@biscaytik.eu

 D3.2 – Final

Page 4

Executive Summary

D3.2 is organized in four main sections (Section 2-5) that are used to report on the activities
that have taken place during the second phase of the project. These sections are
complemented by an introductory section that provides an overview of the deliverable and a
summary section that concludes with some important insights that we have gained during
the Live+Gov experience.

In what refers to the main sections, Section 2 reports on the improvements that we have
performed in addressing the project’s revised requirements, as well as on the major
developments that we have undertaken in order to automatically serve content across
platforms and vendors. Section 3 describes the personalization mechanism that has been
developed to deliver traffic-related information in a personalized manner. Section 4 reviews
some of the most widely established methods and tools for data visualization, while Section
5 provides a thorough analysis of the analytic tools that have been developed to facilitate
the extraction of valuable insights for each of the Live+Gov use cases.

Finally, D3.2 incorporates a number of Appendices that provide details about the technical
investigations that we have undertaken to select the most appropriate libraries and services
for implementing the analytic tools.

 D3.2 – Final

Page 5

Abbreviations and Acronyms

API Application Programming Interface

AR Augmented Reality

AREL Augmented Reality Experience Language

ARML Augmented Reality Markup Language

CMS Content Management System

ESA Explicit Semantic Analysis

HTTP Hypertext Transfer Protocol

IBS Image BaSed augmented reality

IST Information Society Technologies

JSON JavaScript Object Notation

KML Keyhole Markup Language

LBS Location BaSed augmented reality

MVC Model-View-Controller

NGD Normalized Google Distance

NRD Normalized Relevance Distance

REST Representational State Transfer

SMS Short Messaging Service

VR Virtual Reality

W3C World Wide Web Consortium

XML eXtensible Markup Language

 D3.2 – Final

Page 6

Table of Contents

1. INTRODUCTION ... 13

2. MOBILE AUGMENTED REALITY FOR EGOVERNANCE ... 15

2.1 Overview ... 15

2.2 Revised requirements and extensions compared to the first prototype 15

2.3 Improving the augmented reality experience ... 17

2.4 Serving AR content automatically across platforms and vendors 20
2.4.1 Motivation.. 21
2.4.2 Existing solutions for creating and publishing AR content .. 23
2.4.3 Urban Planning AR directory .. 25
2.4.4 FastAR on Sobipro .. 26
2.4.5 Conclusions .. 32

2.5 eGovernance Augmentation Layers.. 33
2.5.1 Urban planning .. 33
2.5.2 Mobility .. 35

3. PERSONALIZED CONTENT DELIVERY ... 37

3.1 Motivation .. 37

3.2 Personalized traffic-related information .. 37
3.2.1 Extracting the commuting habits ... 37
3.2.2 Building the user’s profile .. 38
3.2.3 Generating personalized suggestions .. 39

3.3 Privacy .. 40

3.4 Related apps and how Live+Gov goes beyond .. 40

4. VISUALIZATION TOOLS FOR DATA COMPREHENSION ... 43

4.1 Introduction .. 43

4.2 Map based visualisations ... 45
4.2.1 Types of map-based visualizations .. 45
4.2.2 Map visualizations on the web .. 48
4.2.3 Map visualizations on mobile devices ... 49

4.3 Image-based visualisations .. 49
4.3.1 Types of image-based visualizations .. 49
4.3.2 Performance considerations in gallery-views .. 52

 D3.2 – Final

Page 7

4.4 Graph based visualisations .. 53
4.4.1 Types of graph-based visualizations .. 53
4.4.2 Graph-based visualizations on the web ... 57
4.4.3 Graph-based visualizations on mobile devices .. 58

5. DATA AGGREGATION AND VISUAL ANALYTICS ... 59

5.1 Motivation and approach .. 59

5.2 Visual analytics in Live+Gov ... 59
5.2.1 Mobility .. 59
5.2.2 Urban Maintenance ... 63
5.2.3 Urban Planning... 85

6. SUMMARY .. 90

7. REFERENCES .. 91

A APPENDIX ... 93
A.1.1 Loading performance ... 93
A.1.2 Working performance .. 94
A.1.3 Different solutions on the problem of visualising a large amount of data on a map 95
A.1.4 How much data can each method handle? ... 100
A.1.5 Heat map .. 101

B APPENDIX .. 103

B.1. Map visualisations on mobile devices ... 103
B.1.1 Comparative study ... 103
B.1.2 Making a decision .. 107

C APPENDIX .. 109

C.1. Performance of gallery views .. 109
C.1.1 Initial research on gallery performance ... 109
C.1.2 Follow up research on performance of gallery views .. 112

D APPENDIX .. 118

D.1. Graph visualisations on web ... 118
D.1.1 D3.js ... 118
D.1.2 Flotchart ... 121
D.1.3 Conclusion .. 122

D.2. Graph visualisations on mobile devices ... 123
D.2.1 Native libraries ... 123
D.2.2 HTML / JavaScript .. 126

 D3.2 – Final

Page 8

D.2.3 Summary .. 126

 D3.2 – Final

Page 9

List of Figures

Figure 2.1: Enhanced configuration environments for setting the orientation around the z-
axis and determining the distance of the object from the image capturing device 19

Figure 2.2: Screenshots of the iPhone app that was implemented for the purposes of the
Urban Planning field trial ... 20

Figure 2.3: The urban plans of Gordexola visualized through the Junaio mobile browser 21

Figure 2.4: Connection between Joomla, SobiPro, “Urban Planning AR directory” and FastAR.
 .. 23

Figure 2.5: List of field types included in the Urban Planning Template 25

Figure 2.6: The form to fill for a new urban plan. .. 26

Figure 2.7: The adopted architecture for exporting Sobipro content to AR browsers 27

Figure 2.8: Central panel of FastAR (see http://arexporter.mklab.iti.gr/index.php/installation
for more information) .. 30

Figure 2.9: Registration of the API Endpoint url in the Junaio Developer panel. 30

Figure 2.10: AR environment for Junaio, Layar and Wikitude. .. 31

Figure 2.11: Information page for Junaio and Wikitude. Layar does not have one. 31

Figure 2.12: Map environment for Junaio and Layar. Wikitude does not have one. 32

Figure 2.13: Passing photo shooting parameters to AR web portal so as to configure image
based AR and to present the 3D model correctly. ... 34

Figure 2.14: Example screenshots demonstrating the use of AR in the mobility use case 36

Figure 2.15: Timetable information that appears when tapping on the "Takomotie" billboard
 .. 36

Figure 3.1: Interface of the mobile app that visualizes information about the citizen’s
commuting habits .. 38

Figure 3.2: Notifications generated by the personalized content delivery mechanism based
on the citizen’s commuting habits ... 39

Figure 4.1: All images shown in one overview. Left part: annotations that can be filtered on
 .. 51

Figure 4.2: All images shown in a pivot-view. One issue-category per column 51

Figure 4.3: Issues filtered on Category ‘Onkruid’ and shown per date (IssueDate) 51

Figure 4.4: Example of a scatter plot: correlation between length of arm and body length. . 53

Figure 4.5: Example of a line chart. .. 54

Figure 4.6: Example of a multiset line chart .. 55

Figure 4.7: Example of a stacked area chart .. 55

Figure 4.8: Example of a simple bar chart .. 55

 D3.2 – Final

Page 10

Figure 4.9: Example of a multiset bar chart ... 56

Figure 4.10: Example of a stacked bar chart .. 56

Figure 4.11: Example of a pie chart .. 57

Figure 4.12: Example of a ring chart .. 57

Figure 5.1: Map-based visualization of the recorded citizens’ routes based on the applied
filters... 60

Figure 5.2: Cluster-enabled maps with category-based color coding 64

Figure 5.3: Heatmap-based maps allowing to discover the neighbourhoods with high activity
 .. 64

Figure 5.4: Dashboard: Graphs of Issue Reporting web module ... 65

Figure 5.5: List-view of Issue Reporting web module .. 66

Figure 5.6: Interface for moderating by municipality officials of citizen initiatives 67

Figure 5.7: Sort, search, and filter options in the issue reporting list-view 67

Figure 5.8: Detail view of an initiative: short summary of an initiative in tab ‘Initiatief’ 69

Figure 5.9: Share an initiative via Twitter .. 69

Figure 5.10: Detail-view of an issue report .. 70

Figure 5.11: Extended feedback mechanism integrated in the Issue Reporting web module 70

Figure 5.12: Gallery view in Jij Maakt Utrecht ... 71

Figure 5.13: Gallery-view of Issue Reporting web module .. 71

Figure 5.14: The City Council Districts are displayed in combination with the user submitted
issues (http://lganalytics.mklab.iti.gr) ... 74

Figure 5.15: Schoolyard playgrounds are depicted next to the reported issues allowing the
administrators to better prioritize their resolution (http://lganalytics.mklab.iti.gr) 74

Figure 5.16: Foursquare layers displayed simultaneously with user reported issues
(http://lganalytics.mklab.iti.gr). ... 76

Figure 5.17: Joint visualization of citizen-reported issues and the foursquare layer related to
Playgrounds that reveals the connection between the reported issues and the foursquare
venue (http://lganalytics.mklab.iti.gr) ... 77

Figure 5.18: The results of sentiment analysis applied on the “tips” submitted for a certain
venue (http://lganalytics.mklab.iti.gr) ... 78

Figure 5.19: Reported issue where the description is very short and the user did not assign
the correct category “litter on the street” ... 79

Figure 5.20 Categorization performance of NRD KNearest-Neighbours classifier 84

Figure 5.21: Visualization of plans in the Urban Planning Gordexola mobile app. List view,
map view and AR view. .. 86

 D3.2 – Final

Page 11

Figure 5.22: Visualization of the results of participation in the Urban Planning Gordexola
mobile app. ... 86

Figure 5.23: Visualization of the location of plans on the Urban Planning Gordexola Reporter
web application. ... 87

Figure 5.24: Visualization of the filtered results of participation by gender and age range to
the question about installing a health park in front of the senior citizen facilities. 88

Figure 5.25: Filtering options for the statistical presentation of results in the Urban Planning
Gordexola Reporter web application ... 89

Figure 7.1: A lot of data on small space ... 95

Figure 7.2: Client-side clustering .. 96

Figure 7.3: No optimisation. Execution time: 2.12 seconds .. 97

Figure 7.4: Client-side clustering. Execution time: 0.532 seconds .. 97

Figure 7.5: Example of returning Necessary data only: Google Maps 99

Figure 7.6: Heat map on test data of issue reports ... 101

Figure 7.7: Heat map legend on small area ... 102

Figure 7.8: Pinterest: Memory uses and DOM node Count ... 113

Figure 7.9: Google+: Memory uses and DOM node Count .. 113

Figure 7.10: Instagram: Memory uses and DOM node Count ... 113

Figure 7.11: Twitter: Memory uses and DOM node Count .. 114

Figure 7.12: lazy-loading script: Memory uses and DOM node Count 114

Figure 7.13: Screenshot of DC.js library ... 119

Figure 7.14: Screenshot of a simple bar chart in Dimple ... 120

Figure 7.15: Screenshot of a stacked multiple bar chart in NVD3 ... 121

Figure 7.16: Screenshot of scatter plot/bubble chart in NVD3 .. 121

Figure 7.17: Screenshot of a stacked bar chart in Flot ... 122

Figure 7.18: Screenshot of different line charts in Flot ... 122

Figure 7.19: Core Plot graph examples for mobile charts.. 123

Figure 7.20: Example plots that can be implemented with Shinobicontrols 124

Figure 7.21: Example plots that can be implemented with THREE D GRAPHICS 124

Figure 7.22: Graphs supported by INFRAGISTICS... 124

Figure 7.23: Example of a Pie chart generated with the Hongcheng library 125

 D3.2 – Final

Page 12

List of Tables

Table 2.1: Changes that were deemed necessary for the second field trial 16

Table 2.2: Live+Gov functionalities exported to widely established mobile browsers 20

Table 2.3: AR Content Management Systems Review 24

Table 3.1: Comperative evaluation of the Mobility app against similar apps. 41

Table 5.1: Examples for issues near and far from the category centroid 81

Table 5.2: Example issue taken from the category “others’ along with their classification
scores 81

Table 7.1: Client side caching optimisation for leading performance 93

Table 7.2: Working performance benchmarks: amount of objects on map 94

Table 7.3: Pros and Cons for adopting the Do nothing approach 95

Table 7.4: Pros and Cons for Client-side clustering 96

Table 7.5: Pros and Cons for Server-side clustering 98

Table 7.6: Pros and Cons for returning a Subset of data 99

Table 7.7: Pros and Cons for returning Necessary data only 100

Table 7.8: Pros and Cons for Image based layers 100

Table 7.9: Pros and Cons for Threshold on the accepted amount of results 100

Table 7.10: Categorisation on the amount of objects that can be handled for the
optimisation methods 101

Table 7.11: Feature summary of different map data providers for Android 106

Table 7.12: Pro-Con analysis for different map libraries 107

Table 7.13: Test results of gallery performance (high ping and slow download speed VS
regular ping and download speed) 111

Table 7.14: Frame render-times 115

Table 7.15: CPU idle time while scrolling 115

Table 7.16: Pros and Cons for Infinite scrolling 117

 D3.2 – Final

Page 13

1. Introduction

The goal of this document is to report on the activities that have been carried out in the
context of WP3 during the second phase of the project. After the completion and evaluation
of the first field trials, the goal of WP3 has been twofold. First, to revise, extend and optimize
the platform for mobile augmented reality based on the evaluation results, the debugging
reports and the revised requirements. Second, to design and implement the necessary tools
for data aggregation, interlinking and visualization, and in this way facilitate the decision
makers in better understanding the generated data and discovering useful insights.

In this respect, Section 2 departs from the revised requirements and the necessary
extensions that has been identified during the first phase evaluation and continues with the
description of the technical modifications and optimizations that have been undertaken to
address them. Moreover, Section 2 describes also the major developments that have taken
place in the augmented reality platform so as to automatically serve AR content across
platforms and vendors. These developments were motivated by the need to reach a wider
audience and create more impact, which demanded for having the eGovernance
aurmentation layers available in the highest possible number of devices. The FastAR module
described in Section 2.4 was developed to address this demand. Finally, Section 2 concludes
with the description of the eGovernance augmentation layers that were developed to
facilitate the execution of Urban Planning and Mobility field trials.

The next section of this deliverable (Section 3) is allocated in describing the algorithms and
functionalities that have been developed to address the objective of personalized content
delivery. Although our initial intention was to incorporate this mechanism as part of the
mobile augmented reality platform, the feedback that we received during the first phase
field trials prompt us to repurpose the use of personalization. More specifically, there was a
great demand for more personalized services from the testers of the Mobility field trial. They
practically mentioned that unless the traffic-related information comes in the appropriate
place and time, there is little chance in helping the user to avoid traffic congestions. On the
other hand, there was no significant demand for filtering the content presented through AR
to avoid the user’s overwhelming with data. Motivated by the above, we have decided to
repurpose the personalization mechanism so as to learn and utilize the citizen’s commuting
habits instead of his content preferences. Section 3 describes the algorithms that have been
developed to automatically learn the citizen’s commuting profile, as well as the
functionalities developed based on this profile to deliver traffic-related information in a
personalized manner.

The following two Sections (Section 4 and 5) deal with the second goal of this deliverable,
which is the design and implementation of analytic tools for helping the decision makers in
gaining valuable insights. More specifically, in Section 4 we go through some of the most
widely established approaches for data visualization and we review the pros and cons for
some of the existing libraries and services implementing these approaches. This review
allowed us to adopt the libraries meeting both the fit-for-purpose as well as the technical
requirements.

On the other hand, Section 5 places more emphasis on the conceptual motivation for
developing these tools, as well as the insights that are expected to arise through their use.

 D3.2 – Final

Page 14

More specifically, after defining a methodological approach consisting of the target user, the
intended insight, the internal and external data involved, the processing required and the
employed visualization method, we analyze each field trial based on these aspects. Starting
from the high-level objective (e.g. improve the transportation network) facilitated by the
developed analytics tool, we go on and address each of the aforementioned aspects placing
particular emphasis on the intended insights. In this way, we advocate the appropriateness
of the developed tools to facilitate the city officials in making more informed decisions.

Finally, Section 6 concludes this deliverable by summarizing the most important experiences
that we have gained through Live+Gov, as well as by providing our current understanding for
the potential of the employed technologies.

 D3.2 – Final

Page 15

2. Mobile Augmented Reality for eGovernance

2.1 Overview

In this section we report on the AR-related advancements that have taken place since the
delivery of the first augmented reality prototype described in deliverable D3.1 [1] of WP3.
More specifically, our goal is to layout the revised requirements as derived from the results
of the first field trial evaluation and explain how the implemented extensions and
improvements succeed in addressing these requirements. While in most of the cases the
newly desired functionalities required only small-to-medium effort for their implementation,
the requirement for broad reach and higher impact required the implementation of major
improvements as detailed in Section 2.4.

The AR solution that has been developed in the context of Live+Gov, although relying on a
widely established AR platform, it has been tailored to cover the particular requirements
stemming from the domain of eGovernance. The basic requirement for the developed
solution has been to present future urban plans in a realistic manner, so as to intrigue
citizens to provide their opinion (e.g the preferred location, the architecture type, the eco-
friendliness, an estimate for the usage frequency, etc). In satisfying this requirement, AR has
been used through two types, namely the location based AR that allows citizens to view the
3D model of the plan in its actual position and the image based AR that allows citizens to
scan a promo poster and see the future plan on the poster. The technology developed
incorporates the latest versions of commercial AR tools for a professional quality level.
However, the need to intrigue citizens has forced us to pay particular attention on the
presentation of 3D models, their placement in the scene and, in general, the experience
offered to the user. As a consequence, a number of additional functionalities (i.e. dealing
with the object’s orientation, scale and sensitivity to abrupt location changes) were
implemented to cover the identified requirements, which are not part of a standard AR
solution. Moreover, the need to broaden our audience and reach a critical mass of citizens
has been also the motivation to introduce some new developments outside the usual track
of augmented reality solutions. All the above qualifies the Live+Gov solution as the
appropriate technology to facilitate augmented reality in the domain of eGovernance.

In the following, we start by summarizing the AR-related revised requirements that are
drawn from the related descriptions of deliverable D5.3 [3], as well as the actions that have
been undertaken to address them. Then, we describe in detail how the Live+Gov solution for
AR has been extended to serve content across platforms and vendors. Finally, we present
the eGovernance Augmentation Layers that have been developed to facilitate the execution
of the 2nd field trials.

2.2 Revised requirements and extensions compared to the first prototype

During the first phase of the project the AR-related functionalities were tested in the context
of the urban planning field trial that was conducted in the region of Gordexola, Spain. The
field trial was conducted among a controlled group of testers that were asked to use the
application in order to view three future plans and provide their feedback. The scenario
involved the use of augmented reality for viewing the 3D models of future plans in their
“actual” location, as well as the use of the apps questionnaires to provide their feedback.

 D3.2 – Final

Page 16

Although the evaluation feedback in D5.3 was collected along the typical user evaluation
dimensions (i.e. usability, reliability, learnability, utility, memorability, satisfaction and
efficiency) in the following we take the developer’s perspective and primarily focus on the
AR-related requirements. Our intention in Table 2.1 is to provide a rough description of the
changes that were deemed necessary for the second field trial. The detailed description of
the evaluation results can be found in D5.3 [3].

Table 2.1: Changes that were deemed necessary for the second field trial

Issues in the 1st field trial

Stability

Improve reliability in
offered functionalities

The testers experienced many crashes and un-expected
behaviors in the promised functionalities. This was due to the
loose integration between the AR-library and the base mobile
application, as well as the existence of some problematic
functional scenarios that were under-estimated.

User Interface

Improve Layout and make
labels and tags more self-
explanatory

The menus and workflows were not sufficiently self-
explanatory so as to allow users to easily navigate through the
offered information and functionalities. Moreover, there was
an additional requirement for bi-language support including
both Spanish and the Basque language.

Feedback information

Offer meaningful user
notifications

The limited number of messages provided by the app was not
sufficient for explaining to the user the cause of crashes or un-
expected behaviors.

Localization

Improve user location-
based detection

In a non-trivial number of cases the presentation of 3D models
through the augmented reality view failed to offer the
intended experience. This was due to the insufficient accuracy
on the user’s localization that resulted in the misplacement of
the objects

Image recognition

Improve recognition in
image based triggering of
AR content

The non-robust recognition of marker images caused the 3D
models to frequently disappear, or tremble.

Context awareness The field trial owners decided that it would be very valuable
for them to obtain the context of each submitted vote (i.e. the

 D3.2 – Final

Page 17

Capture and submit
additional information
about the citizen’s context

location where the vote was casted)

Bandwidth

Improve bandwidth usage

Due to the increased size (in MBs) characterizing some of the
utilized 3D models, their downloading (especially in bad
network conditions) caused the app to either crash or become
un-responsive.

Battery consumption

Being a resource-intensive functionality there were many
cases where the continuous use of the AR view drained the
entire phone’s battery.

All aforementioned requirements were taken as input for engineering the final prototype of
the AR-component. Section 2.3 describes in detail the actions that have been implemented
to address these requirements.

However, apart from the aforementioned table dealing with the improvement of the user’s
experience, the execution of the field trial revealed also the need for higher citizens’
engagement. More specifically, there was a vital requirement to maximize the potential of
reaching more citizens and achieve a broader reach. The fact that, during the first trial, the
application was available only for Android devices limited the number of users that could
participate in the trial. Moreover, the fact that the future plans of Gordexola were only
accessible through the custom mobile app developed by Live+Gov raised a considerable
barrier for the citizens. This refers to the citizens that, although frequent users of mobile
augmented reality (e.g. through the widespread mobile browsers for augmented reality like
Junaio, Layar and Wikitude), didn’t have the chance to hear about and download the custom
mobile app developed by Live+Gov. As a consequence, the final prototype of the Live+Gov
AR component was extended not only to serve content across platform and vendors but also
to semi-automate the process of creating AR-views from standard web-sites (see Section
2.4).

2.3 Improving the augmented reality experience

During the second development cycle the integration of the AR library with the base mobile
application become much tighter, which resulted in solving a large number of
implementation bugs. As a consequence, the AR functionality offered through the mobile
app developed for Urban Planning became much more reliable and robust. The robustness
of the functionality was further supported by the execution of three testing cycles prior to
the beginning of the field trial. The results of this testing procedure as well as the re-actions
that were undertaken to tackle the identified problems are described in D4.3 [6]. In the
following, we briefly outline some of the modifications that have been undertaken to
improve the augmented reality experience.

 D3.2 – Final

Page 18

Improved layout design: The design of the app, and as a consequence of the AR
functionality, was significantly improved allowing the user to more easily understand the
cause of the presented urban plans and the expected feedback. The button labels were
renamed to more accurately communicate the intended message and the interface of both
markers and billboards was significantly improved. Moreover, the functional workflows and
labels prompting the user for action were made consistent across both Android and iPhone.
Finally, with respect to the language, we have decided to determine the menu language
based on the language determined by the user in the phone settings. On the other hand, the
questionnaires were selected to be bi-lingual so as to comply with the standard practices in
the Basque country.

Rich set of messages and notifications: A large number of messages have been included in
the app with the aim, on the one hand, to warn the user about the potential non-optimal
experience due to weak sensor signals (e.g. low accuracy in positioning, absence of mobile
data network or WiFi) and, on the other hand, to instruct him on how to make the situation
better (e.g. perform calibration on his compass, turn-on GPS and 3G for better accuracy in
positioning).

Improved AR experience of 3D models based on location: One of the most important
shortcomings of AR usage during the first trial was the rather poor experience of the user in
watching the 3D models of the urban plans jumping from one place to another. This was
mainly due to the inability of the phone’s locations service (i.e. service that detects the
user’s position making combined use of GPS, 3G and – if available – WiFi) to specify the
user’s position with very high accuracy. In our scenario where the user is standing very close
to the 3D model of an urban plan, the location service continues to update the user’s
location even if he is standing still, resulting in a poor user experience. In order to cope with
this issue the improved version of the AR library incorporates a mechanism to stop the
location updates, after the user’s location accuracy stops improving. We decided not to just
lock the location on the first update because there might be the case when the GPS is still
searching for a good signal, resulting in a very inaccurate location. By stopping the location
updates, the 3D models demonstrating the future plans are displayed smoothly eliminating
the “jumping” effect, but raises the issue that if the user is moving, the location will not be
accurate anymore. To solve this issue the location updates need to be restarted when the
user is moving. In order to do this, we have decided to let the user reset the location himself
by shaking the device. When a shake gesture is detected the device is unlocked and the
position of the 3D models is refreshed.

Improve AR experience of 3D models based on visual recognition: Another shortcoming of
the AR functionality that resulted in poor user experience was the sub-optimal performance
of the image markers in acting as the visual recognition triggers of the 3D urban plans. The
quality of experience was further reduced by the fact that there was no provision in the first
prototype in dynamically specifying the scale and orientation of the displayed 3D models. As
a consequence, in some cases, the models appeared oversized and heading to the wrong
direction. During the second development cycle the AR server1 was extended to also
incorporate the dynamic configuration of the model’s size and orientation, allowing the

1
 http://augreal.mklab.iti.gr/

 D3.2 – Final

Page 19

administrator of the AR platform to have full control over the appearance of the 3D model.
The orientation around the z-axis and the distance of the object from the image capturing
device could be set up from the web portal with a graphic user interface (see Figure 2.1).
Furthermore, the Metaio API was configured so as to recognize faster the printed patterns
and prohibit (as much as possible) any trembling effects of the 3D models.

Before New parameters for orientation and scale After

Figure 2.1: Enhanced configuration environments for setting the orientation around the z-
axis and determining the distance of the object from the image capturing device

In both the location-based and visual-based triggering of the 3D models, we also had to
employ a set of refinements dealing with the models’ colour and brightness so as to ensure
the best user’s experience.

Context awareness: The functionality of the app was redesigned so as to collect the user’s
location information along with his/her answers, when submitting a questionnaire. In this
way, each vote is also characterized with a GPS coordinate indicating the location where it
was casted.

Battery-consumption optimization: The prolonged use of the AR view resulted in heating-up
the phone and rapidly consuming its battery, since AR is a resource-intensive functionality.
As a consequence, the testers of the first field trial were frequently confronted with the
situation of having their battery drained even without making extensive use of the
application. This situation was not merely a result of the resource-intensive nature of the AR
functionality, but was also caused by the fact that the AR thread remained open in the
background even when the user was browsing the map or the list view. Although this
strategy achieved very low response times when switching to the AR view, it was far from
optimal from the perspective of battery consumption. The strategy adopted for coping with
this problem was to pause the AR thread when the AR view was inactive. In this way, we
were able to significantly reduce the level of battery consumption when the app was not
showing the AR view. Moreover, we have implemented an additional check mechanism that
was configured to prompt the user to switch from the AR view, when the temperature of the
phone’s battery exceeds 25 Celsius degrees.

Bandwidth usage optimization: The increased size of the 3D models demonstrating the
urban plans required the app to download a significant amount of content before becoming
operational. This size was more or less proportional to the quality of the 3D models. So,
there was a trade-off between the quality of experience and the usability of the app. In

 D3.2 – Final

Page 20

order to improve the situation we have decided, first, to further compress the quality of the
3D models so as to reduce the size of the downloaded content and, second, to make
extensive use of caching and client-server synchronization mechanisms ensuring that almost
90% of the necessary content is downloaded only in the first execution of the app.

2.4 Serving AR content automatically across platforms and vendors

As already mentioned one of the most important requirements that came out of the first
field trial was the need for maximizing the potential of reaching more citizens and achieving
a broader reach. Motivated by this requirement we have decided to extent the Live+Gov
solution for mobile augmented reality along the following axes:

a) Next to the Android version that was used during the first field trial we have decided to
make the app available also for iPhone users as a native application (see Figure 2.2).

Figure 2.2: Screenshots of the iPhone app that was implemented for the purposes of the
Urban Planning field trial

b) Apart from the customized mobile app that was developed within the project for the
purposes of the urban planning field trial, we have extended our AR server so as to serve
the exact same urban plans though three of the most widely established browsers for
mobile augmented reality, namely Junaio, Layar, and Wikitude. All three browsers are
available for both Android and iOS systems and are already enjoying significant
popularity among mobile users. However, as each of the aforementioned browsers allow
only for specific features through its respective API, the functionalities per browser
differ. These supported features are outlined in Table 2.2.

Table 2.2: Live+Gov functionalities exported to widely established mobile browsers

 Location based AR Image based AR

Junaio (http://www.junaio.com/) Yes Yes

Layar (https://www.layar.com/) Yes No

Wikitude (http://www.wikitude.com/) Yes No

 D3.2 – Final

Page 21

Some indicative screenshots from the urban planning channel visualized through the
Junaio browser are shown in Figure 2.3.

The Gordexola urban planning channel as visualized by
the Junaio mobile augmented reality browser.

By tapping on an urban plan
the user sees more details and
he is prompted to download
the official app.

Figure 2.3: The urban plans of Gordexola visualized through the Junaio mobile browser

c) To facilitate the smooth integration of the AR Server’s web configuration tool into the

already existing portal of a municipality, we have decided to re-package this tool as a
Joomla directory that could be very easily installed and become operational even by a
non-expert. In other words, if the portal of the municipality is already based on the
Joomla CMS system, the administrator of the portal can install the “Urban Planning AR
directory” with just a few clicks and obtain the full functionality of the AR server (in
terms of generating the urban plans and serving them in AR channels).

d) Finally, next to these project-specific actions that were primarily oriented towards
increasing the audience of the urban planning field trial, we have also decided to
complement the AR Live+Gov solution with an automatic tool that could help ordinary
users to turn their web-site into a fully functional augmented reality channel.

In the remaining of this section we present in detail the implementations that have been
undertaken to facilitate the third and fourth bullet.

2.4.1 Motivation

Given that the vast majority of municipalities have already a Content Management System
(CMS) that hosts their portal and services, there is a great potential to benefit from the strict
structure imposed by those systems and automate the process of generating augmented

 D3.2 – Final

Page 22

reality channels/layers. Indeed, one of the most popular CMSs is Joomla2. It offers a back-
end graphic user interface that allows to easily configure a web-portal and also to install new
functionalities with a single click. The basic information unit in Joomla is an Article where
someone can write his/her content with an HTML editor. However, the Article is a rather
abstract structure that is not sufficient for serving concrete applications. To treat this
problem, several Joomla directories have become available for allowing the programmers to
make their own database Entry with custom fields. These components can be easily
incorporated within a Joomla installation and offer a certain type of functionality. One of the
most popular components for Joomla that allows for new customizable fields is Sobipro3.

Sobipro offers a range of tools and wizards for simplifying the creation of a promotional
website but at the same time it imposes a rather strict structure on how the data are
organized in the database tables. There are several directories for Sobipro that can be
installed for creating the desired database scheme. For instance, Sobipro has the “Business
Directory” preinstalled that contains a database scheme for storing companies, as well as
the style files for presenting them as a web page. There are several other templates such as
the “Restaurant Directory”, the “Real-estate Directory”, etc. Following the same rationale we
have decided to create the “Urban Planning AR Directory”. By installing this template, the
fields that are necessary for hosting the urban plans are automatically created in the
underlying database.

In addition, having ensured a rather strict structure on the underlying content, we were able
to proceed with the implementation of FastAR4, which has been implemented as a Joomla
component that is freely available as open source for Joomla 2.5 or later, under the Affero
GPL license. In principal, the goal of FastAR has been to exploit the consistency of the
underlying data structure in order to automate the process of turning an ordinary website
hosted by Joomla-SobiPro, into an augmented reality experience viewed through mobile AR
browsers. The logical connection between Joomla, Sobipro, the Urban Planning AR Directory
and FastAR is depicted in Figure 2.4.

2
 http://www.joomla.org/

3
 http://extensions.joomla.org/extensions/directory-a-documentation/directory/16649

4
 http://arexporter.mklab.iti.gr

 D3.2 – Final

Page 23

Figure 2.4: Connection between Joomla, SobiPro, “Urban Planning AR directory” and FastAR.

2.4.2 Existing solutions for creating and publishing AR content

In order to render content as part of an augmented reality world there are two principle
choices that have to be made, namely how to publish the AR content and how to translate
your data in an AR-compatible format. In D3.1 [1] we have reviewed the existing options
with respect to their pros and cons. In the following, we briefly summarize the investigated
options and motivate the choices adopted for the implementation of FastAR. In detail, there
are four options for publishing AR content, namely: a) using a commercial SDK to build a
custom AR browser, b) through free AR browsers provided by certain companies, c) using
open source toolkits to make a custom AR browser, and finally d) using an HTML5 based AR
browser for exploiting the web browser capabilities.

Case (c) was adopted at the early stages of the project but it was abandoned due to the low
quality of the result and the excessive amount of required effort. Case (d) was rejected
because it leads to a solution with low rendering capabilities for 3D content and it also
requires great programming effort. Case (a), on the other hand, resulted in a professional
application but its drawback was that it required a significant amount of effort for
implementing the mobile application for both Android and iPhone operating systems. Thus,
case (b) was adopted in our implementation by making FastAR to comply with the Junaio,
Layar and Wikitude APIs. In other words, upon its successful installation FastAR will be able
to serve the website content through the AR browsers of all three aforementioned
platforms.

The next step relates to the approach used for creating AR-compatible content. In the typical
case, one can rely on the tool that is offered by each vendor so as to generate content
compatible with its AR browser. Indeed, the majority of the existing platforms provide a
desktop or a web based CMS usually named as “Studio” or “Creator” for creating AR-
compatible content. Apart from the AR vendors, third party solutions also exist. In Table 2.3,
the existing third-party CMSs for AR are outlined. BuildAR is a CMS partnered with Metaio
for generating content compatible with the Junaio browser. Visar is a CMS for generating

 D3.2 – Final

Page 24

content that is compatible with Layar. Similar is the functionality of Dimple, Hippon,
Aurasma, Catchhoom, Zapcode, Poistr and Poiz that are CMSs developed to simplify the
process of generating AR content and allow non-expert users to generate their own
augmentation views.

Table 2.3: AR Content Management Systems Review

Name License Modes Platform Content Comments Webpage

BuildAR Commercial LBS Junaio Image,Video,3D No 3D canvas buildar.com

Dimple Commercial LBS, IBS Layar Image, Sound,
Video

No 3D support dimplecms.com

Feedgeorge Open LBS, IBS Layar Image No 3D support,
Wordpress plugin

wordpress.feed
george.com

Hippo Commercial LBS Layar Image, Sound,
Video

No 3D support onehippo.com

Hoppala Commercial LBS Junaio,
Layar,
Wikitude

Image, Sound,
Video, 3D

No 3D canvas hoppala-
agency.com

Visar Commercial LBS, IBS Layar Image, Sound,
Video, 3D

- Visar.biz

Poistr Commercial LBS Layar,
Junaio

Image Import from kml,
free for less than 30
Pois

poistr.com

Poiz Commercial LBS, IBS Layar Image - poiz.biz

ConnectAR Commercial LBS, IBS Junaio Image, 3D Joomla, Wordpress,
Typo3 components

connectar.com

Nevertheless, despite the existence of all these tools, it is only recently where the need to
generate AR content in large scale has motivated the development of tools for automating
this process. Feedgeorge is an AR plugin for Wordpress that supports location and image
based AR through Layar. One can install the Feedgeorge AR plugin in his/her Wordpress CMS
and then an AR tab appears for each post in the back-end. In the AR tab one can select the
AR resources such as the geographic coordinates of the post or the image for triggering the
post through vision recognition. However, the drawback of Feedgeorge is that the data unit
information is non-modifiable, i.e. a post witch custom HTML code. On the same principle,
ConnectAR is a commercial plugin for several CMSs to export data into Layar and Junaio
browsers. It supports Typo3, Joomla, and Wordpress for exporting a page, an article, or a
post, accordingly. It additionally supports 3D models with several options for rotation and
scaling, as well as previewing in a 3D canvas. ConnectAR suffers also from the problem of
non-customizable data units, which is a feature necessary for making new field types.

Motivated by the same trend (i.e. generate AR content in large scale) we decided to proceed
with the following developments:

a) Re-package the AR Server infrastructure and web configuration as an “Urban
Planning AR directory” that could be easily installed in an already existing installation
of Joomla-SobiPro and offer the full AR functionality developed in Live+Gov with just
a few clicks

b) Develop FastAR as a complementary tool that can automatically transform already
existing web-sites (that have been developed based on Joomla-SobiPro) into AR
channels displayed through the mobile browsers of the three major AR platforms
(i.e. Metaio, Layar, Wikitude).

 D3.2 – Final

Page 25

2.4.3 Urban Planning AR directory

The Urban Planning AR directory was designed to incorporate the full range of functionalities
offered by the Live+Gov AR server (see D3.1 [1]), while taking advantage of the already
existing interfaces and functionalities offered by SobiPro. The directory can be exported to a
zip file and be installed in other Sobipro based sites. In Figure 2.5, the fields included in the
directory for hosting the urban plans are displayed. It is evident that the information
incorporated in this directory (i.e. name, description, image, map with GPS coordinates, etc)
incorporates all the information necessary for generating AR entities.

Figure 2.5: List of field types included in the Urban Planning Template

Furthermore, the administrator can add new fields with the GUI of Sobipro for cases that
require additional data. In Figure 2.6, the form to document an urban plan is displayed.

 D3.2 – Final

Page 26

Sobipro provides a standardized GUI based form that is widely known by Joomla users. In
this manner, the time required for training at the Urban Planning AR directory is minimized.

Finally, apart from the front-end related functionalities the Urban Plan AR directory
incorporates all necessary mechanism for serving the generated content in the appropriate
format, so as to be accessible from the major AR platforms (i.e. Metaio, Layar, Wikitude).

Figure 2.6: The form to fill for a new urban plan.

2.4.4 FastAR on Sobipro

As already mentioned, the goal of FastAR is to automate the process of turning an ordinary
(and already existing) website hosted by Joomla-SobiPro, into an augmented reality
experience viewed through mobile AR browsers. However, developing a software module
that could automatically export the content of a website into an AR-compatible format was
far from trivial. This is due to the wide variety of programming skills needed for web, mobile
and database development, as well as the experience required in using the Application
Programming Interfaces (APIs) offered by the existing AR browsers. In developing FastAR we
have faced a number of technical challenges. First, we had to deal with the fragmentation of
the existing technologies and standards in both creating and publishing AR content. Next, we
had to analyze the functional scheme of use for Joomla and SobiPro, so as to derive the core
part of the database that remains unaltered independently of the website's nature. Finally,
we had to make the necessary adaptations so as for the AR view to be fully integrated and

 D3.2 – Final

Page 27

interconnected with the web view. In the following we discuss the solutions that have been
adopted to address these challenges.

2.4.4.1 Architecture

The adopted architecture is outlined in Figure 2.7. Joomla CMS serves as a host for Sobipro
and FastAR components. This structure is the critical feature exploited by FastAR so as to
automate the process of generating AR content. More specifically, FastAR is also
implemented as a Joomla component that is capable of undertaking the following two tasks.
First, guided by the strict database structure imposed by Sobipro, FastAR is able to read the
database entries and generate the AR entities. These AR entities are necessary for
synthesizing the AR channel/layer. Second, FastAR interconnects with the servers of the
supported AR vendors (i.e. Metaio, Layar and Wikitude) that are responsible for sending the
data streams to the corresponding AR mobile browsers. In this way, the database entries
that were originally created by the content owner of the website are automatically
transformed into AR entities that are now visible over an AR view and through AR browsers
that are already installed in millions of mobiles devices.

Figure 2.7: The adopted architecture for exporting Sobipro content to AR browsers

In implementing the aforementioned architecture there are two major technical challenges
that need to be addressed. The first relates to the generation of fully functional AR entities
out of the database entries that have been originally created to support an Internet website.
The second has to do with structuring and exporting these AR entities to the appropriate
format so as to be compatible with the standards supported by each vendor.

2.4.4.2 Joomla standards for supporting the generation of AR content

Joomla stores html pages in a MySQL database to present them in the web portal, also called
as front-end. Joomla is based on the model-view-controller (MVC) scheme. Briefly, the
model defines the database schema, the controller defines the actions and view defines the
presentation format. However, storing html pages in the database is not an efficient way of
saving content when the html pages present the same kind of content, e.g. companies or
urban plans. It is typical for content modules like Sobipro to inherit the MCV scheme and
make it more specific, so as to simplify the process of generating the necessary html pages.
Sobipro stores only the fields that describe the content, e.g. the title, the description, the
image but not the whole html page. As a result, it is necessary for a website that has been
developed using Sobipro to incorporate the same minimum amount of information for each
of unit (e.g. a product, a company, an urban plan, etc). More specifically, the type of
information for each unit consists of title and description. The user can set other fields to be
mandatory such as telephone, website, image or add new fields such as longitude and
latitude.

 D3.2 – Final

Page 28

On the other hand, mobile AR works by overlaying two layers. The bottom layer is the actual
world layer which is visible through the device camera. The upper layer consists of the AR
entities that are computer graphics such as text, images, 2D drawings, and 3D models in a
virtual reality (VR) world. Another essential element of mobile AR is the triggering
mechanisms that determine the conditions that must be met in order for an AR entity to
appear. The most typical triggering mechanisms are based on location and the proximity
between the location of the mobile user and the AR entity (i.e. usually mentioned as
location-based channels). Thus, the minimum amount of information that is necessary for
building a fully functional AR entity is: title, description, longitude, latitude, and logo image.

It is evident from above that the minimum amount of information per unit, enforced by
SobiPro, is sufficient for creating the AR entities that are necessary to support an AR view. As
a consequence, FastAR has been designed to automatically retrieve the necessary
information from the database of SobiPro and create the AR entities. These AR entities are
subsequently organized into the appropriate structures using a set of controllers, as
described in the following section.

2.4.4.3 AR standards across vendors

This section provides details about the standards used by each vendor to stream the AR
content. It also describes how the proposed design copes with the variety of protocols. AR
browsers work by placing a web view on top of a 3D graphics view, and both of them on top
of a camera view. In this manner, the interface is loaded in the web view, the 3D graphics
view renders the 3D models, and the camera view captures the real world. The necessary
resources are provided using html, javascript, and css languages. Text or multimedia data
are provided by html; javascript is used to define the human interface actions; and css sets
the color style of the web view.

The Junaio browser is authored by Metaio Company. The standard used by Metaio is the AR
Experience Language (AREL), which is comprised of: a) XML that contains the urls of the
resources; b) javascript indicating the scenario of the graphic user interface; and c) css for
formatting the style of the interface. Javascript and css are loaded in a web view in a similar
way that it is loaded by web browsers, with the difference that the web view has transparent
background to allow the camera preview surface to be visible. Layar uses javascript object
notification (json) format for sending data. The json file contains both the resources (text,
location coordinates, image links, etc.) as well as the actions allowed by the user during the
immersion (e.g. onClick). The user actions allowed are calls to other applications, namely
telephone, sms, e-mail, url, another layer, or share via social networks (through URIs). The
user interface is stylized in the channel registration portal. Wikitude supports three
communication languages: a) the KML (Google Earth) that should be used for a simple
location based channel; b) the ARML (OpenARML.org) which is an advanced version of KML
that can be used for a location based channel with a custom user interface; and c) ARchitect
which is the main language for allowing all features needed for either location or image
based channels. ARchitect is formed by HTML, javascript, and CSS in a way similar to the
Metaio's AREL language.

In dealing with the variability of the existing AR standards we have decided to adopt an open
architecture for our AR Exporter. More specifically, although we have defined a common
structure for keeping the data that are extracted from the SobiPro database, the
transformation of these data into the appropriate AR language is being performed through

 D3.2 – Final

Page 29

vendor-specific controllers. Thus, our current implementation incorporates three controllers
that export the content in three different formats, namely XML for Metaio, JSON for Layar
and HTML for Wikitude. In a similar fashion, a new controller can be implemented to provide
support for an additional vendor. FastAR automatically generates the API Endpoints, i.e. the
URLs of the aforementioned controllers so as to be used for registration in the portal (server)
of the corresponding AR vendor. Finally, apart from the content, the controllers are also
responsible for handling several additional parameters that are received from the mobile AR
browser. Such parameters are the longitude-latitude of the device, the radius in meters
around the device of the entries to download, the maximum number of entries, and the
keywords for searching for an AR entity.

2.4.4.4 Integration of FastAR with the main application

FastAR should be installed into the Joomla framework in order to offer the Augmented
Reality functionality. FastAR automatically scans the Joomla framework database in order to
find details about the Sobipro sections available. Then, for each Sobipro section an
Augmented Reality Exporter entry is created in a central panel (see Figure 2.8). In the central
panel it is possible to select one AR exporter and edit it. It consists of four tabs. The first tab
named as “Data source” contains the details of the Sobipro section form which the data is
extracted. The second tab named as “Data output” enlists the AR controllers, i.e. the urls of
the API Endpoints for each AR Vendor. These are the urls that should be registered in the
registry channel of the AR vendor, so as to become available through the corresponding
browsers. The third tab named as “Data field structure” enlists the alias of each Sobipro field
that should be exported as AR content. To be more specific, the “Title AR field” is the text
that should be used on an AR billboard, the “Icon AR field” is the icon in the billboard and
the “Description AR field” is the description to be shown when the user taps on a billboard.
Similarly, the “Weblink AR field” is the url that should be accessed when the user presses the
button “Continue in web page”. This is also the place where the user gets more details about
the AR Entity in a web browser. The longitude and the latitude information are strictly
extracted with two options, namely: (a) From plain Sobipro text fields with alias
'field_latitude' and 'field_longitude', or (b) If "geomap" field extension is installed in Sobipro,
from a map field with alias 'field_map'.

After entering the necessary information in the FastAR central panel, the next step is to
register the API Endpoint URL at each AR Vendor. The registration details depend on each
vendor and the user should visit Junaio5, Layar6, and Wikitude7 channel registration sites for
more details. Figure 2.9 refers to the Junaio case and demonstrates the place in the
corresponding web page where the API endpoint url should be inserted.

5
 http://dev.junaio.com/

6
 https://www.layar.com/my-layers/

7
 http://www.wikitude.com/developer/tools/publish-in-wikitude

http://dev.junaio.com/
https://www.layar.com/my-layers/
http://www.wikitude.com/developer/tools/publish-in-wikitude

 D3.2 – Final

Page 30

Figure 2.8: Central panel of FastAR (see
http://arexporter.mklab.iti.gr/index.php/installation for more information)

Figure 2.9: Registration of the API Endpoint url in the Junaio Developer panel.

Third, after the successful registration of the API endpoint url to the AR Vendors, the Sobipro
data is available as a channel in each AR browser. One should open the browser and select
the registered channel by text search or by scanning the QR code given from the AR Vendor.
After successfully opening the channel, an AR environment is shown as in Figure 2.10. Each
AR Entity is represented by a billboard than contains the title, the distance and the image of

http://arexporter.mklab.iti.gr/index.php/installation

 D3.2 – Final

Page 31

the AR Entity. By tapping on each billboard, an information page is shown as in Figure 2.11.
The user can read the description of the AR Entity as it was defined in the back-end. Then
there are two options, namely a) to press “Continue in Web page” where the link defined in
the back-end is opened in a new web browser window in order to see furthermore details;
or b) to press “More in official app” button where the user can download the custom made
application for mobile phones. Additionally to the AR environment the user has the option to
view the entities in a map or list view as shown in Figure 2.12.

Figure 2.10: AR environment for Junaio, Layar and Wikitude.

Figure 2.11: Information page for Junaio and Wikitude. Layar does not have one.

 D3.2 – Final

Page 32

Figure 2.12: Map environment for Junaio and Layar. Wikitude does not have one.

2.4.5 Conclusions

FastAR is a module that allows for generating location based AR channels with as minimum
effort as possible. Already existing web portals can exploit this tool and increase their
visibility by making their content available through widely-used AR browsers. Although, in its
current version, FastAR is limited by the requirement of having the original site hosted in a
Joomla-SobiPro installation, we believe that the potential of exploiting the consistency of the
underlying data structure in order to automate the process of turning a simple website into
an augmented reality experience is a highly promising direction for strengthening the future
impact of augmented reality technologies.

 D3.2 – Final

Page 33

2.5 eGovernance Augmentation Layers

The solution for mobile augmented reality that has been developed in the context of WP3
has been employed for the generation of “two” eGovernance augmented layers. More
specifically, the developed layers have been used to facilitate the field trials of Urban
Planning and Mobility. In the following, we provide technical details about the generation
and use of these layers.

2.5.1 Urban planning

The use of augmented reality coupled with the use of 3D objects was envisaged as one of
the main enabling technologies in Urban Planning. Indeed, in our effort to use intriguing
means to engage citizens in a two-way dialogue with their government, the potential to
augment their reality with the 3D representations of future urban plans was considered
highly promising. Nevertheless, in ensuring the necessary level of user experience we had to
solve a number of technical challenges dealing with the smooth collaboration between the
technologies of 3D modelling and augmented reality. In this section, we discuss the
approaches that have been adopted.

The first technical challenge that we had to face was the construction of a 3D model and a
format that should follow specific requirements, in order to be compatible with the
specifications of the AR vendors. Aiming for maximum flexibility we have decided to rely on
open source tools for designing, modifying and exporting the 3D models. More specifically,
the Blender® 3D design tool8 was used in order to design and modify the 3D models that
were used during the field trial. Blender is considered one of the most sophisticated open
source tools for 3D design, supporting several features such as importing Autocad/Sketchup
models, changing shapes/size/color/material, editing the vertices of the 3D models,
combining several 3D models into one, etc. What was particular useful in our case was the
ability of this tool to import 3D models from open or commercial sites and to combine them
into a single scene. Given that the urban plans that were used during the second field trial
(see D5.4 [4]) required the combination of many different pieces of gymnastic equipment,
their combination into a single scene was absolutely necessary for achieving a realistic
representation of the future plans.

However, apart from combining all different 3D objects into a single scene we had also to
deal with the issue of rendering oversized models in augmented reality. Indeed, according to
the AR vendors the 3D models should not be too detailed. The first reason is the great
bandwidth needed in order to download a 3D model. The second reason is that mobile
devices do not have the hardware resources needed to render complicated models. Based
on our experience, the 3D model of an urban plan should not exceed the size of 1 MB.
Otherwise the mobile device is gradually overheated and frames delays may happen. In
order to make complicated 3D models simpler, we have used the decimation modifier tool of
Blender. This tool can reduce the number of vertices of a 3D model by a given parameter,
e.g. 0.5 for 50% reduction. Sometimes, however, decimation is not possible because the
models are already parsimonious. In this case manual modifications-deletions are needed.

8
 http://blender.org

http://blender.org/

 D3.2 – Final

Page 34

The model format that was followed for exporting 3D models was the Wavefront® Object
format or OBJ. OBJ is an open source format which is supported from a wide range of 3D
design tools and is also compatible with the some of the most important AR Vendors. More
specifically, the OBJ format is fully supported by Junaio and MetaioSDK. In Layar, it is
supported by using a command based conversion tool from obj to l3d (Layar format) that
was included in our setup. Wikitude supports only w3d (wikitude) format, but it does not
provide any automatic tool for converting obj to w3d, and therefore in Wikitude only
billboards are available without 3D content. The OBJ format consists of a file containing the
coordinates of the 3D model, a file for the materials, and of several images that are the
textures of the 3D model. The drawback of this format is that it is not amenable to
compression resulting in oversized 3D models. In order to overcome this drawback, our AR
server was configured to compress the files of the 3D models in a single zip file before
transmission, and thus significantly reducing the required bandwidth. Moreover, the mobile
app that was developed for the purposes of the Urban Planning field trial employs a caching
system that prevents downloading the same file twice, and in this way significantly
improving the experience of the end-user.

As already described in D3.1 [1] the AR server features a web portal that allows for
uploading, inspecting and configuring the 3D models that are served by the system.
However, since the 3D models used during the second field trial needed to offer a much
more fine-grained experience, we had to make certain enhancements. More specifically, in
image-based recognition apart from the object itself information about its scale and
orientation are also crucial. Since the 3D model is overlaid on a photo, the distance from the
target and the angle from where the photo is taken are important. In order to cope with
these two problems we have added a “scale” and a “rotation” angle parameter in the web
interface of the AR server. These parameters allow the operator to modify the model’s scale
and orientation according to the photo shooting distance and angle. For example, in Figure
2.13 it is seen that the photo was taken with 60 degrees from South to West and with a
distance of 5 meters from the origin of the urban plan.

Figure 2.13: Passing photo shooting parameters to AR web portal so as to configure image
based AR and to present the 3D model correctly.

 D3.2 – Final

Page 35

2.5.2 Mobility

Augmented Reality is thought, among other uses, as a way to minimize the effort required
by the user to access relevant information. Motivated by this intriguing concept we have
decided to use augmented reality as an enabling technology for presenting information
related to mobility. More specifically, in the mobile app that was used during the 2nd field
trial of the Mobility use case, we have decided to offer an AR-based functionality that would
allow the user to quickly access information about his nearest public transit stops, as well as
information about the service lines serving these stops. In the following we provide details
about the nature of this functionality and motivate its usefulness.

The first part of the AR-based functionality consists in visualizing, in an augmented view, the
transit stops located near the user by a given radius (e.g. 1500 meters), as shown in Figure
2.14. In order to understand the usefulness of such functionality, consider the case where
the user is searching for the appropriate bus stop to take him to his destination but there is
more than one stop around him, or there is no stop within his viewing range. This is typical
the case for city visitors (e.g. tourists) that have a rough idea about the city’s public
transportation network but are not sure about the exact location of every bus or tram stop.
The aforementioned functionality will help a city visitor to quickly orient himself by turning
his camera towards a certain direction and view the bus (or tram) stops lying in this
direction, along with their distance from his current location (i.e. using an AR billboard). In
this way, the user is offered a much more intriguing and convenient way to obtain this type
of information compared to the typical map-based interfaces.

Moreover, given the fact that the stops are presented in the AR view, relevant information
can be accessed rather quickly by tapping on the AR billboard. This is actually the enabler for
the second part of our AR-based functionality presented in Figure 2.15. More specifically,
upon clicking the AR billboard the user is presented with timetable information including the
numbers of the service lines crossing this stop, as well as the “time-to-arrival” information of
the forthcoming busses (or trams). In this way, the user of the app can make good use of his
time that would otherwise spent on the stop waiting for his bus or tram to arrive.

Finally, it is important to mention that one of most critical factors enabling the
aforementioned functionality is the availability of open data by the HSL (Helsinki Regional
Transport). Information about the location of stops in Helsinki, as well as timetable
information about the service lines crossing each stop is accessible through an easy to use
API that has been employed in our mobile app. Actually, the use of augmented reality
together with HSL data in the context of the Mobility use case has been an excellent
example of using external data sources to facilitate novel services.

 D3.2 – Final

Page 36

 (a): Two bus stops side by side (b): Two distant stops

Figure 2.14: Example screenshots demonstrating the use of AR in the mobility use case

Figure 2.15: Timetable information that appears when tapping on the "Takomotie" billboard

 D3.2 – Final

Page 37

3. Personalized content delivery

3.1 Motivation

One of the most interesting feedback points that we have received during the 1st field trial of
the Mobility use case, was that the usefulness of the application would significantly increase
if it could become more familiar with the commuting habits of the user and more
personalized in the provided suggestions. For instance, it was mentioned that for a
commuting suggestion to be valuable it should be communicated to the user before he
reaches the point when he is actually stack in a traffic jam. In other words, the information
should come to him before leaving his home or his office and not when he is already at the
bus stop, which was the case for the prototype used during the 1st field trial. Thus, one of
the strategic decisions for enhancing the functionalities of the mobility prototype was to
design and implement the necessary algorithms and functionalities for enabling the
provision of more personalized information. This was also in alignment with the scientific
objective of WP3 aiming to build mechanisms for personalized content delivery.

3.2 Personalized traffic-related information

The first step in implementing a personalized content delivery mechanism is to create user
profiles consisting of the criteria that will be used as arguments to discover when and what
type of information to provide. In our case, and since we are dealing with the commuting
habits of the user, the criteria are the most visited places and the usual departing/arriving
times in these places. Our approach has been to automatically extract this information for
each user without requesting any explicit input. Subsequently, using the aforementioned
info in combination with information about the bus stop locations and timetables, as well as
with disruption info about the good condition of the traffic network we have been able to
offer personalized suggestions about the optimal commuting options. In the following we
describe the approach that we have adopted to implement this functionality.

3.2.1 Extracting the commuting habits

In order to identity the most visited places we have established a data collection service that
is scheduled to run in the background and collect location points with a 15 min interval. For
each location point the fields latitude, longitude, accuracy and timestamp are stored in the
phone’s local database. The service listens to location updates passively so as not to
consume any additional power. Subsequently, these points are clustered into visited places
by grouping together the points that lie within a 500m radius around the clusters centre.

Then, having identified the visited places we can spot the ones that are most visited. In
detail, by using the timestamps associated with location points we can calculate how many
times a user has visited a certain place. The timestamps are used to distinguish between
legitimate and fake visits. More specifically, a threshold of 2 hours has been selected to
perform this distinction. So, if someone has left from a place and returned only after 2 hours
we will count 2 visits for this place, otherwise we only count for one. This is to cater for cases
where, for example, someone leaves his home or office for some time but he doesn’t
actually makes any use of the public transportation network. Finally, after counting all
legitimate visits we can calculate the approximate time that the user has spent on the place

 D3.2 – Final

Page 38

and, based on this information, rank the identified clusters from the most visited place to
the less visited one.

The next step is to calculate the arriving and departure time to/from a place. In order to do
this we convert all arrival and departure times to “minutes since the start of the day”. Then,
in order to find the arrival time, we consider only the timestamp of the earliest visit (out of
the group of all visits assigned to a certain place) and we average these timestamps across
days. Moreover, in order to cater for the case where the user does not always arrive in a
place at a specific time, we calculate the standard deviation of the arrival times. If the
standard deviation is found to be over a certain threshold we conclude that the arrival time
cannot be estimated accurately for this place, otherwise we consider the averaged
timestamp across days as an accurate estimation of the arrival time. Similar is the process
for estimating the departure time for each visited place.

3.2.2 Building the user’s profile

Based on the aforementioned process we have managed to automatically extract the
following criteria about the user’s profile: a) Coordinates of the places that the user is
visiting, b) Time spent on each place, c) Arrival time to each place, and d) departure time
from each place. A dedicated view was incorporated into the mobile application in order to
visualize the results of this process Figure 3.1(a). Through this view the user has the option
to name the detected places or hide them if a place has been falsely detected Figure 3.1 (b).
By hiding a place the user will stop receiving notifications related place and is will also
disappear from the “My Places” view. However, by pressing “Hide” the place is not totally
deleted from the local database, because that would mean that it could appear again in the
future. Only a flag is used in the database to indicate that the place should not be taken into
account when sending notifications.

(a) Automatically detected places (b) Visualization of a certain place

Figure 3.1: Interface of the mobile app that visualizes information about the citizen’s
commuting habits

 D3.2 – Final

Page 39

3.2.3 Generating personalized suggestions

Using these criteria we can offer personalized commuting suggestions by making use of the
HSL route planning API9. This API receives as parameters two pairs of coordinates (current
location and destination) as well as a desired arrival time. The output returned is the
suggested route. Given that we have information about the user’s upcoming trip (i.e. start
point and destination), we are able to call this API with the necessary parameters and obtain
information about the public transportation means (i.e. bus or tram lines) that the user is
likely to use. Having acquired the bus or tram lines we are also able to call the disruption info
API10 so as to determine if any of the transit lines included in the suggested routes have any
disruptions. In this way, we are able to warn the user about potential delays in his upcoming
travel.

The suggested route is visualized on the map with a polyline. The “Walking” parts of the
route are coloured cyan and the public transit parts are coloured green. A marker is placed
at the points where the user changes transportation method. When a user taps on a marker,
if the transportation method is walking, then “Walking” is displayed as a title and the arrival
time is displayed as a subtitle. If the transportation method is a public transit line then the
line number, the departure point and the terminal point is displayed as a title, whereas the
departure time from the station according to the timetables is displayed as a subtitle (see
Figure 3.2(a)). When applicable, a disruption info marker is also placed in between the stops
of the affected line and shows the disruption message if tapped (see Figure 3.2 (b)).

(a) Route suggestion (b) Disruption details

Figure 3.2: Notifications generated by the personalized content delivery mechanism based
on the citizen’s commuting habits

9
 https://www.hsl.fi/en/information/how-use-public-transport/planning-journey

10
 http://www.reittiopas.fi/en/disruptions.php

 D3.2 – Final

Page 40

These suggestions are presented to the user via the notification system of his mobile phone,
without requiring from the user to have the app running. For example, if the app has
detected that a user usually goes to work at 11:00 and has also detected the coordinates of
his work, it sends him a notification at 9:00 with the message “Trip Update: Departure for
Work (11:00)”. If the notification is tapped then the detailed map view will be presented to
the user. This will help the user to know: a) what time he should depart or be on the bus
stop in order to arrive on time, and b) if there are any disruptions that will affect his journey.

3.3 Privacy

A major concern in implementing this personalized functionality is respecting the user’s
privacy. The system is tracking the user’s whereabouts throughout the whole day. Other
applications such as Google Now store the user’s location data on the cloud. The data are
also linked with the user’s google account, which means that the user can be identified
easily. The Mobility app on the other hand does not communicate the data anywhere on the
internet. They are exclusively stored and processed in the user’s device. By storing the data
on the device the user has the freedom to clear all data through its settings menu, or by
uninstalling the app. The data process as well, is performed only when the device is
connected to the charger, in order to avoid additional power consumption. The only
drawback of this method, as opposed to storing the data on the cloud, is that the data is tied
on the device and not to the user, meaning that if a user switch devices from a mobile phone
to a tablet he would not have the same experience. We have decided to adopt this approach
given that we regard the user’s privacy as more important than tolerating with this minor
drawback.

3.4 Related apps and how Live+Gov goes beyond

A number of related apps are already on the market offerning personalized traffic
information to their users. In the following, we briefly describe some of the most popular
apps belonging to this category and compare them against the mobile app developed for the
Mobility field trial.

Waze: Waze is mostly considered as a GPS navigation app, but it has many features that
enhance the navigation experience. Using crowdsourcing data from its own users it can
provide real time traffic information or other events that affects a user’s mobility, such as
accidents, road closures, etc. Each user of the app sends anonymous data like driving speed
and position that are used to calculate traffic load for the area. In order to provide reliable
information, a significant amount of users are required. To encourage more users
contributing to crowdsourced data, waze uses gaming conventions such as earning points
and getting rewards depending on how much they drive using the app.

Google Now: Google Now is a personal assistant smartphone application that predicts what
you need at a given time and displays information cards such as sports, parking location,
traffic, calendar reminders and many others. Although not entirely dedicated to
transportation, it has some interesting features that are worth noticing. The application can
detect your commuting habbits and timely present information cards containing traffic data,
routing information and time required to reach a destination. It also has the ability to
automatically detect the transportation means you usually prefer (bike, vehicle or public
transit) and adapt these cards accordingly. So, in the case of public transit for transportation,

 D3.2 – Final

Page 41

it presents timetables of the nearest stop. By taking advantage of Google’s app ecosystem it
can also use information retrieved from other apps such as calendar events or recently
searched places on Google Maps to enhance the overall experience.

Moovit: Moovit is an application for Android, iOS and Windows Phone that specializes on
public transit transportation. Users can access a live map and view nearby stops and stations
based on their current GPS location, as well as plan trips across transportation modes based
on real-time data. The application differs from traditional public transit information as it is a
community-driven application that integrates static transit data from public operators with
real-time data collected from users via crowdsourcing. Moovit provides disruption
information if supported by the specific city authorities. The users can also store their
favourite places in order to access quickly routing information.

INRIX Traffic: INRIX Traffic is an application developed by INRIX, a company based in the US
that specializes on road traffic and driver services. INRIX collects trillions of bytes of
information about roadway speeds from over 175 million real-time anonymous mobile
phones, connected cars, trucks, delivery vans, and other fleet vehicles equipped with GPS
locator devices. Their mobile application shows real time or predictive traffic information
and can also provide alerts such as traffic congestions, road closures, construction and other
events. The application also allows the users to define their home and work locations in
order to receive personalised alerts about their daily commute.

It is evident from the aforementioned descriptions that the Mobility app shares some
common features with the applications that are already available in the market. For
instance, the ability to obtain routing information, as well as to define the favorite places for
receiving personalized alerts is supported by all apps. However, it is only the Mobility App
and Google Now that are able to detect these places automatically. Similarly, the provision
of authority alers seems to be a common feature among the examined apps, but it is only
the Mobility app and Waze that are able to receive and distribute user-provided alerts next
to the authority alerts. Moreover, we can see that more advanced functionalities like human
activity recognition, or the ability to push personalized notifications based on the user’s
commuting habbits, combined with traffic-related information are only supported by Google
Now and the Mobility app. Finally, the integration of augmented reality as the basic mean to
communicate information about the nearby busstops together with the timetables of the
forthcoming busses, is currently the feature that makes our application unique among the
existing competitors. Table 3.1 , provides an overview of our comparison.

Table 3.1: Comperative evaluation of the Mobility app against similar apps.

 Mobility Waze Google
Now

Moovit INRIX Traffic

User alerts + + - - +

Authority Alerts + - + + +

Favourite Places + + + + +

Automatic detection of favourite
places

+ - + - -

Routing Information + (HSL) + + + +

 D3.2 – Final

Page 42

Notifications + - + - -

Activity Recognition + - + - -

Nearby stops and timetable
information through Augmented
reality

+ - - - -

 D3.2 – Final

Page 43

4. Visualization tools for data comprehension

4.1 Introduction

Visual Analytics (VA) is a fledgling scientific discipline that combines techniques and methods
from the research areas of Human Computer Interaction (HCI), visualization, and automatic
analysis techniques, including statistical methods, machine learning, data mining, knowledge
discovery, and similar approaches. The need for VA is motivated by the vast amount of
today’s available digital information, which cannot be processed fully automatically, if the
problems are not defined a priori, the scenarios are too complex, or require human
knowledge to solve them [20]. The goal of visualization is to aid our understanding of data by
leveraging the human visual system's highly-tuned ability to see patterns, spot trends, and
identify outliers. Well-designed visual representations can replace cognitive calculations with
simple perceptual inferences and improve comprehension, memory, and decision making.
The power of visualisation is to help the observer use his perceptual system in order to free
up our cognition for higher-level tasks [10] (i.e. assist thinking [14]). This is to make it
possible for analysts of data to obtain internal mental models of the information content in
datasets; models which subsequently can be used for characterization, prediction, and/or
decision making [16]. More generally speaking, the purpose of visualisation is threefold [18]:

1. Exploration: the search for hypotheses that consists in: a) Exploring large amounts of

data, b) Finding interesting relations, and c) Building hypotheses

2. Analysis: the confirmation or rejection of hypotheses that consists in: a) Analysing the

identified hypotheses, b) Extracting patterns, and c) Detecting tendencies

3. Presentation: the presentation of facts that are fixed a priori, which consists in: a)

Presenting the analysis of results to others, and b) Presenting information in an easy-to-

understand way.

Moreover, by making data more accessible and appealing, visual representations may also
help engage more diverse audiences in exploration and analysis. However, one of the
challenges that we need to face is to create effective and engaging visualizations that are
appropriate to the data. The data can be of different type [19], such as: i) Bivariate data, ii)
Multivariate data, iii) Timedependent data, iv) Networks & Hierarchies, v) Geo-located data,
vi) Other types (e.g.: text, audio, video, images). Thus, In order to create a visualization one
must determine which questions to ask, identify the appropriate data, and select effective
visual encodings to map data values to graphical features such as position, size, shape, and
color. The challenge is that for any given data set the number of visual encodings — and thus
the space of possible visualization designs — is extremely large.

Apart from selecting the appropriate encoding, there are three additional aspects that must
be taken into account, namely: excellence of the employed graphics, analytical capacity and
anatomy of the design patterns.

With respect to graphics, visualisation of data is not about making the fanciest visualisations.
In many cases, infographics degenerate to mere eye-candy visualizations, taking into account
all the new possibilities provided by modern computer graphics – colourful and fancy – but,
however, pretty meaningless [11]. Edward Tufte refers to this as chartjunk. He argues that
graphical excellence comes from “clarity, precision and efficiency” and it should focus on

 D3.2 – Final

Page 44

graphical decisions, not on fashionable display techniques [16]. This does not mean that
visualisations cannot be fancy. A powerful visualisation is right on the thin borderline
between functional and graphics excellence [12]. Tufte describes five principles for the
excellence of graphics [15]: a) Well-designed presentation of interesting data – a matter of
substance, of statics, and of design, b) Complex ideas communicated with clarity, precision,
and efficiency, c) Gives to the viewer the greatest number of ideas in the shortest time with
the least ink in the smallest space, d) is nearly always a multivariate, and e) Requires telling
the truth about the data.

With respect to the analytical capacity, Tufte identifies the following six principles for the
effective analysis of the data: a) Show comparisons, contrasts, differences, b) Show
causality, mechanism, explanation and systematic structure, c) Show multivariate data; that
is, show more than one variables simultaneously, d) Completely integrate words, numbers,
images and diagrams, e) Thoroughly describe the evidence, and f) maintain the data quality,
relevance and integrity.

Finally the design patterns for interactive information visualisation can be contextualised in
different ways: design patterns, behaviour patterns and interaction patterns. Display
patterns are mainly about the visualisation of the data itself. Behaviour patterns deal with
the dynamic characteristics of interactive infographics. They are about the functionalities the
dynamic infographic gives you, like navigating a map, rearranging a graphic, etc. Interaction
patterns are about the interactive part of infographics: essential interface elements that let
the user give input to an information system.

A single design pattern consists of four elements: a) description - states the purpose of the
pattern; b) required data - information about the data basis that is needed; c) usage -
describes the steps the designer has to perform to apply the pattern, d) rationale - summary
of the essential characteristics and argumentation for its usage – why instead of how.

Display patterns are mainly about the visualisation of data itself. Behrens divides them into
eight categories [11]:

 Correlations, to identify patterns and other structures in observed phenomena,
experimental samples or other statistical data. These are often hard to conclude from a
table.

 Continuous quantities, to show some kind of causal relationship between data along a
(regular) interval line. Although the data set is the result of data samples taken along the
line, they can be treated as a continuous occurrence.

 Discrete quantities, to display sets of discrete data (enclosed and countable items of
quantitative data). This is in contrast with the data represented at a continuous interval.

 Proportions, to show the share of certain data to the total quantity.

 Flows, to show the sequential nature of data. Here, it is not about the condition’s static
totality, but about how this condition has evolved.

 Hierarchies, to show connections in hierarchical relationships.

 Networks, for the display of interconnected entities.

 Spatial configurations, maps and space-related representations.

 D3.2 – Final

Page 45

Behaviour patterns deal with interactive infographics and the way one can navigate through
them. There are five basic functionalities:

 Navigation, to identify “where” within the data structure the user currently is.

 Filtering, to select order criteria in the display of the data.

 Arrangement, to examine data from different perspectives.

 Exploration, functionalities to explore the data set.

 Transition, functionalities to actually move the visual representation itself instead of
user’s eyes.

Interaction patterns, within interactive infographics, are able to give input to the system, for
example to select which data is shown and which data is not shown. There are three main
categories:

 Boolean selection, where a user selects an item or he does not select an item.

 Linear adjustment of data mapped over a continuous interval, for exploring large
interval-based data sets.

 Spatial navigation, to interact with elements in their spatial context.

In the remaining of this section, our goal is to provide an overview some of the most typical
visualization methods, placing emphasis on the methods that are considered more relevant
for Live+Gov, i.e. map-based, image-based and graph-based visualizations. This is
complementary to the study of visualization methods performed in D2.3 [5], since our
interest here is not so much on reviewing the available methods for implementing the basic
principles of visual representations, but rather to investigate our options from a practical
and technical perspective.

4.2 Map based visualisations

Maps are one of the most appealing approaches to visualize geo-located data, investigate
their spatial distribution and detect patterns of trends. Indeed, geo-representations are a
very important tool for visualizing data and become even more important in the context of
Live+Gov, since the mobile-sensed data are by default geo-enabled. In this sub-section, we
briefly discuss the different option for map-based visualization, we mention the available
map-based components (both web and mobile) by taking an excerpt from D4.1 [2] and we
consider performance indicators.

4.2.1 Types of map-based visualizations

Many maps are based upon a cartographic projection: a mathematical function that maps
the 3D geometry of the Earth to a 2D image. Other maps knowingly distort or abstract
geographic features to tell a richer story or highlight specific data.

Flow Maps: By placing stroked lines on top of a geographic map, a flow map can depict the
movement of a quantity in space and (implicitly) in time. Flow lines typically encode a large
amount of multivariate information: path points, direction, line thickness, and color can all
be used to present dimensions of information to the viewer. Many of the greatest flow maps
also involve subtle uses of distortion, as geography is bended to accommodate or highlight
flows.

 D3.2 – Final

Page 46

Choropleth Maps: Data is often collected and aggregated by geographical areas such as
states. A standard approach to communicating this data is to use a color encoding of the
geographic area, resulting in a choropleth map. In the figure below, a color encoding is used
to communicate the prevalence of obesity in each U.S. state. A specialization of the
Choropleth maps can be considered the heatmaps where individual numerical values are
represented as colors overlaid on a map. Recently, the traffic heatmaps has become a very
popular visualization tool for providing an overview of the traffic congestion in a city.
However, heatmaps can be used to offer insights on various types of geo-located data such
as air or sound pollution measurements, tweets or facebook posts, etc

http://hci.stanford.edu/jheer/files/zoo/ex/maps/napoleon.html
http://hci.stanford.edu/jheer/files/zoo/ex/maps/choropleth.html

 D3.2 – Final

Page 47

Graduated Symbol Maps: An alternative to choropleth maps is the graduated symbol map,
which instead places symbols over an underlying map. This approach avoids confounding
geographic area with data values and allows for more dimensions to be visualized (e.g., symbol
size, shape, and color). In addition to simple shapes like circles, graduated symbol maps may use
more complicated glyphs such as pie charts. In the figure below, the total circle size represents a
state's population, and each ring indicates the proportion of people with a specific Body Mass
Index rating.

http://hci.stanford.edu/jheer/files/zoo/ex/maps/symbol.html

 D3.2 – Final

Page 48

4.2.2 Map visualizations on the web

As part of D4.1 [2], research has been performed on the available map providers with the
aim to assess their pros and cons. More specifically four map components, namely Leaflet,
MapBoxJS, OpenLayers and Google Maps API, have been evaluated on the basis of certain
criteria including the required mapping functions, data formats, features, look and feel,
maps controls, search capabilities and community.

Leaflet (http://leafletjs.com/) is a community-driven project that is open-source and
suitable for mobile usage. It is used by websites like Flickr11, Foursquare12 and Craigslist13.
The user experience is very good, and the API for the developer is clean and simple.

Mapbox (https://www.mapbox.com/) is a tile service provider, but also delivers a
JavaScript geo-component. It provides well-designed maps, which are also available for
other JavaScript components (like leaflet). Advantages of this component are its speed and
attractive user-interface.

OpenLayers (http://openlayers.org/) is a mature JavaScript Maps API. It’s large in size and
provides many features, but looks a bit out-dated. Although the use of this component is not
really recommended by the respective community, we have decided to include it in this
comparison due to it long-established use and the fact that it provides the most features.

Google Maps (https://maps.google.com/) API is used by many companies, organisations
and people. It is a feature-rich mapping library, which has nice extras, i.e. street-view,
satellite view, etc, that are very favourable for research purposes. However, the license does
not allow free usage for more than 2500 requests per day.

In search for a suitable geo solution that meets the established criteria (future-oriented,
good community, well documented and good look & feel/performance), Leaflet was deemed
as the most appropriate choice (see D4.1 [2]) for becoming an integral part of the Live+Gov
toolkit. This was further advocated by the fact that since our initial research Leaflet has
undergone several improvements, with the most important being the improved support for
mobile devices which improved the reliability on different web browsers. On the other hand,
the Google Maps API feature-set and community are very rich, supporting a number of
innovative services. Thus, it was decided to employ the Google Maps API as part of our
research prototypes due to its potential in becoming a facilitator of our research goals.

Finally, it is important to note that in order to ensure the best user experience when using
the map-based visualizations; we have thoroughly investigated the use of certain
optimizations. In this investigation we have examined the different options to optimize the
loading performance, the working performance, as well as the pros and cons for each of the
available solutions. A detailed description of our conclusions, as well as the solutions that
have been adopted in our implementations are available in Appendix A.

11

 http://www.flickr.com/

12
 https://foursquare.com/

13
 www.craigslist.org

 D3.2 – Final

Page 49

4.2.3 Map visualizations on mobile devices

Given that apart from the web-based visualizations, the field trials envisaged in Live+Gov
required the development of mobile apps featured with a map-based module, thorough
investigation has been also conducted at the level of map-based components for mobile
devices. During this investigation the following aspects were considered: a) Licence: are we
allowed to use the library in our application? b) Flexibility/ Usability: How easy is the library
to use in an application? Are there any limitations in using the library? Is it possible to make
changes in the library (if needed) before we can use it?, and c) online/offline mapdata: what
type of mapdata are used and how are they handled in an online and offline mode.

In the context of this investigation we have examined different known map data source for
mobile devices, namely Bing maps, Google Maps, Osmdroid and Mapsforge. The results of
this investigation are presented in detailed in Appendix B.

4.3 Image-based visualisations

By image-based visualizations we refer to the visualization means that are used to facilitate
the extraction of insights by displaying many images simultaneously. The spatial distribution
of the images, their arrangements along a timeline, or even their clustering based on visual
charactertistics constitute some examples of image-based visualizations. Of course in order
for the image-based visualizations to become effective the underlying dataset should
incorporate images associated with auxiliary metadata information, allowing their filtering or
their spatio-temporal arrangement. The great benefit of this type of visualizations is their
ability to provide a quick and comprehensive glimpse of the available content, the resolution
of ambiguites (i.e. textual), as well as the fact that they can be a very powerful tool in
discovering the stories that are hidden in the data. In this direction, one of the visualization
tools that has been extensively used in Live+Gov is the gallery-view. In the remaining of this
section we will discuss the optimizations that have been undertaken to offer a nice user
experience to the user of the implemented gallery view.

4.3.1 Types of image-based visualizations

Image-based visualisations are less straightforward than map-based visualisations, given that
an image is in itself a visualisation. Therefore, creating a visualisation with multiple images
can become quite complex. In this section, we present two types: the well-know and broadly
used gallery view, and a pivot-viewer technique, where images are shown in a pivot table.

Gallery view: The gallery view is well-known and broadly used when visualising multiple
images. The main functionality is to browse through a set of images, by showing multiple
thumbnails on the screen. This makes visual comparison among pictures possible. Combined
with filtering and sorting options, this can easily be used to discover patterns and stories
within the images. However, a visual judgment by the viewer is always necessary to interpret
the images.

 D3.2 – Final

Page 50

PivotViewer: In order to visualize images in large datasets like BuitenBeter, a Picture Pivot
Table technique can be used. The Picture Pivot Table has been developed by Microsoft Live
Labs. It is called ‘PivotViewer’ and is based on Microsoft Silverlight. An experiment with this
technique has been conducted to estimate the usefulness of this technique. More
specifically, two Microsoft Live Labs tools have been used: a) A MS Excel plugin that pre-
processes the data to get it in a format (called CXML) that can be used in the PivotViewer,
and b) a standalone PivotViewer application (Windows based) that can open a CXML file and
show the data in a picture-pivot way14.

The PivotViewer is based on a technique called DeepZome15. This technique is very
promising when visualizing large image based datasets. Because of the easy and convenient
way of playing around with the data, it encourages users to further interact with the data
and in this way discover new relations among them (see Figure 4.1, Figure 4.2 and Figure
4.3).

The main drawback however, is that this tool has been developed in the Microsoft Live Labs
but it has never reached maturity (i.e. it has been ‘dropped’ by the Live labs), meaning no
(formal) support and limited availability to resources. This is a major risk when relying on this
tool. This problem is already present for the Excel plugin (for preparing the data), which has
become obsolete. That was the reason for selecting the gallery-based view to be the sole
image-based visualization implemented by the analytic tools of Live+Gov (see Section 5).

14

 This tool can be downloaded at: http://research.microsoft.com/en-us/downloads/dd4a479f-
92d6-496f-867d-666c87fbaada/default.aspx. Information about this tool was originally found (but
unavailable since unknown):
https://getsatisfaction.com/live_labs_pivot/topics/faq_what_to_know_about_pivot

15
 See: http://www.microsoft.com/silverlight/deep-zoom/

http://research.microsoft.com/en-us/downloads/dd4a479f-92d6-496f-867d-666c87fbaada/default.aspx
http://research.microsoft.com/en-us/downloads/dd4a479f-92d6-496f-867d-666c87fbaada/default.aspx
https://getsatisfaction.com/live_labs_pivot/topics/faq_what_to_know_about_pivot
http://www.microsoft.com/silverlight/deep-zoom/

 D3.2 – Final

Page 51

Figure 4.1: All images shown in one overview. Left part: annotations that can be filtered on

Figure 4.2: All images shown in a pivot-view. One issue-category per column

Figure 4.3: Issues filtered on Category ‘Onkruid’ and shown per date (IssueDate)

 D3.2 – Final

Page 52

4.3.2 Performance considerations in gallery-views

Dealing with images is a rather sensitive issue from a technical perspective, especially when
the volume of the displayed content becomes large scale. Since the gallery view was one of
the main modules composing the Live+Gov solution for visual analytics, we have decided to
look into this technical problem in more detail. The website jijmaaktutrecht.nl that was
developed for the purposes of the urban maintenance use case, acted as the test basis for
this investigation. More specifically, the undertaken tests were mainly focused on displaying
how the performance of browsers in displaying a significant amount of photos influences the
user experience. In this respect, a number of critical parameters were examined such as the
latency in browser response, the memory usage, the utilization of the heap-size, the option
of infinite scrolling, etc. In order to obtain a basis for comparison, popular sites like Pinterest,
Google+, Instagram and Twitter were examined side-by-side with jijmaaktutrecht.nl. The
results of this investigation are presented in detail in Appendix C.

 D3.2 – Final

Page 53

4.4 Graph based visualisations

Another visualisation technique that has been used in Live+Gov to make sense of data is
based on graphical representations. Graphs are widely used to make sense out of (statistical)
data and complex information. The purpose of graphical representations is to “provide
better insight into large sets of data and complicated structures that are otherwise not
immediately accessible to a reader or spectator” [11]. The insights that can be determined
from graphs may widely vary: from discovering developments in time to distributions, from
discovering correlations to showing (relative) quantities, etc. In this section, we initially
present some of the most well-known types of graph-based visualisations. Then, we
summarize our investigation results on graph-based visualisations. The final section
discusses graph visualisations on mobile devices. For both cases the results of our
investigation are presented in Appendix D.

4.4.1 Types of graph-based visualizations

Mainly, graphs are a 2D representation where data are opposed on two axes and their
intersection is drawn. Four main types of graph-based visualisations are represented in this
section.

Scatter plot: In a scatter plot, correlations between two metric variates can be discovered. It
visually describes a two-column table with pairs of variables that does not provide much
meaningful information in the tabular form, especially when the underlying datasets become
large. Each pair of variates is represented by a dot in the two-dimensional Cartesian
coordinate system (see Figure 4.4). With a sufficient number of elements, it enables the
viewer to identify certain development trends of the data and potentially even point to
functional correlations between the observed variables. Also, exceptions from such
functional rules become visible, like outliers [11].

Figure 4.4: Example of a scatter plot: correlation between length of arm and body length.

 D3.2 – Final

Page 54

Line chart: Line charts display the quantitative value of an observed object over a continuous
interval (see Figure 4.5). In most cases, this interval is a time span, and the graph describes
how the object’s variable changes over this time interval. The line chart is widely used, and
due to its familiar structure it is easy to grasp. Besides the individual values themselves, the
most significant information that can be derived from a line chart is the gradient of the
curve, which provides information about the intensity of the attribute’s change over time.
Also, minimum and maximum values can be easily identified from such a representation
[11].

Figure 4.5: Example of a line chart.

Several variations on the simple line chart can be made, for example multiset line charts
(displaying multiple lines in one chart area; see Figure 4.6) and stacked area charts (where
the area between the y-axis and the line is filled; see Figure 4.7).

 D3.2 – Final

Page 55

Figure 4.6: Example of a multiset line chart

Figure 4.7: Example of a stacked area chart

Bar chart: Bar charts are used to visualise absolute magnitudes of nominal data items, i.e.
discrete quantities (see Figure 4.8). They can theoretically consist of only a single data item,
but in most cases are used to additionally compare the quantitative value of several entities
with each other. Bar charts are distinguished from line charts and pie charts as they do not
display continuous developments over an interval, but measure the values of discrete data
items. Also, they display absolute numerical values rather than proportions [11].

Figure 4.8: Example of a simple bar chart

Variations on the simple bar chart are: multiset bar chart (see Figure 4.9), stacked bar (see
Figure 4.10) chart, isometric bar charts and span charts.

 D3.2 – Final

Page 56

Figure 4.9: Example of a multiset bar chart

Figure 4.10: Example of a stacked bar chart

Pie chart: A pie chart is a circular object divided into multiple polar segments (see Figure
4.11). It displays the relative magnitude of several quantitative values compared to each
other, or, in other words, the distribution of several values that belong to the same dataset.
The full circle represents the total magnitude of this dataset, equal to 100 percent, while
each segment stands for the magnitude of one particular variable. Segment area, arc length
and arc angle of each segment are proportional to the value the segment represents. The
segments of a pie chart are usually labeled with percentage numbers rather than total values
(although they can feature both for the sake of understanding) [11].

 D3.2 – Final

Page 57

Figure 4.11: Example of a pie chart

A variation on the pie chart is the ring chart. In a ring chart, proportions are shown in
multiple rings. In this way, a third dimension can be added to the data (see Figure 4.12).

Figure 4.12: Example of a ring chart

4.4.2 Graph-based visualizations on the web

For graph-based visualisations on the web, a comparative study among different frameworks
and libraries has been performed. In more detail, two main libraries have been investigated:
D3.js16 and Flotcharts17. The criteria that were set for the libraries are twofold: a) it should

16

 http://d3js.org/

17
 http://www.flotcharts.org/

 D3.2 – Final

Page 58

offer possibilities to create different charts (of which at least a stacked bar chart), and b) it
should not have a complicated license. The comparative study is included in Appendix D.

4.4.3 Graph-based visualizations on mobile devices

Given the mobile context of the Live+Gov project, explorative investigation about displaying
charts on mobile devices has been also conducted. The investigation was specifically
tunneled towards examining the libraries that are available in the market. In this
investigation, the following aspects have been considered: a) adoption of the library: is it still
used/developed and how old is the current version? and, b) license: are we allowed to use
the library? The results on this explorative research are described in detail in Appendix D.

 D3.2 – Final

Page 59

5. Data aggregation and visual analytics

5.1 Motivation and approach

The activities described in this section are motivated by the cardinal objective of
transforming the information sensed by mobile citizens into valuable insights about the city
functioning. In achieving this objective the foreseen activities were primarily oriented
towards the summarization of citizen-sensed information into aggregated views and
comprehensive summaries. These views and summaries would subsequently allow the
decision makers to discover consistent patterns and knowledge structures inside the data.
However, as already mentioned in Section 4, in order to come up with a meaningful
visualization you must first determine which question to ask, what data are appropriate to
answer this question and which visual encoding is the most suitable for the intended
purpose.

In applying this rationale in the context of the Live+Gov we have decided to describe the
visual analytics tools that have been developed for each use case, along the following
dimensions: a) Target user: Receiver of the insight, b) Intended insight: What are we looking
for, c) Citizen data involved: The type of data that are appropriate for extracting this insight,
d) External data involved (if applicable): For cases where the citizen-sensed data are
combined with external data to offer a more rich landscape for extracting decisions, e)
Processing required: Explaining the kind of processing that the data should undergo in order
to yield the intended insight when coupled with the appropriate visualization encoding, f)
Visualization encoding: Describing the visualization tools that are used to display the
processed data, as well as the potential options for interacting with the data (facets).

5.2 Visual analytics in Live+Gov

By visual analytics we refer to all processes, methods and tools that have been developed to
facilitate the decision makers in gaining valuable insights. Working along the
aforementioned dimensions and using a set of screenshots as triggers, our aim in this section
is to clearly demonstrate the advancements that have been achieved by Live+Gov in each
use case.

5.2.1 Mobility

The goal of the Mobility use case has been to establish a two-way information stream about
the mobility status of the city between citizens and authorities. Using the mobile app that
has been developed for this trial the citizens are able to constantly sense the mobility status
as they move within the city by uploading their every-day routes, as well as by detecting and
reporting traffic-related issues. Subsequently, the decision makers (in this case the Helsinki
Regional Transport) are given the opportunity to access the aggregated and anonymized
users’ data. Thus, the insights that we are looking for in this field trial are expected to come
from the recordings that have been uploaded and the traffic-related issues that have been
reported by the citizens. These insights can either help the decision makers to improve the
city’s transportation network, as well as obtain a good overview of how traffic-related
problems evolve in time and space. Information on how to access the analytics tool that has
been developed for the purposes of the Mobility field trial can be found in D5.4 [4].

 D3.2 – Final

Page 60

5.2.1.1 Improving the transportation network

In order to help public authorities in improving the city’s transportation network we have
developed a visual analytics tool that is capable of visualizing information about the routes
recorded during the field trial. Thus, the target user of this tool is the authorities (in our case
the HSL public transport planners), that are seeking to extract detailed insights about the
type of journeys citizens make. Moreover, it is evident that the citizen-data involved are the
travel data that have been submitted by the citizens through the app. The data are further
processed either by the human-activity recognition module that is able to classify the
different segments of a journey into certain activities (i.e. walking, running, tram, bus,
subway, ferry), or by a statistical module that is able to filter the displayed journeys based on
a pre-defined set of criteria. As a result, by interacting with this tool the authorities can gain
valuable insights emerging from the citizen’s movements, such as detect the most popular
routes, identify the time(s) in the day when there is high demand for public transport
services, or even discover if there are areas which are difficult to reach smoothly. As shown
in Figure 5.1:, the visualization method that has been employed to facilitate the extraction
of the aforementioned insights is based on a map that can be operated through a set of
filters, imposing certain criteria on the displayed content.

Figure 5.1: Map-based visualization of the recorded citizens’ routes based on the applied
filters

By modifying these filters the HSL authorities can discover repeating patterns in the
passenger journeys. In this way, they can visualize the passenger route chains from one
location to another or from one time instance to another, embedding spatial context and
time-awareness on their understanding on the use of the transportation network. As a

 D3.2 – Final

Page 61

consequence, it rather easy to infer if there are needs for new routes or for shortening the
passengers waiting time on the stops, which is not only valuable, but well needed
information that has cannot be available for them effortlessly. In the HSL case this type of
information is currently gathered manually with different types of surveys, where the survey
method has mainly been through phone interviews on a 2-4 year intervals. With this visual
analytics tool, the information that is gathered automatically via the mobile app can be
easily translated into the necessary insights without the need for a separate survey. Thus,
the resources required are significantly less and the decision makers can further benefit
from the advantage of having new information received constantly.

The analytics tool relies on a central database where the mobile app logs the user routes and
route details. For each route recorded, there is GPS-information, timestamp of the
recording, mean of transport and information about the utilized service line. Based on this
information, a set of predefined filters can be applied in order to visualize only routes that
match the criteria specified by the decision maker. The definition of these filters was done in
close co-operation with HSL in the beginning of the project, so as for the analytics tool to
offer the filtering functionalities that were considered useful for the public transport
planners. In D5.4 [4] (Sect. 3.2.1) there is a detailed description for each of the implemented
filters, the corresponding criteria, as well as information about what types of routes and
details are returned with the result.

5.2.1.2 Landscape of traffic-related issues

The landscape of traffic related issues offers the authorities a valuable insight on the issues
that are regularly addressed in public transportation services and facilities. In this case, the
goal of our visualization is to provide the authorities with information on the issues citizens
report while using the transportation network. For the reports, a set of categories have been
pre-defined allowing the citizens to choose the best category characterizing their issue. Thus,
the target user in this case is the city authorities that are interested in gaining valuable
information on the different types of problems and obstacles passengers face in public
transport. The citizen-data involved are the reports that have been made by the citizens
that may belong to each of the pre-defined categories. The indented insights differ greatly
based on the category of the reported issues.

Issues related to staff usually deal with bus/tram driver behaviour, such as driving style or
communication with passengers. Both types of issues strongly affect the customer
experience and the citizens’ view on these fields can be used to improve customer
satisfaction by creating or improving the instructions and guidelines provided to the staff.

Stop issues include details regarding stop conditions (e.g. broken shelters, litter, etc) or the
information that is displayed on the stops (broken displays, outdated information). Issue
reports that point out the problems that passengers experience while waiting for the vehicle
to arrive, strongly relate to the travel experience and comfort. With the details provided by
this type of reports, existing problems are quickly brought to the notice of the responsible
people allowing the problems to be fixed faster than ordinary. Also, the information
enclosed in the reports (description, location and image) allows the authorities to better
understand which tasks need to be performed on site and what will be necessary for fixing
the identified issues. In this way, the maintenance persons can be more prepared and better
equipped when going on site, making the overall process more efficient.

 D3.2 – Final

Page 62

Service-related reports provide information about the service level in different areas,
problems, improvement needed and general opinions that can be used to enhance the
passenger satisfaction in the given area. These reports thus, provide important information
to the public transport planners about the opinions of the citizens that frequently travel
to/from the given area.

Vehicle-related reports are meant for providing operators’ information about vehicle
conditions. Many of the technical issues can easily be noticed and reported by the driver on
duty, but there are several other types of issues, such as broken seats or malfunctioning
stop-buttons, that might not be noticed in the superficial daily inspections. These reports
could help the operators to more timely notice and react to the issues, thus improving the
passenger satisfaction.

Reports related to timetables enclose information about the problems in scheduled arrival
times, such as constantly delayed vehicles, chaining of vehicles in certain areas, or unreliable
driving times. This information is valuable for the public transport planners who can use it to
better design the timetables in problematic areas.

There is also a category “Other” for the type on issues that do not belong to any of the pre-
defined categories. In these reports, general feedback on the public transport is usually
given, including citizen opinions on the services, general suggestions, etc. All issues are
formed based on the details users provide with their reports, such as location, category,
description and images. This fact allows the employment of various visualization methods
that are able to filter the displayed issues based on spatio-temporal criteria and facilitate the
identification of patterns leading to the aforementioned insights. These methods are similar
to the ones that have been used in the urban maintenance use case, such as map-based
view, gallery view, graph-based aggregation, etc. More details about these methods are
provided in Section 5.2.2.

 D3.2 – Final

Page 63

5.2.2 Urban Maintenance

The aim of this field trial has been to offer a public place where both citizens and officials
can communicate, share and re-act upon essential information about their city. Ranging
from issue reports and citizens initiatives, all the way to co-maintenance spots and
government-initiated participation projects, the information collected and hosted in the
developed infrastructure has the potential to accurately capture and vividly describe “what
is happening in the city”. Thus, in this case the insights are expected to derive from the data
provided by both citizens and officials, while the insights are once again intended not only
for the officials but also for the citizens themselves. In the following, we describe how the
visual analytics tool developed for urban maintenance succeeds in facilitating the extraction
of the intended insights. Information on how to access the analytics tool that has been
developed for the purposes of the Urban Maintenance field trial can be found in D5.4 [4].

5.2.2.1 Discover spatio-temporal patterns in the collected data

One of the most effective ways to understand “what is happening in the city” is to follow
the spatio-temporal patterns that are formulated by the contributed data. By visualizing
these patterns you can easily detect phenomena like the existence of outliers, or segments
in time or space with high activity. Given that such phenomena deviate from the ordinary,
they usually foster interesting insights. Thus, the target user in this case is both the citizens
and city officials that are interested in understanding which is the “ordinary” pattern of the
city functioning and whether there are any “anomalies” that may be of interest to them. The
data involved in this case consists of all four types (i.e. citizens’ initiatives, co-maintenance
spots, reported issues and government-initiated participation projects), while the
processing required for revealing the aforementioned phenomena pertains to statistical
calculations like histogram-based aggregation, averaging, grouping, etc. Finally, the
visualization method that is most suitable for presenting the results of this processing is
based on maps that are further enhanced with the ability to apply spatial, temporal and
textual filters. The map-based visualizations that have been developed for the visual
analytics tool of the urban maintenance use case are cluster-enabled maps (that are further
enriched with category-based color coding) and heat-map based maps (see Figure 5.2, and
Figure 5.3). These map-based tools have been implemented so as to incorporate facet
browsing techniques. More specifically, multiple filters can be applied on the displayed data
allowing users to set their own criteria. The filtering capabilities consists, among others, in
setting the date range, the address, the name of the municipality, the category
characterizing the report, and even performing free text search in the description associated
with each report. Deliverable D5.4 [4], provides a detailed description about the filtering
capabilities of the developed tool.

Based on the above, the intended insights that could be facilitated by the developed visual
analytics tool may range from general observations like the distribution of reports in certain
areas (revealing which neighbourhoods are more active, as well as what is happening in a
neighbourhood, which citizen or government initiative is happening, where influence can be
added), all the way to topic specific observations like the spatio-temporal distribution
characterizing the issues related to broken street lamps (i.e. whether there are certain

 D3.2 – Final

Page 64

neighbourhoods that seem to be more heavily affected by this issue, or whether there are
certain times in the year where this issue becomes more frequent).

Figure 5.2: Cluster-enabled maps with category-based color coding

Figure 5.3: Heatmap-based maps allowing to discover the neighbourhoods with high activity

 D3.2 – Final

Page 65

5.2.2.2 Understanding the statistical tendencies of the data

Live+Gov has developed a graph visualisation dashboard view as can be seen in Figure 5.4.
Graph based visualisations provide statistical information that is easy to digest. In issue
reporting, the target group is the public officials of the municipality. Charts are available on
the number of issues per quarter, so the date of issue reports is used. Next to that,
categories are shown in a pie chart. The data involved is the data generated in the Urban
Maintenance field trial through mobile input from Issue Reporting. The offered bar and pie-
charts are implemented with the use of a Data-Driven Document (D3) JavaScript library. The
webapplication makes use of specific queries that are optimised for streamlined data
requests from the server. This way, the data transmissions between client and server are
stripped from surplus information. With this processing, the Issue Reporting web module
can offer fluent graph-presentations that are rich and fast in response, which is crucial for a
good user experience and effective management report tooling. Users have different
options to interact with the data visualisation. Most important are the filter options
provided on each of the following data or on a combination of the following data: i) Issue
Report ID (melding id), ii) Address of the reported issue, ii) Municipality, Category of the
reported issue, iv) Description of the reported issue, and v) Status. Furthermore, the user
can select the data based on time-range with the time-slider. In this view, the user is able to
get aggregated presentations of the reported issues, e.g. distribution over time or topic.
With the included options to filter, the graphs are a great tool for management reports and
trend analysis. With the combined use of different filters and aggregation options, insights
as trend-lines over time, season-specific issue reporting topics, distribution of issue types
are easily discovered and can be of valuable input for optimising work distribution and
development of new or adjusted policies.

Figure 5.4: Dashboard: Graphs of Issue Reporting web module

 D3.2 – Final

Page 66

5.2.2.3 Monitoring and administering the flow of data

One rather basic visualisation of data is a list-view, a representation of data in a data-grid.
This basic representation is important for the authorities involved with the data. The view is
not particularly well-suited for citizens. The target users for the list-view are public officials
of the municipality, and more specifically those responsible for monitoring and moderation
of Issues or citizen initiatives. Examples of the list view as used in Issue Reporting and
JijMaaktUtrecht can be seen in Figure 5.5 and Figure 5.6.

Figure 5.5: List-view of Issue Reporting web module

 D3.2 – Final

Page 67

Figure 5.6: Interface for moderating by municipality officials of citizen initiatives

The data involved depends on the specific use case scenario. For initiatives in JMU, this
includes Title, Type, Theme, Owner, Start date, End date, Date and time initiative added to
JMU, Date and time initiative was last modified. Because of the intended aim of the
visualisation to be able to monitor and moderate reactions, Date and time when the
reaction was placed, Name of the person who placed the reaction, the Message itself and
the Initiative the reaction was added to are displayed as well. For Issue Reporting the data
involved is Issue Report ID, Date of the report, Address of the reported issue, Municipality,
Category of the reported issue, Description of the reported issue, Status, and Type of the
report. In general, for the list-view not much processing is required as it is database data
that is presented in a data-grid. In order to be able to make use of a list-view, interaction
possibilities required. In the list, a filter option is added, based on a standard search query.
In the upper right corner of the screen, a moderator can search on free text, e.g. for a
specific initiative, type, theme, or owner. In the list, filter options are added to each column,
based on a standard search query (A in Figure 5.7). In the fields above each column, a user
can search on free text. Arrangement of the data is possible in two ways. The first
arrangement possibility is offered by sortable columns – a user can sort the data by any
column in ascending or descending order (B in Figure 5.7). The second arrangement
possibility is offered by boundary filters – on the left above the list, the number of rows
shown on screen can be set (C in Figure 5.7). In this way, a moderator can scroll through the
data by pages or by scrolling down the screen. Overall, the user can select the data based on
time-range with the time-slider (D in Figure 5.7); a feature that is active for all the different
views of the Issue Reporting web module. Exploration of the data in more detail is possible
by clicking on a specific row. The details of that issue are opened.

Figure 5.7: Sort, search, and filter options in the issue reporting list-view

The information in the list-view is presented in a straightforward layout, typically meant for
quick overviews on the data, e.g. for statuses overview and monitoring of issue reports. The
insights are based on offering a quick way to monitor and moderate initiatives and issue
reports. The presentation offers an easy way to check which initiatives or issue reports are
new since the last visit and thus need judgement on their appropriateness. These easily
obtained insights make monitoring and moderation effective. In the list view from Reactions
on initiatives, a moderator can see the latest reactions added to initiatives on
JijMaaktUtrecht. This offers insights on whether or not moderation is necessary on
reactions. Overall, the presentation of data makes quick workflow processing within
administrations possible.

 D3.2 – Final

Page 68

5.2.2.4 Understanding the semantic evolution of a report

An issue report or an initiative contains information that is specific for the particular entity.
This can be compared with a specific advertisement on eBay, or properties on a real estate
agency website. Where in most visualisations the goal is to aggregate information, with the
detail-view the purpose is to offer all the specific information of the entity itself. Here, the
targeted users (for initiatives these are citizens and public officials, for issue reports the
target group is public officials) are provided with a single location which encompasses all the
relevant information of one entity. The involved data in the detail view contains the
following information per issue report: Issue Report ID (melding id), Date of the issue report,
Address of the reported issue, Category of the reported issue, Description of the reported
issue, Status, User details, Feedback (read and add), Photo, Location of the issue report on
the map. For JijMaaktUtrecht, the detail information of an initiative includes: Location
(required), An initiative is part of a Theme, a Theme is part of certain Type (required), Title
(required), Description (required), Start- and end date (required), Links (optional), Images (if
more than one; optional), Contact information of the ‘owner’ (owner is required, showing
contact information is optional), Reactions (optional). Because multiple user groups (citizens
as well as authorities) make use of the detail-view of initiatives, precaution is taken whether
or not specific privacy sensitive user information is displayed or not. Each initiative has, in
principle, an owner. This can be a municipality official in the case of participation projects,
as well as a citizen or an employee of any other organisation. The owner manages the
‘content’ of his/her initiative and is the contact person of that particular initiative. An owner
can decide for himself if contact information is showed in the tab ‘Contact’ with his
initiative. The intended insight for the initiative detail-view is to explore an initiative in more
depth. On the map and in the gallery, the title and short description are shown. However,
given that there is more information about an initiative, the detailed view offers access to
this information. For an impression of the detail view of an initiative, see Figure 5.8. From
the viewpoint of the initiative ‘owner’ (the person that published the initiative on JMU),
intended insights are relating to a semantic and contextual evaluation of initiatives or issue
reports. Examples of the offered functionality, information, and context embedding are:
communication about the initiative to visitors of JMU, relations of the initiative with others
via social media or e-mail, lead visitors to the web page of the initiative (via ‘Links’), provoke
reactions about the initiative (via ‘Reactions’), find interested persons/parties (via
‘Reactions’ or ‘Contact’). With the detail-view, for citizens it is possible to gather insights on
what an initiative is about, see when the initiative is active (via ‘Start and end date’), see
where more information about the initiative is available (via ‘Links’), share the initiative via
social media or e-mail, e.g. to engage others. In short, the goal of this detail-view is to see
more information about the initiative, find out where more (digital) information is shown
and share the initiative or give a reaction via JMU directly.

Connections to external data sources are made when sharing an initiative via social media or
e-mail. This can be done by clicking on the corresponding symbol in the lower right corner of
the detail-view (see Figure 5.9; shown is only the information on one of the different tabs).
Clicking on these opens a popup for Twitter, Facebook, LinkedIn or takes the visitor to his e-
mail client.

 D3.2 – Final

Page 69

Figure 5.8: Detail view of an initiative: short summary of an initiative in tab ‘Initiatief’

Figure 5.9: Share an initiative via Twitter

For issue reports, the targeted users are within the municipality administration, in a
professional environment. Here the report details give specific insights and options to do
professional processing of a filed issue. In Figure 5.10 the details are shown, including the
different tabs at the top. Specifically the status and feedback options (see Figure 5.11) are
of importance in the use case, as this functionality provides a two-way communication
channel between citizen and municipality. The other information in the detail view makes
proper processing and next workflow actions possible.

 D3.2 – Final

Page 70

Figure 5.10: Detail-view of an issue report

Figure 5.11: Extended feedback mechanism integrated in the Issue Reporting web module

As described above, the detail-view offers contextual information and offers functionalities
as well. In the detail-view, interaction is supported by detail on demand: via the specific
tabs, a user can see the details and interact on them, e.g. by providing the issue report with
feedback. This feedback is automatically updated in the mobile client of the citizen. The
detail-view of an initiative can be accessed by clicking on a marker in the map view or by
clicking on an image in the gallery view. In the detail-view itself, not all information is
showed at once in order not to overflow the user with information. The information is
grouped in different tabs Initiative, Links, Images, Contact, Reactions.

 D3.2 – Final

Page 71

5.2.2.5 Obtain a coherent view of the topic through visual manifestations

One of the most powerful ways to offer a real-life impression on what is happening in the
city is an image-based presentation. The great benefit of this type of visualization is the
ability to provide a quick and comprehensive glimpse of the available content, the
resolution of ambiguities (i.e. textual), as well as the fact that they can be a very powerful
tool in discovering the stories that are hidden in the data. In this direction, one of the
visualization tools that has been extensively used in Live+Gov is the gallery-view as can be
seen in Figure 5.12 and Figure 5.13.

Figure 5.12: Gallery view in Jij Maakt Utrecht

Figure 5.13: Gallery-view of Issue Reporting web module

 D3.2 – Final

Page 72

This visualisation is targeted to public officials of the municipality in the case of issue
reporting. For JijMaaktUtrecht the target audience are both public officials and citizens. The
presented data are the images from issue reports and the images of initiatives. These
images are accompanied with other data of the respective entity. This makes interaction
options possible, for example search and filter functionality. With these interaction
possibilities, the image gallery provides users with easy to use methods to generate a visual
impression on categories and/or time based selections. Filtering involves standard search
query on free text – by typing any word, e.g. ‘green’, all initiatives within the current Type
that use this word (in their title, description or Theme) will be filtered out in the gallery;
Boundary filter for actuality – below the textual search, an actuality filter can be set by
clicking on one or more out of the three options “Geweest”, “Actueel” or “Binnenkort”. This
filter is based on the start and end dates at an initiative. Selecting all options will show all
initiatives (of no other filters are set) in the gallery; Filtering on Themes – below the
actuality filter in the menu, themes can be turned on or off by clicking on the icons. For
issue reporting, the filter on category is particularly powerful, but also filters on status and
date will help to create the desired sub-sets of images.

The visual presentation offers possibilities to generate insights on the variety of topics
within a category. Furthermore, the visuals directly make clear what the initiative is about
and well-chosen images are able to bring enthusiasm and can motivate to participate.
Within administrations, having access to an image based presentation, the municipality is
provided with a great tool for storytelling, which is difficult to achieve with pure textual
analytics. With images it is very easy to give people less involved in the matter, a quick and
adequate impression of real-life scenarios. A potential downside of images is the
performance of a gallery representation. In order to be a powerful tool, it is required that
browsing through images is fluent and offered in user-friendly manner. One important
measure that has been taken in Live+Gov is the processing of images. In Appendix C we
report on the optimizations that have been employed to maintain a high level of user
experience.

5.2.2.6 Assess and prioritize issues based on external context

The rationale behind the urban maintenance use case is to administer and analyze the data
contributed by citizens. As already became clear from the previous sub-sections, the
analysis of collected content is performed through a web-based analytics tool that employs
a number of visualization (i.e. heatmaps, gallery view) and spatio-temporal filters to
facilitate both citizens and officials in gaining valuable insights about the city functioning.
However, even though the aforementioned visualizations are able to present the collected
data in comprehensive forms, they are provided in a rather poor context (i.e. bare map
presenting information only about the application-specific data) which is not always
adequate to facilitate the process of turning simple observations into well-advocated
decisions. Driven by this fact we have investigated the option of enhancing our analytics
tools by allowing to easily plug-in and out geo-enabled information layers of governmental
data.

In this respect, the target users of this enhancement are, once again, both the citizens and
city officials that are interested in detecting patterns in the functioning of their city, but they
are further interested in visualizing additional information that may help them interpret
these patterns. The data involved are, as in the previous case, all four application-specific

 D3.2 – Final

Page 73

data types, which are further complemented by a number of external datasets. More
specifically, our ambition was to benefit from on-going initiatives in making non-personal
government data, freely available to everyone to use and republish as they wish. These data
are typically generated by governmental departments (either regional of federal) and may
relate to: a) infrastructures (e.g. position of schools, hospitals, city parks, public facilities,
etc), or b) statistics deriving from the departments of economy (e.g. average income per
area), health (e.g. satisfaction index on health care services), environment (e.g. population
density, or electricity consumption), transport (e.g. road traffic), police (e.g. criminality),
education (e.g. success rates for higher education per area) and many more.

This type of information is of great value when correlated with the user submitted issues
revealing, otherwise difficult to discover, insights. For instance, by overlaying geo-enabled
information related to the geographical position of schools, hospitals and critical
infrastructures, or by overlaying traffic related information along with a density-based
heatmap of the submitted issues, critical decisions like: “which issues to resolve first?”,
“how to plan my resources for next year?”, or “where should I invest more at the level of
infrastructures?” could be made on a much more informed basis. The visualization method
to present the external data are plain maps (in either topographical or heatmap view) and
the processing required entails in making the data compatible with the utilized map
visualization module (e.g. following the KML standard). The only additional requirements
that should be satisfied to offer a meaningful visualization experience is for the enhanced
tool to support keywords based searching with the long list of available datasets, as well as
the ability to overlay more than one data layers simultaneously.

The following screenshot demonstrates the enhancement that has been implemented to
visualize external datasets on top of the citizen-contributed content. On the left-side of the
panel the user can search for the appropriate dataset by providing keywords. Then, by
clicking on the corresponding dataset the geo-located information is displayed on the map.
For instance, Figure 5.14 displays the “City Council Districts” allowing for the user to
understand which of the council members is more heavily loaded with requests during the
specific time-period.

 D3.2 – Final

Page 74

Figure 5.14: The City Council Districts are displayed in combination with the user submitted
issues (http://lganalytics.mklab.iti.gr)

Similarly, in Figure 5.15 the “Schoolyard Playgrounds” are depicted allowing the city
administrator to prioritize the issue that has been reported right in front of the playground
and maybe jeopardize the safety of small kids.

Figure 5.15: Schoolyard playgrounds are depicted next to the reported issues allowing the
administrators to better prioritize their resolution (http://lganalytics.mklab.iti.gr)

http://lganalytics.mklab.iti.gr/
http://lganalytics.mklab.iti.gr/

 D3.2 – Final

Page 75

5.2.2.7 Enriching the issues’ context using social media

Apart from the data layers that have been made public from governmental agencies,
another very rich source of contextual information is the social media stream that is
generated by user-contributed content. Twitter messages, facebook posts and foursquare
check-ins constitute some of the most promising sources of content in acquiring the desired
context. However, in order for this user-generated content to become valuable in our case,
it should feature geo-located information allowing its positioning on the city map. The direct
consequence of this restriction was that the number of geo-located facebook posts and
twitter messages that were found to relate with the reported issues was too small to
facilitate the extraction of a meaningful contextual layer. On the contrary, the information
obtained from foursquare was not only geo-located but also characterized with one of the
categories included in the long list of foursquare category tree18. This fact made foursquare
the perfect candidate for generating contextual layers and overlaying them on top of the
user reported issues.

As in the previous case, the target users are both the citizens and city officials that are
looking to further assess the impact of the reported issues and determine their
importance/priority based on the information submitted in foursquare. The data involved
are the citizen-reported issues or initiatives, while the external datasets that are used in this
case is the check-in information contributed by the users of foursquare. As already
mentioned, foursquare offers a large volume of check points characterized with one of the
existing categories. These categories include among others schools, theatres, parks, airports,
restaurants, and in general highly visited places. Thus, it is evident that knowing the most
highly visited places you can automatically infer the issues with the highest impact. These
are the insights that we are aiming to facilitate with the foursquare layers functionality
depicted in Figure 5.16. Through the “Foursquare Layers” functionality the user can search
through the extended tree of categories supported by foursquare and plug-in or -out one or
more of the foursquare categories. Moreover, additional options like displaying the most
highly visited places, may offer even stronger indicators for assessing the impact of every
reported issue, i.e. a broken lamp on a street that hosts some of the most visited places in
town maybe prioritized compared to a broken lamp in a less popular street. Finally, the
visualization method that is used to facilitate the decision maker in performing the right
kind of impact assessment is based on maps and the processing required entails in injecting
the foursquare data to the utilized map visualization module. For instance, Figure 5.16
demonstrates the functionality of searching through the foursquare categories for
“playgrounds” and overlaying the retrieved venues together with the citizen reported
issues. Given that the band condition of playgrounds may be dangerous for small kids, the
issues reported in the area may receive the highest priority.

18

 https://developer.foursquare.com/categorytree

 D3.2 – Final

Page 76

Figure 5.16: Foursquare layers displayed simultaneously with user reported issues
(http://lganalytics.mklab.iti.gr).

5.2.2.8 Harvest the opinion of social users

Another very intriguing potential for acquiring more context is to harvest the opinion of
social users. Given that a non-trivial number of the submitted issues/suggestions/initiatives
maybe of general interest, it may be likely that a relevant discussion is taking place among
the users of social networks. Thus, it could be an interesting additional source of
information if we could spot the relevant discussions and analyze them with respect to their
sentiment or prevailing topics. However, the task of spotting a set of discussions that are
related to a specific issue/suggestion/initiative has proved particularly challenging mainly
due to the following reasons: a) unless the crawling mechanism can be narrowed down to a
specific set of user accounts that are likely to share information of potential interest, the
information collected through the general purpose APIs is rarely relevant with the intended
topic of interest; b) the information context that is included in the description of an
issue/suggestion/initiative is usually insufficient to enable the deployment of an efficient
text-based analysis algorithm that would succeed in detecting meaningful matches between
the description of the issue/suggestion/initiative and the social media discussions. As a
direct consequence of the aforementioned reasons, our efforts to rely on the general
twitter and facebook APIs for detecting relevant discussions didn’t result in usable content.

In overcoming this obstacle and driven also by the contextually-rich nature of foursquare
data, we have decided to establish the connection between a certain
issue/suggestion/initiative and a set of use contributed discussions in an implicit manner.
The foursquare application, apart from checking-in and categorizing a venue, offers also the
option of providing “tips” (i.e. opinions) about a certain venue. Thus, if the
issue/suggestion/initiative that has been reported by the citizen can be tightly linked to an
existing foursquare venue (e.g. geographical proximity, or explicit reference of the venue
name), then the “tips” that have been contributed by the foursquare users to characterize
this venue can be consider to form a set of discussions related to the initial

http://lganalytics.mklab.iti.gr/

 D3.2 – Final

Page 77

issue/suggestion/initiative. Based on this implicit interlinking we have been able to harvest
the opinion of social users by performing sentiment analysis on the venue “tips”.

Sentiment analysis refers to the process of automatically assessing the positive or negative
attitude of a sentence based solely on natural language processing techniques. It is typically
used to estimate whether people are talking positively or negatively about a certain topic. In
our case, we employed a sentiment analysis algorithm to classify the “tips” contributed for a
venue in five different classes, namely very negative, negative, neutral, positive and very
positive. Subsequently, by aggregating the analysed “tips” based on their sentiment in a
histogram-like view, we are able to easily obtain an understanding of whether this venue
(and thus the issue/suggestion/initiative that has been linked with this venue) is seen
positively or negatively by social users. In addition, by allowing the user to go though the
entire list of the analyzed “tips” along with their assigned sentiment tags, we further
support the decision maker in understanding the cause of this positive or negative attitude.

For instance, by browsing through the submitted issues the decision maker can easily spot a
case similar to the one depicted in Figure 5.17, where a number of citizens have reported
problems about a park. Indeed, by digging into the reported issues we come across issues of
the type “Bags of garbage,mattresses,loose trash”, “Large parties, loud music, and bbq
smell”, or “people feeding waterfowl”. However, if the decision maker would like to verify
whether this negative feeling about the park is permanent or incidental, he could choose to
overlay the foursquare layer related to Playgrounds. Then, by clicking on the corresponding
venue icon he can obtain a rough overview about the people’s sentiment with respect to
this park. The histogram-like view presented in Figure 5.18 (a) reveals that the opinion of
social users is primarily neutral, but leaning more towards negative rather than positive. In
addition, the decision maker can further dig into the text of the sentiment-tagged “tips” to
discover if there is a common reason that generates this negative attitude towards this park
(see Figure 5.18 (b)).

Figure 5.17: Joint visualization of citizen-reported issues and the foursquare layer related to
Playgrounds that reveals the connection between the reported issues and the foursquare

venue (http://lganalytics.mklab.iti.gr)

http://lganalytics.mklab.iti.gr/

 D3.2 – Final

Page 78

(a)

Histogram-like view of the sentiment analysis
results applied on the “tips”submitted for a
venue

(b)

Text of sentiment-tagged “tips” allowing
the decision maker to discover whether
there is a common reason behind negative
or positive fealings

Figure 5.18: The results of sentiment analysis applied on the “tips” submitted for a certain
venue (http://lganalytics.mklab.iti.gr)

The target users in this case are primarily the decision makers that are interested in
harvesting the opinion of social users so as to verify or enhance their understanding about a
certain topic. The data involved are the citizen reported issues/suggestions/initiatives, while
the external data in this case is the “tips” provided by users of foursquare. The intended
insights is the positive or negative feeling of social users with respect to a certain venue
(and as a consequence the issues/suggestions/initiatives that are connected with this
venue), as well as the discovery of the underlying reasons that maybe generating this
positive or negative attitude. Finally, the visualization method that has been used consists
in a histogram-like aggregation of the “tips” based on their sentiment, while the processing
required relates to the textual analysis of the contributed “tips” so as to classify them based
on their sentiment. The sentiment analysis algorithm presented by Socher in [21] and
implemented by the Stanford natural language processing group as part of the Suite of
CoreNLP tools [22] has been used in our implementation.

http://lganalytics.mklab.iti.gr/

 D3.2 – Final

Page 79

5.2.2.9 Automatic categorization of un-classified issues

A major problem with the data collected through the urban maintenance use case is that a
significant number of reported issues have not been assigned to any of the pre-defined
categories. They were simply assigned to the default category “others”. In the past,
uncategorized issues led to additional workload in the subsequent steps by the city council.
The issues had to be forwarded manually to those departments which are responsible for
the respective issue category. Therefore, given the existence of a large volume of un-
categorized issues, the insight that emerged as a research question was the potential of
automatically categorizing these issues to one of the “known” categories. The target user
for this insight is clearly the city officials that would like to remove the additional burden of
having to manually process the un-classified issues. The citizen-data involved are the
reported issues that have not been manually classified to any of the pre-defined categories.
However, in this case, the employed approach was not driven by a visualization method
facilitating the observation of meaningful patterns. Instead, the use of a machine learning
method was employed to mine the category information out of the issue textual data.

In the following, we provide the experiments that have been undertaken to assess the
effectiveness of the employed approach. The data set which forms the basis for the
following evaluation contains 13,811 reported issues collected by BuitenBeter. Each issue
contains a GPS coordinate (inside the border of The Netherlands), a photo, a timestamp, a
description text entered by the user, a category like “litter on the street”, and anonymized
user data. Figure 5.19 depicts one of these issues where the correct category would be
“litter on the street” but the user specified the category “others” instead.

Figure 5.19: Reported issue where the description is very short and the user did not assign
the correct category “litter on the street”

Other problems we encountered during the data analysis phase were reports of users which
only tested the app (e.g. "proef melding", "test"), reports without description, and reports
where the description didn't contain information about the issue (e.g locations "Carolusweg
192" or "zie foto / see picture"). Another problem encountered within the data set is the
existence of highly related categories like “bad roads” and “loose paving stone”, “weed” and
“Nuisance trees”, or “Litter on the street” and “full container”.

 D3.2 – Final

Page 80

Classification Approach: For an automatic categorization process, a classifier is required
which is able to assign issues to one of the categories. Therefore a simple text classifier was
trained on the description texts of the reported issues. A variety of approaches comes into
consideration when it comes to text classification. Among those approaches are e.g.
Decision Trees, Naive Bayes or Maximum Entropy. Another way to deal with text
classification is to use the so called Vector Space Model [8]. In this model, natural language,
like the issue text, is transferred into a space of vectors by counting word frequencies. This
numeric representation enables mathematical calculations like computing the distance
between two texts. With the help of the vector space model, some more advanced
classifiers like the Rocchio classifier, K-Nearest-Neighbours or Support Vector Machines can
be used. These classifiers were used as a baseline for comparison with our own, more
problem-specific solution.

Normalized Relevance Distance: Our approach serves to overcome the problem that the
issue descriptions, given by the users, are often quite sparse. Thus, training the classifier
only on the aggregated problem descriptions would probably not lead to the desired
success. Therefore a distance metric called Normalized Relevance Distance (NRD) [9] was
used. This distance metric builds upon a method named Explicit Semantic Analysis [7]. ESA is
a well-known method to compute the semantic relatedness between two texts where
Wikipedia is used as a corpus for indexing. In this approach the vector space, into which the
issue description texts are transformed, consists of all articles from Wikipedia. Since the
issue descriptions are written in Dutch language, only the Dutch part of Wikipedia is used as
the indexing corpus. The weights of a vector representing an individual word is then
calculated by counting the occurrences of this word in the respective Wikipedia articles and
a whole issue description text again is computed by calculating the centroid of all word
vectors of the issue text.

Our experiments have shown that the accuracy of the classifier depends on the right choice
of the text corpus on which the background knowledge vector space is build. According to
the original ESA approach we started with the Dutch version of Wikipedia. However, it has
been found that the issue descriptions itself lead to a higher accuracy in the classification.
Thus, the resulting NRD KNearest-Neighbours classifier for classifying an issue in the
category “others” is as follows:

// Build the background vector space on the issue descriptions.
for each word in the issue data set:
 for each issue in the issue data set:
 compute the tf-idf value.
 store all tf-idf for the word as “word vector”

in the vector space.

// Build the category vectors.
for each category:

compute category centroid
(weighted centroid of N randomly selected word vectors
occurring in this category)

// Classify an issue.
for each category:

 D3.2 – Final

Page 81

compute distance (NRD) to the category centroid

assign category with highest similarity (NRD)

Some of the k nearest and farthest issues for each category centroid are presented in Table
5.1. The issues which are farthest away from a certain category are most likely to be spam
issues, or issues from another category. However, this does not work when a great number
of similar spam descriptions, like the term “test”, are contained in one category. These
would then falsely be treated as characteristic issue descriptions for this category. In order
to prevent this unwanted behaviour, we filter out issues from the category centroid, which
have a high similarity to all category centroids. This filters out descriptions like "test" or
"proef" provided that these are distributed evenly over all categories.

Table 5.1: Examples for issues near and far from the category centroid

Category near to centroid far from centroid

Liter on the
street

“Veeeel afval buiten de container?
Kan het opgehaald worden?”
“Plastic afval is niet opgehaald.”
“Dumpen van afval”

“olweversgaarde to 168”
“Bla bla”
“Het os ear”

Dogshit

“Hondenpoep op het speelveldje”
“Hondeigenaars laten hun honden op
straat en groen poepen”
“Poep op de stoep”

“Dat werkt bij de gemeenthe“
„Bij de school“
“Prullen bak weer in elkaar getrapt
Hj janssen”

Loose
paving
stone

“Losse tegel en gat eronder“
“Er liggen na werkzaamheden nog
allemaal losse tegels en een hoop
zand.“
„Zou hier maar gekeken kunnen
worden
diverse tegels op fietspad zitten los“

„fghyyh”
“Van no: 101 tot no: 143”
“Bla”

Pests

“Dode duif”
“Ratten in de tuin”
„Wespen nest“

“Theekopje op tafel”
“Dode boom vanuit tuin al eerder
bericht gestuurd mahlerlaan 9”
"Vuilniszakken gedeponeerd waar
ongedierte op afkomt“

In Table 5.2 we show some example issues taken from the category “others” and classified
with the NRD KNearest-Neighbours classifier.

Table 5.2: Example issue taken from the category “others’ along with their classification
scores

Example issue NRD to category centroids (smaller
distance means more similar)

 D3.2 – Final

Page 82

Description: "dode geit in de wei. geit heeft geel
oormerk nr 0047"

pests 0,595
broken streetlights 0,601
broken playset 0,603
dogshit 0,617
weed 0,621
Idea wish 0,633
bad roads 0,640
loose paving stone 0,653
Litter on the street 0,663
Graffiti & coverings
shall 0,710

Description: "Rechterverkeerslicht doet het
niet"

broken streetlights 0,278
weed 0,366
Litter on the street 0,383
loose paving stone 0,384
pests 0,395
Idea wish 0,401
dogshit 0,422
bad roads 0,422
broken playset 0,473
Graffiti & coverings
shall 0,513

Description: "Vuilnis"

Litter on the street 0,392
Graffiti & coverings
shall 0,543
dogshit 0,550

weed 0,558
broken streetlights 0,562
pests 0,571
Idea wish 0,572

bad roads 0,580
loose paving stone 0,589
broken playset 0,596

 D3.2 – Final

Page 83

Description: "Iemand heeft hier op 10m afstand
van speeltuin professioneel draad met
SCHEERMESJES aangebracht! Dit is met zoveel
kinderen in de buurt onacceptabel en misdadig
buiten alle proporties. Graag SPOED laten
weghalen en reactie"

broken playset 0,508
Litter on the street 0,522
loose paving stone 0,529
Graffiti & coverings
shall 0,530
weed 0,533
broken streetlights 0,533
Idea wish 0,534
dogshit 0,534
bad roads 0,537

pests 0,549

We evaluated the categorization performance by computing the recall for each category.
The results are shown in Figure 5.20. On the x-axis we took an increasing number of correct
user-classified issues to build the representative category centroids. All representative
issues were chosen randomly from the data set and not reused in the recall computation.
The recall on the y-axis shows the average recall over all categories. Depending of the
amount of issues and uniqueness of the used terms in the individual categories, this value
varied between 0.98 and 0.69.

The best performance with a recall value of 0.98 is archived in the biggest category “litter on
street” which contains 2555 issues. The second best performance with a recall value of 0.92
is archived in the second biggest category “broken streetlights” with 1140 issues in our test
set. The worst category “bad roads” with a recall value of 0.69 is not clearly distinct from the
category “loos paving stone”. The assertion of missing distinction is also supported by a very
small distance between category centroid of both categories. The second worst category
“dogshit” with a recall value of 0.72 contains only 184 issues. In this case, a larger data set
would be interesting to reduce the weight of outliers.

 D3.2 – Final

Page 84

Figure 5.20 Categorization performance of NRD KNearest-Neighbours classifier

1 11 21 31 41 51 61 71

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

issues in category centroids

re
ca

ll

avg

Random-avg

 D3.2 – Final

Page 85

5.2.3 Urban Planning

The main aim of the Urban Planning field trial has been primarily the user’s participation
and therefore the visualization is slightly different than the above mentioned use cases. In
this case it is mainly handled in order to provide transparency and to allow citizens to
receive the results in real time on their mobile device, while offering a global impression of
the results to administrators who see aggregated views on a computer. This way they get an
understandable summary of the results of participation and they are also enabled to filter
the results and extract further knowledge from the collected information.

Therefore this establishes a new communication channel for administrators and citizens
who can share information related to plans with an important dependency on the
visualization of the plans. The mobile app developed for this use case gives information
provided by administrators to citizens with the intention to harvest their opinion or
preferences about the presented plans. Moreover, the citizens are given the opportunity to
view the general results of the opinion that is gathered from the public at any time, thanks
to the visualization of the aggregated results on the smart phone. On the other hand, the
administrators can also gain access to this information that can be further filtered based on
the statistical characteristics of the participants. This is achieved via the web application for
visual analytics that has been developed to facilitate the faceted presentation of the results
in a desktop computer.

The insights that are planned to be extracted within this field trial are also along the
aforementioned tracks. Firstly, the visualization of the current status of the on-going opinion
poll will allow citizens to obtain a clear view of the opinion of their neighbours about the
presented issues. Secondly, the administrators can get more insights about the collected
opinions by grouping the users in various facets. This can allow decision makers to get a
better idea of citizens’ opinion, and of certain segments of the population, that can help
them make more informed decisions.

The Urban Planning use case is composed by a mobile application and a web application, as
described in D5.4 [4], and visualization has a key role in both communicating the necessary
information, as well as showing the results. In the following we discuss these two cases
separately.

5.2.3.1 Communicating plans and feedback to mobile citizens

In the case of the mobile application, the presentation of the plans on the app itself can be
considered the first visualization for this use case. The three views presented to the citizens
(target users), the list view, the map view and the AR view (see Figure 5.21), allow them to
easily obtain interesting information about the future plans, such as a description, the
location on a map, or the enhanced view using the camera (data involved). The intended
insights here would be a comprehensive understanding of the future projects or plans that
is necessary for every citizen to provide his opinion.

 D3.2 – Final

Page 86

Figure 5.21: Visualization of plans in the Urban Planning Gordexola mobile app. List view,
map view and AR view.

Then in a second step, after the filled in questionnaire has been submitted by the user, he is
given the opportunity to get an overview of the current status of the on-going opinion
harvesting campaign. Thus, the target user is once again the mobile citizen, while the
intended insight in this case is the opinion of the group of users who have showed interest
in a certain plan and have already provided their opinion. Given that the information is
rather general, the visualization method that is employed to provide the necessary
feedback is pie charts, which display the percentages of opinion for each of the response
options, as well as the total numbers for each option (see Figure 5.22). In this case, the data
involved is the answers to the questionnaire themselves.

Figure 5.22: Visualization of the results of participation in the Urban Planning Gordexola
mobile app.

 D3.2 – Final

Page 87

5.2.3.2 View citizens’ opinion from different perspectives

The web application called Urban Planning Gordexola Reporter was created for the
visualization of the results by the decision makers. The goal of this Reporter has been to
visualize the same kind of information but in this time filter the displayed data based on the
profile information obtained from users. Thus, the data used in this case are not only the
citizens’ opinion but also the information provided to describe their profile, such as their
age, gender, area of residence and submission location of the questionnaires. Based on
these data, the visualization methods that are employed by the Reporter consists in a map-
based panel (see Figure 5.23) that offers information about the plans, their location, as well
as the spatial distribution of the places from which participants have sent their
questionnaires. The intended insight in this case are related to the action of the
participation itself, aiming to analyze the patterns of participation.

Figure 5.23: Visualization of the location of plans on the Urban Planning Gordexola Reporter
web application.

However, the most important visualization method of the Reporter is the graph-based
statistically-aggregated presentation of the participation results. In this case, the general
results are filtered based on the citizens’ profile information, allowing the administrators to
obtain information about the interest of different groups of citizens. For instance, in the
case of “Park”, which is the plan presented in the second trial, they are able to study the
results collected by age range. For example, this filtering option will allow them to discover
whether the construction of a park is particularly important for a certain age group, so as to
decide the installation of the park near the Senior Citizen facilities. If the filtered results

 D3.2 – Final

Page 88

show that it is considered as favourable or not favourable by this group, the decision makers
could take it into account as they would be affected by the plan in a way.

The citizen data involved in this case consists of the answers to the questionnaire, which
are related to the plans, and the user profile information, which is related to the user and
contains demographical information. By modifying the filters and facilitate by a wide variety
of faceted visualization (see Figure 5.24 and Figure 5.25), the decision makers can obtain the
insights related, for instance, to the level of interest or participation by age group, or by
gender, or by a certain age group that are residents in a certain area. The ability to produce
these visualizations can offer interesting insights when it comes to making a decision.
Therefore, this tool allows the administrative users to perform an in depth analysis of the
collected opinions based on the different characteristics of the participants. This is
accomplished by selecting the filtering options that can best help them to look for the
insights that may be hidden in the collected information, but cannot be straightforwardly
derived from the totals.

Figure 5.24: Visualization of the filtered results of participation by gender and age range to
the question about installing a health park in front of the senior citizen facilities.

 D3.2 – Final

Page 89

Figure 5.25: Filtering options for the statistical presentation of results in the Urban Planning
Gordexola Reporter web application

 D3.2 – Final

Page 90

6. Summary

In concluding this deliverable we would like to pin-point some of the most important
insights that we have gained through the Live+Gov experience.

The first relates to the value of augmented reality as an intriguing approach to engage users.
What we have realized from our intensive collaboration with the use case owners is that it is
difficult to come across a concrete scenario where the use of augmented reality has a
significant advantage over a map-based visualization from the perspective of
informativeness. For instance, many were the cases where the potential scenarios for
augmented reality were abandoned under the argument of having little to offer compared
to a map-based visualization. However, in the cases where we did manage to come across
such a scenario (i.e. the 3D visualization of future urban plans, or the augmentation of the
citizen’s view with the nearby bus stops) the engagement of the users was impressive.

The second important insight is also related to augmented reality but has a technical aspect.
The impact of the GPS accuracy in offering a smooth experience for the augmented reality
users was largely underestimated. More specifically, in the urban planning scenario we have
envisaged the presentation of future plans as 3D objects, embedded in their real
environment and viewed from a rather short distance. However, with the accuracy of the
GPS system ranging from a few meters to a few dozen of meters it has been particularly
difficult to ensure a smooth experience across devices, operating systems and bandwidth
conditions. As a result of inaccurate and constantly changing GPS position, the users
experienced a jumping behaviour of the presented plans, which acted against their
engagement. It was only after making the assumptions mentioned in Section 2.3 that we
were able to offer a smooth experience.

However, apart from underestimating the impact of some features over the augmented
reality experience, we have also underestimated the potential of the currently existing
technologies in making your AR content accessible to a significant number of devices. In this
respect, we were positively surprised by the publishing capabilities offered by the major AR
vendors in terms of: a) registering your own-served AR channel to their servers, and b)
exposing the content of this channel through their widely established mobile browsers for
augmented reality. Identifying the great potential of these capabilities we were motivated
to contribute in advancing the technological boundaries of current state of the art and
develop a solution for automatically transforming existing web sites into AR channels.

Finally, the last point has to do with the repurposing of some tasks from what was originally
foreseen in the description of work. This was the case with the personalized content
delivery mechanism. Despite the fact that this mechanism was originally intended to
facilitate the filtering of content presented through augmented reality, it was eventually
employed to learn profiles about the commuting habits of each citizen. Similar was the case
with the visualization of the aggregated views and comprehensive summaries where despite
the fact that our initial intention was to use these visualizations for addressing the citizens,
during the requirement analysis of the use cases it became evident that the majority of
these tools would make more sense for the decision makers.

 D3.2 – Final

Page 91

7. References

[1] Nikolopoulos, S., et al., (2013) “Platform and prototype application for augmented
reality”, Live+Gov Deliverable D3.1, July 2013

[2] Thiele, F., et al., (2013) “Report on Live+Gov toolkit requirements and architecture”,
Live+Gov Deliverable D4.1, July, 2013

[3] Minnigh, P.A., et al., (2014) “Results of first trial and revised requirements”,
Live+Gov deliverable D5.3, February 2014.

[4] Minnigh, P.A., et al., (2014) “Prototype / demonstrator for second trials”, Live+Gov
Deliverable D5.4, July 2014

[5] Kovats, L., et al., (2014) “Visualization on data injection from mobile sensing”,
Live+Gov Deliverable D2.3, January 2014

[6] Thiele, F., et al., (2014) “Report on the Phase 2 Integrated toolset and AIV Test
Report”, Live+Gov Deliverable D4.3, October 2014

[7] Gabrilovich, E. and Markovitch, S. (2007). Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In IJCAI, volume 7, pages 1606–1611.

[8] Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620.

[9] Schaefer, C., Hienert, D., and Gottron, T. (2014). Normalized relevance distance – a
stable metric for computing semantic relatedness over reference corpora. In
ECAI’14: Proceedings of the 21st European Conference on Artificial Intelligence

[10] Meyer, M. (2007), Information Visualisation for scientific discovery. Waterloo: TEDx
Talk. Available at http://www.youtube.com/watch?v=Sua0xDCf8MA

[11] Behrens, C. (2008), The form of facts and figures: Design patterns for interactive
information visualization. Master’s Thesis, Potsdam University of Applied Sciences.

[12] Kuiper, G.J. (2010), De database als vertelvorm, maar hoe vertel je het verhaal? Blog:
http://www.denieuwereporter.nl/2010/02/de-database-als-vertelvorm-maar-
hoe-vertel-je-het-verhaal/

[13] McCandless, D., Information is beautiful. Available at
http://www.informationisbeautiful.net. Accessed July 24th, 2013.

[14] Davies, J., Map projections. Available at https://www.jasondavies.com/maps/.
Accessed July 25th, 2013.

[15] Tufte, E. (2001), The visual display of quantitative information. Graphics Press,
Cheshire, CT. Second edition.

[16] Tufte, E. (1990), Envisioning Information. Graphics Press, Cheshire, CT.

[17] Nagel, H.R. (2006), Scientific Visualization versus information visualization, workshop
on state-of-the-art in scientific and parallel computing Umeå, Sweden. PDF from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.319&rep=rep1&ty
pe=pdf

http://www.youtube.com/watch?v=Sua0xDCf8MA
http://www.denieuwereporter.nl/2010/02/de-database-als-vertelvorm-maar-hoe-vertel-je-het-verhaal/
http://www.denieuwereporter.nl/2010/02/de-database-als-vertelvorm-maar-hoe-vertel-je-het-verhaal/
http://www.informationisbeautiful.net/
https://www.jasondavies.com/maps/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.319&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.319&rep=rep1&type=pdf

 D3.2 – Final

Page 92

[18] Ruppert, T., J. Bernard, J. Kohlhammer (2013), Bridging Knowledge gaps in policy
analysis with information visualization, Presentation at eGov conference in Koblenz,
September 19, 2013.

[19] Ruppert, T. (2013), Bridging Knowledge Gaps in Policy Analysis with Information
Visualization, Presentation at the EGOV conference, 19 September 2013, Koblenz

[20] Heer, J., Bostock, M., and Ogievetsky, V., (2010). A tour through the visualization
zoo. Commun. ACM 53, 6 (June 2010), 59-67

[21] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C., Ng A., and Potts, C., (2013).
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank,
Conference on Empirical Methods in Natural Language Processing (EMNLP 2013,
Oral).

[22] Manning, Christopher D., Surdeanu, Mihai, Bauer, John, Finkel, Jenny, Bethard,
Steven J., and McClosky, David. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp. 55-60.

 D3.2 – Final

Page 93

A Appendix

A.1. Performance of map-based visualisations

The good performance of a geo component is very important for offering a smooth user
experience. In particular, when a lot of markers are displayed on the map, the performance
of the geo component will suffer. In Live+Gov, we have performed an extensive
investigation on the performance of the visualization modules. In this Appendix we report
on our findings regarding this investigation.

One of our questions has been: how many markers can be displayed on a map with
acceptable performance? Furthermore, several possible performance optimisations were
analysed. A distinction between the loading of the application and the performance of the
markers when moving around and zooming on the map was made.

A.1.1 Loading performance

At the first time one opens a map-based component, all available data is downloaded and
loaded into the front-end. The technique of a single-page application requires this initial
load. This has a large advantage: when the user clicks to activate a layer, the application will
almost immediately show the markers on the map. However, a drawback is that depending
on the amount of data the initial load can take relatively much time. In this section, possible
optimisations for (initial) loading performance are described.

Possible Optimisations for loading performance:

 Activate GZIP on the server: GZIP will compress the output and makes it much smaller.
For example a theme that is around 847kb uncompressed (~1200 features) will be 106kb
when gzipped. This will dramatically increase download speed.

 Activate client-side caching in headers: This will improve the performance when data is
reloaded, or when a visitor visits for the second time (see Table 7.1). When there is
cached version available on the client side, the browser will not do an http request.

Table 7.1: Client side caching optimisation for leading performance

Client-side
caching

Initial load in
seconds

Total features
Features per
second

Simultaneous
fetching

Disabled
21.754 seconds 4992 240 yes

32.355 seconds 4992 161 no

Enabled 4.556 seconds 4992 1095 no

 Implement server-side caching: Implement server-side caching for data that has not
changed. This will dramatically increase average loading time because no sql-queries
have to be fired against the database.

 Display the layers when data is being fetched: At this time a spinner will show up when
data is being fetched from the server. It will go away when all data is fetched. This can
be a long delay. The solution could be that users are immediately being presented with
the layers, while the application fetches the data in the background. When a user clicks a

 D3.2 – Final

Page 94

theme that is not yet fetched it will set this theme to higher priority, so it will be fetched
as soon as possible.

A.1.2 Working performance

The working performance is heavily influenced by the amount of objects that the program
needs to display on the map. More DOM-objects means slower performance of the
JavaScript application. So the amount of objects should be as low as possible. The
interaction with the map begins to feel a bit sluggish at around 400-500 objects. More than
1000 objects makes the application feel slow.

Working performance benchmarks

The working performance is heavily influenced by the amount of objects that the program
needs to display on the map (see Table 7.2).

Amounts of objects on map Activate on map (in milliseconds)

19 9ms

35 16ms

120 43ms

205 70ms

279 110ms

1292 730ms

3970 4670ms

Table 7.2: Working performance benchmarks: amount of objects on map

Possible Optimisations for working performance

 Cluster the markers: This way fewer objects are added to the DOM and it will respond
quickly. The clustering will increase performance depending on the current zoom level.
Clustering a theme that has ~1200 markers, will show 17 objects at the highest zoom-
level.

 Remove objects that are not displayed from the DOM: Some markers are outside of
the viewport. Some improvement in performance will occur by not showing these. The
MarkerCluster plugin has implemented this performance improvement. When
completely zoomed-in upon a theme, there are only 40-50 objects on the map. In a
mid-size zoom (the map shows more & smaller clusters than a few zoom-levels higher)
there are around 200-300 objects.

 Only allow 1 or 2 themes to be activated on the map at the same time: Because every
theme is clustered separately, the performance gain by clustering will be reduced. With
one theme activated the maximum average of objects will be 200-300. With two or
three themes this will be: 400-500 / 800-900. Three themes activated at the same time
has the risk of feeling slow (but still is completely dependent on the amount of markers
in there).

 Cluster all the themes together: When the clustering is combined, the maximum
amount of objects displayed will still be around 200-300, so it will perform very well
while having all the themes activated. The disadvantage of this solution is that it could

 D3.2 – Final

Page 95

be less clear what themes are activated because they are behind the same clustering
marker (the round marker with a number in it). Of course this could be tackled by using
a more informative marker (a little pie chart for example).

Loading and working performance are not the only problems why the user experience
decreases when showing a large amount of data on the map. In Figure 7.1 the other
problem is shown: there are so many markers on such a small space that you can’t see all
the markers. Markers overlap and they disperse behind other markers, giving an overall
poor user-experience for which the user can quickly lose the overview.

Figure 7.1: A lot of data on small space

A.1.3 Different solutions on the problem of visualising a large amount of
data on a map

Several different solutions have been investigated in order to tackle the aforementioned
issues regarding visualising larger amounts of data on a map. In this section, we provide an
overview of the different solutions.

Do nothing: One option is to do nothing and just show all the available data. This is probably
the easiest approach to show data on a map. However the performance of application is
closely related to the amount of available data. When there is a large amount of data the
application’s performance will decrease heavily. Next to that, markers overlap and disperse
behind other markers. The user can quickly lose overview when multiple markers are shown
on a small space.

Table 7.3: Pros and Cons for adopting the Do nothing approach

Do nothing

Pro Con

 D3.2 – Final

Page 96

 Easy to implement Performance issues when having a large
dataset (>500).

 Markers can overlaps and dispersing
when close to each other.

 Have to download all the data, even if
we only interested in a small amount
of data.

Client-side clustering: The clustering method is used to combine markers that are close to
each other and display them as one “marker” as can be seen in Figure 7.2. Users can easily
see how many markers there are in a specific area. This makes it for the user easier to see
all the data, without markers overlaps and dispersing behind others.

Figure 7.2: Client-side clustering

Second, it can handle more data than the “do nothing”-approach because it does not show
every marker. Moreover, since the application does not need to paint every marker, it can
save a lot of time when painting all the markers/clusters. Computing those clusters cost
time, but this task only has to perform when the data and/or zoom level changes and not, in
the case of painting, when the map moves. In most cases computing a cluster is also less
compute-power intensive than painting markers on a map.

Although this can reduce the performance problems quite drastically, there are still
problems that clustering does not solve. The application still downloads all available data,
even if the user only needs a small part of it. Furthermore, all the data is stored in memory.
This can be problematic when application does not have a lot of memory available (for
example on a mobile phone) or when having a dataset that is larger than the available
memory.

Table 7.4: Pros and Cons for Client-side clustering

Client-side clustering

Pro Con

 D3.2 – Final

Page 97

 Markers do not overlap

 Less performance issues, because not
all many markers need to be painted
individually

 Have to download all the data, even if
one is only interested in a small
amount of data.

 It can use a lot of memory.

 Need to calculate the clusters.

Client-side clustering has been tested using the data from the Urban Maintenance Use Case.
The difference between clustering and non-clustering is quite large. When clustering is
disabled, it took the application 2.12 seconds (see Figure 7.3) to show all the markers on the
map. With clustering enabled, it took the application 532 milliseconds to show all clusters
(see Figure 7.4). In this case, clustering improves showing all markers on the map by almost
four times.

Figure 7.3: No optimisation. Execution time: 2.12 seconds

Figure 7.4: Client-side clustering. Execution time: 0.532 seconds

 D3.2 – Final

Page 98

Server-side clustering: The idea of server-side clustering is almost identical to client-side
clustering, combining markers that are close to each other. This will save time because the
application does not have to paint all objects. The main difference between server-side and
client-side clustering is that server-side clustering will be performed on the server while
client-side clustering is calculated on the client. When clustering on the server, the server
only needs to sends back all the necessary information. This means for example that server
only needs to send “3 clusters on a specific location x,y,z with 5000, 1200, 10000 markers”
instead of “16200 markers on location x,y,z”. This will have a positive effect on all three cons
on the client-side clustering. First, the client does not have to download a lot of data that
probably never will be used. Second, the client does not have to calculate the clusters
because the server already did this. And finally the client does not use a lot memory
because it received less objects from the server.

When using server-side clustering, a connection to the server is always needed. If the
application zooms in or out or the application needs new data, it needs to send a request to
the server. Because the server only sends information to the client on the current
view/zoom level, it has to wait for a response from the server. The performance while
zooming is therefore dependent on the performance of the server and the current internet
connection. Because the clustering is performed by the server, the server needs to do more
work in order to serve the client the requested data.

Server-side clustering

Pro Con

 Can handle a lot of data (> 1.000.000)

 Markers do not overlap

 Less performance issues, because not
all many markers need to be painted
individually

 The client does not need to calculate
the clusters

 Use less memory of the client,
compared to client-side clustering.

 Client only downloads the necessary
data.

 More burden on the server, because
clusters are computed there.

 The client needs a (stable) internet
connection.

 Performance is based on the server and
internet connection.

Table 7.5: Pros and Cons for Server-side clustering

Returning a Subset of data: Returning a subset of the data can dramatically decrease the
size of the data needed for download. This subset method can be based on different criteria.
Probably the most common criterion is returning a subset based on the view of the user. For
example, if the user is zoomed in to the Netherlands, he does not need the data that is
located in Belgium, because this data is not used in the current view. This means however
that if the user pans to Belgium, the application needs to separately download the subset of
Belgium. This idea can also be applied on other levels, like city or even street level.
Moreover, this can also be applied to categories or other criteria.

 D3.2 – Final

Page 99

This method can be easily combined with other methods, for example clustering. It can be
used to only return the markers/clusters of the current area.

Table 7.6: Pros and Cons for returning a Subset of data

Returning a Subset of data

Pro Con

 Use less memory, because it uses a
subset of all data.

 Only downloads the needed data.

 The client needs to request new data
more often, e.g. by every panning-
action.

Returning Necessary data only: Like the method of returning a subset of data, this method
also returns a selective amount of the data. A good example of where this method is used, is
Google Maps. When zoomed out, Google only shows a couple of the probably millions of
photos taken in the area. Most of the photos will never been shown. When zooming in the
principle stays the same, the application only shows a selection of the photos in that area.
However, the area getting smaller and smaller and you get more and more photos of the
area you want to see (Figure 7.3).

Figure 7.5: Example of returning Necessary data only: Google Maps

 D3.2 – Final

Page 100

Returning Necessary data only

Pro Con

 Use less memory, because it shows not
all data

 Only downloads small amount of data

 Does not show all the data.

 Cannot be used in combination with
client-side clustering, because the
total number of items is unknown.

Table 7.7: Pros and Cons for returning Necessary data only

Image based layers: Another option is to render an image of the markers/clusters and then
send the image to the client. The client only needs to place an overlay over the current map
to show the markers/clusters. In most map frameworks this is probably the easiest
technique to show clusters/markers.

Table 7.8: Pros and Cons for Image based layers

Image based layers

Pro Con

 Use less memory, because the client
does not need to store all the points
in memory

 Only downloads necessary images.

 Easy to implement in most map
frameworks.

 The client does not have any
information about markers/clusters.

 Need an active (stable) internet
connection to download new images

Threshold on the accepted amount of results: In this method the server does not return
any results when the amount of result is higher than a predefined threshold. By limiting the
amount of results send back, memory problems at the client can be prevented.

Table 7.9: Pros and Cons for Threshold on the accepted amount of results

Threshold on the accepted amount of results

Pro Con

 Control the amount of data send to the
client.

 There is a possibility that the client will
not receive any information from the
server.

A.1.4 How much data can each method handle?

The exact amount of data each of the methods described above can handle is, hard to
pinpoint exactly. There are many different factors that can influence the maximum amount
of data. Next to that, user experience cannot be easily grasped into objective measures like
maximum amount of data. Some users don’t mind waiting longer when loading the page,
while others want a faster loading and don’t mind if zooming-functionality takes a bit

 D3.2 – Final

Page 101

longer. Other factors like offline/online databases, internet connecting and type of device
can have large influence on how much data a method can handle.

In order to give an idea how much data each method can handle, we categorised the
methods in three different groups, based on the user experience on a computer with a good
internet connection (see Table 7.10).

Table 7.10: Categorisation on the amount of objects that can be handled for the
optimisation methods

Handling of

0 - 2.000 objects

Handling of

2.000 – 50.000 objects

Handling of

50.000+ objects

Do nothing Client-side clustering Server-side clustering

 Image based layers

 Returning Necessary data
only

A.1.5 Heat map

Another type of a map-based visualisation are (geographical) heat maps. Heat maps are
used in Live+Gov to easily see the density of issue reports on a map in colours (see Figure
7.6). Experiments on heat maps are implemented in both the Urban Maintenance and the
Mobility use cases.

Figure 7.6: Heat map on test data of issue reports

 D3.2 – Final

Page 102

Because the goal of a heat map is quite specific, namely see the density of issue reports and
not all individual issue reports, aggregation of the information for the visualisation itself has
other aspects than described above for topographic maps. Insights on these aspects are
reported in this section.

Relative character of heat maps: Heat maps in general have a relative character. The heat
concentrations are relative to the area shown on the screen. This means that the legend can
change as the zoom level on the map changes or a user pans to a different area on the map.
Red areas on the map are always relative to the other areas. For the Netherlands as a
whole, a red area can mean >10.000 issues, whereas in a smaller city a red area can
represent >5 issues (see Figure 7.7).

Figure 7.7: Heat map legend on small area

A related issue to this is the influence of certain places on the rest of the map. A heat map
shows relative density. If a lot of issues are made in one place, this will make this place red,
whereas the rest of the map is empty.

Performance issues: Both on server side and client side, performance issues arise with large
amounts of data (>5,000 issues). The JSON parser on the server could handle up to 5,000
issues. With a larger amount of issues the application crashed with a thrown exception. Next
to that, the computer itself had a hard time to process all issues in a heat map.

To solve performance issues, the possibilities to use clustering techniques in creating a heat
map have been researched. However, this would quickly lead to the situation that there was
not enough data to create a nice heat map. With some adaptations to the cluster
thresholds, this could be solved.

Render issues: Making a heat map on top of a geographic map requires that the
concentrations are smoothly shown to a user. However, with the chosen heat map plugin,
there is a render bug in Leaflet. The issue with this is that rendering sometimes is cut off at
the edges of a tile on the map. As a heatmap presentation is always relative on an area for
multiple dots, instead of a single dot on one exact location, tiling techniques have to be used
for heatmap aggregations.

 D3.2 – Final

Page 103

B Appendix

B.1. Map visualisations on mobile devices

B.1.1 Comparative study

For the Urban Planning Use Case and Urban Maintenance Use Case it might be required to
have a ‘Geographic information system’-module (GIS-module) available. Research has been
done on possibilities for GIS modules for mobile devices. In this investigation, the following
aspects have been analysed for the different options, namely Bing maps, Google maps,
Osmdroid and Mapsforge:

o Licence: Are we allowed to use the library in our application?

o Flexibility/ Usability: a) How easy is the library to use in an application?, b) Are there any
limitations in using the library? and c) Is it possible to make changes in the library (if
needed) before we can use it?

o Online/offline mapdata: Type of mapdata

For this research, we have investigated different known map data sources which can be
used on a mobile platform. In Table 7.10 we summarize our findings:

 D3.2 – Final

Page 104

Feature Bing maps Google maps Osmdroid Mapsforge

Licence
http://bingmapsandroidsd
k.codeplex.com/license

No real license, however
there is a Terms of Service
which includes a licence
paragraph:

https://developers.google.
com/maps/terms

GNU Lesser GPL
http://www.gnu.org/licens
es/lgpl.html

GNU Lesser GPL
http://www.gnu.org/licens
es/lgpl.html

Are we allowed to user
the library in our
application?

Yes, this SDK is developed
under the Microsoft Public
License (Ms-PL). However
we are required to have a
BingMaps key.

Yes, however a Google
Maps Android API key (v2)
is required.
https://developers.google.
com/maps/documentation
/android/start#the_google
_maps_api_key

Yes Yes

Flexibility/Usability

How easy is the library
to use in an application

The BingMapView is
created as a component in
a way that it can be added
anywhere in an
application.

The MapView is
dependent on a
MapFragment (or
SupportMapFragment).
The use of fragments
complicates the
implementation a little;
however it should still be
doable.

The MapView is created as
a component in a way that
it can be added anywhere
in an application.

The implementation is
similar to the Google Maps
API v1 sdk. The use of a
MapActivity is required,
which limits the
implementation.

 D3.2 – Final

Page 105

Are there any
limitations in using the
library?

No.
Other than the usage of
fragments, none.

No

The use of an Activity
limits the use to a
fullscreen application or a
tabbed view.

Is it possible to make
changes in the library
(if needed) before we
can use it?

Yes, the source is
available.

No, the SDK is closed
source

Yes, the source is available
Yes, the source is
available.

Online & offline map data

Online/offline mapdata Online only Online only Both Technically both

Online Yes Yes
Required tiles are
downloaded over the air if
a connection is available.

It is possible to download
the .map files over the air.
These files can however be
rather large (Germany is
800MB!!).

Offline No No
The downloaded tiles are
stored on the device.

After the .map files are
downloaded the
application map data can
be used offline.

Type of map data

Type of map data

Apparently a combination
of raster tiles and vector
graphic. Could not find a
solid reference for
confirmation

Vector graphics Tiles only Vector graphics

 D3.2 – Final

Page 106

Table 7.11: Feature summary of different map data providers for Android

Satellite images Yes Yes
If a source hosting the
images is available it can
be added.

This is possible if a .map
file containing satellite
data is available.

Bonus

Shape support (e.g.
point/polygon/multipoi
nt)

Yes, this library has native
support for adding
features.

Yes, this library has native
support for adding
features.

No native shape support An overlay API is available

Geocoding
Yes, this library uses the
Bing geocoding API.

Yes, this library uses the
Google geocoding API.

No native geocoding
support. There is a ‘bonus
pack’ available for this
library which used a
Nominatim based service.
According to the creator of
the bonus pack
Nominatim is suboptimal.

There is no native
geocoding support.

 D3.2 – Final

Page 107

In Table 7.12 we perform a pro/con analysis of the different map libraries that we have
investigated:

Table 7.12: Pro-Con analysis for different map libraries

Client/library PRO CON

Bing Maps Vector graphics for
smooth transition

 Satellite images

 Support for shapes

 Geocoding

 Online only

 No caching

 Required API key

 SDK has some problems on
Android version 3.x and 4.x

Google Maps Vector graphics for
smooth transition

 Satellite images

 Support for shapes

 Geocoding

 Online only

 No caching

 Requires API key

 No source is available

Osmdroid Only download tiles for
area which are visited
using the map viewer

 Offline caching

 Support for multiple
sources of mapdata

 Requires internet connection for
initial download of map tiles

 No support for shapes

 No native geocoding api

MapsForge Vector graphics

 Full offline viewer

 Has an overlay API for
adding shapes

 Required .map files containing a
lot of map data which the user
might not even need.

 No geocoding api

 Performance is lacking when the
map is zoomed out a lot

B.1.2 Making a decision

Each of the aforementioned options have their own pro and cons. The pivot point is the
requirement of offline caching.

Offline: When offline caching of map data is required the choice is between Osmdroid,
Mapsforge and the GIS-module developed at Yucat. Between these three implementations
the Osmdroid is the preferedone. This decision is based on the following feature points;
implementation of offline storage and performance.

Offline storage: Mapsforge requires the user to download big mapfiles containing e.g. a
whole country or the whole of Europe. Considering the fact that the mapfiles per country
can range from 1MB up to 800MB, and automatic switching between country files is not
supported, this will cause an inconvenience for the enduser. Osmdroid and the Yucat GIS-
module only download the area which the user visits using the mapviewer. The Yucat GIS-
module has functionality for batchdownloading map tiles.

Performance: Performance between the Mapsforge and Osmdroid implementation is at an
equal level when Osmdroid has the required tiles downloaded. Between the both of them

 D3.2 – Final

Page 108

Osmdroid has a more stable performance on all zoomlevels, Mapsforge responses a bit
slower at lower zoomlevels (more zoomed out). The Yucat GIS-module clearly loses out on
performance; it also has some issues with drawing the map.

Online: If offline caching is not required the choice would be between BingMaps, Google
Maps and Osmdroid. BingMaps would not be a recommended choice because of the
problem it has on Android 3.x and 4.x implementations. In the choice between Google Maps
and Osmdroid the winner would be Google Maps, as the offline caching of Osmdroid would
be just a bonus. Google Maps also has native support for displaying shapes and the use of
geocoding.

In a nutshell, for offline requirements Osmdroid has our preference. If offline usage is not
required, Google Maps comes on top.

 D3.2 – Final

Page 109

C Appendix

C.1. Performance of gallery views

C.1.1 Initial research on gallery performance

As for gallery views, performance is a crucial topic. Images in the gallery view need to be
loaded and this puts a heavier load on the internet connections than loading only the
markers on a map. Extensive investigation on gallery performances has been conducted. In
this appendix we report on this investigation, where the Urban Maintenance use case
Webapplication of jijmaaktutrecht.nl has been used for testing.

Jij Maakt Utrecht has an image gallery where the user can view images of selected layers.
The gallery shows images of the initiatives and the title of the initiative. When the user clicks
on an image, the website opens a popup with more information about the initiative.The
performance test is mainly focused on how the performance influences the user experience.
The main question for this investigation is: At how many initiatives (with images) is the user
experience in the gallery-view affected by performance issues? A second question is: What is
the limit of initiatives before the user experience starts to degrade considerably?

Research setup

For this test we used two different Jij Maakt Utrecht servers. The first server is the
production server that can be found on www.jijmaaktutrecht.nl (as part of the Live+Gov
Urban Maintenance Use Case). Because it is a live server, it is not possible to change the data
on the server for these tests. In order to make this possible, a copy of the complete
production server is made. This server runs on a local development server. Because the
development server is running locally it does not connect over the internet. This makes the
local server probably a lot faster with downloading the images. For this reason we are using
a complete copy of the production server, so we can do the same tests and compare those
tests.

To make the comparison more real from the user point of view, three different browsers are
used for testing, namely Chrome, Firefox and Internet Explorer 11 on a Windows 7
computer. The computer is iMac from Mid-2011 and has an I7 cpu with 8 GB of RAM. In
Chrome and Internet Explorer 11 we used the development-tools that are already available
in the browser. In Firefox we used the third-party plugin called Firebug. The internet
connection to the production server has a download speed of around the 6 Mbps.

Initial results of the quick scan on performance of gallery views

The following tests were performed on the actual production server of Jij Maakt Utrecht.
First, a test with a high ping and slow download speed. Second, in order get more real-life
results, a test with the internet ping and download speed at normal levels is performed.

Preconditions for the tests:

 Website is loaded completely. So it will only load in the images for this test.

 All features are already loaded.

 Client-side caching is turned off unless mentioned otherwise.

 D3.2 – Final

Page 110

An overview of the results is presented in Table 7.13. If the user loads a layer in
“Jijmaaktutrecht.nl” with a lot of initiatives, like the 1059 initiatives of the
“Leefbaarheidsinitiatief 2012”-layer, browsers can behave sluggish. Especially when the
browser is still loading the page and the user scrolls down to the end of the gallery. All of the
tested browsers have some trouble and become sluggish. Once Chrome and Firefox have
loaded all the images, they behave normal again. However, IE 11 still behaves slow and
sluggish. IE 11 will take about a second to react on the user input to scroll the page. As
expected, performance decreases even further when the amount of initiatives increases.
With 2000 initiatives in a layer, IE 11 it becomes almost impossible to work with it. It takes a
couple a seconds before it even reacts on a scroll input. When IE 11 finally reacts on the user
input, it just jumps to the position the user scrolled too: IE doesn’t show an “animation”
when it scrolls. Chrome and Firefox only had trouble with loading the initiatives. Once
loaded, the scrolling was smooth again. The dev-tool of Chrome however had some trouble
and freezes a couple of times, but this did not affect the webpage. Firebug in Firefox was not
able to show all the information because it has a limit on how much debug-information it
can store and show.

Initial findings on the performance of gallery views

On the Jij Maakt Utrecht production server it takes around 32 seconds to download 452
photos. The download time increases linearly. This means that it probably takes around one
minute to download 1000 photos and 2 minutes to download 2000 photos. However, 32
seconds is already on the limit of acceptable for a user. More than one minute waiting time
is assumed to be unacceptable for the user.

Not only is the download time an issue. The browser responsiveness is also a problem with a
lot of images in the gallery. Firefox and Chrome behave sluggish when loading for the first
time. However, scrolling is smooth when the images are fully loaded. Even when having
2000 images in the gallery, scrolling is smooth. IE 11 however is a complete other story and
behaves sluggish, even when images are fully loaded. Scrolling the gallery with 1000 images
makes the gallery slow and react for about a second later. When having a gallery with 2000
images, it is almost impossible to work with it. It takes a couple a seconds before it even
reacts on a scroll input.

 D3.2 – Final

Page 111

Test Test 1 (high ping and slow download speed) Test 2 (regular ping and download speed)

Ping to Google.nl Between 300 and 500 milliseconds Between 23 and 26 milliseconds.

Total loading time of all thumbnails
(48 thumbnails)

 Firefox: 4,4 seconds

 Longest blocking time: 3,99 seconds

 Firefox: 1,5 seconds

 Longest blocking time: 1,2 seconds

Loading of “Leefbaarheidsinitiatief
2012” (total of 1059 initiatives)

Note: None of these initiatives have
images. He will load a “no image”-
image for all the initiatives.

 Firefox: 324 milliseconds

 Longest blocking time: none

 Firefox: 35 milliseconds

 Longest blocking time: none

Loading of “beheer door bewoners”
(total of 464 initiatives)

 Firefox: 45,1 seconds
o Longest blocking time: 35,7 seconds
o Amount of MBs to load: 20,8 MB

 Chrome: ~41 seconds
o Amount of MBs to load: 20,9 MB

 IE 11: ~45 seconds
o Amount of MBs to load: 20,9 MB

(21.910.513 bytes)

 Firefox: 32,4 seconds
o Longest blocking time: 27,2 seconds
o Amount of MBs to load: 20,8 MB

 Chrome: ~32 seconds
o Amount of MBs to load: 20,9 MB

 IE 11: ~32 seconds
o Amount of MBs to load: 20,9 MB

(21.910.513 bytes

Total loading time of all thumbnails
out of the cache (html-code: 304)
(451 thumbnails)

 Firefox: 12,8 seconds
o Longest blocking time: 10,2 seconds
o Amount of MBs to load: 0 MB

 Chrome: ~20 seconds
o Amount of MBs to load: 0 MB

 Firefox: 3,1 seconds
o Longest blocking time: 1,8 seconds
o Amount of MBs to load: 0 MB

 Chrome: ~4 seconds
o Amount of MBs to load: 0 MB

Table 7.13: Test results of gallery performance (high ping and slow download speed VS regular ping and download speed)

 D3.2 – Final

Page 112

C.1.2 Follow up research on performance of gallery views

Following our initial investigation, we have expanded our previous research of the Jij Maakt
Utrecht photo gallery. In the gallery the user can view images of selected layers. The gallery
shows all initiatives with images of the initiatives, when available. When the user clicks on
images, the website opens a popup with more information about the initiative.

There are two problems that would make the Jij Maakt Utrecht implementation unusable
when increasing the amount images in the gallery. The first problem is the download time of
the images. It probably takes around one minute on a ‘normal’ internet connection to
download 1000 images. When loading them all at the same time, the browser starts to
become sluggish. When the users scrolls all the way down, the user have to wait till all the
images are downloaded in order to see the last images.

The second problem is that browsers do not like scrolling when having a large DOM with a
lot of images. The browsers become sluggish and react slowly on user scroll inputs. Some
browsers like IE 11 having this problem faster than others like Chrome, but eventually when
having a large enough DOM, all browsers have this problem.

Infinite scrolling

Infinite scroll has been called autopagerize, unpaginate, endless pages. But essentially it is
pre-fetching content from a subsequent page and adding it directly to the user’s current
page. Infinite scrolling is a technique that’s relative new and is used to replace “page
navigation”. Websites like Twitter, Pinterest and Facebook are currently using infinite
scrolling.

Memory problems: As reported in the initial research, browsers can behave sluggish with a
lot of initiatives. With 2000 initiatives, IE 11 even becomes almost impossible to work with.
This problem will not be solved by using infinite scrolling. Like the current implementation,
infinite scrolling just adds the pre-fetched images to the bottom of the page. This will
increase the amount of images on current page when there is a new pre-fetched page
added. Every time new images are added, the DOM size increases and the browsers become
more and more sluggish.

We have seen this memory problem also on some popular websites like Pinterest. When the
user scrolls down and activate the infinite scrolling for a couple of times, the DOM size and
the amount of images increases rapidly.

Pinterest: The Pinterest website makes use of the infinite scrolling technique. When the user
is scrolling down to the bottom of the page, the website will load some new content and add
it to the bottom. Figure 7.8 shows the memory uses and the amount of Nodes in the DOM
when scrolling through the Pinterest website. The light-blue filled area 2D chart shows the
memory uses over time of the Pinterest website. The green line shows the amount of nodes
in the DOM. When recording the information of Figure 7.8 the website scrolled a couple of
time down to load in new content using infinite scrolling.

 D3.2 – Final

Page 113

Figure 7.8: Pinterest: Memory uses and DOM node Count

When looking at Figure 7.8 it is clear that if you keep scrolling, the amount Nodes only
increases. This means that the data currently outside the view is not removed and still
existed in the DOM. Also the memory uses increases slowly over time. When scrolling down
a couple of times, the Pinterest website showed comparable behaviour as seen before at Jij
Maakt Utrecht. The scrolling became sluggish at around 1.000 images. On IE 11 it took
around a second to react on the user input to scroll the page. Chrome and Firefox where not
as that bad as IE 11, but it was clearly more sluggish then as the website just loaded in.

Heap: When comparing the heap snapshots of the start and end of this measure session it
gives the same results as Figure 7.8. The heap size increases from 11.4 MB to 52.5 MB. The
amount of IMG-elements in the DOM also increases from 127 to 1203 IMG-elements. For
example, the DIV-elements increased from 567 to 5287.

Other websites: Not only Pinterest has the problem of the increased amount of Nodes in the
DOM. The DOM-size of other websites like Twitter, Google+ and Instagram also increases
when scrolling. Figure 7.9, Figure 7.10 and Figure 7.11 are the results when scrolling on
Google+, Instagram and Twitter.

Figure 7.9: Google+: Memory uses and DOM node Count

Figure 7.10: Instagram: Memory uses and DOM node Count

 D3.2 – Final

Page 114

Figure 7.11: Twitter: Memory uses and DOM node Count

However, there are some different between those websites. Instagram behaves comparable
to Pinterest, the amount of IMG-elements increases as more content is loaded. However,
Twitter and Google+ show different behaviour. Although the DOM-size increases, the IMG-
elements do not increase. This means that somehow the images are unloaded when they are
outside of the view. The unloading of the images is visible in the used amount of memory
graph. The memory goes up and drops again after a while. The DOM-size still increases over
time because of the increase of other elements like DIVs. Not only did the DOM-size
increased, also the heap-size increased fast for those websites. For example Google+ started
at a heap-size of 19.7 MB and increased to 62.8 MB when scrolling down a couple of times.

Although increasing the DOM and heap-size, scrolling felt a lot smoother than for example
Pinterest. When scrolled down a couple of times the browser stayed smooth and did not
become sluggish. Even IE 11 didn’t become unusable and stayed relative smooth. Although it
is clearly smoother than for example a Pinterest or Jij Maakt Utrecht, it still becoming less
smooth when new content is loaded in.

Removing content: In order to make an image gallery than can show a large amount of
images, it is necessary that it stays responsive with a large dataset for an acceptable user
experience. When looking at websites like Google+ and Twitter it is possible to show a large
amount of data without decreasing the performance. This is achieved by only removing the
images outside of the current view. This means that the DOM-size still increases because of
the other elements like DIV-elements. This makes the scrolling smoother, but still fills up the
DOM quickly.

Another approach is to not only remove the images, but also removing the other elements
outside of the view. This not only reduces the used memory, but also reduces the DOM-size.
In order to test this, we used some kind of lazy-loading script that only loading the current
view. Elements that are outside the current view were removed.

Figure 7.12: lazy-loading script: Memory uses and DOM node Count

In Figure 7.12 it looks the light-blue memory graph a bit like the Twitter and Google+ graph.
The amount of memory increases when scrolling and drops again after a while. The

 D3.2 – Final

Page 115

difference with the lazy-loading script and Google+ and Twitter is that the amount of nodes
in DOM drops in the lazy-loading script.

Scrolling: When looking at the scrolling performance of this script, there is much difference
between the other mentioned websites. Because the DOM-size does not increase when the
user has scrolled a couple of times, the responsiveness of the website was constant to when
it was first loaded in. Even above 2500+ images there were no performances issues at all,
even when using IE 11.

Measurements: When looking at the measurements from Chrome, it possible to confirm this
difference in smoothness (see Table 7.15).

Website Amount of images Average time to render a frame

Lazy-loading Script
40 images 40 milliseconds

4000 images 44 milliseconds

Lazy-loading Script, without
removing images outside the
view

40 images 40 milliseconds

4000 images 3 seconds

Pinterest
20 images 30 milliseconds

1200 images 500 milliseconds

Table 7.14: Frame render-times

Table 7.14 contains the average render times of a frame while scrolling. By comparing the
lazy-loading script and Pinterest it is clear that Pinterest becomes slower over time, while
the lazy-loading script does not slow down that much. When turning off the images
removing in the lazy-loading script we see that the render time increases fast and became
completely unusable.

Website CPU Idle time

Lazy-loading Script 90%

Lazy-loading Script, without removing images outside the view 9%

Pinterest 32%

Table 7.15: CPU idle time while scrolling

Another tool tells the same story as the render time. In Table 7.15 we can see the idle time
of the CPU while scrolling the page. The lazy-loading script handle’s it quite easily with a CPU
idle time of 90%. The Pinterest website takes more CPU to render and has an idle time of
32%. The lazy-loading has only got a CPU idle time of 9%.

Pros and cons of infinite scrolling

Infinite scrolling is not the optimal solution for pagination, nor is it worse than pagination. It
is just another way to present data to the user. In Table 7.16 the pros and cons of infinite
scrolling are described19.

19 http://designshack.net/articles/navigation/to-infinite-scroll-or-not-to-infinite-scroll-
where-weve-come-so-far/

http://designshack.net/articles/navigation/to-infinite-scroll-or-not-to-infinite-scroll-where-weve-come-so-far/
http://designshack.net/articles/navigation/to-infinite-scroll-or-not-to-infinite-scroll-where-weve-come-so-far/

 D3.2 – Final

Page 116

Other optimisations for image based views

One additional technique that can be used to optimise the performance of the gallery views
is pagination, which essentially limits the amount of returned images.

Pagination is probably one of the most used techniques on the internet and is used to divide
results into multiple pages. Pagination is available in for example the search results of
Google and in most forums.

Pagination makes it easy to limit the amount of images that needs to be downloaded. It only
needs to download the images on the current page. Not only does pagination reduce the
amount of images that need to be downloaded at once, it also reduces the DOM size. Each
time the user goes to a new page, the entire page is reloaded. This means that the DOM size
does not increase when opening a new page. Because the DOM size does not increase when
switching pages, this technique can be used with an unlimited amount of images. The only
limitation is the amount of images on a single page.

The second method is to limit the amount of images send to the client. With this method it
is not possible to show a large amount of images. It is important to make it possible to filter
the images; otherwise the user only sees a selected amount of images. These filters can be
based on for example location or the image title. A good example can be found in Google
Maps. On Google Maps the user sees a couple of images based on currently visible map. For
example when the user is zoomed out to country level, the user sees random images of that
country. When the user zooms in to a city, it only sees a selection of images of that specific
city.

 D3.2 – Final

Page 117

Infinite scrolling

Pro Con

 The uninterrupted attention a user maintains when more content
is provided automatically is at the core of the attractiveness of
the infinite scrolling. The reader will not have to stop to think
where to find the next button or which number of pages should
come, following an improved attention.

 In psychological terms, infinite scrolling seems to trigger
automatic responses based on curiosity and the alleviation of
the expectation produced while waiting for new information,
which causes a kind of excitement and willingness to continue
scrolling to see what comes up. This psychological mechanism
deserves sufficient comprehension as the initial advantage can
turn into a problem. For example, the findings of McKinley
suggest that endlessly scrolling the search results page
somehow shocked or confused the users, overloading them
with more and more information to the point that using the
search was avoided.

 Template designs can benefit with more cleanness, more room
for content and less distracting elements like the list of numbers
for paging.

 Both seeing the footer disappear and being unable to reach can
be a “traumatizing” experience for the user. Also, all the
content of the footer, and therefore, the function of the footer
itself will vanish.

 Lack of orientation and spatial reference: In a paginated scheme
users can set a simple visual reference to orient themselves
through the content of the page and mark the places where
something of interest is found, so it is possible to quickly return
there later. There could be users who feel lost or confused not
knowing where they really are or missing what they were
looking for.

 Loss of the user’s last position in the stream of data, when the
refresh or the back button is pushed. Since the infinite scrolling
aims to show large amounts of entries, it should be
implemented also a way to retrieve the actual position in the
list, to avoid frustrating situations. Most of complaints against
endless pages refer to these two last points as the users were
losing control over the page they visit.

 Bookmarks tend to be useless since a point of interest will not be
marked on a discrete page but floating somewhere in the flow
of entries.

 While it is not necessarily a bad thing, rankings could vary greatly
on search pages since those results confined after page 2 will
then appear on page 1 just by scrolling down long enough.

Table 7.16: Pros and Cons for Infinite scrolling

 D3.2 – Final

Page 118

D Appendix

D.1. Graph visualisations on web

The research presented in this section is a comparison of different libraries/frameworks to
visualise graphs on the web20. Requirements where the library or framework should comply
to are the following: a) The possibility to show data in different ways. A stacked bar chart is
an absolute must, other diagrams are not determined beforehand; b) The library/framework
should preferably be free, be not too expensive and/or have a complicated license. Two
main interesting libraries and frameworks are researched: D3.js and Flotcharts. They are
presented in the following two sections.

D.1.1 D3.js

D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring
data to life using HTML, SVG and CSS. D3’s emphasis on web standards and gives you the full
capabilities of modern browsers without tying yourself to a proprietary framework,
combining powerful visualization components and a data-driven approach to DOM
manipulation.21

D3.js is a very flexible framework. With this framework, many types of charts can be created.
However, the flexibility also has a large drawback: it is not really straightforward to make a
visualisation. The developer is responsible for the design of the chart and the processing of
the data. D3 offers some great tooling that can speed up the development. One of the
functionalities that could be of great use, like “create a bar chart with this data”, should
however be developed. In the next section, examples of D3 libraries are discussed. More
information about D3 can be found in several resources.22

7.1.1.1 D3 libraries

D3 is a framework, not a library to visualise data. Because of this it is not possible to call a
certain function that will create, for example, an on-screen bar chart. To overcome this
problem, third parties have developed libraries that simplify the creation of a specific chart.
In most cases, a chart can be created by using a few lines of code on screen.

DC: dc.js is a JavaScript charting library with native cross-filter support and allowing highly
efficient exploration on large multi-dimensional dataset (inspired by crossfilter's demo). It

20

 This research is based upon information presented at different websites that compare graphs and
chart libraries:

 http://socialcompare.com/en/comparison/javascript-graphs-and-charts-libraries

 http://techslides.com/50-javascript-charting-and-graphics-libraries/

 http://www.fusioncharts.com/javascript-charting-comparison/

 http://kraskniga.blogspot.nl/2012/06/comparison-of-javascript-data.html

 http://en.wikipedia.org/wiki/Comparison_of_JavaScript_charting_frameworks
21

 http://d3js.org/

22 See for example these ebooks:

 https://leanpub.com/D3-Tips-and-Tricks/read#leanpub-auto-introduction-to-dcjs

 https://speakerdeck.com/binx/d3-dot-js-plus-mobile

 https://www.dashingd3js.com/binding-data-to-dom-elements

http://socialcompare.com/en/comparison/javascript-graphs-and-charts-libraries
http://techslides.com/50-javascript-charting-and-graphics-libraries/
http://www.fusioncharts.com/javascript-charting-comparison/
http://kraskniga.blogspot.nl/2012/06/comparison-of-javascript-data.html
http://en.wikipedia.org/wiki/Comparison_of_JavaScript_charting_frameworks
http://d3js.org/
https://leanpub.com/D3-Tips-and-Tricks/read#leanpub-auto-introduction-to-dcjs
https://speakerdeck.com/binx/d3-dot-js-plus-mobile
https://www.dashingd3js.com/binding-data-to-dom-elements

 D3.2 – Final

Page 119

leverages d3 engine to render charts in css friendly svg format. Charts rendered using dc.js
are naturally data driven and reactive therefore providing instant feedback on user's
interaction. The main objective of this project is to provide an easy yet powerful javascript
library which can be utilized to perform data visualization and analysis in browser, as well as
on mobile device.23

DC is a library that combines D3 and Crossfilter libraries. The Crossfilter library is developed
to filter data at the client. This combination (DC), allows the user to filter data via different
types of charts, by using D3 and Crossfilter. A screenshot is shown in Figure 7.13.

Figure 7.13: Screenshot of DC.js library

Dimplejs: The aim of dimple is to open up the power and flexibility of d3 to analysts. It aims
to give a gentle learning curve and minimal code to achieve something productive. It also
exposes the d3 objects so you can pick them up and run to create some really cool stuff. The
intention is to make the basics easier, while still exposing the d3 components so that you can
go off-piste when you get a bit more familiar. The target audience for this is advanced
analysts who don't necessarily consider themselves highly proficient in JavaScript but want
to build some axis based visualisations.24

With Dimple, one can easily create really nice charts. This library supports the use of line
charts, bubble charts, scatter plots, bar charts and area charts. Figure 7.14 show examples
for some of these charts in Dimple. However, the library lacks the possibility to create one

23

 https://github.com/dc-js/dc.js

24
 http://dimplejs.org/

https://github.com/dc-js/dc.js
http://dimplejs.org/

 D3.2 – Final

Page 120

widely used chart, namely pie charts. Furthermore, the library adds functionalities like
tooltips and when you hover on a certain point in the chart, a line is drawn towards the x-
and/or y-axes. Dimple is a recently developed D3 library and is updated on a regular basis.

Figure 7.14: Screenshot of a simple bar chart in Dimple

NVD3: This project is an attempt to build re-usable charts and chart components for d3.js
without taking away the power that d3.js gives you. This is a very young collection of
components, with the goal of keeping these components very customisable, staying away
from your standard cookie cutter solutions. 25

NVD3 is a very extensive chart library for D3. With just a few lines of code, NVD3 offers the
opportunity to build an entire chart that in addition is dynamic. It automatically takes the
size of your screen into account and has the possibility to filter the data. This library supports
well-known charts such as line charts, pie charts and bar charts (see. Moreover, it supports
functionalities like labels and tooltips. Figure 7.15 and Figure 7.16 shows some example
charts that can be generated with this library. The library is in place for some time and has
proved itself to be a useful library.

25

 http://nvd3.org/index.html

http://nvd3.org/index.html

 D3.2 – Final

Page 121

Figure 7.15: Screenshot of a stacked multiple bar chart in NVD3

Figure 7.16: Screenshot of scatter plot/bubble chart in NVD3

D.1.2 Flotchart

Flot is a pure JavaScript plotting library for jQuery, with a focus on simple usage, attractive
looks and interactive features26. In contrast to D3, Flotchart is a library that is specifically
focused on generating charts and making this as simple as possible. Flot supports many
different types of charts: well-known and broadly used ones like line charts, bar charts and

26

 http://www.flotcharts.org

http://www.flotcharts.org/

 D3.2 – Final

Page 122

pie charts (see Figure 7.17 and Figure 7.18). Furthermore, it also supports less known charts
like spider charts and span charts. Moreover, plugins can be downloaded that further extend
this supply.

Figure 7.17: Screenshot of a stacked bar chart in Flot

Figure 7.18: Screenshot of different line charts in Flot

D.1.3 Conclusion

This investigation has explored different frameworks and libraries to create charts for web
sites. D3 and Flotchart are both decent solutions to generate several charts. Both offer
opportunities to create nice and dynamic charts and support different types of charts. The
primary goals between D3 and Flotchart differ. Where D3 is more targeted to visualise data
in general, Flotchart is mainly targeted to generate charts. As a consequence, D3 has a
steeper learning curve and is much more flexible than Flotchart. On the other hand,
Flotchart is easier to use at first. To overcome the steeper learning curve in D3, a third-party
library can be used. When comparing different third-party D3 libraries, NVD3 seemed the
most appropriate since it is relatively simple, quite extensive and has proved its usefulness in
the community. Thus, the NVD3 library was adopted for the purposes of Live+Gov.

 D3.2 – Final

Page 123

D.2. Graph visualisations on mobile devices

The investigation presented in this section is aimed to find out which mobile libraries are
available in the market for showing charts. We have investigated the following libraries.

D.2.1 Native libraries

Core Plot: Core Plot is a plotting framework for OS X and iOS. It provides 2D visualization of
data, and is tightly integrated with Apple technologies like Core Animation, Core Data, and
Cocoa Bindings. Some examples of Core Plot graphs can be seen in Figure 7.19.

Figure 7.19: Core Plot graph examples for mobile charts

Shinobicontrols: Shinobicontrols is another very interesting library that can be purchased
for a standards fee. It is available for both iPhone and Android. Some example plots are
depictred in Figure 7.20.

 D3.2 – Final

Page 124

Figure 7.20: Example plots that can be implemented with Shinobicontrols

THREE D GRAPHICS: Is a library that is offered in 3 different versions (intro, standard and
enterprise) and it offers the potential to have: unlimited number of developers; unlimited
number of applications; unlimited number of users; unlimited distribution. Figure 7.21
displays some of the visualizations that can be implemented with THREE D GRAPHICS.

Figure 7.21: Example plots that can be implemented with THREE D GRAPHICS

INFRAGISTICS (NUCLiOS): It is a useful library that has an active support community and
contains also a grid and a rich text label component. Some of the special graphs that can be
supported by this library are depicted in Figure 7.22.

Figure 7.22: Graphs supported by INFRAGISTICS

 D3.2 – Final

Page 125

Hongcheng: Is an open source library for both iOS and Android that seems to be no longer
subject of active development. The type of pie charts that can be generated with this library
are depicted in Figure 7.23.

Figure 7.23: Example of a Pie chart generated with the Hongcheng library

 D3.2 – Final

Page 126

D.2.2 HTML / JavaScript

Another approach to draw charts is by the use of HTML and JavaScript. An online or offline
solution is possible. The UIWebView component can be used to show the HTML code.
Examples of JavaScript libraries for drawing charts are:

 http://www.fusioncharts.com

 http://www.jqplot.com

 http://www.highcharts.com

 https://developers.google.com/chart/

A small demo application was developed for evaluating the HTML and JavaScript approach.
For this demo application the highcharts library was used and was linked as a resource to
mobile base application, so the application can draw the charts offline.

D.2.3 Summary

This study looked at mobile libraries available in the market which can be used to display
charts. The following chart libraries were examined:

 Core Plot (open source)

 ShinobiCharts (starting at $395)

 THREE D GRAPHICS (starting at $995)

 KeepEdge (starting at $999)

 INFRAGISTICS NUCLiOS (starting at $295)

 iOS Plot (open source)

Based on the outcome of our evaluation the Core Plot and INFRAGISTICS NUCLiOS library
seemed to be the most interesting libraries. The option of using HTML instead of a native
library was also considered as a good choice. There are several JavaScript libraries that are
available in the market for drawing charts, like: i) fushioncharts, ii) jqplot, iii) highcharts, and
iv) google charts. For the purposes of Live+Gov we have decided to rely on Core Plot.

http://www.fusioncharts.com/
http://www.jqplot.com/
http://www.highcharts.com/
https://developers.google.com/chart/

