D4.3 -V1.6

(= eTan\V4

Reality Sensing, Mining and Augmentation
for Mobile Citizen—Government Dialogue

FP7-288815

D4.3

Report on the Phase 2 Integrated
toolset and AlV Test Report

Dissemination level:

Public

Contractual date of delivery:

Month 33, 31-10-2014

Actual date of delivery:

Month 33, 31-10-2014

Work package: | WP4 System integration
Task: | T4.3 — Technical verification with test cases
environments
Type: | Report
Approval Status: | Braft | PMB Final Draft | Appreved
Version: | 1.6
Number of pages: | 96

Filename:

20141029-D4.3-Report on the Phase 2 Integrated toolset
and AlV Test Report-delta.docx

Abstract

This deliverable describes the Live+Gov toolset and test results of the integrated toolkit as
well as the test results of the three eGovernment solutions (Mobility, Urban Maintenance,
Urban Planning) developed with this toolkit during the 2" phase of the project. Developers
can use this integrated toolkit examples and test plans to develop or customize their own

Mobile eGovernment solutions.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

Page 1

(=N Tan)\V4 D4.3-V1.6

SEVENTH FRAMEWORK
PROGRAMME

This work was supported by the EU 7th Framework Programme under grant number IST-FP7-

288815 in project Live+Gov (www.liveandgov.eu)

Copyright

© Copyright 2014 Live+Gov Consortium consisting of:

1.
2.

o ok~ w

Universitat Koblenz-Landau

Centre for Research and Technology Hellas
Yucat BV

Mattersoft OY

Fundacion BiscayTIK

EuroSoc Digital GGmbH

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the Live+Gov Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the
copyright notice must be clearly referenced.

All rights reserved.

Page 2

OV D4.3-V1.6
History
Version Date Reason Revised by
0.1 01-10-2014 Initial alpha version to set outline Frank Thiele
0.2 15-10-2014 Introduction, purpose, audience and lay- Frank Thiele
out described.
0.4 13-10-2014 Update of Sensor Data Capturing Service Heinrich Hartman
and Reality Mining Service. Test plans for
C8, C9.1, C9.2, C14 and C15.
0.5 14-10-2014 Added SaaS Service Center Chapter Frank Thiele
including test plans and results.
0.6 14-10-2014 Added Traffic Service, including test plan Pekka Kaarela
and results. Laura Niittly3
0.7 15-10-2014 Update of eGovernment Dialogue and Frank Thiele
Visualisation Service. Update of Issue Pieter Minnigh
Reporting Service
0.8 15-10-2014 Live+Gov Toolkit overview, approach & Frank Thiele
architecture. Pieter Minnigh
0.9 16-10-2014 Summary of test strategy and overview of | Frank Thiele
performed test reports and results.
0.10 17-10-2014 Added Personalized Content Delivery Dimitrios Ververdis
Service. Update of Augmented Reality Spiros Nikopoulos
Service, including test plans and results. .
George Liaros
0.11 17-10-2014 Management summary Frank Thiele
1.0 22-10-2014 Beta review: Spelling correct and multiple Dimitios Verderdis
comments for further improvements (to Spiros Nikopoulos
the parts after page 21).
Major updates in the AR section (3.4)
1.0 22-10-2014 Beta review performed: Spelling correction | Pekka Kaarela
and multiple comments for further
improvement.
1.1 23-10-2014 Processed overall beta review comments, Frank Thiele
final editing on Issue Reporting Service,
1.2 27-10-2014 Final editing on of Augmented Reality Dimitios Verderdis
Service and Personalized Content Delivery
Service
1.3 27-10-2014 Final editing on Traffic Service Pekka Kaarela
Laura Niittlya
1.4 29-10-2014 Final editing on Sensor Data Capturing Heinrich Hartmann
Service and Reality Mining Service
1.5 30-10-2014 Overall editing, Summary and Conclusions | Frank Thiele
Pieter Minnigh
1.6 31-10-2014 Final editing Matthias Thimm

Page 3

D S0V

D4.3 -V1.6

Author list

Organization | Name Contact Information

YCT Frank Thiele f.thiele@yucat.com

YCT Pieter Minnigh p.a.minnigh@yucat.com

YCT Feike Kramer f.kramer@yucat.com

CERTH Spiros Nikopoulos nikolopo@iti.gr

CERTH Dimitios Verderdis ververid@iti.gr

CERTH George Liaros geoliaros@iti.gr

UKob Heinrich Hartmann hartmann@uni-koblenz.de
UKob Christoph Schéafer chrisschaefer@uni-koblenz.de
UKob Matthias Thimm thimm@uni-koblenz.de

MTS Laura Niittlya laura.Niittyla@mattersoft.fi
MTS Pekka Kaarela pekka.kaarela@mattersoft.fi

Page 4

(=N Tan)\V4 D4.3-V1.6

Executive Summary

This deliverable describes one of the end products of the project: the Live+Gov Toolkit,
including the final test results confirming its readiness for deployment.

The toolkit consists of several applications and software libraries for creating mobile
governance solutions, supported by SaaS back-end services and web applications. It offers
developers reusable services and applications for sensor data collection, reality mining,
augmented reality, object recognition, personalization, issue reporting, eGovernment
dialogue and visualization. Furthermore advanced SaaS functionality like account
management, access control, billing and diagnostics / monitoring are offered centrally to
facilitate integration of the individual toolkit services

Two user groups are identified for exploitation of this toolkit: Developers and Service
Providers. Developers can create their own Mobile Government Solution using the toolkit
services as reusable building blocks. Service providers can offer standard customizable
solutions to government officials, who would like to launch one of these solutions in their
own city.

During the project three example solutions have been developed, tested, deployed and
trialled in real life environments: A Mobility solution in Helsinki (Finland), an Urban
Maintenance solution in Utrecht (The Netherlands) and an Urban Planning solution in
Gordexola (Spain). These solutions show that the toolkit is generic, cross platform and can
be applied in different scenarios and environment. These examples can be customized and
deployed for other municipalities or used as an example by developers when creating or
customizing their own solution.

During the Live+Gov project two Assembly-, Integration- and Verification cycles have been
performed in a highly complex distributed environment with multiple companies developing
and deploying reusable and integrated SaaS-based toolkit services. The followed strategy
proved to provide the required quality assurance for the development and deployment of
three different mobile eGovernance solutions on different trial sites. Future toolkit
developers and users can adopt this strategy when developing their own toolkit extensions
or Saas solutions.

This deliverable describes the final Live+Gov Toolkit and an overview of the technical
verification of the toolkit and developed solutions. More detailed information regarding the
integration strategies and guidelines or the technical verification strategy can be found in
‘D4.2 - System integration concept and guidelines’ [11] and ‘D4.4 — Technical verification and
testing strategies’ [6].

‘D5.4 — Prototype demonstrator for second trials’ [17] describes the three example solutions
that have been developed with the toolkit. ‘D5.5 — End results of trials and Live+Gov
Methodology’ [18] bundles the best practices and lessons learned for adaption in
future/other eGovernment initiatives.

Page 5

(=N Tan)\V4 D4.3-V1.6

Abbreviations and Acronyms

3D
AlV
API
AR
AREL
ASP
CPMT
GPS
GSM
GUI
HSL
HTML
HTTP
HTTPS
IBS
JSON
LBS

MAM
MVC
(0N
POI
PHP
REST
SaasS
SDK
SLA
SQL
SSF
StUF
UM
UpP
WiFi
WP
XML

Three Dimensional

Assembly, Integration and Validation
Application Programming Interface
Augmented Reality

Augmented Reality Experience Language
Active Server Pages

Citizen Participation with Mobile Technology
Global Position System

Global System for Mobile communications
Graphical User Interface

Helsinki Region Transport

HyperText Mark-up Language
HyperText Transfer Protocol
HyperText Transfer Protocol Secure
Image BaSed augmented reality
JavaScript Object Notation

Location BaSed augmented reality
Mobility

Municipal Administration Manager
Model View Controller

Operation System

Point of Interest

PHP: Hypertext Pre-processor
Representational State Transfer
Software as a Service

Service Development Kit

Service Level Agreement

Structured Query Language

Sensor Stream File format

Standaard Uitwissel Formaat

Urban Maintenance

Urban Planning

Wireless Fidelity

Work package

eXtensible Mark-up Language

Page 6

D S0V

D4.3 -V1.6

Table of Contents

1 INTRODUCTION......ccciiirieniitineiiireeisnenesisnnnesssrenesssnsnssssnenanns
1.1 PUIPOSE ..euveiieiiiiriiinenieirininesiasiainesiassracresisesrassrssssessans
1.2 P T [T= o Lo PRt

13 I 1Yo 1 U

2 LIVE+GOV TOOLKIT OVERVIEW........ccoeeiiiiiiiiiiiinnnnnnnenenenennns
2.1 APProach ... it ssnenne
2.2 ArchiteCture........ueeeeeiiiiiiiiiiiiiiiiiiieccccrreeer
2.3 Y =] Lo LN
2.4 (0007 0 1o o] 4 1= o | &3S
2.5 Field examples.....cccccoiimiiiiineiiininiiinininninieneeeneneneseneens

2.6 [37(] [o11 =14 o] o IO UOTPPN

3 LIVE+GOV TOOLKIT SERVICESccccotvruririnnniirinnnicrienninennnnns

3.1 SaaS Service Center (S1)..cccciieeeriereeeierieniereenneeeeennereenanes
0 0 A B 1= 1ol o o} { (o] o P U PP TPUPPPPTINN
3.1.2 ReEQUIFEMENTS wuvuiiiiiiiiiiieeeeeetiiiee e eeeeeriee e e e e eeeaee s e eesnebaa e e s aeeanes
3.1.3 ArChIteCtUME eeieiiiieee et
3.1 4 WD AP e s
3.5 INTeGration coovevveeii e
3.1.6 Phase 2 UPdatesS...cceieiiiecciiiiiieeeee et e e e

3.2 Sensor Data Capturing Service (S2) ...ccceeeeeeiirirrenncccinnnenn.
3.2.1 DeSCrIPLION. ittt e e eee
3.2.2 ReEQUIEMENTS tuvuiieiiiiiiiie et eeeiiiie e eeeiiie e e e eeeaae s e eeeeebaaseseeeanes
3.2.3 ArChIteCIUME .eeeii it
3,24 WED APl ettt en
3.2.5 Software Library APl ...
3.2.6 INTEGration ..cccvvueeiiiieeiee e

3.3 Reality mining Service (S3)ccccveeecciiiiiirenncciiiiinennnnccennnne
3.3.1 DeSCIPLION . ciiiiiie ettt eeaee
3.3.2 REQUIrEMENTS cuvuiieiiiiiiiiieeeeeeriiiee e eeeriis e e e e eeriee s e e eenebaa s e s eeeanes
3.3.3 ArChIteCtUIE .eeeii it
3.3184 WD APL e e
3.3.5 Software Library APlccuvviiiieieee e
3.3.6 INTeGration ..cccvvveiii i

(=N Tan)\V4 D4.3-V1.6

S A o o = LY I A U T o T = = USUURP 42
3.4 Augmented Reality Presentation Service (S4).....ccccccciiiiieeencciiiiieenncccennnennnnceennnens 44
R N B T =1l 4 o] Ao] o DO PO PP PPPPPTPTINN 44
R U= Yo [0 1 =Y 0 0[] o) AP PP PPPPPTPPINN 44
R T N ol Y1 ot AU S SRR PPP 46
3.4.4 SOftWAre lIDrary APl ...t e e e e e e e e s e e e e e e e e s e s snnrteteeeaeaeeeeeeeannnnnns 49
R I 1 0 (=Y < - L [0] o [P PUP PP PPPPPTPPINN 51
S T o o = LY I A U T o Yo = = UUURP 57
3.5 Personalized Content Delivery Service (S5) ...cccverurciiiriirennniiiiinieennnccesnnennnnecesneens 59
e T R B 11l o] 6o] o DT PPPPPTPPNN 59
T A N ol Y1 ot AU S PSPPSR 59
o T0C T 1 L (=Y < - L [0 o [P PP PPPPPTPPNN 60
3.5.4 SOftWAre LIDrary APl ..ot sr e e e e e e e e e s e e nnnteteereeaeeeeeeeananrnnes 61
ST T o o = LY I A U T o T = = UURP 62
3.6 eGovernment Dialogue and Visualisation Service (S6).......cccccceuueiiiriieennnccenrnennnnn. 62
N ST A B 1= 1ol o] 6o] o DSOS PUPPPTPPNN 62
N ST A =T T 1 =Y 0 0[] o} AP PP PPPPPTPPNN 62
ST T Vol Y1 ot AU =S PRSPPI 64
R V- o 1 AN U UUERPR 66
3.6.5 SOftWAre LIDrary APl ...t e s e e e e e e e e s se s nearteereeaeeeeeeeananrnnes 67
N S I 1 (=Y < - L [0 o [P PP UPPPTPPNN 67
S A o o = LY I A U T o T = = UUURP 69
3.7 Issue Reporting SErvice (S7) ..cccuieeeciciiiiiiieeciiiiiiennncieeseeeennsssessssesnnssssssssssnnnssssssanns 71
N A R B 11l o] Ao] o DSOS PPPPPTPPNN 71
O A (=T [1 =Y 0 0[] o) APPSR PPPPPTPPINN 71
0 T N ol Y1 ot AU I PP PPP 72
R Y V- o T Y U SUURP 74
3.7.5 SOftWAre LIDrary APl ..ottt e e e e e e st e e e e e e e e s s e sannaeteeeeeeeeeeeeeenanrnnes 74
I A I 1 (=Y < - L [0] o [PPSO PPPPPTPPNN 75
S A A o o - LY I A U T o T = = EURP 77
3.8 Traffic SEIVICE (S8) ceeuririeruiirieniirieneiiiteniertrneiireenesereeneeresssseseenssssesnssesssnssssessssesennns 78
SR 20 R B 11l o] Ao] o DS PPPPPPTPPNN 78
R A (=T [0 1 =Y 0 0[] o) APPSO PPPPPTPPNN 78
IR T N ol Y1 ot AU =S PRSPPI 79
RS V= o 1 Y U UURP 82
3.8.5 SOftWAre LIDrary APl ...ttt e e e s e e e e e e e e s e e nnaete e e e e aeeeeeeeananrnees 86
R I 1 L (=Y < - L [0] o [PPSR PPPPPTPPNN 86
S I A o o = LY I A U T o T = = UURP 87
4 TESTING STRATEGY ...ieuiiuiieeiinireninesiniieiireniaesiasrssisesiassrasssesiassrasssssisssrassssssssssasssasssnsss 88
4.1 Y olo] e T T3 Lo I - Lo T 1 L3O OORRPON 88
4.2 LY 1 1 T T = OO 88

Page 8

(=N Tan)\V4 D4.3-V1.6

4.3 TeSt PhasES .. ciceeiiiieiiiitriitere et rene s re e s sen e e sasnssestenssssesnssessenssssannsnasaanns 89
B TEST RESULTS ...ttt asssssese s s s sasass s s e e s e s e e s e s s s s s s s ssnnsnns 91
5.1 VLT =T 4 0T =) 4T - RN 91
5.2 Service level & integration testing.......cccceciiieiiiiiiiiiiiiiiiiecc e 92
6 SUMMARY AND CONCLUSIONScccitiiiiiiiiiiiiiiinnnnetireieessissssssssssssssssssssssssssssssssssnas 93
7 REFERENCESccoiiiiiiiiiinntniretetc s asasss e s es s s s e s s s s s asasas e s e e e s e e sesesssaas 94
8 APPENDICESccoiiiiiiiiiiitintieretete et ssasss s e e s s e s e s s s s s s s ssasas e e e e e s e e s e sesssaas 96

Page 9

(=N Tan)\V4 D4.3-V1.6

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24.
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:

Conceptual model in Saas Service CeNter ... 16
LIVE+GOV SEIVICE OVEIVIEW ...eeiiiiiiiiiiieeeeieiieiiiiiiettete ittt e eeaeeeeeessessaasbbbbreeeeeeeeaaeaeeens 17
LiVE+GOV arChitECIUIE ...eiii i e e s e e e e e 18
Example SaaS Service Levels for exploitationceeeeveeiiiiiiiiccccccceeeee e, 22
Service Center — Technical architeCture........ooocueeeeeiiniiiiii e, 26
Sensor Collection ArChit@CTUIEcoii i 32
Sensor Collection INtEEratioN.......cccccuuviiiiiiieiieee e e e e e e e 35
Mobile Sensor Mining ArchiteCture ... 37
Service Line Detection ArchiteCtUre.........ueveiiviiiiiieeee e 38

Service Line Detection INtegration.........ouvvviiiiiiiiiiiiiin e 42
Revised iNSPECLION TOOI ...cvviiiieeeee e e e e e e 43
AR Server, Mobile AR Clients, and external mobile applications.ccccceeeeeeennn. 47
Augmented Reality Service INtegrationccceeeeeeeeeieei e, 52
Urban Planning and Mobility are implemented based on MetaioSDK. 52
General structure of Urban Planning Androidcccuveieieeeeeeieiiee e, 54
The diagram of the AR graphic user interface.ccccceeeeiiiiieiiccccceeee e, 54
Architecture of Mobility AR Client ... 55
Organization of the Urban Planning iPhone Templateccooeeeeeiiiiiiiiicccciiiiienee, 55
Integration with Client application ..., 60
eGovernment Dialogue and Visualization architectureccccccceeeevieiicccciiiivenneen. 65
eGovernment Dialogue and Visualization Software APlcccccooevieiicciniivvvennnen. 67
eGovernment Dialogue Service integration.........cccccovviiiiiieeee e, 68
Issue Reporting Service ArchiteCturecccccvviiiiiieeieeee e, 73
Mobile Issue Reporting Client Software APloovvveeieiiiii i, 75
Issue Reporting Service INTegrationccccieiieii it eeaeees 76
Issue Reporting Service INTegrationccccieiieii it eeaeees 77
Traffic Jam Detection Architectureoooviiiiiiiiiiiiii e 80
Traffic Jam Message StrUCtUre.......coo e 80
Route Analysis Web COMPONENT ...t e e e 81
Route Analysis Web Component architecture........eveeeeiiiiieiicccccieeeeeeeeeeee, 82
Traffic Service integration to other Live+GoV SErvices.........cccceeevcuiveeeeeeiiivieeeeeenns 86

LY 1 (e Lo 11l 1<) PR PP PPPPPURPPIRt 89

Page 10

(=N Tan)\V4 D4.3-V1.6

List of Tables

Table 1: Deliverable OVEIVIEW.......ccoouiiiiiiiiiiiiiecee e 13
Table 2: TOOIKIt SEIVICES ...coiiiiiiiiiiiiieee et e s snae e 18
Table 3: COMPONENTS OVEIVIEWuuiiiiiiiiiiiieeeee e e e et e e e e e e e e e e e e s ee st ar e e eeeeeaeaaaeeens 19
Table 4: Selection of possible exploitation pathways........cccceeveeeiieiiii e, 21
Table 5: Toolkit SaaS reqUIrE€MENTSuviiiiieeee e e e e e e e 23
Table 6: Service Center MOdUIE...........ooiiiiiiiiii e 25
Table 7: Organisation ManagemMent APl ... e e e 26
Table 8: User ManagemMeENt APl...... . et e e e e e e e e e e e e e aaaeeeas 27
Table 9: Authentication and authorization APl..........coociiiiiiiiiiiiieeeee e 27
Table 10: DIagnostiCS APlttt e e e e e e e e e s e e e e e e e e aeraaaaaaaeeas 28
LI L o1 LTt T = 11170 Y= A SRR 28
Table 12: SYStEM APl e e e e e e e e e e e e e raaaaaaaeaas 29
Table 13: Service Center Phase 2 Updates ... 29
Table 14: Sensor Data Capturing reqUIrE€MENTS.......ccccccvriiiiiiriieeeee e e e e e e e e e e e e 30
Table 15: Sensor data capturing Web APL.........oo e e e 33
Table 16: Sensor data capturing Software Library APl..........oeeeveeiieiiiiiieicccccrrrereeer e, 34
Table 17: Reality Mining Service REQUIFEMENTSuevriiiiiiiiiiieeeeee e e e e e e e e e 36
Table 18: Reality Mining Web API — Service Line Detectioncccoovviieeeccccciiiiiiiieeeeeeeeeee, 38
Table 19: Reality Mining Web APl — Human Activity Recognitioncccccovviiiiiirieeneenennenn. 40
Table 20: Reality Mining Software Library APl...........cccuiiiiiiiiiieeee e e 41
Table 21: Reality Mining Service Phase 2 Updates.......ccccvviiieeiieieeeii e e e 42
Table 22: Requirements of Augmented Realityccccovriiiiiiiiiiiiie e, 44
Table 23: AR and Authentication APIScooiiiiiiiiiie e 49
Table 24: Augmented Reality Service Phase 2 updatesccccveeeeeeiiiiiieiccccreeee e, 57
Table 25: SErvIiCEe PAramMELEISuuueiiiiiiiiieeeeee e e e e e e e e e e e e e e e st rer e e e e eaaaaaaeens 60
Table 26: SOfEWAIE APL.....co e e e 61
Table 27: Requirements eGovernment Dialogue and Visualisationcccccovviivvvveeneennnnnn. 64
Table 28: eGovernment Dialogue and Visualization Web APlooooeeiiiiieeeeeeeeeee, 66
Table 29: eGovernment Dialogue and Visualization Service Phase 2 updatescccccveeeennnnn. 69
Table 30: Issue Reporting REQUIrEMENTSccooeeeei i e e 71
Table 31: Issue Reporting Wb APl ... et e e e e e 74
Table 32: Issue Reporting Service Phase 2 Updates......cccccveireeeeeeieeei i, 77

Page 11

(=N Tan)\V4 D4.3-V1.6

Table 33: Requirements related to the Traffic SErvice ..., 78
Table 34: Public Transport System ConNector APl............uvviiiiiieeieeeiee e e e 82
Table 35: Public Transportation Information Reader APlooovvieiiiiiiiiccireereee e, 86
Table 36: Traffic Service Phase 2 Updates........oooo et 87
Table 37 : List Of teSt Phases [B].....uuuuiiiiieeiieeieeie e r e e e e e e e e 89
Table 38: Overview of test types required in the test phases [6].......ccoeeeecvnriiiiiirieeeeeeeeeenn, 90
Table 39: System teST SUMMAIYuuiiiiiieeeeee e e reeeaaaeeeas 91
Table 40: Service level & integration test SUMMaArycccccvveeeieeiiee e, 92

Page 12

(=N Tan)\V4 D4.3-V1.6

1 Introduction

This chapter describes the purpose, intended audience and layout of this deliverable.

1.1 Purpose

This deliverable describes the final version of the Live+Gov Toolkit and the test results
confirming its readiness for deployment. Both topics have been addressed in previous
internal deliverables at earlier stages of the project. In order to sketch the full updated
picture for the public, parts from the previous deliverables are included in summarized form.
Table 1 gives an overview of the WP4 deliverables and their purpose.

Table 1: Deliverable overview

Deliverable Purpose Delivery
date
D4.1 Description of the first version of the Live+Gov Toolkit M18
Report on Zrd:(ltecturde, funIT(t.lonaI reqU|remen(';sA'lc;T’chn|cal Julr'13
Live+Gov toolkit ackground, toolkit components an S.
requirements and | D4.1 covers mainly task ‘T4.1 — System architecture
architecture design’.
D4.2 Description of the integration concepts and guidelines. M22
System integration The d(?5|gf1 ofthe.central SaaS Service Center |§ present, Nov'13
including instructions and examples that explain how to
concepts and)) i i]
s integrate toolkit services with the central service.
guidelines
D4.2 covers mainly task ‘T4.2 — Integration’.
D4.4 Outline of the test strategy, procedures and list of tests to | M22
Technical t.Je performed during the different phases in the pI’OJ?Ct. A Nov'13
. list of tests that have to be performed in each phase is
verification and q ed with the planni q
test strategy present(.e .,.a.ccom.panle with the .p anning an o
responsibilities. Finally the report includes the preliminary
test results until so far.
D4.4 covers mainly task ‘T4.3 — Technical verification
within test cases environment’.
D4.3 Describes the Live+Gov toolset and test results of the M33
Report on Phase 2 integrated toolkit a.s well as t.h.e test results (.)f the three Oct'14
eGovernance solutions (Mobility, Urban Maintenance,
Integrated toolset)))))
and Urban Planning) developed with this toolkit during
and AlV Test d) X
Report the 2™ phase of the project. Developers can use this
integrated toolkit and examples to develop their own
Mobile eGovernance solutions.

Page 13

(=N Tan)\V4 D4.3-V1.6

1.2 Audience

This document is meant for ICT professionals of the municipalities, service providers and
developers who are interested in applying the Live+Gov Toolkit. It gives detailed information
about the architecture and functionalities included the toolkit, including the available API’s
for development.

1.3 Layout
The layout of this document is structured as follows.

Chapter 2 introduces the Live+Gov toolkit, explaining the concept behind the Live+Gov
Toolkit approach, linked to exploitation of the toolkit and its architecture.

Chapter 3 describes the different services offered in the toolkit into detail. The Services for
SaaS Support (SaaS Service Center), Sensor Data Capturing, Reality Mining, Augmented
Reality, Personalized Content Delivery, eGovernment Dialogue and Visualization, Issue
Reporting and Traffic are presented, including detailed API descriptions for developers.

Chapter 4 presents the testing strategy followed during the development of the Live+Gov
toolkit and the development and customization of the three SaaS-based mobile governance
solutions. Future toolkit developers and users can reuse this strategy when developing their
own toolkit extensions or SaaS solutions.

Chapter 5 gives a summary of the test results of the service level-, integration- and system
test performed in preparation of the 2" trials for Mobility, Urban Planning and Urban
Maintenance.

Chapter 6 summarizes this document and discusses the conclusions.

The Appendix includes the concrete test scenarios (manuscripts) and results for the tests
that are performed in preparation of the 2" trial round. Appendix A contains a test report
template partners used to report the tests. Appendix B contains all system test plans and
results. Appendix C contains all service level and integration test plans and results.

Page 14

(=N Tan)\V4 D4.3-V1.6

2 Live+Gov Toolkit overview

This section gives a summarised overview of the Live+Gov Toolkit. First an introductory
description of the Toolkit approach is given, explaining the goals and aims. After the context
of the Toolkit is set, the architecture is described, with specific focus on the involved services
and components. The section will be concluded with an overview of the concrete Live+Gov
Use Case field examples. A full description of the architecture and requirements can be
found in ‘D4.1 Report on Live+Gov toolkit requirements and architecture’ [5]

2.1 Approach

The Live+Gov adopts a Toolkit approach which allows efficient development, validation,
deployment and maintenance of mobile governance solutions, following the Software-as-a-
Service (SaaS) deployment model. The Live+Gov Toolkit includes a number of reusable
software services. These services can be pieces of software used in mobile applications, web
applications or supporting services. Within the project the toolkit is applied to customise
SaaS-based mobile governance solutions for each of the use-cases (Urban Planning, Urban
Maintenance and Mobility). However, the toolkit can be used to develop SaaS solutions for
other eParticipaton scenarios. The different services are composed of different toolkit
components. The different services or components can be recombined to cover more
application scenarios. The different building blocks of the Toolkit will save the municipality
time and costs during development, deployment, and maintenance of new governance
solutions.

In order to offer the different developing consortium partners the maximum freedom to
make use of their specific expertise, a distributed toolkit architecture is chosen. Different
consortium partners are responsible for different components and services. Each partner is
free to adopt their specific techniques or choice in order to be able to offer Live+Gov their
maximum potential expertise. This strategy has impact on the architecture. The architecture
should be of supportive nature instead of an all-encompassing framework. In order that the
different services and components can actually be combined, WP4 defined generic
integration concepts and guidelines and offers a central SaaS Center offering generic Saa$S
services required for functional integration. These concepts and guidelines have been
reported in D4.2 — Integration concepts and guidelines [11].

Live+Gov offers conceptual guidance in assessing the exact combinations of components for
tailored eParticipaton scenarios. The guidance is built upon the Live+Gov Citizen
Participation with Mobile Technology (CPMT) approach as developed in WP2. The approach
is giving guidance on a conceptual level how to assemble software solutions aiming for Open
Government. The conceptual framework guides in deciding the needed components for a
specific pillar or combination of pillars and their variants of Open Government:
Transparency, Participation, and Collaboration. More on the approach and the practical
usage of the approach can be found in D2.1 [2], D2.3 [19], and D2.4 [20]. The conceptual
model has been applied in the SaaS Service Center as well, assisting the service providers
and customers in the configuration of (component) permissions. An example is shown in
Figure 1.

Page 15

LIVE GOV

D4.3 -V1.6

Edit customer

General information Permissions

Transparency ()
uvesGov () partcpaton (O)
cotaboration ()

(oo

Mobile tookit O

SS—G

sensor Cotecton (0)
Sensor Mining O Transportation Activiies O

@ cyeing
@ stno

© standing
© waking
O Running

@
@
O In train
oL
O In subway
@ e
O ontery

©) commitng to work
@ srossing

© workng

© sintseeing

©) wnen routne

close [

Figure 1: Conceptual model in SaaS Service Center

The overview of the architecture of the Live+Gov Toolkit will be described in more details in
section 2.2, in which specific attention will be given to the involved services (section 2.3), the
components (section 2.4). In section 2.5, we conclude the overview of the Live+Gov Toolkit
architecture with the concrete Live+Gov Use Case field examples developed with the Toolkit
in section. Here, we will show the involvement of the different components of the Live+Gov

toolkit in the software prototypes that have been used in the field trials.

Page 16

(=N Tan)\V4 D4.3-V1.6

/I\/Iobile Toolkitw (Server Toolkit w (Web Toolkit \

SaaS Service Center (WP4) |
___________________________ I S N S

:l Issue Reporting Service (Background knowledge, WP3 and 4)

___ T © & ——
\ eGovernment Dialogue and Visualization Service (WP2 and 4)
''' L ittt A
il Augmented Reality Service (WP3)
___ D
Personalized Content Delivery Service (WP3)
s s A
' Traffic Service (WP1)
Ul B

| Reality Mining Service (WP1)

___________________________ - ________

........................... T

. Sensor Data Capturing Service (WP1)

Figure 2: Live+Gov service overview

2.2 Architecture

The Live+Gov Toolkit is composed of different services and components. The very nature of
the Toolkit is that it has a distributed architecture. That said, the toolkit is integrated the
interaction between services and the central SaaS Service Center service. This service offers
and channels the shared functionalities in a SaaS way in order to be able to exploit the
generic Toolkit services for specific, tailored end-solutions. SaaS specific functionalities
include account management, access control, billing and multi-tenancy. The other toolkit
components utilize these services instead of including their own fragmented mechanisms.
Also a public APl and plug-in option are included to ensure interoperability with external
systems like the public administration and transport system. The public API includes plugin
for open standards for exchanging issues, like StUF [9].

Overall, the toolkit is divided in a Mobile-, Server- and Web toolkit and offers a
comprehensive set of tools that offer functionality for sensor data capturing and mining,
Augmented Reality presentation, visual recognition, personalized content delivery,
eGovernment dialogue and visualisation and Issue Reporting. The functionality is offered by
a set of distributed components that follow the principles of a Service-Oriented Architecture
[5], which allows us to offer a generic applicable toolkit, in which components have a clear
function and interface, allowing generic services to be applied in multiple scenarios and
solutions.

Page 17

LIVE =m0V

D4.3-V1.6

External data
sources

Map
Providers

Social Media |

y]
Open data
providers

Mobile Issue Reporting
Client (C11)

Mobile Augmented

Reality Client (C12)

Mobile eGovernment

Dialogue _and Visualization Web Web Web
client (C13) application for application for application for Web
Enhanced Augmented eGovernment application for
Mobile Sensor Mining Issue Report Reality Dialogue and Route Analysis
Component (C15) Feedback Configuration visualization (C20)
Mobile Sensor Collection (E13) (€17))
Component (C14)

Saas Service
v Center (C10) Billing Access control sEsii Diagnostics izl Sy
management Connectors

e,

O

d Issue Issue Object Personalized Server Side TrafficJam
Distribution Updating eGovernment Recognition content Mining detection
Service (C2) | Service (C3) Dialogue and Service (C6) delivery (C7) Service (C9) (C19)

Issue Reporting
(c1)

S Visualization Service Augmented Reality

(c4) Framework (C5)

Sensor Data Storage
Service (C8)

Administration

specific
systems /
workflows

A
Public
Administration
Systems

_A—
Public l

Transport
Systems

© Issue
(e} Database
-

(%]

Service
Center
Database

Augmented
Reality
Database

eGovernment

Dialogue and

Visualization
Database

Sensor Data
Database

Figure 3: Live+Gov architecture

In following sections the different Services (section 2.3) and components (section 2.4) are
briefly described as an introduction for section 3, in which the services are described in more
detail. Finally, in section 2.5, the concrete Live+Gov field examples are described, which
demonstrates the variety of possibilities of the Live+Gov toolkit.

2.3 Services

The Live+Gov Toolkit includes a number of reusable software services. These services can be
pieces of software used in mobile applications, web applications or supporting services.
Table 2 gives an overview of the services in the toolkit. Detailed descriptions of the services
are given in Chapter 3.

Table 2: Toolkit services

No.

Service

Description

Section

S1

SaaS Service Center

Service that supports Saa$ specific functionalities like
account management, access control, diagnostics and
monitoring, billing and providing a HUB to connect with
external systems.

3.1

S2

Sensor Data Capturing

Service

Service responsible for battery aware collection of sensor
data from mobile devices and central storage of the
relevant sensor data.

3.2

S3

Reality Mining

Service responsible for performing:

* Energy aware smartphone based reality mining

* Complex data analysis on the server, which cannot
be run on individual smartphones.

* Aggregated views and comprehensive summaries

Service

3.3

Page 18

D S0V

D4.3 -V1.6

S4

Augmented Reality
Service (including
object recognition)

Service responsible for mobile augmentation, object
recognition, storage of point of interest, meta tags, 3D
models and proximity triggers.

3.4

S5

Personalized Content
Delivery

Extension on the AR Presentation Service responsible for
filtering the content presented to the user based on his
explicit, or implicit preferences

3.5

S6

eGovernment Dialogue
and Visualisation
Service

Responsible for offering citizen government dialogue and

visualizing aggregated data in a user-friendly way, e.g.:

* Present initiatives (e.g. issue reports, proposals, co-
maintenance spots)

* Add own initiatives (both citizens and government)

* Provide opinions and feedback on initiatives

* Facilitate polls and questionnaires

* Moderator functions for government to prevent
abuse

3.6

S7

Issue Reporting Service

Service supporting submitting and processing issue

reports in the urban space.

* Postissue reports including location, photo,
category, and contact information.

* Forward issues to external systems (e.g. Public
Administration or Public Transport Systems)

* Give enhanced feedback on issues to citizens

3.7

S8

Traffic Service

Service providing traffic related services like:
* Traffic Jam Detection

* Route Analysis

* Connection with external Traffic systems

3.8

2.4 Components

Services consists of one or multiple components. Table 3 offers an overview of the
components within the offered toolkit services. Detailed descriptions of the components are
given in Chapter 3.

Table 3: Components overview

Urban
. .) Urban
No. | Service No. | Component Mobility Mainte- Planni
nance anning
S1 5aas Service C10 | SaaS Service Centre J J «
Center
Sensor Data C08 | Sensor Data Storage Service «
S2 Capturing
Service C14 | Mobile Sensor Collection Component J
C09 | Server Side Mining Service «
Reality Mining
S3 .
Service
C15 | Mobile Sensor Mining Component J
CO5 | Augmented Reality Framework « «
Augmented
sS4 . .
Reality Service
C06 | Object Recognition Service «

Page 19

D4.3 -V1.6

Web application for Augmented Reality
17 Configuration «
C12 | Mobile Augmented Reality Client « «
Personalized
Content . . .
S5 Delivery C07 | Personalized Content Delivery Service J «
Service
eGovernment Dialogue and
co4 Visualisation Service J J
eGovernment
Dialogue and Mobile eGovernment Dialogue and
56 Visualisation c13 Visualisation Client «
Service Web lication G ¢
eb application for eGovernmen
ci8 Dialogue and Visualisation J J
CO1 | Issue Reporting Service « «
C02 | Issue Distribution Service J J
lssue C03 | Issue Update Service « «
S7 Reporting
Service C11 | Mobile Issue Reporting Client J J
Web application for Enhanced Issue
cié Report Feedback « «
External connector for Public
c21 Administration Systems J
C19 | Traffic Jam Detection «
S8 | Traffic Service | C20 | Web application for route analysis J
External connector for Public Transport
C22
System «

2.5 Field examples

Table 3 offers an overview of the usage of the difference Live+Gov Toolkit services and
components during the three Live+Gov use case trials. All components have been used
during the trials and most components have been applied in multiple use-cases, which
demonstrates the general and reusable character of the Toolkit.

More information about these field examples can be ‘D5.4 — Prototype-demonstrator for
second trials’ [17].

Page 20

(=N Tan)\V4 D4.3-V1.6

2.6 Exploitation

The Live+Gov Toolkit is one of the exploitable end-products of the Live+Gov project.
Currently three exploitation pathways that involve the Toolkit, are foreseen. This paragraph
gives a preview to a selection of possible exploitation pathways, the final exploiting
pathways will be described in ‘D6.5 — Final Exploitation Plan’. Table 4 describes this selection
of possible exploitation pathways, relevant within the Live+Gov Toolkit and/or architecture
context.

Table 4: Selection of possible exploitation pathways

Pathway Description
Live+Gov Toolkit | The project delivers a number of libraries that can be used (under
Libraries license) by the consortium members to build tailor maid solution for

new customers. These libraries will help developing mobile and web
applications for citizens and municipalities in a faster and more
efficient way. The libraries will be ready for exploitation at the end
of the project.

Live+Gov Toolkit | A compiled software development kit (SDK) and related guides and
SDK documentation allowing easy development of specific solutions by
3rd parties. Compiling this SDK and guides requires considerable
additional effort and it is estimated that it can be ready for
exploitation 12 months after the project.

Live+Gov SaaS The project has used the Toolkit to develop prototype Saa$ solutions
Solutions for three Use Cases: Urban Planning, Urban Maintenance and
Mobility. These solutions are SaaS prototypes, implemented using
the software toolkit and guided by a conceptual model describing
the use-case and the assessment of components. The solutions are
currently being trialled for evaluation and testing within Live+Gov.
The final prototypes will become available for exploitation as a Saa$S
solution at the end of the project.

The service based architecture of the Live+Gov Toolkit allows flexible combining of services
and their underlying components. For exploitation this offers the opportunity to create
different commercial packages, existing of any of the valid combination of components
mentioned in Table 3. The conceptual model [2] can assist a service provider in creating valid
combinations of components.

The central SaaS Service Center is the component where these combinations can be
configured by the service provider. The contracted services per customer and permissions
will be configured in this central SaaS Service Center. Furthermore the Saa$ service provider
benefits from (can make use of?) several other functionalities of the Service Center:

* Add new customers who have subscribed for a SaaS solution.
* Add new modules and permissions when the toolkit is extended with new functions
or services.

Page 21

LIVEe 0oV D4.3 - V1.6

* Configure roles, defining access profiles for different types of users.

* Check the health status and log files of the different services for support and
maintenance purposes.

* Configure billing counters for pay-as-you-go exploitation models.

This service provider first creates a custom profile for each customer, which defines
the available functionality of the SaaS solution is available for this specific customer,
depending on his type of subscription. The customer administrator then uses the portal to
add the users and configure the roles within its SaaS solution, based on these
boundaries set by the service provider. This means that a service provider can offer many
combinations of services, however from commercial perspective, it might be interesting to
distinguish standard service level, e.g. basis, pro and premium. An example impression for
this model is depicted in Figure 4 . This approach will be further elaborated in the final
exploitation plan D6.5.

The BASIC service level will provide 10 the The PRO service level will provide 10 the The PREMIUM service level will provide to
municpaities new adapted 10ois to) ymented reality the municpaities data mining and behavior
Galogue with the ir atizens and visuahze ! 1 Nitos 10 the DAsIC SOrvic recognition functionaitios 10 the basic and
the issue they repon Pro servions
GSer*vice center and (J Augmented reality OReaitg mining Service
administrative Tools recognition Service
OSensor data capturing
Omobnle applications and (J Augmented reality SErVice
Software Libraries Presentation Service
GAdvanced Web
oStandahd Web application and
application and SErVICES

SErvIiCES

Figure 4: Example SaaS Service Levels for exploitation

Page 22

(=N Tan)\V4 D4.3-V1.6

3 Live+Gov Toolkit Services

The previous chapter described the toolkit approach and global structure, whereas this
chapter gives an update of the Live+Gov toolkit services focussed on their Software API’s,
Web API’s and integration with the Service Center. An overview of all toolkit components
and services is given in the beginning of the deliverable by Table 2 in Chapter 2.2. The source
code of the open source toolkit services can be found in the Live+Gov Source Code
Repository (https://github.com/LiveGov/)

3.1 SaaS Service Center (S1)

The Service Center offers SaaS specific functionalities like account management, access
control, billing and diagnostics. These services are required in every typical Saa$S solution and
affect all other toolkit components. Instead of each component implementing its own
fragmented mechanisms, a central service is offered that takes care of this functionality.

3.1.1 Description

The Service Center consists of a Web Portal and a software API. The Web portal offers a web
interface for performing administrative tasks by service providers and customers.
Administrators can use this interface for e.g. adding customers, adding users, defining roles
and permissions, viewing logs and the current systems health status. The software API is
used by other toolkit components to integrate with the Service Center programmatically.

A more detailed description of the service center and the integration guidelines is given in
D4.2 [11].

3.1.2 Requirements

The following requirements are recapitulated from D4.1 [5] for the SaaS Service Center:

Table 5: Toolkit SaaS requirements

Requirement Description

Account management The solution needs to be able to identify single users and
user groups (e.g. organizations). For example to separate
data from different users and organization, to enable
access control or to personalize application content.

Access control Specific functionalities and services offered by the SaaS
solution are only accessible to subscribers or certain roles,
e.g. an administrator. It can also depend on the type of
subscription which functionalities are available.

Page 23

(=N Tan)\V4 D4.3-V1.6

Billing Depending on the exploitation model, billing can be
handled in various ways:

* Pay-per-user: Periodic (e.g. monthly) fee depends
on the number of users and their role.

* Pay-as-you-go: Pay for usage, e.g. number of issue
reports or number of log-ins.

* Unlimited use: Flat fee for an unlimited number of
users.

Especially Pay-as-you-Go requires metering services of
these variables in order to be able to specify the bill.

Scalability / multi-tenancy Scalability is an important aspect for SaaS solutions since
the exploitation model often relies on economies of scale.
The amount of effort required to add new subscribers
should be reduced. It is up to the solution provider how to

handle this.
Note: this requirement also has to be covered by the
individual services

High availability Customers have to rely on the SaaS provider to the keep

services running. This is still one of the prime barriers for
SaaS adoption, even though SaaS providers often have
better up-time track records than most enterprises.
Measure can be taken to increase availability, e.g. adding
redundancy, load balancing or specifying Service Level
Agreement or define disaster recovery plans.

Note: this requirement also has to be covered by the
individual services

Diagnostics and monitoring | Service Level Agreements (SLA) are often part of SaaS
contracts. Such an agreement includes measurable
performance indicators (like up-time percentage) and
quality levels, agreed between the customer and solution
provider. The service provider needs to pro-actively
monitor and report on the appropriate metrics to ensure
and to prove that these agreements are met.

Security and privacy Security and privacy is still the prime barrier for the
adoption of SaaS solutions. The solution provider is
responsible to take the appropriate security measures for
securing data transmission, data storage, identity
management and offering audit trails.

Page 24

(=N Tan)\V4 D4.3-V1.6

External system connectors | In order to provide interoperability SaaS solution should
offer web service API’s to allow interaction with external
systems, e.g. public administration systems.

3.1.3 Architecture

The Service Center functionality is organised into separate modules. These separate module
are recognisable in the Web Application, as well in the API structure. Table 6 describes the
service center modules.

Table 6: Service Center Module

Module Purpose

Organisation Management | In the organisation management section the customers are
defined by the Service Provider Administrator. A customer is
an organisation that has signed up for one of the SaaS
solutions offered by the Service Provider.

Configuration Management | In the configuration management section the modules and
permissions are defined. A module corresponds to a toolkit
component.

User Management In the user management section users, devices and roles are
defined by the customer’s administrator.

Billing Billing counters are used to enable a pay-as-you go license
model. Solution Providers can add a billing counter for
specific customers. Counters are used to keep track of
number of times a specific piece of functionality is used, e.g.
the number of issue.

Diagnostics In the diagnostics section module log files and modules
health status can be consulted by the Service Provider or
the Customer Administrator. The log files can be used for
troubleshooting. The health status reports can be used to
generate report with information regarding up-time and
availability of the SaaS solutions.

The SaaS Service Center is installed and hosted by the Saa$S Service Provider.

The main components are 1) the Live+Gov Webserver, which serves the SaaS Service Center
Web Portal (ASP .NET), that offers the graphical user interface for the administrators, and 2)
the Web API (RESTful Web API), that enables other Toolkit components to make use of the
Service Center Services.

Depending of the type of data, the data is either stored in the database (PostgreSQL) or on a
file share. Especially larger files (e.g. log files) are stored on the file share, with a reference to
its location in the database.

Page 25

(=N Tan)\V4 D4.3-V1.6

Figure 5 shows the overview of the Service Centre Architecture. A detailed installation
manual [13] is available in which the installation is explained step by step.

,’____Exﬁmﬂf___\
: Service Center Portal
I
7T T fostingprovibeR T T\ Frewaits) |
I I
Saas Service Center I
/:// I
I
Live+Gov . .
WebServer | | Other Toolkit Services
I
I
I
I

T

I
I
I
I
I
I
I
| Postgres
I
I
I
I
I
I
I

N e o— — — — — o— — o— o— o— o— o— o— — o— o— o— —

Client EMENE I \
UNC pad
I
\\\ \\\ | o I Other Toolkit applications
=L 3 | |
X | | X [| |
ServiceCenter ServiceCenter I I
_database fileshare) | |
Live+Gov I |
N\ == — . . _
Figure 5: Service Center — Technical architecture
3.1.4 Web API

This chapter gives a summary of the SaaS Service Center API description. The API is used by
other toolkit components to utilize the services offered by the Service Center. A detailed
description of the API, including message examples and code examples is available in a
separate document [12].

The API’s in the Live+Gov toolkit are implemented using a RESTful web APIl. More details on
the guidelines for offering and consuming this type of APIs can be found in D4.2 [11]

3.1.4.1 Organisation management API

Table 7 describes the available REST API calls for the organisation management module.

Table 7: Organisation management API

Function name Purpose Request Response
Parameters parameters
Get Customer Get the details of a specific or | Customer id Customer
all customer details
Get Customers Get the details of multiple (Customer code) | List with

Page 26

D4.3-V1.6
customers details of
multiple
customers
3.1.4.2 User management API
Table 8 describes the available REST API calls for the user management module.
Table 8: User management API
Function name Purpose Request Response
Parameters parameters
Create Registered User | Add the information of a new | Customer id User id
user to a specific customer in Account info User type
the service center. (Personal info)
(Contact info)
Create Anonymous Add the unique identifier of an | Unique Anonymous
User anonymous user to the service | hardware user id
centre. Optionally coupled to identifier
customers. (List of
customer id’s)
Update Anonymous Update the customers an Anonymous None
User anonymous user is coupled to. | userid
(List of
customer id’s)
Get Registered Users Get a list of registered users Customer id List with
registered in service center for | (User type) details of
a specific customer users
Get Anonymous Users | Get a list of anonymous users | Customer id List with
registered in service center for details of
a specific customer anonymous
users
Get User Info Get the details the None (based on | User details
authenticated user authentication)
Get Registered User Get the details of a specific User id User details
registered user
Update Registered User | Update the details of a specific | User id None
registered user (Personal info)
(Contact info)
Set Password Set the password for a specific | User id None
registered user Password
Delete Registered User | Delete a registered user User id None

3.1.4.3 Authentication and authorization API

Table 9 describes the available REST API calls for the authentication and authorization

module.

Table 9: Authentication and authorization API

Page 27

D S0V

D4.3-V1.6
Function name Purpose Request Response
Parameters parameters
Authenticate Check provided credentials of | Account info User details
Registered User a user and get user details
Has Permission Check if the authenticated Permission None
user has been granted a name
specific permission.
Has Permission for User | Check if a specific user has User id None
been granted a specific Permission
permission name
Get Permissions Get list of granted permissions | None List of
for the authentication user granted
permissions
Get Permissions for Get list of granted permissions | User id List of
User for a specific user granted
permissions
3.1.4.4 Diagnostics API
Table 10 describes the available REST API calls for the diagnostics module.
Table 10: Diagnostics API
Function name Goal Request Response
Parameters parameters
Post Log File Periodically submit log files to | Log file info None
central repository Log file
Get Health Checks for Get health status information | Module id List with
Module for a specific module. registered
health
check
signals
Set Health Check Periodically give module Status None
health status information to Date / Time
service center
3.1.4.5 Billing API
Table 11 describes the available REST API calls for the billing module.
Table 11: Billing API
Function name Purpose Request Response
Parameters parameters
Get Billing Counter(s) Get the details of a specific or | Billing counter Billing
all billing counters name counter
details
Decrease Billing Register a transaction on a Billing counter None
Counter billing counter id
Amount

Page 28

D4.3-V1.6
Module id
(User id)
3.1.4.6 System
Table 12 describes the available REST API calls for the system module.
Table 12: System API
Function name Purpose Request Response
Parameters parameters
Get Module(s) Get the details of a specificor | Module name List of
all system modules module
details

3.1.5 Integration

The service center offers functionalities and API’s for other services in the Live+Gov Toolkit,
therefore other service integrate with the Service Center. Comprehensive instructions for
integrating your service with the Service Center are found in the integration concepts and
guidelines D4.2 [11].

3.1.6 Phase 2 updates

Table 13 describes the updates performed in preparation of the 2" trials rounds.

Table 13: Service Center Phase 2 updates

SaasS Service Center Web application

Update

Update description

Rationale

View on billing counters
and transactions

Added a web presentation
(dashboard) of the current status
of the billing counters.

Required for 2" use case in Gordexola to
keep track of the number of submitted
guestionnaires during the trial.

View on health status

Added a web presentation
(dashboard) of the current health
status of the different modules in
the solution.

Added for the 2™ trials to easily monitor
the system components during 2" trial
round execution.

Conceptual model to
support configuration

Added graphical presentation of
the system modules according the
conceptual view presented in
WP2.

Added for exploitation to demonstrate a
user friendly way to configure the system.

Fixed error in sort of list
view

Fixed incorrect sorting of list views
in the web application

Bug fix to improve user experience

Fixed error in redirect
after logout

Fixed an error in the redirect after
a user logs out. Previously a page
not found was show, now the
login screen in show.

Bug fix to improve user experience

Saas Service Center API

Update

Update description

Rationale

Page 29

(=N Tan)\V4 D4.3-V1.6

API| extension Added customer identifier in Required for integration with the issue
registered user controller reporting portal for Urban Maintenance,
enabling customer specific views in issue
reporting web application in a single
instance.

3.2 Sensor Data Capturing Service (S2)

This chapter describes the Sensor Data Capturing Service, which is responsible for collecting
and storage of sensor data from mobile devices.

3.2.1 Description

The Sensor Data Capturing Service consists of two components, the Sensor Data Storage
Service (C8) and the Mobile Sensor Collection Component (C15). The Mobile Sensor
Collection Component is responsible for collecting data from a large variety of sensors in a
battery aware way. The Data Storage Service archives the collected sensor data and makes it
available for data inspection and mining applications.

3.2.2 Requirements

The functional requirements for the Sensor Data Capturing Service have been translated into
Sensor Capturing Requirements in the Deliverables D1.1 [1] and D4.1 [5]. In the following
table we refer to these Sensor Capturing Requirements as presented in D1.1.

Table 14: Sensor Data Capturing requirements

Sensor Capturing Requirement Outcome Part Part
No. of 1% | of 2™
trials? | trials?
RA.1 GPS - On spot location The Mobile Sensor Y Y
RA.2 GPS — Location tracking Collection Component (C15) | Y Y
R-SC.1 GPS — Every 10 sec. is able to record samples Y Y
R-SC.2 Accelerometer (20Hz) with the appropriate Y Y
R-SC.3 Gyroscope (20Hz) frequencies. Y N*
R-SC.4 Magnetometer (5Hz) Y Y
R-SC.5 WiFi (1/30 sec) Y N?
R-SC.6 GSM (1/30 sec) Y N?
R-SC.7 Microphone (1Hz) N N?

Please see D1.1 [1], p.13, p.27 for further details about these requirements and their
relation to the data mining end products.

' For Power consumption and Privacy Protection reasons we have decided to limit the data collection
in the second field trial to the minimal sensors necessary for the Activity Recognition and Service Line
Detection. The corresponding requirements are all met.

2 The microphone sensor was not used in the project and therefore the requirement R-SC.7 was
effectively dropped and we did not implement audio recording functionality into the Sensor Collection
Component.

Page 30

(=N Tan)\V4 D4.3-V1.6

3.2.3 Architecture

The Architecture of the Sensor Data Capturing Service is described in D1.1 [1], p.24. We will
only provide a short summary here.

The Mobile Sensor Collection Component records sensor samples from the mobile device.
The collected samples are transferred in bulk to the Sensor Data Storage Service. The data is
persisted on the mobile device and transferred to the Sensor Data Storage Service over a
wireless network connection (GSM, 3G or WiFi). The sensor data is stored on the server in
two different ways: Firstly, on the file system for backup reasons, and secondly in a database
to facilitate further processing and inspection.

The Sensor Data Storage Service includes a data inspection web front-end which is used for
testing purposes.

Page 31

D4.3 -V1.6

Sensor Data Storage Service (C8)

e
processing

Aggregation

J

XML parser JSON Servlet

¢

File interface HTTP / JSON interface
A
AJAX
zip

Y

Data inspection

Mobile Sensor Collection Component (C14)

Website

Figure 6: Sensor Collection Architecture

Page 32

(=N Tan)\V4 D4.3-V1.6

3.2.4 Web API

The Sensor Data Storage Service exposes the following REST-full APl to the mobile client.
This APl is intended for internal use within the Sensor Data Capturing Service (S2).

Table 15: Sensor data capturing Web API

Function name Request HTTP Response Remark
Description method
Upload Samples UploadServiet/ POST On success: The upload file format has
Status: 202 ACCEPTED been revised since D1.1
Upload Samples to | The sensor data is attached as
server. multipart/form-data in a field called Moreover, human readable status
“upfile”. The data is expected in the information is attached in the body
sensor stream format described below. of the response.
On error:

Status 400 BAD REQUEST

Example Request:

POST / HTTP/1.1

ID: 61c206d1a77d509%e

Content-Length: 2019

Content-Type: multipart/form-data; boundary=g31JTImnoGKMD2s1lcQhkfzSCUqQR3TB
Host: 141.26.71.84:6000

Connection: Keep-Alive

User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

--g31JT9mnoGKMD2s1cQhkfzSCUgqgR3TB

Content-Disposition: form-data; name="upfile"; filename="sensor.stage.ssf"
Content-Type: application/octet-stream

Content-Transfer-Encoding: binary

ACC,1381584735464,61c206d1a77d50%e,-0.0435791 0.031417847 9.720917
GPS,1381584735607,61c206d1a77d509e,50.3551875 7.586807 0.0
ACC,1381584735738,61c206d1a77d509%e,-0.0519104 0.030227661 9.716156
<emmmmmm MORE SAMPLES —-----————--—-—-———-- >
ACC,1381584735879,61c206d1a77d509%9e,-0.048339844 0.008804321 9.750671
LAC,1381584735880,61c206d1a77d509e,0.005099442 -0.0175697 -0.07921791
GRA,1381584735880,61c206d1a77d509e,-0.05331197 0.026311187 9.80647

--g31JT9mnoGKMD2s1cQhkfzSCUgqgR3TB--

Sensor Stream Format

The sensor stream file format (SSF) is inspired by the Common Log Format used by many
webservers. We view incoming sensor values as events and record them as a simple stream
of CSV-rows. Each sensor has an individual prefix but writes into the same file.

The SSF file follows the following Schema
SENSOR PREFIX, TIME STAMP, USER/DEVICE-ID, SENSOR VALUES

The filed sENsOR PREFIX takes one of the following values:
* GPS GPSsensor
« ACC Accelerometer
* GYR Gyroscope
* MAG Magnetometer

Page 33

(=N Tan)\V4 D4.3-V1.6

 WIFI WiFi networks

« BLT Bluetooth

* GSM GSM cells

» TAG User defined tags

» ACT Google Play Services Activity
* LAC Linear Acceleration

* GRA Gravity

The field TIME sTamp is the UNIX time the sample was recorded in milliseconds.

The field UsSErR/DEVICE-ID contains a unique ID to identify the user. Usually this is the user
ID provided by the Live+Gov Service Center. However, also custom IDs will work.

The field sSENSOR VALUES contains the actual values of the recorded sensor sample. This field
o n

is customized for each sensor type. It is required to avoid the character “,” in order to
simplify parsing. Valid values of this filed are as follows:

+ ACC/GYR/MAG/LAC/GRA X,Y,Z-values separated by space (" ") characters
e WIFI ESSID / mac address as escaped string

e GPS lat,lon,alt-values separated by space (" ") characters

e ACT Activity name and confidence score separated by space (
+ TAG tagvalue as escaped text, with “,” characters removed.

) character

ACC,1377605748123, 9HAD-FEJ3-GE3A-GRKA,0.9813749 0.0021324 0.0142523
GPS, 1377605748156, 9HAD-FEJ3-GE3A-GRKA, 50.32124 25.2453 136.5335
WIFI,1377605748426,9HAD-FEJ3-GE3A-GGEA, "Uni-Koblenz WIFI"
TAG,1378114981049,ab85d157c5260ebe, "test tag"

Example Rows:

3.2.5 Software Library API

The Mobile Sensor Collection Component offers the following APl on the mobile device. The
current implementation uses Android Intent messages but can be adapted to messaging
systems of iOS or Windows Phone. The Intent API is defined in a java class IntentAPl.java
that can be consulted for the technical details.

Table 16: Sensor data capturing Software Library API

Function name Request Response Remark
Description as Intent Action Strings. All listed
Strings are prefixed with:
"eu.liveandgov.sensorcollectorapi”

Status Request .action.GET_STATUS .return.STATUS

The returned intent carries the following data fields:

. “sampling” — boolean value that
indicates if the service is collecting data
. “transferring” —boolean value that

indicates if the service is currently
transferring data to a server.

. “samples stored” — boolean value that
indicates if there are samples stored on
the device, that are not transferred to
the server.

. “id” — String value that contains the
current user ID.

Page 34

D S0V

D4.3 -V1.6

Start Sample Collection

.action.RECORDING_ENABLE

.return.STATUS
A full status intent is returned in response to this
request.

Stop Sample Collection

.action.RECORDING_DISABLE

.return.STATUS

Transfer Samples

Triggers transfer of
samples manually.

.action.TRANSFER_SAMPLES

.return.STATUS

This action only works if an
internet connection is
available.

Send Annotation

.action.ANNOTATE

This intent carries a String field “tag”.

Set User ID

.intent.action.SET_USER_ID

This intent carries a String field “id”

.return.STATUS

For use by the integrated
application.

3.2.6 Integration

The communication of the Sensor Data Capturing Service (S2) and the Service Center (S1)
running on one of the Live+Gov servers is summarized in Figure 20.

Mobile Components

7

Integrated App

~

Sensor Collection)
Component

<—Authentification, ...

Live+Gov Server

Service Center

Log files, He3lthchecks,

Sensor Data Storage

C Intent API)

Sensor Data

Service

Figure 7: Sensor Collection Integration

The Sensor Collection Component is used in an integrated application which takes over the
communication with the Service Center. Only the information about the User ID is passed to
the Sensor Collection Component, via the Intent API. This allows to link the recorded sensor
data to a registered user.

The Sensor Data Storage Component sends regular Health Checks to the Service Center and
transfers log files every day to monitor the usage of the storage service.

Page 35

(=N Tan)\V4 D4.3-V1.6

3.3 Reality mining Service (S3)

This chapter describes the reality mining service which is responsible for extracting
information from the data collected on the mobile device. Reality mining is performed on
the server as well as on the mobile device itself.

3.3.1 Description

The Reality Mining Service (S3) contains the components Server Side Mining Service (C9) and
the Mobile Sensor Mining Component (C15). In its current version the Server Side Mining
Service implements Human Activity Recognition, the detection of service lines, means of
transportation and the detection of traffic jams; the Mobile Sensor Mining Component
implements activity recognition. The implementation of Human Activities Recognition as a
service on the server, simplifies the integration of this service on multiple mobile platforms.

3.3.2 Requirements

The Functional Requirements listed in D5.1 [7] have been translated into Context Mining
Requirements in D4.1 [5] and D1.1 [1]. In the following table we refer to the numbering used

in D1.1.

Table 17: Reality Mining Service Requirements

Live+Gov system requirements Outcome Part Part
No. of 1% | of 2™
trials? | trials?
Detect users activity. The following These requirements are Y Y
RB.1-6 attributes should be recognized: covered by the Mobile
Sitting, Standing, Walking, Running, Sensor Mining Component
Cycling, Driving Car. (C15).
Detect transportation means. The These requirements are Y Y
following means of transport should covered by the Server Side
be recognized: Mining Component. This
RB.7-13 In bus, in train, in tram, in subway, in component is moreover
metro, in ferry able to detect the precise
service line the user is
traveling in.
Detect higher context. The following Due to limited resources N N
attributes should be recognized: and disappointing initial
RC.1-5 Commuting to work, Working, Lunch experiments, the
routine, Shopping, Sight Seeing development of his feature
was not further pursued.
RD.1 Geographical Analysis These requirements are N Y
RD.2 Text Mining addressed by the Server N -
Clean-up existing datasets Side Mining Component. - -
Their development is
RD.6 independent from the field
trials.
RD.4 Route Analysis These features depend on N Y

Page 36

D S0V

D4.3 -V1.6

Preferred Routes

the outcomes of the N

Activity Recognition and
Service Line Detection
Components. The features
have been added for the
second field trial.

RD.5

3.3.3 Architecture

The Architecture of the Reality Mining Service (S3) can be summarized as follows.

Mobile Components Live+Gov Server

Sensor Collection Unload Serviet -
Component HTTP/POST: p A
Intent APIT) Feature Extraction

Data Inspection
Web Frontend

Activity Classifier

Figure 8: Mobile Sensor Mining Architecture

[and Preprocessing

Sensor Mining Cp.

Activity
Classifier

Intent API)

Machine Learning
Toolkit
(WEKA/RapidMiner)

Using components of the Sensor Collection Service, a set of annotated samples is collected
in a database. These samples undergo further quality control and editing using the Data
Inspection Web Frontend. On the basis of the prepared samples a set of feature vectors is
computed. These feature vectors serve as input for a machine learning toolkit which is used
to train an activity classifier.

The Mobile Sensor Mining component retrieves sensor samples directly from the operating
system of the mobile device, computes the feature vectors and uses the trained classifier to
detect the user’s activity.

The HAR Service is a web service that recognizes human activities. It receives data from a file
sent within a POST request. The file must contain acceleration data in the SSF format. The
service is able to handle arbitrary amounts of data, however 5 seconds of recording are
Recommended. The recording frequency has to be around 50 Hz. The service returns the
activity as a simple string in the body.

Page 37

(=N Tan)\V4 D4.3-V1.6

Server Side Mining Service (C9)

l Static HSL Service Line Data I

HSL Live API > | Service Line Detection

HTTP / JSON interface

Test/Inspection Website

User

Tester/Developer

Figure 9: Service Line Detection Architecture

The Service Line Detection as part of the Server Side Mining Service (C9) is implemented as
RESTful service cf. Figure 8. Its input is a GPS track and its output a list of ranked service lines
matching the given track. It makes use of the static HSL Service Line Data (routes,
timetables) as well as the HSL Live APl which provides real-time position of some vehicles.
User access the service via HTTP POST requests. The same HTTP interface can be used by
testers and developers.

3.3.4 Web API

The Service Line Detection REST API receives GPS tracks (minimum one GPS coordinate) and
replies a ranked list of Service Lines matching a given track in JSON format.

Table 18: Reality Mining Web APl — Service Line Detection

Function name Request HTTP Response Remark
Description method
Service Line /ServicelineDetection POST list<ServicelLine>:
Detection
POST data: Serviceline {
Get the HSL Service list<GPS_samples>: -route_id
Line matching a GPS_samples { -shape_id
given GPS track - longitude -trip_id
- latitude -score
- timestamp }
}

Page 38

(=N Tan)\V4 D4.3-V1.6

Input: A list of recorded GPS-samples together with time-stamps:

Lat0, Lon0, TimestampO, DayOfWeekO
Latl,Lonl,Timestampl, DayOfWeekl
Latn, Lonn, Timestampn, DayOfWeekn

* Lat and Lon coordinates in WGS84 format.

* Timestamp is in format "YYYY-MM-DD hh:mm:ss". It is in the local time where the
sample is collected.

* DayOfWeek is one of [Mon, Tue, Wed, Thu, Fri, Sat, Son]

Example Service Line Detection API request:

POST /ServicelineDetection HTTP/1.1

ID: 61c206d1la77d509%e

Content-Length: 2019

Content-Type: multipart/form-data; boundary=g31JT9mnoGKMD2s1cQhkfzSCUggR3TB
Host: 141.26.71.84:8080

Connection: Keep-Alive

User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

--g31JT9mnoGKMD2s1cQhkfzSCUggR3TB

Content-Disposition: form-data; name="upfile"; filename="gps-track.csv"
Content-Type: application/octet-stream

Content-Transfer-Encoding: binary

60.1652805,24.95296666,2013-09-23 20:06:36,Mon
60.1652115,24.95291232,2013-09-23 20:06:59,Mon

--g31JT9mnoGKMD2s1cQhkfzSCUggR3TB--

Output: The Service Line Detection Service response consists of the following parts:

* route_id refers to a HSL route in the HSL dataset provided in gtfs format.

* shape_id refers to the geographical shape of the route, also provided in the gtfs
dataset.

* trip_id refers to the time depending trip the traveler is on. For example on route X
every five minutes starts a new trip.

* score the higher the score the more likely is that the traveller really is on this trip.

An empty list means, that the user is not using public transportation.

Example Service Line Detection API response:

{"routes":[{"route i1id":"1065A","shape id":"1065A 20120813 2","trip id":"106
5A 20130930 Ma 2 2000","score":12},

{"route_ id":"1065A","shape id":"1065A 20120813 1", "trip id":"1065A 20130930
~Ma 1 1930","score":12},

{"route_ id":"1051","shape id":"1065A 20131001 1","trip id":"1065A 20131001
Ma 1 1930","score":11},

{"route_ id":"1070V","shape id":"1065A 20131001 2", "trip id":"1065A 20131001
_Ma 2 2000","score":6}]}

Page 39

(=N Tan)\V4 D4.3-V1.6

Table 19: Reality Mining Web APl — Human Activity Recognition

Function name Request HTTP Response Remark
Description method
HAR Service /HAR/api POST HTTP/1.1 202 Accepted
Server: nginx/1.1.19
Post a file with POST data: Date: Wed, 21 May 2014 14:42:48
sensor data (SSF GMT
format), return the curl -i --form "upfile=@test.csv" Content-Length: 8
current activity http://liveandgov.uni-koblenz.de/HAR/api Connection: keep-alive
HTTP/1.1 100 Continue
on_table

Input: File with acceleration data in SSF format (https://github.com/Institute-Web-Science-
and-Technologies/LiveGovWP1/wiki/Sensor-Stream-Format). The file must contain
acceleration data in the SSF format [1]. The service is able to handle arbitrary amounts of
data, however 5 seconds of recording are recommended. The recording frequency has to be
around 50 Hz. An example file can be found in (https://github.com/Institute-Web-Science-
and-Technologies/LiveGovWP1/blob/master/scripts/test.csv)

Example Human Activity API request:

curl -i --form "upfile=@test.csv" http://liveandgov.uni-koblenz.de/HAR/api
HTTP/1.1 100 Continue

Output: The service returns the activity as a simple string in the body.

Example Human Activity API response:

HTTP/1.1 202 Accepted

Server: nginx/1.1.19

Date: Wed, 21 May 2014 14:42:48 GMT
Content-Length: 8

Connection: keep-alive

on_table

Page 40

D S0V

D4.3-V1.6
3.3.5 Software Library API
The following API is offered by the Mobile Sensor Mining Component.
Table 20: Reality Mining Software Library API
Function name Request Response Remark

Description as Intent Action Strings.
All listed Strings are
prefixed with:
"eu.liveandgov.sensormi
ningapi.intent.”
Start Activity | .action.START_HAR .return.STATUS Starts the automatic
Recognition A full status report is sent as an classification of
immediate response. activities.
.return.ACTIVITY
In regular time this intent sent back to
the system. It contains a field “activity”
which carries the name of the
recognized activity. Valid activities are:
“standing”, “sitting”, “walking”,
“running”, “cycling”, “in car”.
Stop Activity | .action.STOP_HAR .return.STATUS Stops the
Recognition classification of
activities.
3.3.6 Integration

Figure 10 shows the interaction of the Service Line Detection with the Service Center. All
actions performed on the service APl are checked against the Service Center (has
permission). Periodically log files and Health Check updates are provided to the service
center. Also a future scenario is shown where a billing counter is increased every time this

service is called.

Page 41

D S0V

D4.3 -V1.6

Other Components

Service Line Detection

GetServiceline

>l

GetServiceline

HasPermission

(S6) SaaS Service Centre

>

Servicelinelist

3.3.7

Phase 2 updates

K ———m—m - -]TI
- |
: PostLogFile :
|
: SetHealthCheck :
|
e 7
| |
HasPermission :
e 11
DecreaseBillingCounter :
———m—m -]T
R |

Figure 10: Service Line Detection Integration

Table 21 describes the updates performed in preparation of the 2" trials rounds.

Table 21: Reality Mining Service Phase 2 updates

Service / Update

Update description

Rationale

Service Line Detection

Integration of SLD in
Storage Service, Service
Center and Reporting tool.

* Revised our DB schema and
access policies.

* Attached user-id’s to SLD
queries

* Inferred trip-id’s from
timestamps of the recordings

In order to allow sophisticated queries
(e.g. how are citizens traveling from one
district to another) we need to link the
recorded GPS tracks to the results of the
SLD detection. This linkage requires
communication and alignment between
the sensor data storage service (storage of
GPS samples), the Live+Gov Service Center
(central authority for user-ids) and a
reporting tool that is responsible for
analytics and visualization of the query
results.

Human Activity
Recognition

Added Server Based
Component

The server side Activity
Recognition algorithm is
functionally identical to the one
deployed in the mobile application.
For update on this component see
below.

In order to bring HAR services to other
mobile platforms, we have developed a
server-side HAR classification service. This
service allows the mobile component to be
very thin and thereby reducing the
development efforts for porting the HAR
service drastically.

Sensor Storage
Component

We have continued to work on the
user interface of the inspection

We have to be able to judge the quantity
and quality in an easy way during the trial.

Page 42

LIVE =m0V

D4.3-V1.6

Ul improvements of
Inspection Tool.

tool. It now allows to review the
result of the HAR directly inside the
tool. (cf. Screenshots) We are
working on a similar feature for the
SLD. Deletion and comments on of
individual recordings from the DB is
possible form the overview table.

The inspection tool (Figure 11) has led to
the discovery of several bugs during the
trial.

Mobile Sensor Mining

Improved Decision Tree

We have continued working on the
recognition methods. The released
component comes with a decision
tree with improved performance
for basic activities.

This improvements have been
achieved by adding further
frequency domain features (FFT bin
distributions), collection of further
training data and improved pre-
processing and cleaning of the
recorded training samples.

We have continued our work on the
activity classification.

Mobile Sensor Collection

Feedback of HAR results to
sensor collection

We have been working on a feature
that turns off all sensor collection
for a specified amount of time (e.g.
30 sec.) when the activity
"ON_TABLE" is recognized.

Initial experiments showed
promising results. However in the
following we encountered several
problems such as crashes of the
application and sometimes the
recording did not start again after
the 30 seconds had past, leading to
truncated recordings.

Since the quality of data during the trial
should not be compromised and the
battery awareness of the component is
already acceptable, we decided not to
include this feature in the trial.

Records Raw Data Activity Recognition Service Line Detection

GPS

I D .

waling siting

+

Koblenz

Figure 11: Revised inspection Tool

Page 43

(=N Tan)\V4 D4.3-V1.6

3.4 Augmented Reality Presentation Service (S4)
This chapter describes the Augmented Reality (AR) Presentation Service.

AR is based on the idea that location-based data can be overlaid on the view of the real life.
In the context of Live+Gov, the goal of mobile AR is to help citizens get informed about local
administration issues. For example, the local administration decides to renovate a
pedestrian trail. The plan has two options: option one is an urban style renovation whereas
the second option is a more natural style renovation. AR presents the 3D models for each
case on the camera view of the mobile and lets the user decide which one is best.

3.4.1 Description
The Augmented Reality (AR) Service is split into several components:

1. AR Framework (C5) consisting of

o Object Recognition Service (C6), and

o Personalized content delivery (C7);
2. Web application for AR configuration (C17), and
3. Mobile AR Client (C12).

Object recognition is the recognition of an object from its image captured by the mobile
device. The Personalized content delivery is the filtering of data according to the user
preferences. The Web application is the portal of the server that allows administrators to
insert, edit or delete 3d objects. Finally the Mobile AR Client is the component to perform
location and image based AR that should be encompassed in the base mobile application.

3.4.2 Requirements

The AR Framework (C5) and the web application for AR (C17) are implemented on server
side (AR-Server). In AR-Server, a database for storing data is found to which AR Framework
and the web application for AR are directly connected. The AR information is available
through two APIs (Application Programming Interfaces), one for interconnecting with the
mobile AR client (C12) and one for interconnecting with other Servers. The former is named
as AR API, and the second is named as Authorization APl. Mobile AR Client (C12) is
implemented for two mobile platforms namely Android and iOS, that both retrieve data
from the AR Server through AR API. Authorization APl is used for the communication
between AR-Server and SaaS Service Center for the verification of a power user that wishes
to enter data in the AR-Server database. In total, AR service provides the features outlined in
Table 22 [5] as to fulfil the project requirements.

Table 22: Requirements of Augmented Reality

No Live+Gov system requirements Feature status Part of 1% | Part of 2™
Trials Trials
Receive and store in a privacy- This information is send from the Y Y
LG aware manner user information mobile app to the Saa$ Service
FROL such as position age group, Center without the interference of
’ gender, residence, nationality, AR framework
etc.
LG Be able to show information in a Information is send according to Partially Y
context aware manner (location, location by AR-Server and shown in

Page 44

D S0V

D4.3-V1.6
FR.03 | person, time-specific, situational) Mobile AR Client. Personalized
to create greater awareness and information will be retrieved from
create mutual citizen- Saas Service Center
government understanding
Be able to capture images and Image based AR (IBS) is performed Y
recognize their content by the MetaioSDK locally on mobile
AR client.
Experimental Image Based AR (IBS*)
by CERTH is performed remotely in
L+G- the AR-Server by transferring the
FR.07 image to be recognized.
Also the Junaio AR Browser by
selecting the “Gordexola posters”
channel can recognize the images of
the IBS channel and present 3D
content.
Provide (mobile) presentation AR Location and Image based view Y
L+G- possibilities in an Augmented are implemented by Mobile AR
FR.11 manner Component and they are ready to
use
It was unrealistic to have norms A component to give AR Y
from the local government. functionality to Joomla/Sobipro
L+G- Instead focus is given on how to based site was written
FR.18 | install AR framework to already
existed content management
systems in municipalities
LG Provide possibilities to Urban planning plans can be Y
FR21 communicate urban planning communicated through AR-Server
plans APl and Mobile AR Client.
Instead of gamification, we Data is exported to Junaio, Layar, Y
L+G- investigated ways to increase and Wikitude free AR browsers both
dissemination by supporting for Android and iOS.
FR.26 .
multiple free AR browsers by
several companies.

The main requirements are split into AR visualization, Personalized Content Delivery and
Object recognition. The AR Service provides receiving/storing/transferring of personal data
related to AR such user position through GPS or IP, authorized access to certain entities,
secure transfer of personal credentials with service centre; the image recognition capability,
i.e. to capture an image with mobile phone and recognize the object in the image; and the
functionality to visualize information in the mobile client such as text, image, and 3D models.
The aforementioned requirements are implemented with components and APIs that are
described next.

The last years’ changes regard two axes. The first axis is on how to support popular content
management systems (CMSs) that are already installed in several municipality servers, such
as the Joomla CMS. The second axis is about supporting multiple APIs for exporting AR
content. The AR API is now a set of Server to Mobile API's targeting to increase the
dissemination of information of e-Government to several free AR browsers that are already

Page 45

(=N Tan)\V4 D4.3-V1.6

installed to several millions of devices. Junaio, Layar, and Wikitude are the supported AR
browsers. Also, usage analytics monitoring is added in the mobile applications in order to
see the behaviour of the users in the AR environment by exploiting several features of
Google Analytics.

3.4.3 Architecture

The architecture of AR components is shown in Figure 12. It consists of two kinds of
components, namely the server components, and the mobile components. Each component
communicates to the other and with the rest of L+G components through APIs. These
components and APIs are outlined in the following lines.

Server components are located in AR-Server. The server is an Apache server and the AR
database is a MySQL database. The basic information element is called as Entity which
represents an issue or an urban construction to be built. The Entity has text details, images,
3D models, and Object Recognition models associated with it. The user, let us say a
governmental user, can insert, modify or delete Entities using the Web Application for AR
configuration (C17). The latter is connected with the Service Center Server with the
Authorization of APl. The Web Application for AR configuration (C17) is able to modify
Entities through the AR Framework (C5). The latter provides the means to generate Image or
Location based AR, namely IBS and LBS, respectively.

The AR content is available to the custom made applications and to the external AR
browsers (Junaio, Layar, and Wikitude). The AR content is available to the custom made
mobile applications for Android or iPhone through Metaio API. Both Android and iPhone AR
clients exploit the free Metaio SDK for presenting AR content. It is obligatory by Metaio to be
registered to the MetaioSDK application server in order to be able to use the MetaioSDK.
Additionally, the Metaio, Layar, and Wikitude APIs can serve the AR content to the Junaio,
Layar, and Wikitude AR browsers extending, thus, the dissemination of information. In order
for these AR browsers to find these channels of information, one has to register the channel
in the Junaio, Layar, and Wikitude Servers. Programming details are collected in the
documentation website of AR-Server prototype and they are available online at [15].

Page 46

LIVE =m0V

D4.3-V1.6
v |
AR Server :
f ~ XIObl'_le ti Flickr Server
pplications
Object Personalized AR APIs
Recqgnition (.Iontent Metaio Metaio Ser.ver.
Service (C6) Delivery (C7) (LBS, IBS) SDK Authorization
AREL2JSON
AR Framework (C5) w G :
il oogle Analytics
/—% — > - API Authorization
AR CERTH (IBS*) I)
Web JSON External Mobile
Application for — Junaio Server Applications
AR . JSON
Configuration Authorization = Cl_‘at"":_l
(C17)) API ml;:tude (LBS) egistration
chitect
\ Layar Server —
Layer Registration
Service \ v
Power-user/ Tl Wikitude $erv<?r
Government Server World Registration

Figure 12: AR Server, Mobile AR Clients, and external mobile applications.

Web application for AR configuration (C17): It is the front-end portal of the server where
power users can login and manage the information stored in the AR Database through the
AR Framework (C5). C17 is written in HTML5, PHP, and JavaScript. It is comprised of three
central files, the “index.php”, the “AR_Main.php” and the “AR_Edit.php”. The “index.php”
provides the means to login using the credentials of the Server Center Server. Upon
successful authorization, the user is led to “AR_Main.php” where he/she can inspect all
Entities on a map and in a list. When the user selects an Entity, then the “AR_Edit.php” page
appears where an Entity can be previewed and modified.

AR Framework (C5): consists of the functionalities of the AR technology that should be
stored in the database. These functionalities depend on the AR modes supported. Three
independent AR modes are supported, namely Location based (LBS), Image Based (IBS), and
the one experimentally developed called as Image Based classification into concepts (IBS*).
CERTH provides an extended image recognition service which recognizes general concepts
such as tree, car, road etc. For example, IBS is able to recognize a certain car by its marker
photo from which may depict the car from a certain angle. IBS* recognizes that the object in
the image is a car independently the angle of the captured image and the car type. Several
fields per Entity are required. All modes require a title and a description of the AR Entity. Up
to four translations are allowed for the title and the description. The other fields that
depend on the AR modes are described in the following.

Object Recognition Service (C6): It consists of IBS and IBS* that were described in C5. In
details, IBS requires:

1. animage to be uploaded which functions as a trigger for presenting an AR Entity;
2. one, two or three 3D models that serve as alternative options for an urban plan that
will be placed over the triggering image

Page 47

(=N Tan)\V4 D4.3-V1.6

3. the distance in meters from where the image was taken with respect to the spot that
the AR Entity should be placed. This serves as a scaling parameter for the 3D model.

4. the shooting angle in degrees between the camera and the AR Entity spot with
respect to the north to south line. This angle serves as rotation parameter for the 3D
model so as to fit to the image perfectly in the case where orientation of the 3D
model matters.

IBS* requires a sequence of images depicting a concept (instead of a single image) in order
to train a model that represents that concept. This functionality is offered automatically. By
typing the concept, several related images from Flickr® are downloaded and a model that
can be used for image classification is generated.

Personalized Content Delivery (C7): Personalized information that it is exploited is the
language of the mobile device, the location of the user, and the nearby items around. The
language of the device controls the language of the downloaded AR Entities. The location
based channel requires the GPS coordinates of each Entity. These coordinates are compared
to the position of the user and only the ones that are closer to 100km are visualized.

AR APIs: There are several APIs developed mainly in the last year of the project that allow
for a greater dissemination of information.

a) METAIO AREL: supports LBS and IBS for the custom Android AR client and the
Junaio AR browser. The difference between the custom client vs. Junaio browser is
that the custom app allows for the visualization of more than one 3D model per AR
Entity. AREL API consists of PHP queries with configuration parameters from the
Mobile MetaioSDK and sends back information to mobile in AREL format. AREL
format is an XML format developed from Metaio for the needs of the mobile
MetaioSDK components. AREL uses also JavaScript and CSS for defining the graphic
user interface actions and the appearance in the Junaio AR browser, respectively.

b) METAIO AREL2JSON: a custom modification of AREL for exporting LBS and IBS
content to iPhone devices. JSON is preferred since it is easier to parse JSON than
AREL in iPhone.

c) CERTH IBS* JSON: a custom API for the support of the IBS* in the Android
application.

d) Layar (LBS) JSON: the standard Layar APl for exporting content to the Layer
browser only for LBS mode. Automatic generation of an IBS channel is not supported
in Layer at all.

e) Wikitude (LBS) Architect: the standard Wikitude HTML-JavaScript-CSS APl to
support LBS in Wikitude browser. Automatic generation of an IBS channel is not
supported by Wikitude also.

Custom Mobile Applications: The Mobile AR Clients are based on the MetaioSDK
component. MetaioSDK offers Location Based (LBS) AR and Image Based (IBS) AR. LBS shows
points of interest (markers or 3D models) on the mobile screen over real-time video
depending on the orientation and location of the user and the points of interest. IBS is a

3 http://flickr.com

Page 48

(=N Tan)\V4 D4.3-V1.6

continuous visual search for images that match certain predefined images in the AR Server.
In order to use MetaioSDK, the app name and its package name should be registered to
Metaio developer portal in order to obtain a key that should be included in the app. Custom
mobile AR clients also require the registration to the Google Analytics service in order to
obtain usage statistics for the user of the app including the use of AR.

External Mobile Applications: The AR content can be available in Junaio, Layar and Wikitude
browsers as a channel of information. First the channel has to be registered to the respective
server of each AR vendor by the administrator. Then the end-user can type a keyword and
the channel will be found. By exporting content to Free AR browsers, we can achieve a
higher level of dissemination of information. Also, in the free AR browsers, the link to
download the custom mobile application is advertised. So, if somebody wants to vote he/she
can download the app and vote.

3.4.4 Software library API

The AR API allows the AR Server to communicate with the mobile devices, and the
Authorization API allows the AR Server to authenticate a power user by communicating with
the Service Center. These are the APIs that should be used in order to integrate the AR
functionality with the rest of the components. The list of the functions for these APIs is
shown in Table 23.

Table 23: AR and Authentication APIs

Function name Request HTTP Response
Description metho
d
AR API
Metaio LBS AREL /api_Metaio_v2/LBS/index.php?lang=en&i | GET An XML response with

Get Entities related to
Location Based AR
channel

Used in:
* AR Client Android
* Junaio AR browser

dapp=0100&m=30&I|=40.5678,22.999&distt
hres=100000&device=android

lang: language 1SO-639-1, e.g. en (English),
es (Spanish), eu (Basque)

idapp: select application framework from
set 1,2,3,4 by binary switching, i.e.

1000 = (1), 1100 = (1,2), 1101 = (1,2,4); 0100
is for UrbanPlanning, the others are not
used

m:max number of Entities to download, e.qg.
30

I: user location (latitude, longitude), e.g.
=40.567,22.999

distthres: distance from user threshold
(meters): Only objects closer to user below
this threshold will be send to mobile app

device: String "android" or "iphone". It is
used from Junaio browser.

the AR Entities details

Page 49

D S0V

D4.3 -V1.6

Metaio IBS AREL: /api_Metaio_v2/IBS/index.php?lang=en&i | GET An XML response with
Get Entities related to dapp=0100&device=android the AR Entities details
Image Based AR channel

lang: language 1SO-639-1, en (English), es
* Android AR Client (Spanish), eu (Basque)
* Junaio AR Browser

idapp: select application framework from

set 1,2,3,4 by binary switching, i.e.

1000 = (1), 1100 =(1,2), 1101 =(1,2,4); 0100

is for UrbanPlanning

device: String "android" or "iphone"
Metaio IBS AREL2JSON: /api_Metaio_v2/IBS/indexjson.php?lang=e | GET A JSON response with

n the AR Entities details
* iPhone AR Client

lang: language 1SO-639-1, en (English), es

(Spanish), eu (Basque)
Metaio LBS AREL2JSON: /api_v3/ar_get.php?id_app=2 POST A JSON response with

the AR Entities details

* iPhone AR Client idapp: select application framework from

set 1,2,3,4 by binary switching, i.e.

1000 = (1), 1100 =(1,2), 1101 =(1,2,4); 0100

is for UrbanPlanning
CERTH IBS* JSON: /api_v3/recognizer.php POST String = “label;score;
Object visual recognition entity id”

S_FILES['upload']['tmp_name'] : the image e.g. “tree; 0.1234; 15”
* Android AR Client to be recognized

Id_app: 1,2,3,4 the application context. 2 is

for Urban Planning. The others were not

used.
Layar LBS JSON: /api_Layar_v1/index.php? GET A JSON with the

* Layar AR Browser

lang=es&idapp=0100&Iat=40.5678&Ilon=22
.999&radius=10000000&layerName=Urban
Planning

lang: language 1SO-639-1, en (English), es
(Spanish), eu (Basque)

lat: latitude

lon: longitude

radius: range in meters

layerName: a string to put as a title in the
layer

Entities details

Page 50

(=N Tan)\V4 D4.3-V1.6

Wikitude LBS ARchitect: /api_wikitude/LBS/index.php GET An html with the
Entities details

e Wikitude AR Browser | Wikitude has a graphic user interface for
testing where one should enter the
longitude and latitude. It works with
javascript on-the-fly.

AR-Server internal API

Web server connection to | /auth/include/fg_memebersite.php POST It is a method inside
Service Center: the Web-portal. Upon
Set credentials for a Open the php and change parameters: successful login the
successful initialization of | Sarserver_username = ‘ar_api_user’; user goes to

Sarserver_password = '***!;

the authorization module
Sadmin_email = 'theadminmail@company.com’;

“AR_Main.php” to see

in AR-Server so that $site_name = ‘augreal.mklab.iti.gr'; the list and the map
power users can login $SC_path = with the AR Entities
using the GUI of the web "https://urbanplanning.yucat.com/servicecenter/api/";

portal

(augreal.mklab.iti.gr).

3.4.5 Integration

The integration procedure is depicted in Figure 13. It is described how AR-Web, AR-Mobile,
and AR-Server API interact with users and other components. The basic loop is the
authentication or creation of a user, the request of permissions from Saa$S Service Center,
the retrieval of the permissions list. The base app requests the AR List from Mobile AR
Component. The latter checks if the user has the permissions to do so by querying the Saa$S
Service Center. The Mobile AR Component then asks the Mobile AR API for data. The latter
asks any other APIs if updated data is available. Permissions are sent to the other API
components, and upon the confirmation of permission from other components, the data is
transmitted. Next, the reception of updated AR List from the base app is achieved. Other
APIs include internal or external APls, such as Mobility APIl. The Action 2 describes how a
user (UserB) can update the 3D data of AR-Server with the AR Web Portal. The UserB is
logged in to the Web portal and authenticated through SaaS Service Center. Then he can
manage the 3D models through the Web portal which calls the AR Server API.

Page 51

(=N Tan)\V4 D4.3-V1.6

Action 2
User of Other Base AR Mobile AR Server AR Web- SaaS Service Power User (Government)
Mobile API App Component API portal Center of Web portal
T

1
Startappl|cation

T
1
1
1
1
|
1
1
1
1

Create anorlymous user

1
Gat anonymous user id
1 . . 1
Get permissions
T

|\ ZSNE /2

T
Plermissions list

H ! Login

Authenticated user id
32
Get permissjons list
<>

1
i
Request — :

Response
Get AR List;
1

Manage 3D model

1
1
1
1
1
1
1
1
1
|
1
1
1
1

Has perriwissions for LBS,!IBS, IBS*

1 . 1
Request AR dhta Conﬂrme? or not

T
Has permission!other API

conlirm
1

1
1
1
1
1
1
1
1
1
1
:
1 1
Request updated Hata
: T
1 1
1
1
1

1

1

1

1

1

1

1

1

1

'

. 1

AR list Responselof updated AR data

‘ '

1

1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 1
1 1 1 1

e mmm e mmm e e W e o -

Figure 13: Augmented Reality Service Integration
3.4.5.1 Android AR Client

The AR functionality in the Urban Planning and the Mobility mobile applications is given by
exploiting the MetaioSDK 5.5.2 which is provided for free by Metaio®. Urban Planning and
Mobility serve as templates to start working for the mobile application of each use case. As
seen in Figure 14, the templates for Urban Planning and Mobility are dependent in cascade
mode on the Live+Gov Toolkit and LG_CERTH_Metaio_Lib where the latter is an
intermediate library to ease the use of MetaioSDK.

/Urban Planning Android template \ Mobility for Android template

Live+GovToolkit LG_CERTH_Metaio_Lib

LG_CERTH_Metaio_Lib [MetaioSDK 5.5.2 for Android]

[MetaioSDK 5.5.2 for Android]

Figure 14: Urban Planning and Mobility are implemented based on MetaioSDK.

In detail, LG_CERTH_Metaio_Lib implements an AR view as a fragment which is a basic
visualization element that can be inserted into the main activity, e.g. in a tab of an activity is
a fragment. It was not implemented in MetaioSDK where an Activity was only given. AR view
as a fragment can be inserted into a tab host next to a map and a list view. An additional

4 http://metaio.com

Page 52

LIVE GOV D4.3-V1.6

feature is that Location Based AR (LBS), Image Based AR (IBS), and the Image recognition by
CERTH (IBS*) functionalities are in the same AR fragment. The user can switch between the
three modes with a button whilst the Metaio SDK is still in memory. This lowers the loading
times and makes the application to run smoothly. It also provides the downloading
functionality from AR-Server. In the LG_CERTH_Metaio_Lib, a file named Constants_API.java
contains three parameters that should be modified in each installation:

* ServerName = "http://augreal.mklab.iti.gr” (it is the name of the AR-Server)
* rangeSTR = “5000000” (Distance from user (range) in meters where all Items within this range
should be downloaded)

® |dapp = “0100” (0100 is the code for Urban Planning and 0001 is for Mobility use cases)
Further developer details can be found in the online developer manual in [15].

Live+Gov Toolkit provides the basic visualization and e-Government functionalities. The
visualization functionalities is the construction of a ListView, User Information
Questionnaire, Urban Plan Questionnaire, Urban Plan Questionnaire Results, MapView, and
ARFragment Wrapper. The parameters that should be configured are located in the
DownloadHelper.java file, namely:

* UP_SERVICE_CENTER_USER_NAME = "up_client_account";
* UP_SERVICE_CENTER_PASSWORD = "****";

* SERVICE_CENTER = “https://urbanplanning.yucat.com/servicecenter/api/” (it is the API
endpoint for registering a mobile device)

* DIALOG_AND_VISUALIZATION_SERVICE="https://urbanplanning.yucat.com/dialogandvis
ualization/api/” (it is the APl endpoint for the e-Government layer of the app)

Urban Planning Template is a shell where the functionalities of the Live+Gov Toolkit are
inserted. The structure of the app is depicted in Figure 15.

ARView Fragment ;
[(LG_CERTH_Metaio_Lib) H MetaioSDK J

y

End_User AR Fragment
\L (Live+GovToolkit)
SplashScreen Activity Main Activity Map Fragment Detail Fragment
(UP Template) (UP Template) (Live+GovToolkit) (Live+GovToolkit)

ProposalList
Fragment
(Live+GovToolkit)

About Activity
(UP Template)

~ Questionnaire Fragment
UserInformation Activity (Live+GovToolkit)

(Live+GovToolkit)

Submit Vote
) Button. Filled User

Debuglnfo Activity
(UP Template)

Info?

QuestionnaireResult Fragment
(Live+GovToolkit)

Page 53

LIVEe 0oV D4.3-V1.6

Figure 15: General structure of Urban Planning Android

The ARFragment contains several buttons that are related to its modes, namely the Location
based (LBS), the Image Based (IBS), and CERTHs’ Image Based Classification (IBS*) mode. A
graphic representation of the functionalities is shown in Figure 16.

Locitrl{o:/i?;sed Button 3 Image Based Button 3 Image Based Button 3
Billboards (Scan) AR (Recongnize) AR by CERTH (Nearby)

Location baser AR with
3D Models

Tap on 3D

Tapon 3D

Button 2

M 11,
ey G
Tap on Ofe v
(Model 3/3) ‘
15t Model

Figure 16: The diagram of the AR graphic user interface.

The first mode is the Location Based AR with Billboards (LBS Billboard) mode. In the LBS
Billboard mode, only the billboards (points of interest, POI) and two buttons are shown. The
Button 1 is a toggle button which toggles between Billboards and 3D models, i.e. Billboards
disappear and the 3D models for each urban plan appears, and more specifically only the 1°*
model per urban plan is visible. The other button (Button 3) switches between LBS, IBS, and
CERTH’s IBS* channels. In LBS, the actions are coded in the following way:

Details/
Tap on 3D Questionnaire
Activity

Button 2 /4

(Model 2/3)

A. By tapping on a billboard mode, the Details/Questionnaire activity is shown;
B. In LBS and IBS 3D mode, by clicking on a 3D model:

I. If the clicked model corresponds to an Urban plan with no alternative 3D
models (an wurban plan can have up to 3 3D models) then
Details/Questionnaire Activity appears

II. If the clicked model has alternative 3D models then a new button appears
named as 'Model 1/3' which can be used to replace the currently clicked
model with the next alternative model in a cyclic fashion;

lll. If the clicked Urban plan is 're-clicked' then the Details Activity appears;

In IBS mode, a 3D model appears if its corresponding printed pattern is recognized. The
recognition in IBS is done locally in the mobile device. In IBS* mode, the image is send to the
remote server for recognition through HTTP. If the image is recognized with a positive
recognition score, the label derived by the recognition procedure is matched against the
Urban plans hosted in the AR Server. In case of a positive match, the matched Urban plan
Details activity appears. The differences between IBS and IBS* are explained in detail in D3.1

[4].

The Debug Information Activity it is activated by pressing the menu button and it presents
text data about the current status of the AR client and in general for the whole application. It

Page 54

(=N Tan)\V4 D4.3-V1.6

can be used for providing feedback to the user. Namely, the current temperature of the
device, the position fixes through time, the data downloaded and uploaded are shown.
3.4.5.2 Mobility AR Client

Mobility AR Client is based on the LG_CERTH_Metaio_Lib library which provides an easy to
use interface for the MetaioSDK 5.5.2 library. It should be used in a cascade manner as seen
in Figure 17. The LBS mode is only used for the Mobility use case.

Mobility for Android

LG_CERTH_Metaio_Lib

[MetaioSDK 5.5.2 for]

Figure 17: Architecture of Mobility AR Client

The integration steps of the Mobility AR Client are the same as described in section 3.4.5.
The main difference is that a different source of data must be defined, like the HSL API. The
AR view can be started as any other Android Activity via a button or some other event. A
billboard view is the first thing that is loaded with the provided data such as bus stops. A
detailed information screen can be shown as a popup when a user taps on a billboard. The
detailed information screen can show additional information like the timetables of the bus
stop. In order to use the HSL API, the user should register at the HSL developer APl website
and request an account”.

3.4.5.3 i0OS

An iPhone AR client for Urban Planning was written from scratch. It resembles the Android
AR client for Urban Planning. The Urban Planning template for iPhone is based on the
MetaioSDK 4.5 for iPhone. Around the MetaioSDK a wrapper was written by CERTH in order
to provide its functionalities in the template. Additionally an Asynchronous HTTP library
named as “ASIHTTPRequest.framework” was used in order to provide communication
capabilities over HTTP network with several Servers. A graphic representation of the
Template is shown in Figure 18.

/Urban Planning iPhone template\

CERTH Metaio AR Client

[MetaioSDK 4.5 for iPhone]

\[Asynchronous HTTP library]/

Figure 18: Organization of the Urban Planning iPhone Template

CERTH Metaio AR Client is a wrapper around MetaioSDK but not a library. The necessary
classes for the wrapper are inside the template. The problem for making an intermediate

5 http://developer.reittiopas.fi/pages/en/other-apis.php

Page 55

(=N Tan)\V4 D4.3-V1.6

library for iOS is that “MetaioSDK.framework” needs several configurations that will make it
hard to support in any future MetaioSDK releases.

“ARELViewController.mm” is the file that creates the AR views and supports 5 AR “modes”.
The first 3 modes are used in L+G project and correspond to the 3 modes of the Android
version. Namely:

* Location Based with custom AREL interpreter: This creates an AR View without using
the Metaio AREL interpreter but with an XML parser by CERTH which allows for high
level of customizability e.g. custom billboards, radar, identifying the touched
geometry etc. This mode requires as input the XML of the AR-Server LBS PHP script.

* Image Based (Tracking application, IBS): This view uses a tracking image to render
3D objects on the user’s screen.

* Image Based Recognition (Object Recognition, IBS*): This view captures frames from
the camera and using the visual recognition service by CERTH recognizes an object. A
recognition score is shown in the screen and if it exceeds the 0 threshold, a related
3D model is rendered in the centre of the screen.

The other 2 modes are not currently used in L+G project, but can be useful in future
releases:

* Location Based for other data available in memory: This demonstrates how to
create an AR View with your own data which can be retrieved from a different source
other than AR-Server.

* Location Based with Metaio’s AREL interpreter: A Location Based AR view using the
Metaio’s AREL interpreter. This view doesn’t allow much customization of the final
output.

Detailed examples on how to instantiate this controller are included in “ViewController.mm”
file. From the “LG_AR Template” XCode project see “startARWithOptions” function.
Depending on your location you may not be able to see any Billboards/3D models in the
location based AR View because the distance of the entities exceeds a certain threshold. This
threshold prevents Entities to be rendered on the screen when they are too far from the
mobiles current location. To configure the rendering distance threshold you may need to call
the following functions (please refer to the metaioSDK documentation for this - the default
max distance is set to 10 km)

* “m_metaioSDK->setRendererClippingPlaneLimits”
* “m_metaioSDK->setLLAObjectRenderingLimits”

For location based applications you will have to define a View Controller class to launch
when the geometry is touched. In the “touchesBegan” method in “ARELViewController.mm”
is the correct place to define one.

Page 56

(=N Tan)\V4 D4.3-V1.6

3.4.6 Phase 2 updates

Table 24 describes the updates performed in preparation of the 2" trials rounds.

Table 24: Augmented Reality Service Phase 2 updates

Augmented Reality Service

Service / Update

Update description

Rationale

Content Server to Free AR
Browsers (Junaio, Layar,
Wikitude)

* LBSJunaio
* |BS Junaio
* LBS Layar

* LBS Wikitude

Millions of users have these browsers. By
having content to these browsers we
increase the possibility of the project and
our custom app to be found.

New Parameters for
presenting 3D Models

* Scale
* Rotation around z-axis

3D models are presented in the image
based recognition in the correct scale and
rotation depending on the photo
shooting distance and angle.

Multilingual support for
title and description per
Urban Plan

Up to 4 translation are supported
per plan

Multilingualism

Mobile Augmented Reality

Client

Service / Update

Update description

Rationale

Stability improvements in
mobile AR client

Several improvements were made

Android AR Client had several bugs with
respect to the asynchronous nature of
downloading, loading and presenting AR
entities. They were fixed.

iPhone support

A native AR Client was written for
iPhone that presents the same
content as the Android AR Client.

The AR client can be used in Android and
iPhone applications

Speed improvements in
downloading AR Entities
from mobile AR Clients

Both the developed iPhone and
Android AR Clients now use a
cache system that it is used to
avoid double downloading of files
from AR-Server

There is no reason to download the same
file twice. Files for AR are usually too big
because they include 3D models. Speed
and required bandwidth of the mobile
applications are significantly improved.

Web application for Augmented Reality Configuration

Service / Update

Update description

Rationale

New design for AR-Server
web-portal

Information is organized into tabs
to avoid overloaded first screens.
The new web-portal for editing AR
entities is based on a common API
that underlies below the
visualization part of the portal.

Better user interface and organization of
the AR-Server web-portal

FastAR component with
an Urban Planning
template for Sobipro
(UPARTS) were written for
Joomla to allow a single
click installation to
already existed systems in

FastAR component and UPARTS
provide an easy way to encompass
in Joomla the functionalities of AR-
. Further details are found in
D3.2[21]

Several municipalities already have a
content management system like Joomla.
We need a sufficient way to install AR-
Server to Joomla.

Page 57

D4.3 -V1.6

municipalities

Page 58

(=N Tan)\V4 D4.3-V1.6

3.5 Personalized Content Delivery Service (S5)

The Personalized Content Delivery Service is responsible for filtering the content presented
to the user based on his explicit, or implicit preferences

3.5.1 Description

The Personalized Content Delivery Service is provided as an Android library project and has
four core functionalities

* Collecting location points at regular intervals
* Storing the data in the device’s local database
* Processing the data to form the user’s commuting profile

* Provide personalized information to the user according to the profile that has been
formed

The general purpose of the service is to generate personalized content based on the most
visited places of the user. The service has the ability to detect the times that the user is
usually travelling to those places. By exploiting these data an application using this service
can provide personalized information to the user such as routing options, public
transportation timetable updates, service disruption information and more.

The service has been designed to run on the background without consuming additional
power from the sensors or using much of the phones resources.

3.5.2 Architecture

The Personalized Content Delivery Service can be embedded in any Android application
project. It has been designed to run exclusively on the mobile device side meaning that all
the data collection and processing is handled locally. This decision was taken mainly due to
the fact that the service handles sensitive data and communicating them to an external
service will raise privacy concerns to the end users.

The component is divided in three parts:

a) The Personalization Service ensures that the data collection persists regardless of the
state of the application. The service is automatically started on phone startup in order to
always stay alive and collect data when the device is turned on.

b) The Database handles the data processing and storage. It also provides APIs to
communicate directly with the client mobile application.

c) The Notification Scheduler is responsible for delivering personalized notifications at the
appropriate time. It has the ability to communicate directly to the user via system
notifications or notify the client application.

Page 59

(=N Tan)\V4 D4.3-V1.6

Notification
Scheduler

Client Personalization
Application Service

h
4

Database

A
A

|

‘

Launch Service :
»—

Store Points

»
»

Charger Connected

Extract Places

Schedule Notifications

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
-

>

Trigger

Return Personalized Content

Request Data for visualization

v

E Query
, Database

Return Data for visualization

Store Data (Pléco name/center)

SO AN

Figure 19: Integration with Client application

3.5.3 Integration

To incorporate the Personalized Content Delivery Service into an existing application, two
BroadcastReceivers must be registered to launch the Personalization Service. The first one
will be responsible to launch the service on the device start-up and the second one when the
charger cable has been connected to the phone. This will ensure that the service will be
enabled when the device is on and that the data process execution will run only when the
device is charging, in order to minimize the impact on the device battery. A typical usage
scenario is shown in Figure 19.

There are also some parameters that can be defined by the developer to adapt the service to
his needs as shown in Table 25. Optimal values are predefined.

Table 25: Service parameters

Parameter Description

INTERVAL_MINUTES Interval for collecting location points in minutes

Page 60

D S0V

D4.3 -V1.6

TRIP_NOTIFICATION_CANCEL_AFTER_MILLIS

The system notifications will be dismissed after this time has
passed

TRIP_NOTIFICATION_SHOW_BEFORE_MINUTES

Minutes to send the notification before the arrival time to a
place. The value should be between 0-59.

TRIP_NOTIFICATION_SHOW_BEFORE_HOURS

Hours to send the notification before the arrival time to a
place.

MINIMUM_TIME_SPENT_IN_PLACE_SECONDS

Minimum duration that must be spent on a place by the
user, in order to be considered a “Favourite Place”.

CLUSTER_RADIUS_METERS

The radius used to form a “Favourite Place”. The points that
fall inside the radius are clustered together to form 1 Place.

REVISIT_TIME_PERIOD_SECONDS

A time period that is used to distinguish separate visits to a
place.

DEVIATION_THRESHOLD_MINUTES

Maximum standard deviation allowed for accepting arrival
and departure times in minutes. If the arrival times of a place
exceeds this threshold, the arrival times will not be set,
because they cannot be accurately estimated.

3.5.4 Software Library API

The client application is able to communicate with the Personalized Content Delivery Service
via the APl shown in Table 26. This API can be useful to visualize the data to the user and let
the user correct the results of the automatically detected places.

Table 26: Software API

Function Parameters Returned Value Description
addPoint latitude, longitude, - Stores a point to the
accuracy, timestamp database.

getPlacesFiltered duration list<Place> Returns places that are
not hidden, and that the
user has visited for a
defined duration.

getPlaces - list<Place> Returns all detected
places.

getPlaceByID placelD Place Returns a single place by
ID.

fixCenters

- The places centers are re-
calculated. This is
automatically called at
regular periods.

updatePlaceCenter

placelD, latitude,
longitude

- Manually update the
center of place. This
allows the user to correct
the center of the place if
the automatically
detected one is not
correct.

updatePlaceName

placelD, name

- Sets a name for the

Page 61

(=N Tan)\V4 D4.3-V1.6

detected place.

hidePlace placelD - Hides a place.

showNotification placelD - Shows a notification for

the defined place.

addPlaces - - Assigns location points to

existing or new places.
This is called
automatically when
charger is connected to
the device but can be
also called manually if
necessary.

3.5.5

Phase 2 updates

The Personalization service is introduced in the 2" Phase

3.6 eGovernment Dialogue and Visualisation Service (S6)

This chapter describes the eGovernment Dialogue and Visualization Service.

3.6.1

Description

The eGovernment Dialogue and Visualization service is responsible for offering citizen
government dialogue and visualizing aggregated data in a user-friendly way. The following
functions are offered by this service.

3.6.2

Present initiatives (e.g. issue reports, proposals, co-maintenance spots)
Add own initiatives (both citizens and government)

Provide opinions and feedback on initiatives

Facilitate polls and questionnaires

Moderator functions for government to prevent abuse

Requirements

The eGovernment Dialogue and Visualisation Service is involved in realization of parts of the
requirements described in

Page 62

(=N Tan)\V4 D4.3-V1.6

Table 27 [5]. For each of the requirements the current status is discussed and it is indicated if
the requirement is implemented for the first or second trials. Please note that often the
combination of multiple components is required to cover the whole requirement.

Page 63

(=N Tan)\V4 D4.3-V1.6

Table 27: Requirements eGovernment Dialogue and Visualisation

st nd

No Live+Gov system requirements Feature status Part of 1 Part of 2
Trials Trials
L+G- Be able to show informationina | The web application is able to Y Y
FR.03 | context aware manner (location, | present data. Both citizens and
person, time-specific, situational) | municipalities have access to
to create greater awareness and | information that provides
create mutual citizen- possibilities for better
government understanding understanding of contextual
dependent reality.
L+G- Provide communicative tools for | Communication possibilities are Y Y
FR.05 | government and citizens provided by the Web application.
(including reactions, alerts, Future development will intensify
messages) the web-mobile interaction.
L+G- Provide possibilities to visualize In the first cycle of development, the Partial Y
FR.06 | knowledge and patterns from possibilities for visualisation of
data by data-mining techniques knowledge patterns are provided
with the web application.
L+G- Provide possibilities to retrieve Together with L+G-FR.05, the web Y Y
FR.12 | personal opinions, votes or application provides possibilities for
comments from users free-form comments, reactions and
opinions. Also the specific mobile
guestionnaires service is realised,
which make specific surveying
possible.
L+G- Provide possibilities to present The web application is able to Y Y
FR.20 | co-maintenance initiativesin an present co-maintenance initiatives
area in @ map-based manner as well as a
gallery-view is provided. Apart from
co-maintenance initiatives, the web
application is set-up in a generic
fashion that makes it possible to
present a large range of types of
data.
L+G- Provide possibilities to The mobile client implements the Y Y
FR.21 | communicate urban planning option to show items (e.g. urban
plans planning plan) in a list and map
view. Furthermore each item can be
equipped with a questionnaire.

3.6.3 Architecture
The eGovernment Dialogue and Visualization Service consist of three components:

1) The eGovernment Dialogue and Visualization Service (C4), which offers the following
functions that can be integrated using the Web API.

* Store and serve initiatives
* Store and serve feedback

* Store and serve photo’s

* Store and serve poll results

Page 64

LIVE GOV D4.3-V1.6

* Store and serve questionnaire results

2) The Mobile eGovernment Dialogue and Visualization Client, which offers the following
functions that can be integrated in mobile applications using the software API. E.g. the
Urban Planning trial application.

* Show initiatives on map (e.g. issue report, proposal, co-maintenance spot)
* Show initiatives on photo gallery

* Add own initiatives as a civilian or government

¢ Show feedback on initiatives

* Give feedback to initiatives

* Facilitate polls and questionnaires

3) The Web application for eGovernment Dialogue and Visualization, which offers the
following functions for the end-user, e.g. citizens and government officials.

* Show initiatives on map (e.g. issue report, proposal, co-maintenance spot)
* Show initiatives on photo gallery

* Add own initiatives (both civilians as government)

* Show opinion / feedback on initiatives

* Give feedback to initiatives

* Facilitate polls and questionnaires

Figure 20 shows the architecture of the eGovernment Dialogue and Visualization Service, the
relation between the components in this service and the interaction with the SaaS Service
Center.

")

Saas Service Center _ <>

Integrated mobile

application
< ,
Web API User id, logs

object id

Authentication,

' eGovernment Dialogue and Permission check, eGovernment
Visualization Service logs, health check Dialogue and
PN — __ __ __ _ly|visualization Client
WebServer :

Postgres SMB via
Initiatives,

comments, polls/

questionaires, Web application
—results for eGovernment
i . —_—— e — — — Dialogue and
Visualization
ServiceCenter ServiceCenter |

database fileshare I

Other Toolkit
components

Figure 20: eGovernment Dialogue and Visualization architecture

Page 65

D4.3 -V1.6

3.6.4 Web API

Table 28 shows a summary of the eGovernment Dialogue and Visualization Web API. A full
description of this API, including message example can be found in [16].

Table 28: eGovernment Dialogue and Visualization Web API

Function name

Purpose

Request parameters

Response
parameters

Get layers

Gets the defined presentation
layers in the visualisation. E.g. co-
maintenance spots, issue reports,
urban planning plans.

List with layers and
properties

Get features in Get the available features in the Layer id List with features and

layer specified layer. E.g. the co- properties
maintenance sports themselves.

Get feature Get details of a specified feature. Feature id Details of feature

Get commentsin | Get comments that are added to Feature id Comments

feature

specified feature. E.g. comments of
other citizens to co-maintenance
sport.

Get own features

Get the features associated with
the logged-in user.

List with features and
properties

Add feature

Add new feature to specified layer.

Layer id, Feature details

Add comments in
feature

Add a comment to the specified
feature.

Feature id, Comment
details

Post contact

Send email message to specified
email address

Email details

Post login

Login with username and password

Add image with
feature

Add image to specified feature

Feature id, Image details

Update user

Update the details of the logged in
user

User details

Full user details

Update feature

Update the details of a feature

Feature id, Feature
details

Full feature details

Remove image
from feature

Remove image from feature

Feature id, Image id

Remove feature

Remove feature from layer

Feature id

Submit
questionnaire

Submit questionnaire for object

Anonymous user id

Get
questionnaire

Get questionnaire and results for
object

Anonymous user id,
Questionnaire code,
Object code}

Empty questionnaire,
Questionnaire results

Page 66

(=N Tan)\V4 D4.3-V1.6

3.6.5 Software Library API

The mobile eGovernment Dialogue and Visualization Client (library) can be embedded in the
trial application. The library offers screens (fragments) for presenting items and their details
in a list view, map view. Furthermore a questionnaire/poll can be submitted for each item.
After submitting the questionnaire/poll the intermediate results of the (statistics) of the
questionnaire/poll can be presented. Figure 21 shows the interaction between the library
and the trial application.

Legend:

Client application
MapViewFragment

Action o Questionnaire Screen
(button / click) List item 1

Question 1

AP} L.
List iltem 2

Yy v

Question 2, etc..

Unique user id

List item 3

Trial application
List Item 4, etc..

List View Logs

\ 4
Questionnaire result Screen

Logs MapViewFragment

Map view

[]
\" \; Results 1

Unique user id
Results 2, etc..

- o

Figure 21: eGovernment Dialogue and Visualization Software API

3.6.6 Integration

Figure 22 shows the interaction between the different components in the eGovernment
Dialogue and Visualization Service and the foreseen integration with the Service Center. The
scenario shows a user that browses through the web application. The user logs in and is
authenticated with the Service Center. A permission list is received, which determined which
functionality is available for this user. Furthermore all actions performed on the service API
are checked against the Service Center (has permission). Periodically log files and Health
Check updates are provided to the service center.

Page 67

D4.3 -V1.6

(C18) eGoverment Dialogue

User and visualization Web

(C4) eGoverment Dialogue

and visualization Service

(C10) SaasS Service Centre

SetComment |

HasPermission
< — — - ———

Figure 22: eGovernment Dialogue Service integration

T

|

I i

I Login

I 1

I AuthenticateRegisteredUser

| t

I registered user id :I_r
| K-~~~ ——————— P

I GetPermissions I
| t

I permission list :I_r
|) < - ——"————————= r—-———"—"—"—=

I View map I I I
I | |
I Getlayers I I
| | . |
I HasPermission I
|

|

[K——————————-]-J
I layers I
| L |
| Select layer | | |
I | |
I Getfeatures I I
| g |
I HasPermission I
|

|

| K———————====]'J
| features |
S N |
I View initiatives I I
: GetComments : :
: HasPermission :
|

|

| K——————————=]'J
| comments |
: Give comment : | :
[| |
| |
| |
| |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Page 68

D S0V

D4.3 -V1.6

3.6.7 Phase 2 updates

Table 29 describes the updates performed in preparation of the 2" trials rounds.

Table 29: eGovernment Dialogue and Visualization Service Phase 2 updates

eGovernment Dialogue and Visualization Web application

Update

Update description

Rationale

Multilanguage support

Support for multiple languages in
a single instance of the web
application.

Required for the Urban Planning trial
were Spanish and Basque versions are
required by Law.

Questionnaire statistics view

Added generic view for the
presentation of summarized
statistics on submitted
questionnaires.

Required for the Urban Planning trial
were the government official need to
analyse the results of the voting rounds.

Access control

Added login (integrated with
service center) to restrict access to
the web application.

Required for the Urban Planning trial
were the web application is not public,
but used by the government officials.

Deeplinks

Added the possibility to create a
direct link (deep link) to a specific
initiative.

Required for the Urban Maintenance
trial. This makes sharing specific
initiatives via e.g. social media or mail
possible.

Social media sharing

Added the possibility to share an
initiative via Twitter, Facebook,
LinkedIn or mail.

Required for the Urban Maintenance trial
to make promotion of initiatives via other
channels easier.

What's new?

Added past/present/future filters
to make clear what content is
relevant at the moment.

Required for the Urban Maintenance trial
to give a better presentation of the
dynamic character of the web application.

Tooltips

Added the possibility to show
tooltips when a user hoover over a
button.

Required for the Urban Maintenance trial
to give addition explanation on the
different sections and functions of the
web application

Search option

Update of the search option. In
the first version the search was
only location (Street, postal code)
oriented, in the second version a
generic text search is
implemented.

Required for the Urban Maintenance trial
to improve utility and efficiency.

Mail notifications

Added mail notifications for
initiative owner when new
reactions are added to initiatives

Required for the Urban Maintenance trial
to improve the responsiveness in the
dialogue.

Better mobile support

Multiple refinements have been
implemented to improve the
support on mobile devices like
tablets.

Required for the Urban Maintenance trial
to improve utility and reliability.

Cookie Bar

Ask users for permission to use
cookies to improve their user
experience.

Required by European legislation

Browser check

Detect browser that are too old
for viewing the web application in

Improve reliability, usability and stability.

Page 69

D4.3 -V1.6

a proper way, and advise them to
install a new browser.

Page 70

(=N Tan)\V4 D4.3-V1.6

3.7 Issue Reporting Service (S7)

This chapter describes the Issue Reporting Service.

3.7.1 Description

The Issue Reporting Service is responsible for providing functionality to:

* Post ‘rich’ issue reports including location, photo, category and contact information.

* Forward issues to external systems (Public Administration systems)

* Provide visualizations and an overview of the reported issues.
* Provide enhanced feedback on issues to citizens

3.7.2 Requirements

The Issue Reporting Service is involved in realization of parts of the requirements described
in Table 30 [5]. For each of the requirements the current status is discussed and it is
indicated if the requirement is implemented for the first or second trials. Please note that
often the combination of multiple components is required to cover the whole requirement.

Table 30: Issue Reporting Requirements

No Live+Gov system requirements Feature status Part of 1% | Part of 2™
Trials Trials
Provide possibilities for textual The Issue Reporting Service provides Y Y
feedback. For example how his the possibility for Extended
LG contribution is taken into feedback. For municipalities, a
consideration, including possible | specific web interface to provide the
FR.08 . S
benefits for participating and feedback has been developed and
status report on the situation implemented. This requirement is
linked to L+G-FR.23.
L+G- Allow a user to view all of the The web application for extended Y Y
FR.09 | issues that are currently open, feedback is extended with a list
and also a history record of “my overview and geographical overview
issues” (where the citizen has of all issue reports.
participated) and “my
municipality” (where all of the
past issues from the town can be
found) with a short summary of
each of the past issues.
Be able to utilize 'citizens as The mobile issue reporting client for Y Y
LG sensors' for their environment by | citizens senses the experienced
FR.10 mining relevant data (e.g. context automatically and by
location, context, pictures, manual user-actions
reports) from their reality
Be able to connect to different In several municipalities Issue Y Y
L+G- municipality administration reports are forwarded to the public
FR.13 | systems administration system via open

standards or proprietary formats.

Page 71

D S0V

D4.3-V1.6
Collect and mine citizen The issue reporting client is able to Partial Y
experience and citizen (implicit) extract and collect the context
norms dependent citizen experiences.
LG (Semi) automatic classifications to
implicit norms is subject for future
FR.19 .
research and development in
cooperation with Data-mining,
augmented reality and object
recognition features.
Deliver alerts from users to other | The Issue reporting Service is able to Partially Y
L+G- users if a number (configurable) deliver alerts entered in the web
FR.22 | of users report the message from | application to all users.
the same area
Provide possibilities for Feedback | The first step has been N N
as picture implemented: textual feedback
possibilities. The next step will be
further advancements on the
L+G- L
FR.23 Extended feedback mechanism in
such a manner that apart from
status and textual feedback, also
visual feedback options are
provided.

3.7.3 Architecture

The Issue Reporting Service consist of four components:

1) The Issue Reporting Service (C4), which offers the following functions that can be
integrated using the Web API.

Handles connections with Mobile Issue Reporting Client (C11).
Receives issues reports from mobile clients or other toolkit components.

Stores issues reports in database and photo’s on file system.
Provides required municipality info, issue categories, related images and current

issue status.

2) The Issue Distribution Service (C2). Forwards issue reports to specific municipality based
on coordinates.

Offers generic API for requesting or adding issue reports
Offers Plug-ins for forwarding issues reports to specific Public Administration

systems.

Offers issue mail-forwarding service for ‘low-tech’” municipalities, without advanced

interface options.

3) The Issue Updating Service (C3). Issue Reporting Updating Service. Updates issue report
status information.

Offers generic API for updating issue reports status information

Offers Plug-ins for updating issues reports from specific Public Administration

systems.

Page 72

LIVEe 0oV D4.3-V1.6

4) The Mobile Issue Reporting Client (C11), which offers the following functions that can be
integrated in mobile applications using the software API. E.g. the Urban Planning trial
application.

* Submit issue report including:
o Contact information (name, address, telephone, email)
o Photo of situation
o Location based on GPS or manual input
o lIssue Label
o Issue description
* Receive feedback on current status of issue

5) The Web application for Enhanced Issue Report Feedback (C16) enables a ‘low-tech’
municipality to give feedback to issue reports. They receive an e-mail for the issue reporting
distribution service, including a link to this web application. In this web application one can
change the status of the issue report and add a free text message for the citizen that
submitted the report.

* Show detail issue report information including contact details, issue report details,
photo, maps.

* Government official can change issue report status

* Government official can add free text message explaining the current status of the
issue report.

Figure 23 show the architecture of the Issue Reporting Service and the relation between the
components in this service.

External Publc
Admunistration Systems

/EQB a \ ————

Mobile Issue Reporting Client (C11)

open standards
— ‘
g System A
» | System B
. b4 Issue (
i = 3 Distribution System C
, = Service (C2) \ -
w
§ System D
g s System E
Reporting
symbnaorsl s°'c'3'°°
o Broker
Windows
phone

\
|

K m YUCAT

Figure 23: Issue Reporting Service Architecture

Page 73

(=N Tan)\V4 D4.3-V1.6

3.7.4 Web API

Table 31 shows a summary of the Issue Reporting Web API. A full description of this API,
including message examples can be found in [16].

Table 31: Issue Reporting Web API

Function name Purpose Request Response
Parameters parameters
Get Municipality Info Get details (contact info, major, Location Municipality
number of inhibitions) of the current info
municipality based on current
location
Get Municipality Logo Get the logo of the current Municipality id Municipality
municipality based on municipality id logo (binary)
Get Category List Get the possible Issue labels of the Location Possible Issue
current municipality based on label
location
Get Label Icon Get the icon of a label based on the Label id Label Icon
label id (binary)
Post Issue Report Post an issue report to the current Location info Issue Report id
municipality based on location.
paiity Issue label
Remark
User info
Post Issue Report Add a photo to the issue report. Issue Report id Issue Report
Attachment Attachment id
Photo
Get Issue Report Status Request a status update of a List of Issue Issue Report is,
specified list of issue reports. Report id’s Issue Report

status code

Issue report
status message

3.7.5 Software Library API

The mobile Issue Reporting Client can be embedded in the trial application. The library offers
screens (fragments) for submitting an issue report and an overview of details and status
(including feedback) of the submitted issues. Figure 24 shows the interaction between the
library and the trial application.

Page 74

D S0V

D4.3 -V1.6

Legend:

Client application

Action
(button / click)

AP l——»

rUnique user id

Trial application

New report —

Report overview

[¢&—Logs

Unique user 'CLogs

ReportOverviewFragment

Report 1

v

ReportFragment

Photo

A4

Photo Screen

A4

Location

Location Screen

Category

Remark

Report 2

Report 3

Figure 24: Mobile Issue Reporting Client Software API

3.7.6 Integration

Report details Screen

Category Screen

Remark Screen

Figure 25 and Figure 26 show the interaction between the different components in the Issue
Reporting Service and the foreseen integration with the Service Center.

The first scenario (Figure 25) shows a user using the mobile issue-reporting client. First the
anonymous user details are passed to the Service Center. A permission list is received, which
determined which functionality is available for this application instance. All actions
performed on the service APl are checked against the Service Center (has permission).
Periodically log files and Health Check updates are provided to the service center.

Page 75

(=N Tan)\V4 D4.3-V1.6

(C11) Mobile issue reporting (C1) Issue reporting .
User - - (C10) SaaS Service Centre
client service
T T
Start application | | |
M ! '
| CreateAnoymousUser |
L I (-]
| anonymoususerid
K- ——— -
| GetPermissions |
I] -l
| permission list
Ke—m————————— -————————— :I—r
View issues I

GetlssueReportState

HasPermission

issue report state

|
|
PostLogFile I I
|
|
L

_____________________________F_________T_' |

I
|
I
I
|
I
% ___________
I
I
I
I
I
|
I
I
I
|
I
I

Figure 25: Issue Reporting Service Integration

The second scenario (Figure 26) shows a user that logs into the Web application for
enhanced Issue Report Feedback. The user logs in and is authenticated with the Service
Center. A permission list is received, which determined which functionality is available for
this user. Furthermore all actions performed on the service API are checked against the
Service Center (has permission). Periodically log files and Health Check updates are provided
to the service center.

Page 76

(=N Tan)\V4 D4.3-V1.6

(C16) Webapplication

SetHealthCheck

for Enhanced Issue Report R . i

User Feodback (C3) Issue Updating Service (C10) SaaS Service Centre

I T I T

| | | |

|) | | |

I Login I I I

| |

I AuthenticateRegisteredUser I

| f '

I registerelcl user id

| K———————————= o ———— T

I GetPerr’plssmns I

| T

I permissjon list

: View reports : T T

: GetlssueReports : :

: HasPermission :

| >

|

| K==]'J

| reports |

: Update report & feedback : —:— :

: UpdatelssueReport : :

: HasPermission :

| >

|

| K==~

| UpdateReport

G e

|

|

|

|

|

|

|

|

|

|

|

__/]____/]I______l
|

Figure 26: Issue Reporting Service Integration

3.7.7 Phase 2 updates
Table 36 describes the updates performed in preparation of the 2" trials rounds.

Table 32: Issue Reporting Service Phase 2 updates

Web application for issue reporting

Update Update description Rationale
Heat Map View Added a heat map view to present | Useful for quick assessments of
issue report distribution concentration of issue reports and user

experiences of urban space

Photo Gallery View Added a photo gallery view to A great tool for quick impressions of the
present issue report photos user experiences of urban space

Page 77

D4.3 -V1.6

Time slider Added a time slider for easy
selection of a time period to filter

the different view

More friendly user interface

Server side clustering for
issue report map view and
heat map

Improved performance by
calculation clusters server side
instead of client side

Performance improvement to be able to
present large amount of issues

Multi-tenant Running multiple customers on

the same instance

Required for Saa$S based exploitation.

3.8 Traffic Service (S8)

This chapter describes the Traffic Service from functional, technical and integration
viewpoints. The Traffic Service provides solutions, services and programming interfaces for
applications interested in mobility data.

3.8.1 Description

The Traffic Service (S8) contains the components Traffic Jam Detection (C19), External
Connector for Public Transport System (C21) and Route Analysis Web Component (C22).

The Traffic Jam Detection uses the External Connector for Public Transport System to collect
the real time public transportation vehicle locations and based on that information it
calculates the traffic congestion status.

The Route Analysis Web Component is a rich Internet application that the public
transportation authorities utilize to analyse how the public transportation network is used
by the citizens.

3.8.2 Requirements

The Functional Requirements are listed in D5.1 [7]. The following table refers to the
numbering used in D5.1.

Table 33: Requirements related to the Traffic Service

No Live+Gov system requirements Feature status Part of 1% | Part of 2™
Trials Trials
L+G- Be able to show informationina | The Route Analysis Web Component N Y
FR.03 | context aware manner (location, | provides various reports in the user
person, time specific, situational) | interface for public transportation
to create greater awareness and | authorities.
create mutual citizen-
government understanding.
L+G- Provide possibilities to group, The Route Analysis Web Component N Y
FR.04 | aggregate, filter large amounts of | uses the Sensor Data Storage Service
data to discover knowledge. for the analysis.
L+G- Provide possibilities to visualise The Route Analysis Web Component N Y
FR.06 | knowledge and patterns from uses the Sensor Data Storage Service
data by data mining techniques. for the analysis. The visualization is
done drawing the information on a
map.

Page 78

D S0V

D4.3-V1.6
L+G- Be able to utilise 'citizens as The Route Analysis Web Component Y
FR.10 | sensors' for their environment by | provides the user interface for
mining relevant data (e.g. public transportation authorities for
location, context, pictures, and the recorded citizen data.
reports) from their reality.
L+G- Be able to connect to different The External Connector for Public Y
FR.13 | municipality administration Transport System to get real time
systems. traffic information is created.
L+G- Be able to analyse a recorded The Route Analysis Web Component Y
FR.15 | route in public transport with provides the needed analysis for the
respect to relevant criteria like end user. The component uses the
'waiting times' and 'number of Sensor Data Storage Service as the
changes'. data source.
L+G- Detect traffic jams. Traffic Jam Detection component Y
FR.17 uses the External Connector for
Public Transport System to get real
time traffic information and detect
traffic jams in Helsinki region area.

3.8.3 Architecture

The Traffic Service consist of three components:

3.8.3.1 External Connector for Public Transportation System

The public transport system connector is responsible for exchanging transport related data
with the government transport systems. Due to a low degree of standardization of
information exchange with these transport systems, one potentially has to deal with a lot
different system interfaces. To hide this complexity the public transport system connector
offers a single interface hiding the external system complexity.

Traffic System include external connector implementation Public Transportation Information
Reader (visualized in Figure 27). The Public Transportation Information Reader has an
implementation to read real time and static (planned) public transportation traffic data from
Helsinki area.

3.8.3.2 Traffic Jam Detection

The main functionality of the component is to provide information about traffic jams in a
specific area. The simplified architecture is visualized in Figure 27. The public transportation
systems generally differ in each city or area in multiple ways in the available data and data
formats. The different public transportation systems are isolated in the module using the
external connector and it is configurable using the Spring Framework.

A generic API is offered to the Live+Gov toolkit for requesting the current traffics jams in a
certain area. Figure 28 shows the message structure of the generic APl offered to the
Live+Gov Toolkit. The jam information includes information about involved vehicles (e.g.
trams) and nearest stop locations, so the jam location can be approximated either from the
participating vehicle locations or stop locations.

Page 79

D4.3 -V1.6

JSON/RESTful

s

Traffic Jam Detection]

| Service Layer |
(authentication)

Data Analyzation
(busi logic)

Domain Objects

]
Public Transportation
Information Reader
Vehicles & Static
L | (HSL)

Spring Framework

Jam

Vehicle

0.1 T
1 4

Vehiclelnformation StopInformation

3rd party library/component

.) Live+Gov implementation
Public Transport Real Time System (HSL)

Figure 27: Traffic Jam Detection Architecture

3.8.3.3 Route Analysis Web Component

Figure 28: Traffic Jam Message
Structure

The Route Analysis Web Component (Figure 29) is a rich Internet application. The server side
of the application uses the Live+Gov Sensor Data Storage Service as the data source to
obtain the citizen sensor data. The user interface runs on the web browser and visualizes the
data over the map. The application uses advanced GIS based SQL queries to create needed

reports for the end user.

Page 80

LIVE SOV D4.3-V1.6

Tra

n
v

® @

Figure 29: Route Analysis Web Component

The simplified architecture and the most relevant used technologies are visualized in Figure
30.

Page 81

(=N Tan)\V4 D4.3-V1.6

User interface
JavaScript/HTML5/CSS3

MapQuest
Map Tile Server

OpenLayers

jQuery

JSON/RESTful

l

Spring Framework

Tomcat

Backend
Service layer
Business logic layer
Domain
DAQ layer

myBatis

y

PostgreSQL

Data Model 3rd Party Library/Component

Live+Gov Implementation

Figure 30: Route Analysis Web Component architecture

3.8.4 Web API

The Traffic Jam Detection component provides a Web API, which is described in the Table
34. The currently supported area is Helsinki.

Table 34: Public Transport System Connector API

Function name Purpose Request Response
Parameters
Get Traffic Jams Get current traffic jamsin a Area Traffic jam
certain area. information
Get Slow Vehicles Get current slow vehicles in a Area List of slow
certain area. vehicles in
the area

Page 82

LIVE =m0V

D4.3 -V1.6

/iamdetector/JamService.svc/jams/hsl

Example request to get traffic jams:

The response is provided in JSON format. An example of a response is:

[{ "Id" : O,
"IsJam" : true,
"SlowVehicles" : [{ "CumulativeDelay" : 13,

"NextStop" : { "Code"™ : "1301453",
"Latitude" : 60.197929999999999,
"Longitude" : 24.876580000000001,
"Name" : "Laajalahden aukio"

}7

"PreviousStop" : { "Code" : "1301455",
"Latitude" : 60.195390000000003,
"Longitude" : 24.873429999999999,
"Name" : "Tiilim&ki"

}7

"Stop" : { "Code" : "1301455",
"Latitude" : 60.195390000000003,
"Longitude" : 24.873429999999999,
"Name" : "Tiilim&ki"

}7
"Vehicle" : { "Delay" : 13,
"Id" : "RHKLOOO76",
"IsOnStop" : false,
"Latitude" : 24.873405999999999,
"LineDirection" : 2,
"LineId" : "1004",
"Longitude" : 60.195535999999997,
"NextStopIndex" : 2,
"Time" : "20140116-102700",
"Timestamp" : "/Date(1389860820413+0200)/"
}
}7
{ "CumulativeDelay" : 72,

"NextStop" : { "Code" : "1240419",
"Latitude" : 60.203020000000002,
"Longitude" : 24.96584,

"Name" : "Kylasaarenkatu"
}7

"PreviousStop" : { "Code" : "1230410",
"Latitude" : 60.204529999999998,
"Longitude" : 24.96998,

"Name" : "Toukoniitty"
}7

"Stop" : { "Code" : "1230410",
"Latitude" : 60.204529999999998,
"Longitude" : 24.96998,

"Name" : "Toukoniitty"
}7
"Vehicle" : { "Delay" : 82,
"Id" : "RHKLOO0OO65",
"IsOnStop" : false,
"Latitude" : 24.968769999999999,
"LineDirection" : 2,
"LineId" : "1006",
"Longitude" : 60.203980999999999,
"NextStopIndex" : 3,
"Time" : "20140116-102700",
"Timestamp" : "/Date(1389860820405+0200)/"
}
}
]7
"SlowVehiclesInJamCount" : 2
bl
]

Page 83

(=N Tan)\V4 D4.3-V1.6

In this example the detector has detected one jam and there are two vehicles in the jam. In
addition to the vehicle information the next, previous and nearest stop information is
returned. The jam location can be approximated either from the participating vehicle
locations or stop locations.

The interface contains more information than the current clients require. This is for
debugging and possible visualization purposes. For example vehicle’s line information is such
information.

If there are no jams currently detected, the interface returns:

[l

Example request to get slow vehicles:

/iamdetector/JamService.svc/slowvehicles/hsl

Page 84

D S0V

D4.3 -V1.6

The response is provided in JSON format. An example of a response is:

[

"CumulativeDelay": 53,
"NextStop": null,
"PreviousStop": null,
"Stop": {
"Code": "9212218",
"Latitude": 60.2491,
"Longitude": 25.49161,
"Name": "Kitoén silta"
b
"Vehicle": {
"Delay": 73,
"Id": "RHKLOO115",
"IsOnStop": false,
"Latitude": 24.901162,
"LineDirection": 2,
"LineId": "1010",
"Longitude": 60.198366,
"NextStopIndex": 5,
"Time": "20141024-145005",

"Timestamp": "\/Date(1414151405652+0300)\/"

"CumulativeDelay": 18,
"NextStop": null,
"PreviousStop": null,
"Stop": {
"Code": "9212218",
"Latitude": 60.2491,
"Longitude": 25.49161,
"Name": "Kitoén silta"
b
"Vehicle": {
"Delay": 194,
"Id": "RHKLOOO57",
"IsOnStop": false,
"Latitude": 24.923647,
"LineDirection": 1,
"LineId": "1002",
"Longitude": 60.172226,
"NextStopIndex": 10,
"Time": "20141024-145005",

"Timestamp": "\/Date(1414151405665+0300)\/"

In this example there are two vehicles that would potentially participate the jam.

If there are no slow vehicles currently detected, the interface returns:

[l

Page 85

(=N Tan)\V4 D4.3-V1.6

3.8.5 Software Library API

External Connector for Public Transportation System is implemented according to the
observer design pattern. The Traffic Jam Detection component registers itself as an observer
to the vehicle information and the vehicle information is provided to the Traffic Jam
Detection component as the new vehicle information is available.

Table 35: Public Transportation Information Reader API

Function name Purpose Request Response
Parameters
New Vehicle Info Provide new information Vehicle location | -
about a vehicle in the area. information

3.8.6 Integration

Healthcheck, log files,
authentication and authoriz|

[Route Analysis Web Component J

T Sensor Data Storage
Sensor Data Service

- Service Center
htion

Live+Gov components/services

Traffic Service

Figure 31: Traffic Service integration to other Live+Gov services.

Figure 31 shows the integration between the different components in the Live+Gov service
architecture from the Traffic Service perspective. The components use the Service Center for
user authentication and authorization. The component heart beat is sent to the Service
Center periodically and log files are sent every midnight for further analysis to the Service
Center.

Route Analysis Web Component does not have a database of its own; it uses the Sensor Data
Storage to create reports for the end user about the passenger movements.

Page 86

D S0V

D4.3 -V1.6

3.8.7 Phase 2 updates

Table 36 describes the updates performed in preparation of the 2" trials rounds.

Table 36: Traffic Service Phase 2 updates

Traffic Jam Detector

Component

Change

Rationale

New web interface

New web interface was
created in order to visualize
the component state.
Specifically it was necessary
find out how the component
state changes and for example
why jams were not detected in
certain situations.

New interface was created for
debugging, testing and
visualization purposes.

Refactoring &
performance
improvements

Parts of the component were
refactored in order to make
the code more readable. At
the same time e.g. some of the
inner data structures were
changed for better
performance. Also the
component parameterizing
was fine-tuned during the
testing for better user
experience for the field trial.

The basic functionality of the
component was implemented
for the first trial and major
changes were not needed. The
update work can be regarded
as general maintenance.

Web application for Route Analysis

Component

Change

Rationale

Route Analysis Web
Component

This new component was
implemented.

The component was targeted
to be available in the second
field trial.

Page 87

(=N Tan)\V4 D4.3-V1.6

4 Testing Strategy

This chapter summarizes the Assembly-, Integration- and Verification (AIV)-plan that is
followed by the Live+Gov consortium during the development of the Live+Gov toolkit and
the development and customization of the three SaaS-based mobile governance solutions.

During the Live+Gov project two Assembly-, Integration- and Verification cycles have been
performed in a highly complex distributed environment with multiple companies developing
and deploying reusable and integrated SaaS-based toolkit services.

The described strategy proved to provide the required quality assurance for the
development and deployment of three different mobile eGovernance solutions on different
trial sites. Future toolkit developers and users can reuse this strategy when developing their
own toolkit extensions or SaaS solutions.

A full description of the Technical verification and testing strategy can be found in
Deliverable D4.4 [6].

4.1 Scope and goals

The scope of the AIV plan is to describe how the Live+Gov toolkit and the three SaaS-based
mobile governance solutions are verified (“Are we building the product right?”). The goals of
this AlV-plan are:

* To ensure that the developed Live+Gov toolkit and the three SaaS-based mobile
governance solutions meet the requirements that guided its design and
development;

* To ensure the toolkit and solutions work as expected after the tests described in the
AlV-plan have been executed,;

* To minimize the efforts in integrating the partners’ different components (by
eliminating errors in the components in an early stage);

* To align the different partners in the testing process to gain the necessary quality
level in the developed software;

* To describe the tests such that after successful testing the software satisfies the
needs of all stakeholders.

4.2 V-model

Verification of the Live+Gov toolkit is performed using the V-model displayed in Figure 32.
The V-model is a simple variant of the traditional waterfall model of software development
with an emphasis on the verification and validation of the software.

The V-model identifies different testing activities or phases in which the deliverables of the
associated design phases are analysed or tested. The horizontal axis represents time and
project completeness, while the vertical axis represents the level of abstraction.

Following the V-model, software development starts with describing the use cases and
defining the requirements. The requirements lead to a high-level design or architecture. The
different system components within this architecture are further elaborated in detailed
technical designs. Based on the technical designs the developers start coding, the lowest
point on the V-model.

Page 88

(=N Tan)\V4 D4.3-V1.6

From this point, the testing part of the software development begins, represented by the
right part of the V-model. Testing starts with low-level testing of the components, followed
by service testing, integration testing and system (or user acceptance) testing.

deliverable
isi System
A Use cases |-mmmmisinputfor jiste
Testing
System | Integration
requirements Testing
c
.0
ju High-level | Service
= design Testing
©
2
(]
- Technical | Component
design Testing

time / project completeness

Figure 32: V-model [6].

The Live+Gov project’s result is a prototype consisting of a toolkit and three SaaS-solutions.
During the project two trials are performed in a real environment. These trials provided
feedback on both the usage of the toolkit itself and on the mobile governance solutions
created using the toolkit. This feedback is used to improve the toolkit architecture, toolkit
components and mobile governance solutions for the second trial run. In preparation of
each trial, the V-model as a whole is executed once, while some parts of the V-model are
executed multiple times, e.g. when retesting specific components.

4.3 Test phases

Table 37 summarizes the testing-phases, responsible partners and deliverables in a single
development cycle.

Table 37 : List of test phases [6].

. Responsible .
Test phase Subject WP/Partner Deliverables
Component Individual Developers Focus on the isolated software components,
Level Testing | Components (WP1, WP2 verifies these components compile and if the
Phase WP3, WP4) !oas.lc.functlons work as expected. All
individual components are tested before
they are embedded into a service.

Page 89

(=N Tan)\V4 D4.3-V1.6

Service Level | Individual Service Testing the services within the Live+Gov
Testing Phase | Services owners toolkit and the interaction between the
(WP1, WP2, ckc\)mé)or.me?ts W.Ithln eac: service. Vedrlfles if
WP3, WP4) the agc unctpns work as excepte .
(functional testing) and that the service
meets the performance and security
requirements.
Integration Integrated Service Testing the integration of the different
Level Testing | Live+Gov owners services with the Service Center.
Phase Toolkit (WP1, WP2,
WP3, WP4)
System Level | Mobile Use case Testing the solution against the functional
Testing Phase | eGovernance | partners requirements to validate if the system meets
Solutions (WPS) the key business requirements.
D4.4 [6].

Table 38 summarizes which types of testing are advised in a specific test phase, a description
of these tests and guidelines for testing can be found in D4.4 [6].

Table 38: Overview of test types required in the test phases [6].

Inter-
Test phase Functional . Compliance | Performance | Availability | Security
operability
Component Level v i i v i v
Testing Phase
Service Level v i v v i v
Testing Phase
Integration Testing
v Y] v v - v

Phase
S .

ystem Testing v v i v v v
Phase

Page 90

(=N Tan)\V4 D4.3-V1.6

5 Test Results

This chapter gives a summary of the test results in preparation of the second trial rounds.
Section 5.1 summarizes the results of the system test, section 5.2 summarizes the results of
the service level & integration tests. As defined in ‘D4.4 Technical verification and testing
strategy’ [6] partners are not required to report the individual Component level test to the
consortium. An example of the test template used during these tests can be found in
Appendix A.

5.1 System testing

During the system tests the solution is tested against the functional requirements to validate
if the system meets the key business requirements. Multiple test rounds have been
performed by the use-case partners on the different mobile- and web applications for the
Urban Planning, Urban Maintenance and Mobility SaaS solutions. Table 39 shows an
overview of the performed system tests and their exit criteria.

Table 39: System test summary

TEST DESCRIPTION EXIT CRITERIA
Test Service & Perfor Planned Actual # test # Issues # Issues # High Source Reports All exit
no. integration med date date rounds 1% test last test priority code criteria
test by round round Issues left submitted met
Urban
ST-1 Planning BIZ M30 M33 3 23 0 0 Yes AppendixB |\ o
SaasS ST-1
Solution
Urban
sT-2 | Maintenanc | M28 M28 3 11 0 0 Yes AppendixB |\ o
e SaaS ST-2
Solution
Mobility .
ST-3 Saas MTS | M30 | M31 2 9 0 0 Yes App:Trig'x Bl Yes
Solution

All test have successfully met their exit criteria. Maximum three test rounds were required
before all high priority issue were solved and the use-case partners were confident to start
the trial.

Although not all test were performed according to the original planning, this did not cause
any problems in the trial planning. There was a two month windows available for performing
the trials. The actual start date not only depended on passing the tests, but also on practical
planning in combination with political obligation or delays. For example in the Urban
Planning use-case the trial start was postphoned, in order to be able to combine the launch
with local festivities in Gordexola, which offered a lot extra publicity options. The full test
reports can be found in Appendix B. Note that these test focus on the technical verification.
A full evaluation of the trial and software solutions will be given in ‘D5.5 — End Results of
trials and Live+Gov Methodology’.

Page 91

(=N Tan)\V4 D4.3-V1.6

5.2 Service level & integration testing

The Service Level test focussed on the services within the Live+Gov toolkit and the
interaction between the components within each service. One verifies if the required
functions work as excepted (functional testing) and that the service meets the performance
and security requirements. During the integration test it is verified that the service is
integrated with the service center according to the integration guidelines and concepts [11].
The first test round showed that the service level & integration testing could be easily
combined, since there are performed by the same partners. Table 40 shows an overview of
the performed system tests and their exit criteria.

Table 40: Service level & integration test summary

TEST DESCRIPTION EXIT CRITERIA
Test Service & Perfor Planned Actual # test # Issues # Issues # High Source Reports All exit
no. integration med date date rounds 1% test last test priority code criteria
test by round round Issues left submitted met
Sensor Data Appendix C
SLT-1 | Capturing | UKob | M29 M29 2 4 0 0 Yes ppSLT_ 5 Yes
Service
Reality .
SLT-2 Mining UKkob | M29 M29 3 10 4 0 Yes Appendix C |y
. SLT-2
Service
Augmented .
SLT-3 Reality | CERTH | M29 M29 3 13 0 0 Yes App:L”TO_"aX C 1 ves
Service
eGoverment
Dialogue .
SLT-4 and YCT M28 M28 3 26 1 0 Yes AppendixC |y o
R SLT-4
Visualisation
Service
Issue .
SLT-5 | Reporting | YCT M29 M29 2 17 0 0 Yes App:L”TO_';X C 1 ves
Service
s | Saassemvice | yop M29 M29 3 13 0 0 Yes AppendixC |y ¢
Center SLT-6
SLT-7 Traffic MTS | M29 | M29 1 0 0 0 Yes AppendixC |y ¢
Service SLT-7
Sensor Data Appendix C
SLT-1 | Capturing | UKob | M29 M29 2 4 0 0 Yes ppSLT_ 5 Yes
Service

All test have successfully passed their exit criteria. Maximum three test rounds were
required to make sure all high and medium priority issues were solved. The tests were
performed according to the original planning. The full test reports can be found in Appendix
C. Note that these test focus on the technical verification. A full evaluation of the trial and
software solutions will be given in ‘D5.5 — End Results of trials and Live+Gov Methodology’.

Page 92

(=N Tan)\V4 D4.3-V1.6

6 Summary and Conclusions

This deliverable presents the Live+Gov Toolkit which in one of the end-products of the
Live+Gov project. This toolkit consist of several applications, software libraries and back-end
services for creating SaaS based mobile governance solutions. Advanced services are
included for building SaaS solution with Sensor Data Capturing, Reality Mining, Augmented
Reality, Personalized Content Delivery, eGovernment Dialogue and Visualization and Issue
Reporting functionality.

The architecture of the toolkit is based on the principles of Service-Oriented Architecture
(SOA). In this way a generic architecture is offered, allowing generic services to be applied in
multiple scenarios and solutions. This approach proved to be effective in a consortium with a
multiple development partners, offering a clear distinction of responsibilities by the
definition of public interfaces (API’s) to combine the different services into SaaS solution for
the use-case trials.

The central SaaS Service Center offers Saa$S specific functionalities for account management,
access control, billing and multi-tenancy. Toolkit services utilize these services instead of
including their own fragmented mechanisms. Integration guidelines and a technical
verification strategy [11] are described to make sure future extensions be created reusing
the same development and test strategy and architecture.

This also gives a powerful tool to the service provider, enabling him to configure access
profiles with different combinations of services in the mobile eGovernance solutions. For
exploitation this means that different functional packages (Service Levels) can be offered
depending on the actual needs of the customers and the commercial marketing strategy.
This will be further elaborated in the final exploitation plan D6.5.

Three example solutions have been developed, tested, deployed and trialled in real life
environments: A Mobility solution in Helsinki (Finland), an Urban Maintenance solution in
Utrecht (The Netherlands) and an Urban Planning solution in Gordexola (Spain). These
solutions show that the toolkit is generic, cross platform and can be applied in different
scenarios and environment. Also the AlV test strategy proved to provide the required quality
assurance for the development and deployment of three different mobile eGovernance
solutions on different trial sites. These examples can be customized and deployed for other
municipalities or used as an example by developers when creating their own solution.

The final evaluation results of the trials, experiences and best practices will be described in
detail in ‘D5.5 - End results of trials and Live+Gov Methodology’.

Page 93

(=N Tan)\V4 D4.3-V1.6

7 References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]
[17]

[18]

C. Scheafer, H. Hartmann, “Sensor Data Application”, Live+Gov Deliverable D1.1, July
2013.

L. Kovats, et al, “Conceptual documentation on issues, organisation and stakeholder
assessment”, Live+Gov Deliverable D2.1, July 2013.

M. Thimm, H. Hartmann, L. Nittylda, M. de Arana Agiretxe, M.J. Terpstra, P.M.
Minnigh, L. Kovats, “Report on strategies of mobile sensing in eParticipation”
Live+Gov Deliverable D2.2, July 2013.

D. Ververidis, E. Chatzilari, G. Liaros, S. Nikolopoulos, Y. Kompatsiaris, P.A. Minnigh,
and F. Thiele, “Platform and prototype application for augmented reality,” Live+Gov
Deliverable D3.1, July 2013.

F.Thiele et al, “Report on Live+Gov toolkit requirements and architecture”, Live+Gov
Deliverable D4.1, July 2013.

F. Kramer, F, Thiele et al, “D4.4 —Technical verification and testing strategy”,
Live+Gov Deliverable D4.4, November 2013.

P.A. Minnigh, et al. “Detailed Use Case description”, Live+Gov Deliverable D5.1, July
2013.

J.A.M. Zubiaur, J. Escion, J. Cassempere, M. de Arana Agiretxe, S. Nikolopoulos, H,
Keuchel, L. Nittyla, J.M. Steensma, P.A. Minnigh, S. Sizov, M. Thimm, “Initial
Exploitation Plan”, Live+Gov Deliverable 6.3, July 2013.

“StUF”, Kwaliteits Instituut Nederlandse Gemeenten (KING), GEMMA Community,
visited 24™ Jun 2013.
https://new.kinggemeenten.nl/gemma/stuf

“Metaio — The New Metaio SDK”, Metaio Incorporated, visited Oct 1° 2013.
http://www.metaio.com/sdk

F. Thiele, et al. “Integration concepts and guidelines”, Live+Gov Deliverable D4.2,
November 2013.

P.van Tol, A.J. Krommendijk, “Service Center APl Description”, Live+Gov, October
2013.

A.J. Krommendijk, “Service Center Installation Manual”, Live+Gov, November 2013.
Pekka Kaarela, “Traffic Jam Detector APl Description”, Live+Gov, November 2013.

“Augmented Reality Service Documentation”, http://augreal.mklab.iti.gr/doc/,
visited Nov 27" 2013

F. Kramer, “eGovernment Dialogue and Visualization API”, Live+Gov, May 2012.

Minnigh, P.A., et al., (2014) “Prototype / demonstrator for second trials”, Live+Gov
Deliverable D5.4, July 2014.

Live+Gov. “End results of trials and Live+Gov Methodology”, Live+Gov Deliverable
D5.5, forthcoming.

Page 94

(=N Tan)\V4 D4.3-V1.6

[19] L. Kovats, et al., “Visualization of data injection from mobile sensing”, Live+Gov
Deliverable D2.3, January 2014.

[20] L. Kovats, H. Keuchel, J. Hoffmann, “Applied Policy Modelling Training Package”,
Live+Gov Deliverable D2.4, August 2014

[21] Live+Gov. “eGovernance augmented reality application”, Live+Gov Deliverable D3.2,
forthcoming.

Page 95

17

OV

D4.3 -V1.6

8 Appendices

The following appendices are enclosed in a separate document.

Appendix Description Dissemination Level
Appendix A | Test scenario’s & results template Public

Appendix B | System test plan and results Confidential
Appendix C | Service level & integration test plans and results | Confidential

Page 96

