Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 1.5.2

Integration Examples

Version no. 1.1
19 July 2016

| e——)

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.:

DI1.5.2

Deliverable title:

Integration Examples

Deliverable nature: Report

Dissemination level: Public

Contractual delivery: 19 July 2016

Actual delivery date: 19 July 2016

Author(s): Jolanda Modic (XLAB), Miha Stopar (XLAB)

Contributors: Massimiliano Rak (CeRICT), Andrew Byrne (EMC), Adrian
Spataru (IeAT), Silviu Panica (IeAT), Damjan Murn (XLAB),
Alain Pannetrat (CSA), Giancarlo Capone (CeRICT)

Reviewers: Umberto Villano (CeRICT), Madalina Erascu (IeAT), Stefano
Marrone (CeRICT)

Task contributing to the T1.5

deliverable:

Total number of pages: 84

SPECS Project - Deliverable 1.5.2 2

Secure Provisioning of Cloud Services based on SLA Management

Executive summary

This document demonstrates implementation and testing activities associated to a set of
integration scenarios introduced in deliverable D1.5.1.

In particular, this document presents:

e Overview of the integration process: We summarize the integration plan reported in
the deliverable D1.5.1 to present the integration process adopted in the project.
Moreover, the continuous integration approach and tools are reported, and the testing
activities (as defined in T4.5) are discussed. We also introduce the template used to
describe deployment of each integration scenario.

e Integration examples: We present a list of integration examples (i.e., deployed
integration scenarios) that is based on the set of integration scenarios defined in
D1.5.1.

e Integration and system testing: We summarize activities related to the integration and
system testing as defined in T4.5. We report results of the security assessment of the
SPECS applications and security review performed for the entire SPECS framework,
and we elaborate on the data protection in SPECS.

SPECS Project - Deliverable 1.5.2 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

Deliverable INfOrMAtION ... et 2
EXECULIVE SUIMIMATY ..vucuiuecureresesesseessesesssesesssesessssessssssesssssssssssesessssessssssesssssssassssssssssessssssesssssssssssssssssnssssssssssnsssnssns 3
0T o) L 0T 0T 0) 4 L= 4Lt OO ST 4
INAEX Of fIGUIES oottt bbb 5
INAEX Of TADIES ..ovueereceeretseeeeetee et s s 6
3R 00 0 Yo L U (0) o OO OO oo OO OO OO OTP OO 8
2. Relationship with other deliverables......... 9
3. INtegration PrOCESS ... s 10
3.1, INteGration Plam .. 10
3.2, ContinUOUS INEZIAtION ...cuuiecereerriseses e 12
3.3. Integration example tEMPIAte.......o e enees 14

4. INTEZTATION TESTS ot 15
4.1. SPECS COT€ COMPONENTES ..vrvrerereerresiseresesessessssssessssssessssssesssessssssesssssssssssssesssssssssssesssssssssssssssssssssassns 15
TN o T ONTF= 10] ot L o) o PP 28

5. Integration and SYStEIM tESTING....couuurerereereereesereessesessssseessssesssssssssssessssesssssssssssssssssessssssssssssssssessssees 32
5.1. Performance and scalability analysis of the SLA Platformcccoevennessnsnensnenensenenns 32
5.1.1. Performance g0als......is s sassens 33
5.1.2. Workload MOAelINg.....cocereereereereererreereesessessssseesessessessessessssssssesssns 34
5.1.3. Testing environment and analysis of reSults........oneens 36

5.2. Security review of the SPECS frameworK.......comnssssessessssessessssseens 37
5.3. Security assessment of the SPECS appliCationcoenenceneercenseneenssneesessessenseesesseesessessessees 40
5.4. Dataregulation in SPECS....... s ssssssssssssssssssssssssssseens 42
5.4.1. Personal data in SPECS ... sesssssssssssas 43
5.4.2. Benefits of SPECS in terms of information SECUTItYccomemereereereeneereeneereeseereesesseenes 43
5.4.3. Other benefits of the SPECS platform ... 44
5.4.3.1. Data loCation CONTIOL ... ss s ssssssssssaes 44
5.4.3.2. ACCOUNTADIIILY oouveieieiisrice et 44

6. COMNCIUSIONS oeveereeeeeueureseeeress et bbb 45
12 L0 D0} o4 = 0] 4|0 TP 46
Appendix 1. SPECS PIOtOLYPES ..ccvrerirreerersessessessesssssssssessssssessessssssssssssesss s sesssssssssssssesssssssssessssssssssssess 48
Appendix 2. SPECS artifacts in deliverables....... s sssesssssssessssesssssssesses 50
Appendix 3. Integration USET GUIAE ... sessss s sssss s sssssssssssees 51
Appendix 4. Performance analysis of the SLA Platform and the default SPECS application...53
Appendix 5. SPECS application penetration teStiNgG........coceereneereeneesseseeseeseesesseesessesssssessssssssessessssees 60
Appendix 6. Threat CataloGUE ... 64
Appendix 7. Results of the SECUTILY TEVIEW ... sssssssees 74

SPECS Project - Deliverable 1.5.2 4

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

Figure 1. Relationship with other deliverables ... 9
Figure 2. SPECS arChitECTUTE ... sssssssns 13
Figure 3. SPECS Platform performance analysis methodologycenenneneensennseseeserneeeeens 33
Figure 4. Synthetic WOrKI0ads ... sssssssssssssssssssasssns 35
Figure 5. Performance evaluation testing eNViroNMeNt.......ueneereeseesressessessssssessessssssessssssessssaseens 36
Figure 6. Security asseSSMeNt analySiS......orsssss s 41

SPECS Project - Deliverable 1.5.2 5

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1. Integration of SPECS COre COMPONENLS ... sessssssssssssssssssssssssssssss 10
Table 2. Integration of SPECS appliCationscoreenmenerirnsessssessesssssessesssssessessssssssssssssssssssssssssssns 11
Table 3. Integration example teMPIAte........orrrrerrrenerer e 14
Table 4. Integration eXample COT@-AL ... 15
Table 5. Integration €Xample COre-Bl ... essessns 16
Table 6. Integration €Xample COT@-AB1 ... 17
Table 7. Integration eXample COT@-AB2 ... sssssssssssssssssssssssssss 17
Table 8. Integration eXample COre-ABS3 ... sssssssssssssns 18
Table 9. Integration eXample COT@-AB4 ... 19
Table 10. Integration €Xample COT@-C1 ... eeessessssesssens 19
Table 11. Integration €Xample COre-C2 ... sssssssssssssssens 20
Table 12. Integration €Xample COT@-ABCT ... isss 21
Table 13. Integration eXample COT@-ABC2 ... enenenesesssssessns 21
Table 14. Integration €Xample COTe-D1 ... sssssss 22
Table 15. Integration €Xample COre-CD1 ... renereseesesssssesssens 23
Table 16. Integration €Xample COr@-ABCDI ... enereeneesesssssessns 24
Table 17. Integration eXample COre-ABCD2 ... eissssssess 24
Table 18. Integration eXample COr@-ABCDS3 ... eenenesesssssessns 25
Table 19. Integration €Xample COTe-ABCDA ... risesissesss 25
Table 20. Integration example COre-ABCDS ... ieesss 26
Table 21. Integration eXample COre-ABCDEG. ... eerenesensesesssssessns 26
Table 22. Integration €Xample COTE-ABCDY ... sissssssess 27
Table 23. Integration eXample COre-ABCDE........ o erenesenssesssesssens 27
Table 24. Integration €Xample COr@-ABCDI. ... ssns 28
Table 25. Integration €Xample APP-AL..... s ssssssss 28
Table 26. Integration €XampPle APP-AZ.... e sssssens 29
Table 27. Integration €Xample APP-A3.... s ssssss 29
Table 28. Integration €Xample APP-A4......rinesesesss s ssssss 30
Table 29. Integration eXample APP-ET..... o eeneserseesesssessns 30
Table 30. Integration €Xample APP-F1 ... eessssssssess 31
Table 31. Deliverables reporting performance teStS.......rnnerneeeeeseesesssssessessesssssesssssesseens 35
Table 32. Testing environment VM SPeCIfiCatiONsccuureurerneeresressessseseessesssssessessessssssssssssssssssssssssns 37
Table 33. SPECS checKliSt SECUTILY ar@ascorereereressieseesressssssessesssesssssesssessssssessessssssssssssssssssssssesssssnss 38
Table 34. SECUTILY TEVIEW TESULLS ...ttt 38
Table 35. Security review results per SECUTtY CAtEZOTYcovmrereenieneesrersessesserssesssssesssesssssessessess 39
Table 36. Existing threats and declared riSK rating......c.counnennenenennenesesesesessesssssessessessessesseens 41
Table 37. Security threats Per COMPONENToereereereereererseeserseesesses s ssssssssssssssssssssssssssens 42
Table 38. SLA Manager user profiles for performance tests ... 53
Table 39. Service Manager user profiles for performance tests........ e 53
Table 40. Metric Catalogue user profiles for performance tests ... 53
Table 41. Interoperability Layer user profiles for performance tests.........mnnnnnenen: 53
Table 42. SPECS application user profiles for performance tests........———— 54
Table 43. Performance results for the SLA Manager ... sssssssssssssens 55
Table 44. Performance results for the Service Manager........cunnnneneneensesessseseesessessesseessssesseens 56
Table 45. Performance results for the Metric Catalogue ... 56
Table 46. Performance results for the Interoperability Layer ... 57

SPECS Project - Deliverable 1.5.2 6

Secure Provisioning of Cloud Services based on SLA Management

Table 47. Performance results for the default SPECS application ...

SPECS Project - Deliverable 1.5.2

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

This document presents the technical aspects associated to the SPECS integration activities. In
particular, we summarize the SPECS integration plan defined in deliverable D1.5.1, introduce
the methodology and tools used in the integration task, and present a template with which all
reported integration tests are conformant with.

In SPECS we use Bitbucket for storing the code for all the developed software (all code
developed in SPECS is available on our Bitbucket account [19]), Atlassian Bamboo [3] for
automatizing integration tests on a dedicated integration machine on partner leAT cluster (its
Dashboard is available at [4]), and Gatling [11] for conducting performance tests. The
software developed in SPECS is uploaded to different Bitbucket projects under our Bitbucket
account. Every time a developer commits a change, Bamboo compiles the code and produces
new binary artifacts, the Bamboo integration plan updates the integration machine on IeAT
cluster, and starts up all integration tests.

Note that all integration tests are thought to be easily repeatable and completely automated.
Moreover, the integration process can be reused on every testbed in order to verify the
correctness of implementation.

The reported integration tests, which have been executed for verifying the correctness of
implementation of the SPECS behaviour, are divided into two sets. One set includes core
components and the other set includes SPECS applications, namely the Secure Web Container,
the Metric Catalogue, and the Security Reasoner. The first two have been introduced in
deliverable D5.1.3, and the last one has been presented in deliverable D2.3.1. For Secure
Storage application, refer to deliverable D5.2.2, for the ngDC application to deliverable D5.3,
and for the AAAaaS application to deliverable D5.4.

In deliverable D4.5.2 we defined the non-functional testing approach that would be adopted
on the project level. In this document we further elaborate on the methodologies for the
performance and security evaluation of the developed software. We also present results for
the SLA Platform and the default SPECS application, whereas for other modules we report
results in dedicated deliverables (for Negotiation module in D2.3.2, for the Monitoring module
in D3.4.2, and for the Enforcement module in D4.5.3).

The document is structured as follows. After a brief analysis on associated deliverables that
provide an input or serve as an output in Section 2, we elaborate in the SPECS integration
process in Section 3. In Section 4 we report integration tests. The performance and security
evaluation methodologies are presented in Section 5, where the data protection in SPECS is
also discussed. A brief summary of results, in Section 6, concludes the document.

SPECS Project - Deliverable 1.5.2 8

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables

Deployment of the SPECS integration scenarios depends not only on the definition of
scenarios itself, but also on development aspects of all components that need to be integrated.
Therefore, activities associated to the integration and testing are based on a large set of
deliverables as depicted in Figure 1.

WwWP1
+ D13 WP4
- D1.4.2 « D4.3.3
« D15.1 WP2 WP3 + D4.4.2
. D162 « D232 + D3.4.2 + D453
wP2 wP3 wP4 WP5
+ D2.3.2 + D3.4.2 + D433 + D5.2.2
+ D2.3.3 - D53

« D5.4

Figure 1. Relationship with other deliverables

Integration scenarios defined in D1.5.1 are implemented with accordance to the specifications
of the SPECS testbed reported in D1.6.2, module interaction protocols defined in D1.3,
prototypes of the components of the Vertical Layer described in D1.4.2 and D4.4.2, and
prototypes of the Negotiation module, Monitoring module, and Enforcement module,
described in D2.3.x, D3.4.2, and D4.3.3, respectively.

Testing activities are conducted as defined in the deliverable D4.5.3.
Feedback from the integration and testing activities are provided to the developers of the core
modules for which the final prototypes are presented in deliverables D2.3.x, D3.4.2, and

D4.3.3, and to the developers of the validation applications demonstrated in deliverables
D5.2.2, D5.3, and D5.4.

SPECS Project - Deliverable 1.5.2 9

Secure Provisioning of Cloud Services based on SLA Management

3. Integration process

This section presents the technical details of the SPECS integration process. We summarize
the SPECS integration plan and associated scenarios defined in the deliverable D1.5.1 (Section
3.1), discuss the collaborative platforms and the technological choices for our integration
approach (Section 3.2), and introduce the template used to present the deployment plans for
the defined integration scenarios (Section 3.3).

3.1. Integration plan

We split integration activities into two parts. First (as seen in Table 1) we plan integration of
core components to enable the management of SLAs (i.e, to enable the negotiation,
implementation, monitoring, and remediation processes), then (as depicted in Table 2) we
organize activities to integrate core components with security mechanisms to develop a
variety of SPECS applications with which we offer secure cloud services through SLAs.

SLAP NEG ENF MON VL
=)
- o S =
ot (<]
S = 2, 8o
= < [S| @)
3 o |2 % 9 5 S
(7] 8 o2 =| 5 g S| 5|8 D | B
o0 | = <) S| 0| 9) o)
= B o= =] g @ = Yol It > V| o
o Alo|l el o] =] © ot ol = = 2 ~ | B
= V| W o c| 0| |2 = al 5l & 8 < Cl=|
w| S|s|5 @|= o~ [=) o0 | 5] Hls| o
© =| = | S| T| 5| 0 Q| FH S| a0 = | X 5 oo | 5| &
= S| c| o & © 2| s 3 T|<<| o| X < | B
o0 SNEERs o El = s
3] El =2 =|5|E|E|lSZ]E 22l % s 2| a|B|E|S
-) Zl3 QU sl 2| 2| w|lwn| & &| S|l slg| 2|35
= 35235 3|= =888 8|S|E|2E|3S|328l2
Dlnl Sl nlalvnlalSElalgimm|S|laloml zZzlc|lnlClD
Core-Al X X
Core-B1 X X | X X
Core-AB1 X | X X | X X
Core-AB2 X | x X | X X | X
Core-AB3 X | X X | X X | X X X
Core-AB4 X | X | X X | X X | X X X
Core-C1 X | X|x|x X
Core-C2 X | X|x|x|x|X
Core-ABC1 X | x X | X X | x X | X|x|x|x|xXx
Core-ABC2 X | X | X X | X X | X X | X|x|x|x|X
Core-D1 X | x| x|x
Core-CD1 X | X | X[X | x| X|X|X|X]|X
Core-ABCD1 X | X X | X X | X[X[X|X|X|X|X]|X]|X
Core-ABCD2 X | X X | X | X | x| X|xX|XxX|x|X|X|X]|Xx]|X
Core-ABCD3 X | X X | X[X | x| X|xX|xXx|x|X|X|X]|Xx]|X X
Core-ABCD4 X | X X [X[X | X |X|X|[X|X|X|X|X]|X]|X X X
Core-ABCD5 X | XX X | X |X|X|X|X|X|X|X|X|Xx|X|X X X
Core-ABCD6 X | X|X| X | X|X|X|X|X|X|X|X|X]|Xx]|X|X X | X | X
Core-ABCD7 X | X|X| X | X|X|X|X|X|X|X|X|X]|Xx]|X|X X | X | X |x
Core-ABCD8 X | X[X| X | X|X|X|[X|X|X|X|[X|X|X|X|X|X|X|X|X]|X
Core-ABCD9 X | X | XXX | X|X|X|X|X|X|X|X|X|X|X|X|X|X|X]|X]|X
Table 1. Integration of SPECS core components

SPECS Project - Deliverable 1.5.2 10

Secure Provisioning of Cloud Services based on SLA Management

o SLAP | NEG SM APP

E

g 5 g 5

S g b= = gl =
B0 o 2| ¥ o | ©

=]) Z O % e 2

S = = a | £ T |

g 5 2| = ol g 5| =

£ o > | © 2| & wn| O &

% 2| gL - elelol 3|l E
=~ =

£ AEHEEEEEIEEH R
= B2 E|H|A Alm|[S| wvn|luvnl| o = |

App-Al X X

App-A2 X | X X

App-A3 X | X | X X

App-A4 X | x| x| X X

App-B1 X | X X

App-C1 X X

App-D1 X X X

App-D2 X | x| x|[x X

App-E1 X X

App-F1 X X

Table 2. Integration of SPECS applications

As shown in Table 1, we integrate SPECS core components one by one, in an order that
enables separate phases of the SLA life cycle. First (in scenarios Core-A1 and Core-B1) we
integrate components that orchestrate the basic version of the SLA (re)negotiation phase
(without the SLA evaluation and ranking). The SLA implementation phase is enabled when
scenarios Core-ABx are deployed. Monitoring steps are covered with scenarios Core-Cx and
the entire flow up to (inclusive) the SLA monitoring phase is covered with scenarios Core-
ABCx. The last phase of the SLA life cycle, namely the SLA remediation, is enabled with
scenarios Core-D1 and Core-CD1. Afterwards (as defined with scenarios Core-ABCDx) we
gradually integrate the remaining components of the core SPECS architecture that orchestrate
ranking of SLAs (Security Reasoner), monitor components and secure communication among
them (Nmap, Security Tokens), manage credentials and user registration (Credential Service,
User Manager), enable easier interoperability (Interoperability Layer), and provide logging
functionalities (Auditing). The final core scenario Core-ABCD9 integrates all core components
with the default SPECS application. The deployment details for these scenarios are presented
in Section 4.1.

In order to develop specific SPECS applications that form the SPECS solution portfolio
(introduced in D6.2.2), we integrate the default SPECS application with security mechanisms
as shown in Table 2.

The Secure Web Container application (introduced in the deliverable D5.1.3) that offers pools
of virtual machines enhanced with some security features is developed/tested according to
the plan defined with scenarios App-Ax. The deployment details for this scenario are
discussed in Section 4.2.

The development of the Secure Storage and the ngDC applications that offer secure cloud
storage in different usage contexts is defined with integration scenarios Core-B1 and Core-(C1,
respectively. The integration tests are reported in deliverables D5.3 for the ngDC application
and D5.2.2 for the Secure Storage application.

SPECS Project - Deliverable 1.5.2 11

Secure Provisioning of Cloud Services based on SLA Management

Integration scenarios App-Dx present the testing of the integration of mechanisms with the
AAAaaS application. Further details about the application itself and the integration tests are
available in the deliverable D5.4.

The Metric Catalogue application that manages the data for security metrics is associated to
the integration scenario App-E1 which is further discussed in Section 4.2.

The final integration scenario App-F1 presents the development of the Security Reasoner
application that offers comparison and ranking of cloud service providers. Further
deployment details for the associated integration scenario are reported in Section 4.2.

3.2. Continuous integration

This section presents the technical aspects of the SPECS integration process. It demonstrates
the organization of the Bitbucket repositories and provides details of the integration
environment (i.e., the tools effectively used in the integration process).

The architecture of the SPECS framework, briefly summarized in the deliverable D1.5.1 and
depicted in Figure 2, is highly modular. Consequently, the project’s Bitbucket account has
many repositories with different contents, from code for components to recipes for
automated management of components (Chef cookbooks!) and other artifacts (e.g., data
models). To organize repositories and simplify the integration process, we created three
different projects; the first (SPECS) hosts the repository with the code of the components, the
second (SPECSlegacy) hosts the code of old components that are no more supported, while
the latest (SPECSintegration) hosts the code used for integration tests and performance
analysis. Further details about the account are presented in deliverable D7.1.2. For what
regard the components code, we adopted the following naming convention:
e specs-core-module name-component name: For all components of the core
modules where module name is either
O negotiation,
O monitoring,
O enforcement,
O sla platform,
O enabling platform,or
o vertical layer.
e specs-mechanism-module name-component name: For all components of the
SPECS security mechanisms where module name can either be
O enforcement Or
O monitoring,
depending on the type of the component.
e specs-utility-component name: For the data models and the components of the
vertical layer.
e specs-app-application name: For all SPECS applications.

! As discussed in D4.2.2, all automated deployment and management activities are orchestrated by Chef [1].

SPECS Project - Deliverable 1.5.2 12

Secure Provisioning of Cloud Services based on SLA Management

Vs

. : ~
Secure
_ Secure Storage ngDC o
SPECS l Web Container l ‘ \
Applications ; J L l
Security
_ L Frrrroac ‘ Metric Catalogue

e \ \ \ |

/_ Megotiation fr Enforcement Monitoring
r : . ™)
\ ’
- ™~
Vertical
Layer

-)) - B
Enabling
Platform

Figure 2. SPECS architecture

bR

~

In Appendix 1 we present links to the project’s Bitbucket repositories and web sites where the
interested reader can find the code and the associated unit tests for the core components, the
security mechanisms, and the developed SPECS applications. Moreover, the Appendix 1 also
reports about the deliverables in which the interested reader can find the design and the
implementation details of all SPECS artifacts.

The runtime environment and the supporting infrastructure that hosts the SPECS services
(the SPECS Enabling Platform) and serves as the platform for the integration testing, is
presented in the deliverable D1.6.2 and available on the infrastructure [2] of the project
partner [eAT.

SPECS Project - Deliverable 1.5.2 13

Secure Provisioning of Cloud Services based on SLA Management

As discussed in deliverable D4.5.2, the continuous integration approach has been adopted in
the project. In order to continuously assess the integration of the core components and the
security mechanisms of the SPECS framework and validate that the built processes are
successfully running, we use the Atlassian Bamboo server [3] which uses the Maven tool [5]
for automatically building components and running unit tests. For the project’s Bamboo
Dashboard, please see [4].

For each integration scenario defined in deliverable D1.5.1 and reported in Table 1, we have
one Bamboo deployment plan. The associated integration tests, further elaborated in Section
4.1, are available on the Bitbucket [7]. In Appendix 3 we report the details of the integration
process (setting up a Bitbucket repository for tests, setting up Bamboo build plans, setting up
Bamboo deployment projects, and running the integration tests).

In order to verify the correctness of the developed SPECS applications with different sets of
inputs, we use Selenium [6], which is a software testing framework for web applications. All
integration tests (elaborated in Section 4.2), which are used to verify correctness of the
application implementation, are available on the Bitbucket [7].

3.3. Integration example template

In Table 3 we introduce a template used in Section 4 for presenting the details for each
integration example. Each integration example has the same ID and the description as the
associated integration scenario. For the sake of completeness we also report the list of
involved SPECS artifacts. Similarly as in all prototype deliverables, we also report for each
integration test the defined inputs, expected results, and the actual results. If any comments
are needed for clarification, they are reported at the bottom of the table. For each integration
test we also provide the link to its location on Bitbucket.

Example ID The ID of the integration example (the same as the ID of the associated
integration scenario).
Description A natural language description of the integration example outlining the
roles of the involved artifacts.
Link Link to the integration test.
Core SLAP | Alist of integrated artifacts.
components | NEG
ENF
MON
VL
Security mechanisms
SPECS applications
Inputs Defined inputs.
Expected results Expected results of the integration test with respect to the defined inputs.
Outputs Actual results of the integration test.
Comments Comments, if needed, explaining the inputs, expected results or the
outputs.

Table 3. Integration example template

SPECS Project - Deliverable 1.5.2 14

Secure Provisioning of Cloud Services based on SLA Management

4. Integration tests

This section presents the deployment details for the integration scenarios defined in D1.5.1.
First, tests associated to the integration of SPECS core components are presented (Section
4.1), then tests for the SPECS applications (Secure Web Container, Metric Catalogue, and
Security reasoner) are reported (Section 4.2). We use the template introduced in Section 3.3.

Note that the integration examples (deployment details of the integration scenarios) for the
Secure Storage, ngDC, and the AAAaaS applications are presented in dedicated deliverables
D5.2.2, D5.3, and D5.4, respectively.

For further details about the SPECS flow (i.e., the SPECS framework’s orchestration of the SLA
life-cycle) and the APIs see deliverables D1.1.3 and D1.3, respectively.

4.1. SPECS core components

As defined in D1.5.1, the first integration test verifies the behaviour of the flow orchestrated
by the SLA Manager and the SLO Manager components. With this test we verify two steps.
First, when an End-user starts the negotiation process, the SLO Manager has to retrieve all
SLA Templates that can be offered to the End-user. Note that each service offered by SPECS is
negotiated on the basis of an individual SLA Template. Second, when the End-user selects the
preferred security service, the SLO Manager has to select the associated SLA Template,
customize it with the basic information such as the agreement name and context data (e.g.,
agreement initiator, agreement responder, service provider, expiration date, etc.), and store it
in the database of the SLA Manager. The details of the test are reported in Table 4.

Example ID Core-Al

Description This scenario integrates the SLA Manager component (SLA Platform)
and the SLO Manager component (Negotiation module) which provide
basic functionalities for the creation and management of SLAs.

Link https://bitbucket.org/specs-team/specs-integration-test-corea
Core SLAP | SLA Manager
components | NEG SLO Manager

ENF |/

MON |/

VL /

Security mechanisms | /

SPECS applications /

Inputs Based on a WSAG template (NIST or CCM) stored in the SLO Manager,
this scenario is tested executing all the API calls (defined in deliverable
D1.3) that imply the interaction between the SLO Manager and the SLA
Manager.

Expected results The communication between the components is correctly done. When
the POST APl is called on the SLO Manager to create a new SLA and, at
the same time, to receive the SLA Template, a new SLA has to be stored
into the SLA Manager.

Outputs All points defined above were successfully accomplished and the
results were all as expected.
Comments /

Table 4. Integration example Core-A1

SPECS Project - Deliverable 1.5.2 15

https://bitbucket.org/specs-team/specs-integration-test-corea

Secure Provisioning of Cloud Services based on SLA Management

When the End-user selects the desired cloud service and the preferred security features to be
enforced on top of it, and the SLO Manager customizes the SLA Template with this elicited
information, the Supply Chain Manager orchestrates the generation of associated feasible
supply chains. With the next integration test, described in Table 5, we verify whether the
components involved in this process parse the inputting SLA Template correctly and correctly
build all of the associated supply chains.

Core-B1

This scenario integrates the Service Manager component (SLA
Platform), the SLO Manager and the Supply Chain Manager
(Negotiation module), and the Planning component (Enforcement
module). The Supply Chain Manager component (which depends on the
SLO Manager) prepares the input and triggers the Planning component
to build supply chains according to the SLA Template and the
information provided by the Service Manager.
https://bitbucket.org/specs-team/specs-integration-test-coreb
Service Manager

NEG SLO Manager, Supply Chain Manager

ENF Planning

MON |/

VL /

Example ID
Description

Link
Core
components

SLAP

Security mechanisms

/

SPECS applications

/

Inputs

Based on a WSAG template (NIST or CCM) stored on the SLO Manager,

this scenario is tested executing all the API calls (defined in D1.3) that
imply the interaction among the Service Manager, SLO Manager, Supply
Chain Manager, and Planning.

The communication among the components is correctly done. When
the POST APl is called on the SLO Manager to receive a list of SLA
Offers, all the components are correctly involved in the communication.
All points defined above were successfully accomplished and the
results were all as expected.

Comments /

Expected results

Outputs

Table 5. Integration example Core-B1

By integrating the components of the previous two integration examples, we enable the
complete negotiation process (the basic version of it, which does not include the SLA Offer
ranking). With the test described in Table 6 we verify whether the inputting End-user’s
requirements result in a correct set of (unranked) SLA Offers.

Example ID Core-AB1
Description This scenario integrates the Core-A1 and Core-B1 scenarios. Involved
artifacts enable the complete negotiation phase (the basic version
without ranking SLA Offers).
Link https://bitbucket.org/specs-team/specs-integration-test-coreab
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager
ENF Planning
MON |/

SPECS Project - Deliverable 1.5.2 16

https://bitbucket.org/specs-team/specs-integration-test-coreb
https://bitbucket.org/specs-team/specs-integration-test-coreab

Secure Provisioning of Cloud Services based on SLA Management

(VL [/

Security mechanisms | /

SPECS applications /

Inputs SLA template with WebPool and SVA capabilities, security mechanisms
WebPool and SVA.

Expected results Supply chains are successfully and correctly created corresponding to
SLOs specified in the SLA template, SLA offers are successfully created,
selected SLA offer is accepted and other SLA offers are deleted, SLA is
signed corresponding to accepted SLA offer, SLA state is set to signed.

Outputs Generated supply chains, SLA offers, signed SLA.

Comments All points defined above were successfully accomplished and the
results were all as expected.

Table 6. Integration example Core-AB1

When the integration test associated to the scenario Core-AB1 succeeds, we integrate the
Implementation component. With the test described in Table 7 we verify whether a signed
SLA is correctly implemented. We verify (i) whether the SLA is correctly translated into an
implementation plan and (ii) whether the implementation plan is correctly executed (i.e.,
whether all the resources specified in the SLA are automatically acquired and whether the
security mechanisms needed to enforce and monitor the SLA are automatically deployed and
configured).

Example ID Core-AB2
Description This scenario extends the Core-AB1 integration scenario with the
Implementation component (Enforcement module) responsible for the
acquisition and configuration of cloud resources.
Link https://bitbucket.org/specs-team/specs-integration-test-coreab
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager
ENF Planning, Implementation
MON |/
VL /
Security mechanisms | /
SPECS applications /
Inputs SLA template with WebPool and SVA capabilities, security mechanisms

WebPool and SVA.

Expected results

Negotiation finishes successfully, planning activity and implementation
activity finish successfully, planning activity state is set to active,
implementation plan is created correctly corresponding to SLOs
specified in the SLA, VMs are provisioned successfully, Chef recipes
execute successfully and correct components are installed.

Outputs

SLA, planning activity, implementation activity, implementation plan.

Comments

All points defined above were successfully accomplished and the
results were all as expected.

Table 7. Integration example Core-AB2

After an SLA is implemented (i.e., the resources are acquired and the service is correctly
configured), the Enforcement module has to build an SLA with alerts (i.e., a list of parameters
to be monitored and their thresholds) for the configuration of the MoniPoli Filter component.

SPECS Project - Deliverable 1.5.2 17

https://bitbucket.org/specs-team/specs-integration-test-coreab

Secure Provisioning of Cloud Services based on SLA Management

The details of the test that verifies a correct behaviour of the complete SLA negotiation and
implementation are reported in Table 8. Note that the MoniPoli Filter component depends on
the Event Hub, thus we integrate both components.

Example ID Core-AB3

Description This scenario extends the Core-ABZ integration scenario with the
MoniPoli Filter component (Monitoring module) that is configured
during the SLA implementation phase and is responsible for the
identification of possible SLA alerts and violations.

Link https://bitbucket.org/specs-team/specs-integration-test-coreab

Core SLAP | SLA Manager, Service Manager

components | NEG SLO Manager, Supply Chain Manager

ENF Planning, Implementation
MON | MoniPoli Filter, Event Hub
VL /

Security mechanisms | /

SPECS applications /

Inputs SLA template with WebPool and SVA capabilities, security mechanisms
WebPool and SVA.

Expected results Negotiation, planning and implementation finish successfully, MoniPoli
is configured successfully, correct MoniPoli rules are created
corresponding to measurements specified in the security mechanisms
and SLOs specified in the SLA, monitoring events generated by the
mechanisms are routed through the Event Hub to the mock listener.

Outputs SLA, implementation plan, monitoring events.

Comments All points defined above were successfully accomplished and the
results were all as expected.

Table 8. Integration example Core-AB3

When the behaviour of the SLA negotiation and implementation is verified, the components
are integrated with the default SPECS application and the API calls from the application to the
integrated components are tested. The details of this integration test are reported in Table 9.

Example ID Core-AB4
Description This scenario extends the Core-AB3 integration scenario with the
default SPECS Application. The involved artifacts enable the basic
version of the SPECS flow up to the SLA monitoring phase (SLA
negotiation and SLA implementation).
Link https://bitbucket.org/specs-team/specs-integration-test-coreab
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager
ENF Planning, Implementation
MON MoniPoli Filter, Event Hub
VL /
Security mechanisms | /
SPECS applications Default SPECS Application
Inputs The Selenium web application automated testing tool [13] was used to
evaluate the complete end-to-end functionality of the SPECS
application.
Expected results All paths through the SPECS application are valid. The full set of

SPECS Project - Deliverable 1.5.2

18

https://bitbucket.org/specs-team/specs-integration-test-coreab
https://bitbucket.org/specs-team/specs-integration-test-coreab

Secure Provisioning of Cloud Services based on SLA Management

options available is covered.
Outputs Four test sequences were applied covering 56 individual tests
(verifying options available, buttons clickable, appropriate pages loads,
etc.). All tests passed.
Comments Some of the tests required editing the web content to include HTML
“id” tags. This enabled specific objects on the web application to be
clickable.

Table 9. Integration example Core-AB4

The next group of scenarios aims at verifying correctness of the behaviour during the SLA
monitoring phase. As discussed in deliverable D3.3 (design of the Monitoring module), the
Event Hub collects all monitoring data received by Monitoring Adapters hosted on cloud
resources (VMs). The collected monitoring data is then aggregated, archived, and filtered. The
Monitoring Policy Filter component (MoniPoli) compares the data to the rules specified
according to the signed SLAs. If any deviation is detected, the event is notified to the
Enforcement module. The next two tables present tests with which we verified correctness of
implementation of the monitoring behaviour. The first one verifies the monitoring process,
and the later one additionally tests integration of the CTP Adapter which exports collected
monitoring data.

Example ID Core-(C1

Description This scenario integrates the components of the Monitoring module that
enable collecting, aggregating, filtering and archiving events, and
notifying possible SLA alerts and violations to the Enforcement module.

Link https://bitbucket.org/specs-team/specs-integration-test-corec
Core SLAP |/
components | NEG /
ENF /
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver
VL /

Security mechanisms | /

SPECS applications /

Inputs Based on a submitted SLA, a group of monitoring agents are simulated
and start to feed the Event Hub with events (randomizing
alerts/violations and expected events); a diagnosis mock-up is started
to evaluate the notifications generated by the MoniPoli.

Expected results Each event is: (1) routed to the Event Archiver for data archival, (2)
filtered by the MoniPoli, and (3) in case of deviations notifications are
generated to the Diagnosis component. At the end of the simulation for
each event generated, we verify if it was successful archived, filtered by
the MoniPoli, and that the corresponding notification was generated

correctly.

Outputs All points defined above were successfully accomplished and the
results were all as expected.

Comments The simulators and the mock-up service had to be custom built.

Table 10. Integration example Core-C1

SPECS Project - Deliverable 1.5.2 19

https://bitbucket.org/specs-team/specs-integration-test-corec

Secure Provisioning of Cloud Services based on SLA Management

Example ID

Core-C2

Description

This scenario extends the Core-C1 scenario with the CTP component

(Monitoring module), which exports monitoring data relevant to the

End-user to the SPECS Application. The set of integrated components
enables all monitoring functionalities.

Link

https://bitbucket.org/specs-team/specs-integration-test-corec

Core
components

SLAP

/

NEG

/

ENF

/

MON

Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP

VL

/

Security mechanisms

/

SPECS applications

/

Inputs

Based on a submitted SLA, a group of monitoring agents are simulated
and start to feed the Event Hub with events (randomizing
alerts/violations and expected events); a diagnosis mock-up is started
to evaluate the notifications generated by the MoniPoli.

Expected results

Each event is: (1) routed to the Event Archiver for data archival, (2)
filtered by the MoniPolj, (3) in case of deviations notifications are
generated to the Diagnosis component, (4) a new SLA notification is
sent to the CTP, and (5) each event related to the SLA is registered in
the CTP. At the end of the simulation for each event generated, we
verify if it was successful archived, filtered by the MoniPoli, and that
the corresponding notification was generated correctly. Moreover, we
test if the generated SLAs and their corresponding events were
correctly registered into the CTP.

Outputs

All points defined above were successfully accomplished and the
results were all as expected.

Comments

/

Table 11. Integration example Core-C2

With the integration tests above, we have separately verified the correctness
implementation of the SLA negotiation, SLA implementation, and SLA monitoring. In the
tables below, we integrate all components and test the entire flow. The first test includes core
components involved in the mentioned processes, and the later scenario integrates the

default SPECS application to evaluate the complete end to end functionality of the SPECS

of

application.
Example ID Core-AB(C1
Description This scenario integrates the Core-AB3 and Core-CZ2 scenarios. Involved
artifacts enable the basic SLA negotiation (without ranking SLA Offers),
SLA implementation, and SLA monitoring phases.
Link https://bitbucket.org/specs-team/specs-integration-test-coreabc
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager
ENF Planning, Implementation
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP
VL /

SPECS Project - Deliverable 1.5.2

20

https://bitbucket.org/specs-team/specs-integration-test-corec
https://bitbucket.org/specs-team/specs-integration-test-coreabc

Secure Provisioning of Cloud Services based on SLA Management

Security mechanisms | /

SPECS applications /

Inputs In this scenario, all the components of the SLA Platform, Negotiation
and Enforcement modules are involved to negotiate and implement an
SLA. Subsequently, a group of monitoring agents are started to feed the
Event Hub with events (alerts/violations and expected events). A
Diagnosis mock-up is started to evaluate the notifications generated by
the MoniPoli.

Expected results The expected result related to the negotiation phase is the correct
management of the SLA, from its creation to the implementation.
Subsequently (according to the integration scenario Core-C1) each
event is: routed to the Event Archiver for data archival, filtered by the
MoniPoli, and in case of deviations notifications are generated to the
Diagnosis component. At the end of the simulation for each event
generated, we verify if it was successful archived, filtered by the
MoniPoli, and that the corresponding notification was generated

correctly.

Outputs All points defined above were successfully accomplished and the
results were all as expected.

Comments /

Table 12. Integration example Core-ABC1

Example ID Core-ABC2

Description This scenario extends the Core-ABC1 scenario with the default SPECS
Application. The involved artifacts enable the basic version of the SLA
negotiation, SLA implementation, and SLA monitoring.

Link https://bitbucket.org/specs-team/specs-integration-test-coreabc
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager

ENF Planning, Implementation

MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP

VL /

Security mechanisms | /

SPECS applications Default SPECS Application

Inputs The Selenium web application automated testing tool [13] was used to
evaluate the complete end-to-end functionality of the SPECS
application with the monitoring part included.

Expected results All paths through the SPECS application are valid. The full set of
options available is covered.

Outputs All tests passed.

Comments Some of the tests required editing the web content to include HTML
“id” tags. This enabled specific objects on the web application to be
clickable.

Table 13. Integration example Core-ABC2

The last part of the SLA life cycle to be tested is the SLA remediation. As discussed in
deliverables D4.3.2 and D4.3.3, the Monitoring module notifies the Diagnosis component of
the Enforcement module about an SLA alert/violation. The Diagnosis component has to
analyse the received notification to determine the impact of the event on the affected SLA. The

SPECS Project - Deliverable 1.5.2 21

https://bitbucket.org/specs-team/specs-integration-test-coreabc

Secure Provisioning of Cloud Services based on SLA Management

RDS component later (on the basis of the analysis performed by the Diagnosis) identifies the
optimal remediation plan and triggers the Implementation component to execute it. The
described remediation process is verified with the integration scenarios presented in two
tables below. In Table 14 we verify correctness of the implementation of the remediation
process orchestrated by the Enforcement components (without including the Monitoring
module) and in Table 15 we integrate the components of the Monitoring module (to verify
correctness of the process of notifying monitoring events and to verify correctness of
retrieving monitoring data from the Monitoring Archiver component, which is part of the

diagnosis process).

Example ID Core-D1
Description This scenario integrates the Diagnosis and the RDS components
(Enforcement module), which analyse monitoring events and prepare
remediation plans according to the performed analysis.
Link https://bitbucket.org/specs-team /specs-integration-test-cored
Core SLAP |/
components | NEG /
ENF Planning, Implementation, Diagnosis, RDS
MON |/
VL /
Security mechanisms | /
SPECS applications /
Inputs SLA and corresponding supply chain, security mechanisms WebPool

and SVA, violation notification, monitoring events.

Expected results

SLA is implemented successfully, VMs are provisioned, a mock
violation notification triggers diagnosis activity, the corresponding
monitoring event is evaluated and classified correctly, remediation
activity is started, remediation plan is created correctly according to
the violated metric, remediation actions are executed successfully,
remediation Chef recipes are applied successfully, diagnosis and
remediation activity finish successfully.

Outputs Diagnosis and remediation activity, remediation plan.
Comments All points defined above were successfully accomplished and the
results were all as expected. Uses following mock objects: SLA
Manager, Service Manager, Event Archiver, MoniPoli, CTP.
Table 14. Integration example Core-D1
Example ID Core-CD1
Description This scenario merges the Core-C2 and Core-D1 integration scenarios.
Involved components enable the monitoring and remediation steps.
Link https://bitbucket.org/specs-team/specs-integration-test-corecd
Core SLAP |/
components | NEG /
ENF Planning, Implementation, Diagnosis, RDS
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP
VL /
Security mechanisms | /
SPECS applications /

SPECS Project - Deliverable 1.5.2

22

https://bitbucket.org/specs-team/specs-integration-test-cored
https://bitbucket.org/specs-team/specs-integration-test-corecd

Secure Provisioning of Cloud Services based on SLA Management

Inputs SLA and corresponding supply chain, security mechanisms WebPool
and SVA.

SLA is implemented successfully, VMs are provisioned, MoniPoli rules
are created, mechanisms are installed successfully, monitoring event
sent by the mechanism on a VM to the Event Hub is passed to the
MoniPoli which detects a potential violation and sends notification to
the Diagnosis, the diagnosis activity is started, the corresponding
monitoring event is evaluated and classified correctly, remediation
activity is started, remediation plan is created correctly according to
the violated metric, remediation actions are executed successfully,
remediation Chef recipes are applied successfully, diagnosis and
remediation activity finish successfully.

Expected results

Outputs Monitoring event, notification, diagnosis and remediation activity,
remediation plan.
Comments All points defined above were successfully accomplished and the

results were all as expected.
Table 15. Integration example Core-CD1

With the integration test Core-ABC1, which verifies correctness of implementation of the SLA
negotiation, SLA implementation, and SLA monitoring, and the integration test Core-CD, which
verifies correctness of implementation of the SLA remediation, we implement the integration
test that verifies the entire (basic) SPECS flow. The details are presented in Table 16.

Example ID Core-ABCD1
Description This scenario merges the Core-ABC1 and Core-CD1 integration
scenarios, and enables the basic version of the entire SPECS flow (all
steps except SLA ranking).
Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager
ENF Planning, Implementation, Diagnosis, RDS
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP
VL /
Security mechanisms | /
SPECS applications /
Inputs In this scenario, all the components of the SLA Platform, Negotiation

and Enforcement modules are involved to negotiate and implement an
SLA. Subsequently, a group of monitoring agents are started to feed the
Event Hub with events. In the end, a violation event is generated to
involve the Diagnosis and the RDS components.

Expected results

The expected result related to the negotiation phase is the correct
management of the SLA, from its creation to the implementation.
Subsequently (according to the integration scenario Core-C1) each
event is: routed to the Event Archiver for data archival, filtered by the
MoniPoli and, in case of deviations, notifications are generated to the
Diagnosis component. At this point, the Diagnosis component is
activated and, if the SLA is violated, the RDS component in activated,
too.

Outputs

All points defined above were successfully accomplished and the

SPECS Project - Deliverable 1.5.2

23

https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Secure Provisioning of Cloud Services based on SLA Management

results were all as expected.

Comments

/

Table 16. Integration example Core-ABCD1

The remaining set of tests presents integration of components that are not crucial for the
implementation of the core SPECS flow ((re)negotiation, implementation, monitoring, and
remediation), but support it. In Table 17 we present integration of the Security Reasoner
component, which compares different SLA Offers and ranks them according to End-user’s
security requirements to help the End-user to decide on the best fitting SLA Offer.

Example ID Core-ABCD2
Description This scenario extends the Core-ABCD1 scenario by integrating the
Security Reasoner component (Negotiation module). By including
functionalities related to the evaluation and ranking of the SLAs, this
scenario enables the complete SPECS flow.
Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager, Security Reasoner
ENF Planning, Implementation, Diagnosis, RDS
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP
VL /
Security mechanisms | /
SPECS applications /
Inputs In this scenario, during the negotiation process, a list of SLA Offers is
requested.
Expected results The expected result is that the rank of each returned SLA Offer is equal
to the rank computed querying the Security Reasoner about each SLA
Offer.
Outputs All points defined above were successfully accomplished and the
results were all as expected.
Comments /

Table 17. Integration example Core-ABCD2

In the next two tables (Table 18 and Table 19) we present integration of the Security Tokens
mechanism and the User Manager component. The first one ensures secure communication
among SPECS components, and the later one supports the authentication and authorization of

SPECS users.
Example ID Core-ABCD3
Description This scenario extends the Core-ABCDZ scenario by integrating the
Security Tokens mechanism (component of the Vertical Layer), which
is responsible for the security of interactions among SPECS
components.
Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd
Core SLAP | SLA Manager, Service Manager
components | NEG SLO Manager, Supply Chain Manager, Security Reasoner
ENF Planning, Implementation, Diagnosis, RDS
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event

SPECS Project - Deliverable 1.5.2

24

https://bitbucket.org/specs-team/specs-integration-test-coreabcd
https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Secure Provisioning of Cloud Services based on SLA Management

Archiver, CTP

VL

Security Tokens

Security mechanisms

/

SPECS applications

/

Inputs

In this scenario, the interaction between SPECS components has been
tested both with valid and invalid tokens.

Expected results

With the use of invalid tokens, no interaction between components is
possible, so it is not possible to execute the negotiation process that
needs the interaction of many components.

With the use of valid tokens, the interaction between components has
to be successfully, and the negotiation process has to complete.

Outputs

All points defined above were successfully accomplished and the
results were all as expected.

Comments

/

Table 18. Integration example Core-ABCD3

Example ID

Core-ABCD4

Description

This scenario extends the Core-ABCD3 scenario by integrating the User
Manager component (Vertical Layer), which oversees authentication
and authorization functionalities to SPECS users.

Link

https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Core SLAP

SLA Manager, Service Manager

components | NEG

SLO Manager, Supply Chain Manager, Security Reasoner

ENF

Planning, Implementation, Diagnosis, RDS

MON

Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP

VL

Security Tokens, User Manager

Security mechanisms

/

SPECS applications

/

Inputs

In this scenario, it has been evaluated the access to the SPECS
functionalities in the case of an unauthenticated user, an authenticated
user with defined role privileges, and a user with full privileges.

Expected results

Accessing SPECS functionalities as an unauthenticated user must not be
allowed.

Accessing SPECS functionalities as an authenticated user with a defined
role allows the access only to those functionalities enabled for that role.
Accessing SPECS functionalities as an authenticated user with a full
privileges role allows the access to all functionalities offered by SPECS.

Outputs

All points defined above were successfully accomplished and the
results were all as expected.

Comments

/

The next three tests extend the integration test Core-ABCD4 and test the integration of the
Interoperability Layer component, Credential Manager mechanism, and the Auditing
component. The added functionalities, used inputs, and expected and actual outputs are

Table 19. Integration example Core-ABCD4

presented below (in Table 20, Table 21, and Table 22).

SPECS Project - Deliverable 1.5.2

https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Secure Provisioning of Cloud Services based on SLA Management

Example ID Core-ABCD5
Description This scenario extends the Core-ABCD4 scenario by integrating the
Interoperability Layer component (SLA Platform), which offers the
single access point to all SPECS APIs.
Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd
Core SLAP | SLA Manager, Service Manager, Interoperability Layer
components | NEG SLO Manager, Supply Chain Manager, Security Reasoner
ENF Planning, Implementation, Diagnosis, RDS
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP
VL Security Tokens, User Manager
Security mechanisms | /
SPECS applications /
Inputs In this scenario, the interaction between SPECS components has been
tested using the Interoperability Layer.
Expected results The interaction between components has to be successful.
Outputs All points defined above were successfully accomplished and the
results were all as expected.
Comments /
Table 20. Integration example Core-ABCD5
Example ID Core-ABCD6
Description This scenario extends the Core-ABCD5 scenario by integrating the
Credential Service mechanism (Vertical Layer), which stores and
manages SPECS Owner credentials to access the external resources.
Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd
Core SLAP | SLA Manager, Service Manager, Interoperability Layer
components | NEG SLO Manager, Supply Chain Manager, Security Reasoner
ENF Planning, Implementation, Diagnosis, RDS
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP
VL Security Tokens, User Manager, Credential Service
Security mechanisms | /
SPECS applications /
Inputs In this scenario, the credentials useful to access to external resources,

have been stored and associated to each external resource accessible.
Then those credentials have to be retrieved to access different
resources.

Expected results

The retrieved credentials must grant access to external resources.

Outputs

All points defined above were successfully accomplished and the
results were all as expected.

Comments /
Table 21. Integration example Core-ABCD6
Example ID Core-ABCD7
Description This scenario extends the Core-ABCD6 scenario by integrating the
Auditing component (Vertical Layer), which offers logging
functionalities to all components of the SPECS framework.
Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd
Core | SLAP | SLA Manager, Service Manager, Interoperability Layer

SPECS Project - Deliverable 1.5.2

26

https://bitbucket.org/specs-team/specs-integration-test-coreabcd
https://bitbucket.org/specs-team/specs-integration-test-coreabcd
https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Secure Provisioning of Cloud Services based on SLA Management

components | NEG SLO Manager, Supply Chain Manager, Security Reasoner
ENF Planning, Implementation, Diagnosis, RDS
MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP
VL Security Tokens, User Manager, Credential Service, Auditing

Security mechanisms | /
SPECS applications /

Inputs In this scenario, the activation of each SPECS component has been
useful to test the log of each “operation”.

Expected results The activation and the login procedure of each SPECS component has
to be properly logged.

Outputs All points defined above were successfully accomplished and the

results were all as expected.
Comments /
Table 22. Integration example Core-ABCD7

With the last two core integration tests we verify correctness of implementation of the Nmap
mechanism that oversees availability of SPECS components (scenario Core-ABCD8 in Table
23) and we evaluate the entire end-to-end functionality of the default SPECS application
(scenario Core-ABCD9 in Table 24).

Example ID Core-ABCD8

Description This scenario extends the Core-ABCD7 scenario by integrating the
Nmap mechanism (Monitoring module), which monitors availability of
internal components of the SPECS framework.

Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Core SLAP | SLA Manager, Service Manager , Interoperability Layer

components | NEG SLO Manager, Supply Chain Manager, Security Reasoner

ENF Planning, Implementation, Diagnosis, RDS

MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP, Nmap

VL Security Tokens, User Manager, Credential Service, Auditing

Security mechanisms | /

SPECS applications /

Inputs In this scenario, all the components are up and running. Then some of
them become unavailable.

Expected results If one or more internal components of the SPECS framework get
unavailable, Nmap has to get the state of each of those components,
and send related unavailability event to the Event Hub.

Outputs All points defined above were successfully accomplished and the
results were all as expected.

Comments In this scenario, all the components are up and running, then some of
them become unavailable.

Table 23. Integration example Core-ABCD8

Example ID Core-ABCD9

Description This scenario extends the Core-ABCD8 scenario by integrating the
default SPECS Application.

Link https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Core | SLAP | SLA Manager, Service Manager, Interoperability Layer

SPECS Project - Deliverable 1.5.2

27

https://bitbucket.org/specs-team/specs-integration-test-coreabcd
https://bitbucket.org/specs-team/specs-integration-test-coreabcd

Secure Provisioning of Cloud Services based on SLA Management

components | NEG SLO Manager, Supply Chain Manager, Security Reasoner

ENF Planning, Implementation, Diagnosis, RDS

MON | Event Hub, MoniPoli Filter, Event Aggregator, SLOM Exporter, Event
Archiver, CTP, Nmap

VL Security Tokens, User Manager, Credential Service, Auditing
Security mechanisms | /

SPECS applications Default SPECS Application

Inputs The specs application has to guide the user through all the phases, and
the inputs are the same as provided in the tables from integration
scenarios Core-ABCD1 to Core-ABCD8. The Selenium web application
automated testing tool [13] was used for this evaluation.

Expected results The same result obtained before have to be properly notified to the
user on the UL

Outputs All points defined above were successfully accomplished and the
results were all as expected.

Comments /

Table 24. Integration example Core-ABCD9

4.2. SPECS applications

In the following four tables we present the development of the Secure Web Container
application, i.e., integration of the SPECS framework and a particular set of security
mechanisms with the default SPECS application.

The Secure Web Container application offers to cloud users virtual machines (VMs) with the
WebPool security mechanism, and offers additional security guarantees like software
vulnerability assessment, TLS protocol, and denial of service detection and mitigation with
SVA, TLS, and DoS mechanisms, respectively.

Further details about the application have been reported in deliverable D5.1.3.

Example ID App-Al

Description This scenario integrates the Secure Web Container application with the
SPECS WebPool security mechanism.

Link https://bitbucket.org/specs-team/specs-integration-test-appa

Core components All

Security mechanisms | WebPool

SPECS applications Secure Web Container

Inputs In this scenario, during the negotiation process, the WebPool security
capability is chosen with different combinations of the Level of
Redundancy and Level of Diversity security metrics (see WebPool
section in deliverable D4.3.2).

Expected results The acquired resources and their configurations have to be compliant
with what has been defined during the SLA negotiation process related
to the WebPool mechanism.

Outputs All points defined above were successfully accomplished and the
results were all as expected.
Comments /

Table 25. Integration example App-A1

SPECS Project - Deliverable 1.5.2 28

https://bitbucket.org/specs-team/specs-integration-test-appa

Secure Provisioning of Cloud Services based on SLA Management

Example ID App-A2

Description This scenario extends the App-A1 integration scenario with the TLS
security mechanism. It integrates the Secure Web Container
application with the WebPool and TLS security mechanisms.

Link https://bitbucket.org/specs-team/specs-integration-test-appa

Core components All

Security mechanisms | WebPool, TLS

SPECS applications Secure Web Container

Inputs In this scenario, during the negotiation process, a cloud service is

chosen with different combinations of metrics enforced and monitored
by the WebPool and the TLS mechanisms (see deliverable D4.3.2 for
details about the mechanisms).

Expected results

The acquired resources and their configurations have to be compliant
with what has been defined during the SLA negotiation process related
to the WebPool and the TLS mechanism.

Outputs All points defined above were successfully accomplished and the
results were all as expected.

Comments /

Table 26. Integration example App-A2

Example ID App-A3

Description This scenario extends the App-A2 integration scenario with the SVA
security mechanism. It integrates the Secure Web Container
application with the WebPool, TLS, and SVA security mechanisms.

Link https://bitbucket.org/specs-team/specs-integration-test-appa

Core components All

Security mechanisms | WebPool, TLS, SVA

SPECS applications Secure Web Container

Inputs In this scenario, during the negotiation process, a cloud service is
chosen with different combinations of metrics enforced and monitored
by the WebPool, the TLS, and the SVA mechanisms (see deliverables
D4.3.2 and D4.3.3 for details about the mechanisms).

Expected results The acquired resources and their configurations have to be compliant
with what has been defined during the SLA negotiation process related
to the WebPool, the TLS, and the SVA mechanisms.

Outputs All points defined above were successfully accomplished and the
results were all as expected.

Comments /

Table 27. Integration example App-A3

Example ID App-A4

Description This scenario extends the App-A3 integration scenario with the DoS
security mechanism. It integrates the Secure Web Container
application with the WebPool, TLS, SVA, and DoS security mechanisms.

Link https://bitbucket.org/specs-team/specs-integration-test-appa

Core components All

Security mechanisms | WebPool, TLS, SVA, DoS

SPECS applications Secure Web Container

Inputs In this scenario, during the negotiation process, a cloud service is

chosen with different combinations of metrics enforced and monitored

SPECS Project - Deliverable 1.5.2

29

https://bitbucket.org/specs-team/specs-integration-test-appa
https://bitbucket.org/specs-team/specs-integration-test-appa
https://bitbucket.org/specs-team/specs-integration-test-appa

Secure Provisioning of Cloud Services based on SLA Management

by the WebPool, the TLS, the SVA, and the DoS mechanisms (see
deliverables D4.3.2 and D4.3.3 for details about the mechanisms).
The acquired resources and their configurations have to be compliant

with what has been defined during the SLA negotiation process related
to the WebPool, the TLS, the SVA, and the DoS mechanisms.

Expected results

Outputs All points defined above were successfully accomplished and the
results were all as expected.
Comments /

Table 28. Integration example App-A4

The last two integration tests reported in this section (Table 29 and Table 30) present the
development of the Metric Catalogue application introduced in deliverable D5.1.3 and the
Security Reasoner application introduced in deliverable D2.3.1.

Example ID App-E1

Description This scenario integrates the Metric Catalogue application with the
Metric Catalogue component (part of the SLA Platform).

Link https://bitbucket.org/specs-team/specs-integration-test-appe

Core components | SLAP | Metric Catalogue

Security mechanisms /

SPECS applications Metric Catalogue

Inputs The Selenium web application automated testing tool [13] was used

to evaluate the complete end to end functionality of the Metric
Catalogue application and its interaction with the Metric Catalogue
component.

Expected results

All paths through the Metric Catalogue application are valid. The full
set of options available is covered.

Outputs All points defined above were successfully accomplished and the
results were all as expected.

Comments Some of the tests required editing the web content to include HTML
“id” tags. This enabled specific objects on the web application to be
clickable.

Table 29. Integration example App-E1

Example ID App-F1

Description This scenario integrates the Security Reasoner application with the
Security Reasoner component (part of the Negotiation module).

Link https://bitbucket.org/specs-team/specs-integration-test-appf

Core components | NEG Security Reasoner

Security mechanisms /

SPECS applications Security Reasoner

Inputs The Selenium web application automated testing tool [13] was used

to evaluate the complete end to end functionality of the Security
Reasoner application and its interaction with the Security Reasoner
component.

Expected results

All paths through the Security Reasoner application are valid. The
full set of options available is covered.

Outputs

All points defined above were successfully accomplished and the
results were all as expected.

SPECS Project - Deliverable 1.5.2 30

https://bitbucket.org/specs-team/specs-integration-test-appe
https://bitbucket.org/specs-team/specs-integration-test-appf

Secure Provisioning of Cloud Services based on SLA Management

Comments

Some of the tests required editing the web content to include HTML
“id” tags. This enabled specific objects on the web application to be
clickable.

Table 30. Integration example App-F1

SPECS Project - Deliverable 1.5.2 31

Secure Provisioning of Cloud Services based on SLA Management

5. Integration and system testing

The testing activities aimed at analysing the non-functional aspects of the developed
framework/applications in SPECS have been defined in deliverable D4.5.2. In the next
subsections we discuss the details of the methodologies and present the results of performed
evaluations/tests.

In particular, we present the methodology for evaluating performance and scalability aspects
of the SPECS components/modules. Afterwards, we present the approach to and the results of
the security review conducted on the SPECS module level and the security assessment of the
SPECS applications. Finally, we discuss the data regulation in SPECS.

5.1. Performance and scalability analysis of the SLA Platform

In order to offer a clear evaluation of the performance of the SPECS framework, we created a
SPECS benchmark (available at SPECS Bitbucket repository [20]) that enables us to make a
detailed performance analysis of the SPECS platform. The benchmarks produce performance
figures that evaluate both the SPECS applications, which models the performance perceived
by customers, and each of the API offered by SPECS core modules, that enable the SPECS
Owner to evaluate the overheads and limits that the SPECS solution may introduce when
delivering secured services.

Performance tests aim at evaluating the capability of the system and the performance
perceived by the End-user when accessing SPECS Security Services, like the Secure Web
Container and/or the Secure Storage.

Section 5.1.1 focuses on the goals of the performance analysis, which we can synthesize in our
evaluation of the performance limits that SPECS may introduce when offering secured
services. The results, summarized in Appendix 4, demonstrate that even at the state of the art
(i.e, with the Technology Readiness Level? (TRL) between 3 and 4), the solution offers
performance that does not limit a small CSP.

Figure 3 illustrates the methodology adopted to analyse the performance of the SPECS
platform. It follows the common steps of a capability planning analysis as suggested by Jain
[10].

The first step of the adopted methodology, namely Performance Goals, consists in identifying
the main goals of the performance analysis process (see 5.1.1). It looks trivial, but a good
performance analysis process should have a clear goal in order to produce satisfying results.
The second step, namely Workload Modelling, focuses on the modelling of the SPECS platform
usage, in order to correctly identifying the behaviour of the overall solution (see 5.1.2). The
third step, Testing Environment, focuses on the execution environment which heavily affects
measurement, that must be repeated if the execution environment changes (see 5.1.3). The
last step focuses on measurement collection and analysis of the results (see Appendix 4).

2 http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014 2015/annexes/h2020-wp1415-annex-

g-trl en.pdf
SPECS Project - Deliverable 1.5.2 32

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

Secure Provisioning of Cloud Services based on SLA Management

Performance Workload Testing Collect
Goals Modelling Environment Measurement
i i i f
|| e‘;((j)?nmt;fr\{ce || Define workloads for || Setup unit || Identify maximum
P SPECS Applications performance tests allowed workload

analysis goals

r i r r
Setup a set of Measure
Identify Define workloads for dedicated machine performance index
1 performance index | core components o to collect | under the maximum
measurement workload

Figure 3. SPECS Platform performance analysis methodology

5.1.1. Performance goals

The goal of our tests is to evaluate what are the limits in terms of performance of the SPECS
framework at the state of the art. The goal of the analysis is to evaluate if and how the
adoption of the SPECS framework, as an integrated solution, affects the performance of a CSP.
The main limits, that an additional layer may introduce, are the effects on the number of End-
users that can concurrently use the resources secured by SPECS applications, and the time
needed to reply to End-users, which affects the perception of the quality from final customers’
point of view.

The same goal applies to each module of the SPECS framework; we should evaluate how their
interfaces (i.e., the APIs offered by the modules; described in deliverable D1.3) behave with
respect to the number of concurrent users, and what are the additional delays introduced due
to services invocation.

As already outlined in the introduction of Section 5.1, the produced performance tests are a
set of “SPECS benchmarks” that enable an easy evaluation of the SPECS framework on
different testbeds.

According to such considerations, the target of our performance analysis are the interfaces
offered by SPECS application (to evaluate the overall platform) and by each module, i.e. the
REST APIs described in deliverable D1.3.

We adopted two main performance indexes:

e Throughput (req/s): the number of services executed per second. It offers a clear
evaluation of the number of requests that our components are able to manage and of
the capacity of the system.

e Response Time (ms): the time elapsed between the requests of a service up to the
production of the result. This index evaluates the overhead introduced by the API
under evaluation, and the performance perceived by End-users.

These performance indexes are evaluated for different workloads, described in the following
section.

SPECS Project - Deliverable 1.5.2 33

Secure Provisioning of Cloud Services based on SLA Management

5.1.2. Workload modelling

SPECS applications offer their functionalities through dedicated web interfaces, and SPECS
platform core components offer their functionalities through the REST APIs described in
deliverable D1.3. This implies that all performance tests will stress HTTP layers and will have
arequest/response behaviour.

As outlined above, the main goal of the performance analysis is to offer a set of reusable
benchmarks that can be used to correctly setup the platform in different environments. The
benchmarks rely on a set of scripts that models the typical workload to which SPECS
applications and core components are subject.

In order to build up the benchmark workloads, we identify a set of standard profiles
composed in order to build the synthetic workloads.

Core components profiles follow the common flows of usage of the REST APIs of the SPECS
modules and match the SPECS flow described in deliverable D1.3 (which represents the
normal usage of the platform components).

As an example, the Service Manager component offers a REST API able to retrieve the
metadata associated to security mechanisms hosted on the platform. It offers an API to
retrieve the list of mechanism and an API to retrieve the metadata for a single specific
mechanism. A common workload is the sequence of requests:

1. Get the list of mechanisms.

2. Getthe mechanism’s metadata.
One of the usage profiles for the Service Manager executes such sequence of REST API
invocations. Such patterns can be simply identified for each of the core components and
constitute the basic set of workloads we collected.

We build SPECS application usage profiles that represent the performance perceived by End-
users, registering the application browsing and replicating the common wizard flow through
our benchmark scripts.

Synthetic workloads are given generating a load of users, according to the above described
profiles, varying the rate of users per second.

Figure 4 illustrates the process adopted to obtain the Synthetic Workloads: we stress the
target component with a ramp of increasing users up to the limit of correct behaviour of the
target component. We make this process two times, one with long-term runs and a second
with short-term runs. Once we have identified the maximum number of allowed concurrent
users for a component, we stress it for a fixed amount of time, measuring the Response time
and the Throughput in those conditions.

The process results in a set of performance figures made of two diagrams for each user
profile. The first reports the throughput and the second one reports the response time for
each injected rate per second from 0 up to the maximum number of users supported by the
API], according to the analysis of steps 1 and 2 of the methodology.

SPECS Project - Deliverable 1.5.2 34

Secure Provisioning of Cloud Services based on SLA Management

A detailed description of the user profiles for each component are reported in the deliverables
associated to their implementation, except for the tests associated to SLA Platform
components, reported in this deliverable in Appendix 4. Table 31 summarizes the
components subject to tests and the deliverables reporting their performance tests.

* Bun aramp of increasing users from 1 to 10k, with a fixed user profiles in 20
minutes.

Long term * Stop when the number of failures on responses are up to 20%.

Increasing * The number of users to which we stop is MaxUsers.
Users

* Bun aramp of increasing users from 0.9*MaxUsers to 1.1*MaxUsers, with a
fixed user profiles in 5 minutes.

* Stop when the number of failures on responses are up to 20%.
Short term .)
* The number of users to which we stop is MaxUsers.

increasing users

* Run a fixed number of concurrent users at MaxUsers value for 10 minutes.

- N
Stressing Measure response time and Throughput.

Workload

Figure 4. Synthetic Workloads

Module Component Deliverable (Section)
SLA Platform | SLA Manager D1.5.2 (Appendix 4)
Service Manager D1.5.2 (Appendix 4)
Interoperability Layer D1.5.2 (Appendix 4)
Negotiation SLO Manager D2.3.2 (Section 3.2.4)
Security Reasoner D2.3.2 (Section 3.4.4)
Enforcement | Planning D4.5.3 (Section 6.2)
Implementation D4.5.3 (Section 6.3)
Diagnosis D4.5.3 (Section 6.4)
RDS D4.5.3 (Section 6.5)
Monitoring Event Hub D3.4.2 (Section 3.2.1)
Event Archiver D3.4.2 (Section 3.3.3)
MoniPoli Filter D3.4.2 (Section 3.4.3)
Application Secure Web Container D1.5.2 (Appendix 4)
Secure Storage D5.2.2 (Section 5)
NgDC D5.3 (Section 6.3)
AAAas-a-Service D5.4 (Section 6)

Table 31. Deliverables reporting performance tests

SPECS Project - Deliverable 1.5.2 35

Secure Provisioning of Cloud Services based on SLA Management

Note that the Supply Chain Manager (a component of the Negotiation module) is not a web
application, but just a Java library, directly and internally invoked by the SLO Manager
component. Therefore no performance tests have been explicitly made for this component.
However, since the Supply Chain Manager is a library acting as an interface between the SLO
Manager and the Planning component (Enforcement module), we direct the reader to D4.5.3
(Section 6) for performance tests for the Planning component.

5.1.3. Testing environment and analysis of results

All SPECS tests run on top of the SPECS Enabling Platform, which is the default testbed,
described in deliverables D1.6.1 and D1.6.2.

The testing environment, i.e. the SPECS testbed, is a university cluster with a limited
dimension that well emulates a typical private cloud or a small CSP. The SPECS Platform
hosted in such environment should be able to address few requests per day.

All integration tests, as described in this deliverable, run on a dedicated integration
environment, which is a full running platform. We run all the scripts against the real
environment, in order to verify the behaviour in the real environment. These tests, however,
are limited due to the testbed capacity: in order to run the full tests in the real environment
we should emulate multiple users acquiring resources on the testbed. The amount of
resources available (reported in deliverable D1.6.1, about 20-30 VMs) is much less than the
capability offered by the platform.

Figure 5 illustrates the execution environment adopted for the performance tests. Note that
we used a dedicated VM to host the load generator, while the SPECS Platform, which is the
System Under Test (SUT), is composed of two VMs: one hosting all components of the SPECS
Platform and the other the Chef server. As outlined before, the tests stress the SPECS API and
the default application web interface.

Node - Testing terminal Node - SPECS Platform Node - Chef Server
<<component>> g]
<<component>> . 5] _ Default Application
Gatling WebUI (7 <<component>> g]
—1 <<component>> CQ\PI Chef Server
SPECS Platform °
BPECS API
7
Eucalyptus API PR VMs
<<gomponent>> a o
Enabling Platform

Figure 5. Performance evaluation testing environment
Table 32 summarizes the VM specifications for the three nodes reported above.

The testing terminal hosts the Gatling tool [11] that emulates the requests according to our
scripts and automatically produces all reports in HTML format. All scripts are available on our
SPECS Bitbucket repository [20].

SPECS Project - Deliverable 1.5.2 36

Secure Provisioning of Cloud Services based on SLA Management

VM Description Role

Testing Terminal | VMtype:m1.1xlarge Hosts the application that generates
Core: 1 the load on the SPECS Platform.
RAM: 1024
HDD: 20 GB

SPECS Platform VMtype:m1.1xlarge Hosts all components of the SPECS
Core: 1 Platform and the default application.
RAM: 1024
HDD: 20 GB

Chef Server VMtype:m2.2xlarge Hosts the Chef server.
Core: 2
RAM: 2048
HDD: 9 GB

Table 32. Testing environment VM specifications

The Appendix 4 contains the detailed performance figures for all the SLA Platform
components and the user profiles. Our repositories contain the detailed performance results
obtained for each component. Note that results of the performance analysis for other modules
are reported in other deliverables as reported in Table 31.

It should be pointed out that, even considering the minimal environment exposed in Figure 5
and Table 32, the platform and the application are able to manage hundreds of users with
acceptable response time (worst case measured in seconds), which respects the requirements
outlined above.

It is also worth noting that the bootstrap of a VM usually is measured in minutes: a cloud
customer using the SPECS infrastructure is not able to perceive the difference of the resource
delivery through the platform. From the CSP perspective, the additional resource
consumption is mainly due to the VM hosting the platform.

As a final consideration, the available benchmark enables us to perform a detailed capacity
planning for the full SPECS Platform and, consequently, to tune up the Platform to the
performance requirements that different deployments may have.

5.2. Security review of the SPECS framework

In deliverable D4.5.2 we introduced an approach to the security evaluation of the components
developed in the project, which is based on the Application Security Verification Standard
(ASVS 2.0) proposed by OWASP [12]. We defined a list of requirements (ordered in groups
according to security areas as reported in [12]) that should be addressed during the
development stage in order to assure secure software.

SPECS developers have assessed SPECS components, the testbed, and the default SPECS

application. Full results are reported in Appendix 7, while Table 34 presents a summary for
each layer of the SPECS architecture (as illustrated in Figure 2).

SPECS Project - Deliverable 1.5.2 37

Secure Provisioning of Cloud Services based on SLA Management

Security area

Authentication

Access control

Malicious input handling

Cryptography at rest

Error handling and logging

Data protection

Communications security

HTTP security

Malicious controls

Business logic

AT R QT |E D 0|W =T

Files and resource

S

Table 33. SPECS checklist security areas

The developers have assessed each component/testbed/application by verifying whether
each requirement on the defined checklist has been covered or not (these requirements are
labelled as v* or %, respectively). If some requirement is not applicable to the artifact under
evaluation, or the coverage of the requirement depends on the configuration, we use labels N
and D, respectively. In the tables below we report and discuss (for each module) the number
of requirements per each security area and present the number of implemented, not
implemented, not applicable, and deployment dependent requirements for each component.

Module | Component v x N D
Enabling Platform 29 19 54 4
SLA Platform SLA Manager 33 33 34 6
Service Manager 33 33 34 6
Metric Catalogue 33 33 34 6
Interoperability Layer 33 33 34 6
Negotiation SLO Manager 25 0 81 0
Supply Chain Manager 18 22 65 1
Security Reasoner 33 33 34 6
Enforcement Planning 36 30 35 5
Implementation 36 30 35 5
Diagnosis 36 30 35 5
RDS 36 30 35 5
Monitoring Event Hub 33 19 50 4
Event Archiver 28 17 57 4
MoniPoli Filter 52 12 40 2
CTP 33 19 50 4
Nmap 37 19 46 4
Vertical Layer | Auditing 36 30 35 5
Security Tokens 36 30 35 5
Credential Service 38 30 33 5
User Manager 33 33 34 6
SPECS application 33 33 34 6
EMC Testbed 38 37 25 6

Table 34. Security review results

SPECS Project - Deliverable 1.5.2

38

Secure Provisioning of Cloud Services based on SLA Management

As already outline, the main goal of the security review was to identify the main security
issues that may still be and that need to be addressed in order to move the solution to a higher
TRL level.

The analysis outlines that the solution is compatible with the declared TRL3/TRL4 levels: in
most of the cases we have more positive answers respect to negative ones. Few replies
depend on configurations to be adopted, which means that the associated requirements must
be addressed in case of deployment in a different environment.

The status of the components is homogeneous: most of them have a number of positive
answers between 33 and 38, with the only relevant exception being the Supply Chain Manager
component (having only 18 requirements implemented). It has a higher number of Not
applicable (N) replies, due to its implementation (the Supply Chain Manager is a library).

Table 35 summarizes the global results per security area. Access Control is almost correctly
enforced and with only a few additional improvements, the remaining issues should be solved
before moving any component to the TRL5.

ID | Security area v x N D
A | Authentication 102 4 272 13
B | Access control 158 29 43 0
C | Malicious input handling 118 143 38 0
D | Cryptography at rest 9 1 151 0
E | Error handling and logging 79 50 193 0
F | Data protection 44 36 35 0
G | Communications security 20 39 75 73
H | HTTP security 62 47 6 0
[| Malicious controls 105 62 48 15
] | Business logic 70 104 56 0
K | Files and resources 49 61 28 0

Table 35. Security review results per security category

The main issues are related to the handling of malicious input (class C). At the state of the art,
the applications are tested in a laboratory. In order to expose an application to public, a set of
controls needs to be added to verify correctness of the inputs. This is a relevant action to take
into account to move to TRL 8 (that implies an access from public).

Similarly, the main limit in classes E and F are due to the need of additional controls against
possible malicious access to the application: logs should be protected and monitoring of
anomaly accesses to data should be enforced in a production environment. These issues
should be solved before moving to TRL5, which implies access to a relevant environment,
where real information can be stored.

Classes G and H, affecting the communication channels used, imply that before moving to a
relevant environment, the detailed verification of protection of every communication channel
should be ensured. At the state of the art, due to debugging reason, we have open access to
some services. Moreover, a detailed assessment of the privileges assigned to each component
should be made (requirement SC73) before moving to TRL5.

SPECS Project - Deliverable 1.5.2 39

Secure Provisioning of Cloud Services based on SLA Management

Class] (Business logic) and class K (Files and resources) are the security areas that need
major improvements in order to protect any possible behavior of the application. These issues
will become critical when moving to untrusted environments (i.e. TRL>7).

The security review helped us to identify the main actions needed to move the solution up to
TRL7. The analysis has outlined that the security issues, at the state-of-the-art, depend mainly
on the deployment of the solution in a development environment (debugging options
activated and missing input validation).

5.3. Security assessment of the SPECS application

In order to offer an additional evaluation of the security of the SPECS Platform, we made an
additional preliminary security assessment, based on penetration testing: the main goal is to
identify the main security threats to which our platform is currently exposed.

As a starting consideration, we must note that the SPECS Platform and all the core
components are developed as web applications; thus we performed our analysis adopting the
common web security methodologies. In particular, we relied on the OWASP [14]
methodologies and tools. The target of our web security analysis is the web site
http://apps.specs-project.eu, which hosts our demonstrative application.

It is worth noting that the SPECS Platform is, at the state of the art, simply validated in
laboratory and must not be considered as ready for production. This preliminary assessment
identifies the main security issues in order to identify the process and the actions needed to
secure the solution. The public web site, through which we offer (publically, but for a limited
time) the full platform as a public cloud, is an additional result. Thus the following security
analysis is a reference that can help with a new deployment. Note that the results of the
presented analysis are valid for this specific deployment, not stating the quality of the overall
solution.

In particular, we adopted a double strategy in order to identify SPECS security holes:

e Approach 1: Expert based penetration. We involved a set of security experts (mainly
from EMC), that targeted the http://apps.specs-project.eu web site. The EMC report in
Appendix 5 shows the result of such analysis and examples of security holes in the web
application.

e Approach 2: Systematic penetration. Starting from the analysis of the experts and in
order to clearly identify the main security threats we made a systematic analysis of
security threats in the application through the OWASP tool.

Figure 6 briefly summarizes the iterative process we adopted in order to secure the SPECS
platform. We adopted the OWASP ZAP [15] tool to perform automated penetration tests
against the SPECS Platform. The tool generates a detailed report that summarizes the main
threats and risks measured against the target web site.

Thanks to the penetration test results, we identify and classify, according to the STRIDE threat
model [16], the threats to which the web application is exposed to.

As the last step of the iterative process, we identify a set of possible solutions to limit the
security threats. Then the process restarts, applying again the systematic penetration testing.

SPECS Project - Deliverable 1.5.2 40

http://apps.specs-project.eu/
http://apps.specs-project.eu/

Secure Provisioning of Cloud Services based on SLA Management

The reports generated by the penetration analysis are available on SPECS SVN (maintained
reserved).

OWASP
penetration
Tests

Solutions
Proposal &
Implementation

Threat
Classification

Figure 6. Security assessment analysis

Table 36 summarizes the threats identified on the target environment, according to the
STRIDE classification and the risk level of the treats proposed (as measured by OWASP).
Results refer to the last available iteration of the process.

Appendix 1 contains the list of analysed threats, reporting even their mapping against the
WASC threat catalogue [17] and the Common Weakness Enumeration (CWE) [18].

STRIDE LOW MEDIUM HIGH
Spoofing identity T43

Tampering with data T39 T8
Repudiation

Information disclosure T38, T36, T41 T36 TO9
Denial of service

Elevation of privileges T40

Table 36. Existing threats and declared risk rating

Table 37 summarizes the threats identified per each module and component of the SPECS
Platform.

Module Component Base Path Threats ID
SLA Platform | SLA Manager cloud-sla/slas/ T8
Service Manager cloud-sla/services-manager T13
Negotiation SLO Manager sla-negotiation/
Enforcement | Planning sla-enforcement/sc-activities T40
sla-enforcement/supply-chains
Diagnosis sla-enforcement/diagnosis
sla-enforcement/diag-activities
Planning sla-enforcement/plan-activities

SPECS Project - Deliverable 1.5.2 41

Secure Provisioning of Cloud Services based on SLA Management

Implementation sla-enforcement/plans
sla-enforcement/impl-activities
RDS sla-enforcement/reconfigs

sla-enforcement/rem-activities
sla-enforcement/rem-plans

Application Platform interface /platform-interface T8, T9,T13, T14, T43
Metric Catalogue /metric-catalogue-app
Secure Web Container | /webcontainer-app-rev2/
Security Reasoner /security-reasoner/

Enabling Custom OS :80/mos T13,T36

Platform

Table 37. Security threats per component

5.4. Data regulation in SPECS

In the European Economic Area (EEA), the terms “Data protection rules” refer to the set of
rules that protect personal data, where personal data is defined in as “any information relating
to an identified or identifiable natural person (‘data subject’)”. Personal data can include
names, addresses, user and device identifiers (IP addresses and cookies), health and financial
data, for example. These rules do not apply to other types of data such as intellectual property
(e.g., music, movies) or business trade secrets and processes. Yet, almost all online services
process personal data in some form or another. This applies to cloud services that are built
with the SPECS platform, and we will therefore analyse the possible impact and advantages
that SPECS offers for the processing of personal data.

Today the main text that defines data protection rules is? directive 95/46/EC [8]. Each
member state has transposed this directive in national legislation, which often includes
country-specific rules. At the end of 2015, the EU Parliament and the Council have reached an
agreement on a regulation*that is destined to replace directive 95/46/EC with a more
modern text. As opposed to Directive 95/46/EC that needed to be transposed in national law,
the new text is a “regulation”, which means that it will be directly applicable in 2018 when it
likely enters into effect.

In addition to defining what “personal data” is, these rules also define the notion of a
controller and a processor, where:
e A controller is the entity that defines the means and the purpose of a processing.
e A processor is the entity that acts on the instructions of a controller to implement some
personal data processing.

Both the directive and the regulation establish some common principles, notably:
a) Personal data must be processed “fairly” and for a well-defined purpose.
b) Personal data must not be excessive for the purpose, and must not be kept longer than
necessary.
c) Data subjects (users) must be informed about the processing of their personal data.

3 There are also a few sectorial specific texts such as directive 2002/58/EC (Telecom sector).
*See http://europa.eu/rapid/press-release 1P-15-6321 en.htm

SPECS Project - Deliverable 1.5.2 42

http://europa.eu/rapid/press-release_IP-15-6321_en.htm

Secure Provisioning of Cloud Services based on SLA Management

d) Data subjects (users) have the right to access their personal data and correct/delete it
in some cases as well.

e) Personal data must be kept secure, with guarantees of confidentiality, integrity and
availability.

f) Personal data must not be transferred to countries that do not offer a good level of
protection.

The new regulation is expected to expand and add a few principles or requirements:

g) Companies processing personal data will be required to be “accountable”: they will
have to be able to demonstrate how they achieve compliance with the rules at any
time.

h) For some types of “risky” data processing, a “data protection impact assessment” will
be needed.

i) Personal data breaches (e.g.,, a hacker steals your data) will need to be notified to
authorities and data subjects (users).

j) More responsibilities are put on the shoulders of “processors”.

We will examine how SPECS can contribute to some of these principles.

5.4.1. Personal data in SPECS

To facilitate the description of personal data processing in a SPECS enabled offering, we will
consider the following use case:
e FlowerPower is an SME of 50 employees, specialized in quick delivery of flowers and
“get well” messages to hospitals, clinics and any health institution.
e The customers of FlowerPower use the website of FlowerPower to select flowers, add
a message and provide delivery instructions.
e FlowerPower uses SPECS as a broker to select a cloud provider “CumuloNimbus”,
which will host its website and store customer data.
e FlowerPower selects some relevant SPECS security mechanisms to protect its data.
From a data protection perspective, FlowerPower is a controller while SPECS and
CumuloNimbus are processors.

There are many sources of personal data in this use case:
1) The data of the customers of FlowerPower.
2) The data of the employees of FlowerPower (50 people).
3) The data of the employees of the SPECS broker.
4) The data of the employees of CumuloNimbus.

Here we will focus exclusively on the first case: customers of the data controller
(FlowerPower) that uses the SPECS platform.

5.4.2. Benefits of SPECS in terms of information security

One of the key requirements of Directive 95/56/EC is security: the controller must
“implement appropriate technical and organizational measures to protect personal data against
accidental or unlawful destruction or accidental loss, alteration, unauthorized disclosure or

SPECS Project - Deliverable 1.5.2 43

Secure Provisioning of Cloud Services based on SLA Management

access, in particular where the processing involves the transmission of data over a network, and
against all other unlawful forms of processing.”

The SPECS platform supports this requirement by enabling the controller to select security
mechanisms and negotiating the agreed security SLA. As an example, the Secure Storage
application, which relies on DBB and E2EE mechanisms (see deliverables D5.2.1 and D5.2.2),
offers a storage service, able to grant read-freshness and write-serializability. As shown in
SPECS demos, the SPECS application notifies any unauthorized change of a document,
generating a violation, and recovers the latest valid version of the document.

Deliverable D5.2.1 (table 2, page 24) illustrates the security controls that the Data Controller,
as SPECS Application user, can request and agree on to demonstrate the adoption of
appropriate technical and organizational measures to protect data.

5.4.3. Other benefits of the SPECS platform

Beyond information security, we examine further data protection related features of the
SPECS platform.

5.4.3.1. Data location control

The ViPR and SPECS integration, proposed by EMC in deliverable D5.3, introduces the data
geo-location security metric (ngDC_M2001, D5.3, page 21, Table 1). The innovative security
SLA management of the ViPR controller, enabled by SPECS, enables the Data Controller
(which acts as SPECS application customer) to request explicitly to the ViPR controller to
acquire resources only in fixed availability zones.

5.4.3.2. Accountability

In the field of data protection, accountability describes “the ability of parties to demonstrate
that they took appropriate steps to ensure that data protection principles have been
implemented” [9]. It is a cornerstone of the future data protection regulation.

SPECS makes security objectives an explicit part of the signed SLA. Moreover, SPECS provides
tools to monitor in real time the current level of security of the service that is used. This offers
two clear benefits in terms of accountability for SPECS customers (such as FlowerPower in
the use-case):
e SPECS customers can demonstrate that they designed their processing with explicit
security properties in mind, as illustrated in the SLA.
e SPECS customers can report the current level of security of their cloud system, and
take proactive measures if alerts are issued.
When dealing with authorities, these elements can help customers demonstrate that they
conducting “due diligence” with respect to personal data processing, in acting in an
accountable fashion.

SPECS Project - Deliverable 1.5.2 44

Secure Provisioning of Cloud Services based on SLA Management

6. Conclusions

By presenting all technical aspects of the integration of SPECS components and applications,
and elaborating on performance, scalability, and security properties of the developed
solutions, this deliverable concludes the report on SPECS integration activities.

In this document we have summarized the integration approach adopted in the project by
reporting the integration plan and the continuous integration approach in SPECS as defined in
deliverables D4.5.2 and D1.5.1. We have elaborated on integration examples by providing
implementation details of integration scenarios for core components as well as the SPECS
applications. Finally, we have defined the approach to performance and scalability analysis of
the developed SPECS software, and presented the methodology adopted to evaluate security
aspects of core components and applications. Since SPECS also processes personal data of
cloud users, we have discussed how the data regulation is considered and adopted in SPECS.

Security review and assessment of the SPECS platform outlined that it is perfectly in line with
the declared TRL levels (TRL3/4) and we identified the main issues to address in order to
move the overall solution to higher TRL levels.

Performance analysis illustrates that the minimal configuration adopted is able to support up
to one hundred users per minute, which implies the support of a cloud environment that
delivers hundreds of VMs per second. Even if such performances are much more than needed
for the purpose of the project, it is worth noticing that the framework can be scaled up simply
by distributing components on multiple virtual machines, granting higher performances. The
provided benchmarking solution, adopted for the performance analysis, can be used in order
to fine tune such a solution according to the SPECS Owner’s needs.

Last but not least, all components rely on MongoDB [21] for data persistence, which was
configured to be scalable thanks to the activity related to monitoring (WP3, deliverable
D3.4.2). Even if we never tested such solution (being out of the goal of the project), all
components can be replicated and automatically synchronized, adopting ad-hoc
configurations, which are common at the state of the art.

SPECS Project - Deliverable 1.5.2 45

Secure Provisioning of Cloud Services based on SLA Management

Bibliography

[1]

[10]

[11]

[12]

[13]

[14]

“Chef”, 2008. [Online]. Available online, https://www.chef.io/, last accessed in April
2016.

“Hosted SPECS Testbed web user interface”, 2015. [Online]. Available online,
https://cloud.info.uvt.ro/, last accessed in April 2016.

“Atlassian Bamboo”, 2007. [Online]. Available online,
https://www.atlassian.com/software/bamboo/, last accessed in April 2016.

“leAT Bamboo - Build Dashboard”, 2015. [Online]. Available online,
https://bamboo.services.ieat.ro/allPlans.action, last accessed in January 2016.

“Apache Maven”, 2004. [Online]. Available online, http://maven.apache.org/index.html,
last accessed in April 2016.

“Selenium”, 2015. [Online]. Available online, http: //www.seleniumhg.org/, last accessed
in April 2016.

“SPECS Integration”, 2015. [Online]. Available online,
https://bitbucket.org/account/user/specs-team/projects/SPint, last accessed in April
2016.

“Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on
the protection of individuals with regard to the processing of personal data and on the free
movement of such data”, Official Journal of the European Union, L. 281:0031-0050, 1995.
Available online, http://eur-lex.europa.eu/legal-

content/EN/TXT /?uri=uriserv:0].L. .1995.281.01.0031.01.ENG, last accessed in March
2016.

Article 29 Data Protection Working Party, “Opinion 05/2012 on Cloud Computing”, WP
196, 2012. Available online, http://ec.europa.eu/justice /data-protection/article-
29/documentation/opinion-recommendation/files /2012 /wp196 en.pdf, last accessed
in March 2016.

R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modelling”, Wiley-Interscience, New York, NY,
April 1991.

Gatling Corp, “Gatling”, 2015. Available online, http://gatling.io/#/, last accessed in
March 2016.

The Open Web Application Security Project, “Application Security Verification Standard
(2014)”, 2014. [Online]. Available online,

https://www.owasp.org/images/5/58 /OWASP_ASVS Version 2.pdf, last accessed in
March 2016.

“Selenium”, 2015. Available online, http://www.seleniumhg.org/, last accessed in April
2016.

“OWASP”, 2016. Available online, https://www.owasp.org/index.php/Main Page, last
accessed in April 2016.

SPECS Project - Deliverable 1.5.2 46

https://www.chef.io/
https://cloud.info.uvt.ro/
https://www.atlassian.com/software/bamboo/
https://bamboo.services.ieat.ro/allPlans.action
http://maven.apache.org/index.html
http://www.seleniumhq.org/
https://bitbucket.org/account/user/specs-team/projects/SPint
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.1995.281.01.0031.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.1995.281.01.0031.01.ENG
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2012/wp196_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2012/wp196_en.pdf
http://gatling.io/#/
https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf
http://www.seleniumhq.org/
https://www.owasp.org/index.php/Main_Page

Secure Provisioning of Cloud Services based on SLA Management

[15]

[16]

[17]

[18]

[19]

[20]

[21]

SPECS Project - Deliverable 1.5.2

“OWASP Zed Attack Proxy Project”, 2016. Available online,
https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project, last accessed in
April 2016.

Microsoft, “STRIDE Threat Model”, 2002. Available online,
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx, last accessed in
April 2016.

Web Application Security Consortium, “WASC Project”, 2005. Available online,
http://www.webappsec.org/, last accessed in April 2016.

The MITRE Corporation, “Common Weakness Enumeration”, 2015. Available online,
https://cwe.mitre.org/, last accessed in April 2016.

SPECS, “SPECS Team Bitbucket account”, 2015. Available online,
https://bitbucket.org/specs-team/, last accessed in April 2016.

SPECS, “SPECS Performance tests”, 2016. Available online, https://bitbucket.org/specs-
team/specs-performance-benchmark, last accessed in April 2016.

MongoDB, “MongoDB”, 2016. Available online, https://www.mongodb.org/, last
accessed in April 2016.

47

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
http://www.webappsec.org/
https://cwe.mitre.org/
https://bitbucket.org/specs-team/
https://bitbucket.org/specs-team/specs-performance-benchmark
https://bitbucket.org/specs-team/specs-performance-benchmark
https://www.mongodb.org/

Secure Provisioning of Cloud Services based on SLA Management

Appendix 1. SPECS prototypes

The following three tables provide a mapping of SPECS artifacts (core components, security
mechanisms, and example applications) to the project’s Bitbucket repositories and web sites,
where the interested reader can find the SPECS prototypes.

SLA Platform
SLA Manager e https://bitbucket.org/specs-team/specs-core-sla platform-sla manager-api
e https://bitbucket.org/specs-team/specs-core-sla platform-sla manager
Service Manager e https://bitbucket.org/specs-team/specs-core-sla platform-service manager
e https://bitbucket.org/specs-team/specs-core-sla platform-service manager-
api
Interoperability e https://bitbucket.org/specs-team/specs-core-sla platform-interoperabilit
Layer
Metric Catalogue e https://bitbucket.org/specs-team/specs-core-sla platform-security-metric-
catalogue
e https://bitbucket.org/specs-team/specs-core-sla platform-
security metric catalogue-api
Negotiation module
SLO Manager e https://bitbucket.org/specs-team/specs-core-negotiation-slomanager
Supply Chain e https://bitbucket.org/specs-team/specs-core-negotiation-
Manager supply chain manager
Security Reasoner e https://bitbucket.org/specs-team/specs-core-negotiation-securityreasoner
Enforcement module
Planning e https://bitbucket.org/specs-team/specs-core-enforcement-planning
Implementation e https://bitbucket.org/specs-team/specs-core-enforcement-implementation
e https://bitbucket.org/specs-team/specs-core-enforcement-broker
Diagnosis e https://bitbucket.org/specs-team/specs-core-enforcement-diagnosis
RDS e https://bitbucket.org/specs-team/specs-core-enforcement-rds
Monitoring module
Event Hub e https://bitbucket.org/specs-team/specs-monitoring-eventhub
Event Archiver e https://bitbucket.org/specs-team/specs-monitoring-event-archiver
MoniPoli Filter e https://bitbucket.org/specs-team/specs-core-monitoring-monipoli
CTP e https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-
adaptor
e https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-
server
Nmap e https://bitbucket.org/specs-team/specs-monitoring-nmap
Enabling Platform
Launcher e https://dashboard.cloud.specs-project.eu/#
Core Repository e https://bitbucket.org/specs-team/specs-core-enforcement-repository
Mechanism e https://bitbucket.org/specs-team/specs-core-enabling platform-repositor
Repository
Vertical Layer
User Management e https://bitbucket.org/specs-team/specs-core-vertical layer-user manager
Auditing e https://bitbucket.org/specs-team/specs-core-sla platform-auditing
Security Tokens e https://bitbucket.org/specs-team/specs-utility-security-tokens
Credential Service e https://bitbucket.org/specs-team/specs-utility-credential manager
e https://bitbucket.org/specs-team/specs-enforcement-credentials-service (old
version)

SPECS Project - Deliverable 1.5.2 48

https://bitbucket.org/specs-team/specs-core-sla_platform-sla_manager-api
https://bitbucket.org/specs-team/specs-core-sla_platform-sla_manager
https://bitbucket.org/specs-team/specs-core-sla_platform-service_manager
https://bitbucket.org/specs-team/specs-core-sla_platform-service_manager-api
https://bitbucket.org/specs-team/specs-core-sla_platform-service_manager-api
https://bitbucket.org/specs-team/specs-core-sla_platform-interoperability
https://bitbucket.org/specs-team/specs-core-sla_platform-security-metric-catalogue
https://bitbucket.org/specs-team/specs-core-sla_platform-security-metric-catalogue
https://bitbucket.org/specs-team/specs-core-sla_platform-security_metric_catalogue-api
https://bitbucket.org/specs-team/specs-core-sla_platform-security_metric_catalogue-api
https://bitbucket.org/specs-team/specs-core-negotiation-slomanager
https://bitbucket.org/specs-team/specs-core-negotiation-supply_chain_manager
https://bitbucket.org/specs-team/specs-core-negotiation-supply_chain_manager
https://bitbucket.org/specs-team/specs-core-negotiation-securityreasoner
https://bitbucket.org/specs-team/specs-core-enforcement-planning
https://bitbucket.org/specs-team/specs-core-enforcement-implementation
https://bitbucket.org/specs-team/specs-core-enforcement-broker
https://bitbucket.org/specs-team/specs-core-enforcement-diagnosis
https://bitbucket.org/specs-team/specs-core-enforcement-rds
https://bitbucket.org/specs-team/specs-monitoring-eventhub
https://bitbucket.org/specs-team/specs-monitoring-event-archiver
https://bitbucket.org/specs-team/specs-core-monitoring-monipoli
https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-adaptor
https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-adaptor
https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server
https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server
https://bitbucket.org/specs-team/specs-monitoring-nmap
https://dashboard.cloud.specs-project.eu/
https://bitbucket.org/specs-team/specs-core-enforcement-repository
https://bitbucket.org/specs-team/specs-core-enabling_platform-repository
https://bitbucket.org/specs-team/specs-core-vertical_layer-user_manager
https://bitbucket.org/specs-team/specs-core-sla_platform-auditing
https://bitbucket.org/specs-team/specs-utility-security-tokens
https://bitbucket.org/specs-team/specs-utility-credential_manager
https://bitbucket.org/specs-team/specs-enforcement-credentials-service

Secure Provisioning of Cloud Services based on SLA Management

Security Mechanisms

WebPool e https://bitbucket.org/specs-team/specs-mechanism-enforcement-webpool
TLS e https://bitbucket.org/specs-team/specs-core-enforcement-tls

SVA e https://bitbucket.org/specs-team/specs-mechanism-enforcement-

sva dashboard
e https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva
e https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva core
e https://bitbucket.org/specs-team/specs-mechanism-enforcement-

sva vulnerability manager
e https://bitbucket.org/specs-team/specs-mechanism-monitoring-openvas

DoS e https://bitbucket.org/specs-team/specs-mechanism-enforcement-dos
e https://bitbucket.org/specs-team/specs-mechanism-monitoring-dos

E2EE & DBB https://bitbucket.org/specs-team/specs-enforcement-e2ee-koofr-client

https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-client
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server
https:

bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-auditor
e https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter
AAA e https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa

e https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa-client

SPECS Applications
Secure Web e https://bitbucket.org/specs-team/specs-app-webcontainer-demo
Container e https://bitbucket.org/specs-team/specs-app-webcontainer

e https://bitbucket.org/specs-team/specs-app-webcontainer-rev2

e https://bitbucket.org/specs-team/specs-app-platform interface
Metric Catalogue e https://bitbucket.org/specs-team/specs-app-security metric catalogue
Security Reasoner e https://bitbucket.org/specs-team/specs-app-securityreasoner

SPECS Project - Deliverable 1.5.2

49

https://bitbucket.org/specs-team/specs-mechanism-enforcement-webpool
https://bitbucket.org/specs-team/specs-core-enforcement-tls
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_dashboard
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_dashboard
https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_core
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-monitoring-openvas
https://bitbucket.org/specs-team/specs-mechanism-enforcement-dos
https://bitbucket.org/specs-team/specs-mechanism-monitoring-dos
https://bitbucket.org/specs-team/specs-enforcement-e2ee-koofr-client
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-client
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-auditor
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter
https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa
https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa-client
https://bitbucket.org/specs-team/specs-app-webcontainer-demo
https://bitbucket.org/specs-team/specs-app-webcontainer
https://bitbucket.org/specs-team/specs-app-webcontainer-rev2
https://bitbucket.org/specs-team/specs-app-platform_interface
https://bitbucket.org/specs-team/specs-app-security_metric_catalogue
https://bitbucket.org/specs-team/specs-app-securityreasoner

Secure Provisioning of Cloud Services based on SLA Management

Appendix 2.

SPECS artifacts in deliverables

The following table (part of it was initially reported in D1.1.3 at M24) presents the mapping
among SPECS artifacts and the project’s deliverables to enable the reader to locate the design
and the implementation details for each SPECS artifact.

SPECS artifact Design Implementation
SLA Platform SLA Manager D1.4.1 D1.4.2
Service Manager D1.4.1 D1.4.2
Interoperability Layer D1.4.1 D1.4.2
Metric Catalogue D1.4.1 D1.4.2
Negotiation module SLO Manager D2.2.2 D2.3.2,D2.3.3
Supply Chain Manager D2.2.2 D2.3.2,D2.3.3
Security Reasoner D2.2.2 D2.3.2,D2.3.3
Enforcement module Planning D4.2.2 D4.3.2,D4.3.3
Implementation D4.2.2 D4.3.2,D4.3.3
Diagnosis D4.2.2 D4.3.2,D4.3.3
RDS D4.2.2 D4.3.2,D4.3.3
Monitoring module Event Hub D3.3 D3.4.1,D3.4.2
Event Archiver D3.3 D3.4.2
MoniPoli Filter D3.3 D3.4.2
CTP D3.3 D3.4.2
Nmap D3.3 D3.4.2
Enabling Platform Launcher D1.6.2 D1.6.1,D1.6.2
Custom OS D1.6.1,D1.6.2 D1.6.1,D1.6.2
Core Repository D1.6.1,D1.6.2 D1.6.1,D1.6.2
Mechanism Repository D1.6.1,D1.6.2 D1.6.1,D1.6.2
Vertical Layer User Manager D1.4.1 D1.4.2
Auditing D1.4.1 D1.4.2
Security Tokens D4.2.2 D4.4.2
Credential Service D4.2.2 D4.4.2
Security Mechanisms | WebPool D4.2.2 D4.3.2
TLS D4.2.2 D4.3.2
SVA D4.2.2 D4.3.2
DoS D4.2.2 D4.3.3
DBB D4.2.2 D4.3.2
E2EE D4.2.2 D4.3.2
AAA D4.2.2 D4.3.3
Applications Secure Web Container D5.1.3 D5.1.3,D1.5.2
Secure Storage D5.2.1 D5.2.2
ngDC D5.3 D5.3
AAAaa$S D5.4 D5.4
Metric Catalogue D5.1.3 D5.1.3,D1.5.2
Security Reasoner D2.3.1 D1.5.2
APIs D1.3 D1.3

SPECS Project - Deliverable 1.5.2

50

Secure Provisioning of Cloud Services based on SLA Management

Appendix 3. Integration user guide

In the following we present a user guide to integration process in SPECS. We report the
guidelines for preparing a Bitbucket repository for an integration test, setting up a Bamboo
build plan, setting up a Bamboo deployment project, and finally running the integration test.

Preparing a Bitbucket repository
First, create a Bitbucket repository named specs-integration-test-<scenario>, where <scenario>
is the name of the integration scenario or the name of the integration scenario family. For
example, for the integration scenario family Core-AB, create a Bitbucket repository with a
name specs-integration-test-coreAB.

Each integration scenario can have its own Bitbucket repository, but preferably similar
integration scenarios implemented with similar technologies are joined in the same Bitbucket
repository. Put the repository in the Bamboo project SPECSintegration.

For each integration scenario implement one or more tests using any testing framework
which can be run with maven (Junit, TestNG). For easier debugging and identifying problems,
it is useful that tests print as much as possible diagnostics information to the standard output
which will be seen in the Bamboo logs.

The IP of the VM with integration testing environment running the SPECS platform is passed
to tests through environment variable named SPECS_PLATFORM_IP. The value can be
retrieved using the Java method System.getenv():

System.getenv ("SPECS PLATFORM IP")

Setting up the Bamboo build plan
For each integration scenario create a Bamboo build plan in the project Integration with the
name equal to the scenario name. The build plan should have a job with following two tasks:

1. Source Code Checkout, which retrieves the corresponding repository from the

Bamboo.
2. Maven 3.x, which runs the corresponding integration test(s).

In case the repository contains only one integration scenario, the Maven task's goal is:

clean test

In case the repository contains tests for more than one integration scenario, the Maven task's
goal should specify which test(s) to run:

clean test -Dtest=<test class name>

For example, for the core integration scenario Core-AB1, the Maven taks’s goal is:

clean test -Dtest=IntegrationScenarioCoreABlTest

SPECS Project - Deliverable 1.5.2 51

Secure Provisioning of Cloud Services based on SLA Management

The IP of the integration VM running the SPECS platform can be passed to the integration test
using an environment variable. Add the following to the field Environment variables in the
Maven task configuration:

-DSPECS PLATFORM IP=${bamboo.integrationEnvironmentIp}

Here the bamboo.integrationEnvironmentlp is a Bamboo global variable containing the IP of
the integration VM.

Setting up the Bamboo deployment project

SPECS components are installed by the Chef® client running on a VM using Chef recipes. Chef
client runs periodically and checks if all recipes from the run list are installed. We use this
behaviour of the Chef client to update SPECS components on the integration VM. After a
Bamboo build plan has successfully completed, the deployment is triggered to undeploy the
old version of the corresponding SPECS component. The Chef client detects that the
components is missing and reinstalls the latest version.

To configure a Bamboo deployment project, take the following steps:
1. Create a deployment project and link it to the corresponding build plan.

2. Add an environment to the deployment project named, for example, Integration.
3. For this environment, define the task Undeploy Tomcat Application with the following
settings:
a. Tomcat Manager URL: http://${integrationEnvironmentlp}:8080/manager
b. Tomcat Manager username and password corresponding to the user defined in
the Tomcat configuration file tomcat-users.xml.

c. Application context to which the corresponding SPECS component is deployed.

4. Add the trigger After successful build plan to the environment Integration.

Running integration tests

Integration tests can be run manually by running the corresponding Bamboo build plan or
automatically according to a schedule. The output of the integration test can be checked in the
Bamboo build plan logs.

5 For the details about how Chef is used in SPECS, see deliverable D4.2.2.
SPECS Project - Deliverable 1.5.2 52

Secure Provisioning of Cloud Services based on SLA Management

Appendix4. Performance analysis of the SLA Platform and the
default SPECS application

We prepared user profiles for the following set of SLA Platform core components:
SLA Manager

e Service Manager

e Metric Catalogue

e Interoperability Layer

The four tables below summarize the user profiles used to stress test each of the component.
Note that, in the case of the Interoperability Layer, the tests only stress its interface to create
new Virtual interfaces. In order to test it correctly, it should be stressed using the profiles of
the other components, once it is configured in order to redirect their invocations.

Note that all SLA Platform components have a very simple behaviour and they are just a thin
layer over their persistence solution (MongoDB): their relevance is in the metadata that they
maintain (SLA documents with their state, Services metadata, metrics description) more than
on the simple REST API offered.

User profile Description Scripts

SLA Create Create a new SLA in the SLA e SLAPostInject.scala
Manager e SLAPostRamp.scala

SLA Get Retrieve the list of SLA documents, | ¢ SLAGetsInject.scala
get one of them and store it e SLAGetsRamp.scala

SLA Sign Retrieve the list of SLA documents, e SLASignInject.scala
sign one of them e SLASignRamp.scala

Table 38. SLA Manager user profiles for performance tests

User profile Description Scripts

Service Create a new Mechanism in the e ServicePostInject.scala

Create Service Manager e ServicePostRamp.scala

Service Get Retrieve the list of Mechanisms, get | ¢ ServiceRequestsInject.scala
one of them and store it e ServiceRequestsRamp.scala

Table 39. Service Manager user profiles for performance tests

User profile Description Scripts

Metric Create a new metric in the e MetricPostInject.scala

Create catalogue e MetricPostRamp.scala

Metric Get Retrieve the list of metrics, getone e MetricRequestsInject.scala
of them and store it e MetricRequestsRamp.scala

Table 40. Metric Catalogue user profiles for performance tests

User profile Description Scripts

Virtual Interface Create a new virtual Interface | ¢ InteroperabilityPostInject.scala

Create in the Interoperability Layer e InteroperabilityPostRamp.scala

Virtual Interface | Retrieve the list of Virtual e InteroperabilityGetsInject.scala

Get Interfaces, get one of themand | ¢ InteroperabilityGetsRamp.scala
store it

Table 41. Interoperability Layer user profiles for performance tests

SPECS Project - Deliverable 1.5.2 53

Secure Provisioning of Cloud Services based on SLA Management

The default SPECS application user profiles were built according to the proposed user
interface and to the SLA life cycle phases. Table 42 summarizes the proposed user profiles.
Note that Implementation scripts cannot be adopted against the real integrated environment,
due to the limited availability of resources on the testing environment. We can only stress the
Implementation component by disabling the real brokering function. According to such
considerations, we made a single user profile, associated to the Wizard, which orchestrates all
requests to the platform, so summarizing the overall behaviour during the real application
execution. Performance figures reported in the tables present all calls invoked by the
application wizard.

User Profile Description Scripts
Wizard Perform the full negotiation process, e WizardInject.scala
selecting all the proposed capabilities e WizardRamp.scala

Table 42. SPECS application user profiles for performance tests

In the following we present results of performance tests for the components of the SLA
Platform and the default SPECS application.

SLA Manager

In the table below we present performance results for the SLA Manager component. In the left
column we illustrate the throughput granted by the SLA Manager under an increasing load up
to 250 users per second, and in the right column we present the response time of the
associated tests. Throughput is much lower when operations require the read operations
(that implies a listing of all SLAs and access to one of them), allowing only ten or twelve of
concurrent users per second (i.e., 120 users per minute).

Throughput Response Time
SLA Manager Create Throughput SLA Manager Create Response Time
240 8000
? 180 g 000
o - [J—
i 120 PR
2 g
H -4
S g
= 60 o 2000
0 0
0 100 150 200 210 220 230 240 250 0 100 150 200 210 220 230 240 250
Rate {users/ s) Rate (users/ s)
SLA Manager Post Throughput SLA Manager Response Time
240 000
_ 180 z 6000
@
g s
= E
[
% 120 g 4000
= =
g g
S @
60 © 2000
0 i
0 100 150 200 210 220 230 240 250 100 150 200 210 220 230 240 250
Rate/s Rate (users’s)

SPECS Project - Deliverable 1.5.2 54

Secure Provisioning of Cloud Services based on SLA Management

SLA Manager GET Throughput SLA Manager GET Response Time
300 16000
g 225 g 12000
@
2 E
= _ [
& 150 @ 2000
o 1=
=5 5}
2 2
= &
75 4000
0 0
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Rate (users/s) Rate (users/s)
SLA Manager SIGN Throughput SLA Manager SIGN Response Time
30 12000
? 225 g 9000
o
£
;g 15 % BOOO
o
g 2
= 3
= ThH =4 3000
0 i)
0 4 3 8 10 12 0 4 3 8 10 12
Rate (users/ s) Rate (Users/ sec)

Table 43. Performance results for the SLA Manager

Service Manager

In the table below we present performance results for the Service Manager component. In the
left column we illustrate the throughput granted by the Service Manager under an increasing
load up to 130 users per second, and in the right column we present the response time of the
associated tests.

Throughput Response Time
Service Manager Create Throughput Service Manager Create Response Time
120 12000
= a0 .
ﬁ g’ 9000
g 2
= 60 = -
§ o 6000
: 2
g‘ [=]
g 3
h:- 30 fg’f 3000
0 0
0 50 75 100 10 120 130 i 50 75 100 10 120 130
Rate {users/ s) Rate [users/ s)

SPECS Project - Deliverable 1.5.2 55

Secure Provisioning of Cloud Services based on SLA Management

Service Manager GET Throughput Service Manager GET Response Time
16 30000

22500

15000

Throughput (reg/ s)
@
Response Time (ms)

4 7500

0 1 3 5 8 10 0 1 3 g 8 10
Rate (users/g) Rate (user/s)

Table 44. Performance results for the Service Manager

Metric Catalogue

In the table below we present performance results for the Metric Catalogue component. In the
left column we illustrate the throughput granted by the Metric Catalogue under an increasing
load up to 450 users per second, and in the right column we present the response time of the
associated tests.

Throughput Response Time
Metric Catalogue GET Throughput Metric Catalogue GET Response Time
800 30000

600 22500

400 15000

Throughput (req/ s)
Response Time (ms)

200 7500

0 0
0 100 140 180 220 260 300 350 400 450 0 100 140 180 220 260 300 350 400 450

Rate (users/ s Rate (users/ 3
Metric Catalogue POST Throughput Metric Catalogue POST Response Time
10 3000

-
iy

2250

1500

Throughput (req./ s)
o
Response Time (ms)

t
i

Rate (users/ s Rate (users/s)

Table 45. Performance results for the Metric Catalogue

Interoperability Layer

In the table below we present performance results for the Interoperability Layer component.
In the left column we illustrate the throughput granted by the Interoperability Layer, and in
the right column we present the response time of the associated tests. Note that the tests

SPECS Project - Deliverable 1.5.2 56

Secure Provisioning of Cloud Services based on SLA Management

illustrate the number of new virtual interfaces created (an operation that is performed
rarely).

Throughput Response Time
Interoperability POST Throughput Interoperability POST Response Time

4 8000

3 = 6000
= £
g 2
5 - =

2 2 3 4000
o =
= (=]
3 &
=]

= 1 = 2000

i 0

0 1 2 3 4 5
Input Rate (users/s) Input Rate (users/ s)
Interoperability GET Throughput Interoperability GET Response Time

120 1600

> 90 2 1200
o =
[L1
= E
5 _ [

= 60 P 200
o =
= 5]
2 =3
[i

30 « 400

0 0

0 15 a0 45 60 0 15 30 45 &0
Input Rate (users/ s) Input Rate (users/ s

Table 46. Performance results for the Interoperability Layer

Default SPECS application

In the table below we present performance results for the default SPECS application. In the
left column we illustrate the throughput granted by the SPECS application, and in the right
column we present the response time of the associated tests. In the graphs below, we report
the values for each action of the application wizard. The application wizard implies the
execution of all the services offered by the SPECS Platform, according to the flow discussed in
deliverable D1.3.

It is worth noticing that the application can manage about 3-4 user per second (i.e. about 120
user per minute). The wizard results in the acquisition of a varying number of VMs between 3
and 5, as a consequence 100 user per minute, implies about 300 VMs delivered per minute
(SPECS testbed can deliver at most 30 VMs in total).

According to such result, even the minimal configuration proposed (all components hosted in

the same VM, excluded only the Chef server) with only 1 GB of RAM memory enables to
manage a little datacenter (few hundreds of VMs available).

SPECS Project - Deliverable 1.5.2 57

Secure Provisioning of Cloud Services based on SLA Management

Throughput Response Time
SPECS App Wizard - Throughput SPECS App Wizard - Response Time
24 24000
_ 18 & 18000
= £
g 2
g 12 E 12000
=
= 6 L 6000
0 o
0 1 2 3] 1 2 3 4
Input Rate (users/s) Input Rate (users/ s)
SPECS App Welcome - Throughput SPECS App Welcome - Response Time (ms)
24 16000
_ 18 = 12000
2 £
€ L)
= E
2 1.2 E 8000
o
L)
= 0,8 T 000
0 0
0 1 2 3 0 1 2 3 4
Input Rate (users/s) Input Rate (users/ s)
SPECS App GET Capabilities - Throughput SPECS App GET Capabilities - Response Time
2,4 30000
_ 18 = 22500
2 E
g @
< £
F 12 Y 15000
2
E o
= 0,6 @ 7500
0 0
0 1 2 3 0 1 2 3
Input Rate {users./ s) Input Rate (users/s)
SPECS App GET Controls - Throughput SPECS App GET Controls - Response Time
24 2000
_ 18 > 6000
2 £
@ @
= E
H 12 E 4000
o
I}
= 06 © p00
0 0
0 1 2 3 i 1 2 3 4
Input Rate (users/ s) Input Rate (users/s)

SPECS Project - Deliverable 1.5.2

58

Secure Provisioning of Cloud Services based on SLA Management

SPECS App GET Services - Throughput

20000

SPECS App GET Services - Response Time

0 1 2 3

Input Rate (users/s)

24
18 = 18000
@ ' E
=] 5 =~ 10000
g 12 &
:
05 o R000
0 1]
0 1 2 3 1] 1 2 3 4
Input Rate (users/s) Input Rate {users/ s)
SPECS App GET SLOs - Throughput SPECS App GET SLOs - Response Time
24 8000
— 1.8 & BO0D
w %
2 £
Q o
< E
2 1.2 % 4000
5 2
a3 5]
:
0,6 = 2000
o 0
v 1 2 3 0 1 2 3 4
Input Rate (users/ s) Input Rate (users/s)
SPECS App Submit Offer - Throughput SPECS App Submit Offer - Response Time
2,4 30000
» 18 g 22500
g g
5 5 = 5
=S 12 o 15000
g H
= 4
[
06 * 7500
0 0
0 1 2 3 0 1 2 3 4
Input Rate (users/s) [nput Rate (users/s)
SPECS App SIGN SLA - Throughput SPECS App SIGN SLA - Response Time
24 20000
- 18 = 15000
< £
@ @
: £
=1 o =~
2 12 2 10000
5
= 3
= 06 = 5000

] 1 2 3

Input Rate (users/ s

=

Table 47. Performance results for the default SPECS application

SPECS Project - Deliverable 1.5.2

59

Secure Provisioning of Cloud Services based on SLA Management

Appendix 5. SPECS application penetration testing

In the following we present results of the penetration testing of the default SPECS application.
Cross Site Scripting

The application is affected by several Cross Site Scripting vulnerabilities. The issue has been
verified using simple javascript codes (iframe, alert popup).

Below are the URLs and the screenshots of the affected pages.

Example 1: Page: /specs-app-SecurityReasoner/user/SelectEvaluationAction.do

Request example:

selectedCaigs=78%24Softlayer-CAIQ-v1.1.-2012-11-
05&selectedJudgments=27%24judgment+1+%$28administrator<iframe
onload=alert ("Silvio rules"></iframe>%$29&metodo=singleEvaluation

Silvio rules!

]

Example 2: Page: /specs-app-SecurityReasoner/user/SelectEvaluationAction.do

Request example:

selectedCaigs=76%24Amazon+EC2+-CAIQ-v2-2013-11-
01</script><script>alert (l)</script>&selectedJudgments=27%24judgment+1+%
28administrator%$29&metodo=singleEvaluation

SPECS Project - Deliverable 1.5.2 60

Secure Provisioning of Cloud Services based on SLA Management

@ | apps.specs-project.eu/specs-app-SecurityReasoner/user/SelectEvaluationAction.do

Example 3: Page: /metric-catalogue-app/services/rest/store

Request example:

_| Reausst | esponss |
| Row | porams [Heagers | rex |

POST /metric-catalogue-app/services/rest/store HTTE /1.1

Host: 194.102.82.222:8080

User-Agent: Mozilla/5.0 (Windows NT £.1; WOWE4; rv:42.0) Gecko/Z01001l01 Firefox/42.0
Aocept: text/html, application/xhtml4xml, application/®ml;gq=0.9, */*;q=0.8
Lecept-Language: it-IT,it;q=0.8,en-U3;q=0.5,en;q=0.3

Aocept-Encoding: gzip, deflate

Content-Type: application/json; charsec=UTF-8

Beferer: http://184.102.62.222:8080/metric—catalogus-app/store_metric.isp
Content-Length: 112

Cookie: JSESSICNID=ELCTEECSI70CT7CO4EDE4330D03A109EE

Connection: close

Pracma: no-cachs

Cache-Control: no-cache

{"referenceld":"<scriptralert () </script>", "¥MLdescription":"<scriptralert (2 </script>", "metricType": "concrece™}

Output:

Request

_LiniJPMHkm THexT}ﬂHLTFhmhr]
HTTF/Ll.1 Z00 OK

Server: Apache-Coyote/Ll.1
Content-Type: text/html
Content-Length: 25

Date: Mon, 14 Dec Z015 18:1Z:2& GHT
Connection: close

<gcriptralert(2)</script>

SPECS Project - Deliverable 1.5.2 61

Secure Provisioning of Cloud Services based on SLA Management

Solution
It is necessary to implement an input validation and sanitization mechanism on all the pages
of the application to prevent the injection of malicious code. Output encoding is necessary, too.

It is not recommended to create custom filters; anyway, the validation should not be based on
the concept of "blacklist", specifying which characters should be removed, but on the
"whitelist", allowing only the characters that are expected.

Applicative errors not handled correctly

The application does not handle applicative errors, showing details which contain sensitive
information about the source code and the version of the web application server, as shown in
the following screenshot below.

| @ 194.102 62.222:8080/metric-catalogue-app/show_abstract_metric jspTmetric_id=M14_vulnerability_list_max_age

Metric retrieve unsuccessfully!
Error: 500 - =html=<head=<titte=Apache Tomcat/7.0.64 - Error report=fitle==style=<I-H1 {font-family:Tahoma Arial sans-serif,colorwhite;background-color#525076; font-size: 22px;} H2 {font-
family: Tahoma, Arial sans-serif,colorwhite; background-color#525076; font-size: 16px} H3 {font-family. Tahoma,Arial sans-serif.color:white;background-color-#5250D76 font-size: 14px} BODY {ffont-
family.Tanoma,Arial sans-serif,color:black; background-color:white;} B {font-family. Tahoma,Arial, s ans-s erif,colorwhite; background-color#525076;} P {font-family.Tahoma,Arial,sans-
serif,background:white,colorblack;font-size: 12px;}4 {color : black;}A.name {color : black}HR {color : #525D76 }—=</slyle> </head==body==h1=HTTP Status 500 - java.lang.lllegalArgumentExceplion:
SecurityMetric_ldentifier is not valid=/h1=<HR size="1" noshade="noshade"=<p=<b=type=</b= Exception report=/p==p=message=</b= <u=javalanglllegalArgumentException: SecurityMetric_ldentifie
is not valid=/u==/p==p==b=description=/b= <=u=The server encountered an internal error that prevented it from fulfilling this request. =fu=</p==<p=<b=exception=/b> =pre=javax senviet. SendetException:
java.lang.llegalArgumentException: SecurityMetric_|dentifier is not valid

org.glassfish jersey.senet WebComponent.senice(WebComponent java:397)

org.glassfish jersey sendet ServietContainersenvice(SenvietContainerjava:381)

org.glassfish jersey.sendet ServietContainersenvice(SenvietContainerjava:344)

org.glassfish jersey.sendet ServietContainersenvice(SenvietContainerjava:221)

org.apache tomcatwebsocket.server WsFilter doFilter(WsFilter java:52)
=lpre==/p==p==b=root cause=/b= =pre=java.lang.lllegalArgumentException: SecurityMetric_ldentifier iz not valid

eu.specsproject.slaplatfiorm.metriccatalogue.internal EUMetricManager3QLJPA persistence GetSMTByID(EUMetricManagerSQLIPA java:73)

el.specsproject.slaplatform.metriccatalogue.internal EUMetricManagerAbstractimpl.retrieve SMT(EUMetricManagerAbstractimpl java:96)

eu.specsproject.slaplatform.mefriccatalogue.api.restirontend. SMTResource.getSMT(SMTResource java:58)

sun.reflect GeneratedMethodAcces sor1265.invoke(Unknown Source)

sun.reflect DelegatingMethodAccessorimplinvoke(DelegatingMethodAccessorimpl java:43)

Jjavalang.reflect Method.invoke(Method java: 497)

org.glassfish jersey.servermodelinternal Res ourceMethodinvocationHandlerFactory$1.invoke(ResourceMethodinvocationHandlerFactory java:81)

org.glassfish jersey.servermodelinternal AbstractlavaRes ourceMethodDispatcher$1.run(Abstract/avaRes ourceMethodDispatcherjava:151)

org.glassfish jersey server model internal AbstractlavaResourceMethodDispaicherinvoke(AbstractJavaResourceMethodDispatcherjava: 172)

org.glassfish jersey.servermodel.internal JavaResourceMethodDispatcherProvider§Type Outinvoker.doDispatch(JavaResourceMethodDis patcherProvider java: 195)

org.glassfish jersey.server model.internal AbstractlavaResourceMethodDispatcherdispatch(AbstractJavaResourceMethodDispatcher java: 104)

org.glassfish jersey.servermodel Res ourceMethodinvokerinvoke(ResourceMethodinvokerjava:384)

org.glassfish jersey.senvermodel ResourceMethodinvoker.apply(ResourceMethodinvokerjava:342)

org.glassfish jersey server model ResourceMethodinvokerapply(ResourceMethodinvokerjava: 101)

org.glassfish jersey.server ServerRuntime$1.run{ServerRuntime java:271)

org.glassfish jersevinternal.Errors$1.call(Errors java:271)

org.glassfish jerseyinternal.Errors$1.call(Errors java:267)

org.glassfish jerseyinternal Errors process(Errors java:315)

nrm mlnaefich ineeauinkarnal Crenee mramneefCrrare inun 00T

It's easy to generate the output, simply navigating the application.

Solution

The application should handle all errors with custom pages to prevent disclosure of
information (stack trace) that could be used by an attacker to perform a more focused attack
against the app.

Minor problems

In the following we report minor problems that have been detected for the default SPECS

application:

e The login page for manage tomcat exposed on http public (dictionary attack open).

e Monitor SLA does not work (at the time of the check).

e http://apps.specs-project.eu/examples/jsp/snp/snoop.jsp should not be exposed (it gives
information to attackers).

e http://apps.specs-project.eu/examples/servlets/index.html should not be present (it
could be used to inject code inside the server).

SPECS Project - Deliverable 1.5.2 62

http://apps.specs-project.eu/examples/jsp/snp/snoop.jsp
http://apps.specs-project.eu/examples/servlets/index.html

Secure Provisioning of Cloud Services based on SLA Management

http://apps.specs-project.eu/examples/jsp/ should not be present (it could be used to
inject code inside the server).

http://apps.specs-project.eu/examples/jsp/source.jsp error not managed.
http://apps.specs-project.eu/docs/ should not be exposed (exposes tomcat version).
http://apps.specs-project.eu/specs-app-webcontainer-demo/services/rest/slaTemplate
should be double checked on Firefox; the negotiation process does not work.

In the following we report minor problems that have been detected for the Metric Catalogue
application:

The “Get Metric Database” returns an empty file.

The “restore metric backup” returns 404 error.

Specifying string as number for a metric ID returns 404 error code.
http://apps.specs-project.eu/metric-catalogue-app/services/rest/retrieve/ output
encoding managed properly injecting code.

SPECS Project - Deliverable 1.5.2 63

http://apps.specs-project.eu/examples/jsp/
http://apps.specs-project.eu/examples/jsp/source.jsp
http://apps.specs-project.eu/docs/
http://apps.specs-project.eu/specs-app-webcontainer-demo/services/rest/slaTemplate
http://apps.specs-project.eu/metric-catalogue-app/services/rest/retrieve/

Appendix 6. Threat catalogue

In the following, we present the list of threats (each with an ID, name, and a description) analysed during the security assessment of the
default SPECS application. The list is based on the following sources:

e SRC1: CSA Survey on top threats to cloud computing in 20155

e SRC2: OWASP Top 10 Project 20137

e SRC3: Toward a Threat Model for Storage Systems?

e SRC4: OWASP ZAP?

We categorise each threat using the Microsoft's STRIDE threat model®:
e S=Spoofing

T = Tampering with data

R = Repudiation

I = Information disclosure

D = Denial of service

E = Elevation of privileges

Additionally we map specified threats against the WASC catalogue!* and the Common Weakness Enumeration (CWE)2.

6 CSA, “Survey for the CSA Top Threats to Cloud Computing 2015”, 2015. Available online, https://cloudsecurityalliance.org/media/news/survey-for-the-csa-top-threats-
to-cloud-computing-2015-report-is-open/, last accessed in April 2016.

7 OWASP, “OWASP Top 10 2013”, 2013. Available online, https: //www.owasp.org/index.php/Top 10 2013-Top 10, last accessed in April 2016.

8 R. Hasan, S. Myagamar, A.]. Lee, W. Yurcik, “Toward a Threat Modelfor Storage Systems in Proceedmgs of the StorageSS 05, the 2005 ACM Workshop on Storage
Security and Survivability, pp. 94-102, 2005. Available online, http: .ed df, last accessed
in April 2016.

9 “OWASP Zed Attack Proxy Project”, 2016. Available online, https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project, last accessed in April 2016.

10 Microsoft, “STRIDE Threat Model”, 2002. Available online, https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx, last accessed in April 2016.

1 Web Application Security Consortium, “WASC Project”, 2005. Available online, http://www.webappsec.org/, last accessed in April 2016.

12 The MITRE Corporation, “Common Weakness Enumeration”, 2015. Available online, https://cwe.mitre.org/, last accessed in April 2016.

https://cloudsecurityalliance.org/media/news/survey-for-the-csa-top-threats-to-cloud-computing-2015-report-is-open/
https://cloudsecurityalliance.org/media/news/survey-for-the-csa-top-threats-to-cloud-computing-2015-report-is-open/
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3820&rep=rep1&type=pdf
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
http://www.webappsec.org/
https://cwe.mitre.org/

Secure Provisioning of Cloud Services based on SLA Management

ID NAME Description

T1 Account Hijacking In account hijacking, a hacker uses a compromised account to impersonate

the account owner. Typically, account hijacking is carried out through social
engineering, phishing, sending spoofed emails to the user, password
guessing or a number of other hacking tactics. In many cases, the outcome
of an account hijacking is the hacker will have full system access and the
ability to laterally access other systems on the target user network. The
effective breach scope may expand to other services, such as financial and
social networks, due to password re-use across services.

T2 Advanced An advanced persistent threat (APT) is a system attack in which an
Persistent unauthorized actor gains access to the infrastructure and remains
Threats (APTs) undetected. The intention of an APT attack is to locate and steal data and

evade detection, rather than to cause damage to the network or
organization. APT attacks target organizations in sectors with high-value
information, such as national defence, manufacturing, infrastructure,
medical, scientific, and the financial industry.

T3 Broken The application procedures related to authentication and session
Authentication management are often implemented incorrectly, allowing attackers to
and Session compromise passwords, keys, session tokens, or exploit weaknesses
Management implementative to impersonate other users.

T4 Cross-Site A CSRF attack forces the victim's browser to send an HTTP request properly
Request Forgery @ forged, including the victim's session cookie and any other authentication
(CSRF) information, to a vulnerable web application. This allows the attacker to

force the victim's browser to generate requests that the vulnerable
application will believe legitimately sent by the victim.
T5 Cross-Site XSS flaws occur when a web application receives data from unreliable
Scripting (XSS) sources, and send them to a browser without proper validation and / or

SPECS Project - Deliverable 1.5.2

STRIDE
S

Source
SRC1

SRC1

SRC2

SRC2

SRC2

WASC ID
WASC-18

WASC-01
WASC-11
WASC-12
WASC-18
WASC-37
WASC-47

WASC-09

WASC-08
WASC-24

CWEID

CWE-306
CWE-287
CWE-307
CWE-345
CWE-798
CWE-330
CWE-384
CWE-613
CWE-352

CWE-79
CWE-93

65

Secure Provisioning of Cloud Services based on SLA Management

T6

T7

Data Breaches

Denial of Service

"escaping". The XSS allows attackers to execute malicious scripts on the

browser of the victims; these scripts can hijack the user's session, deface the

website or redirect the user to a malicious site

A data breach is an incident in which sensitive, protected or confidential [SRC1
data has potentially been viewed, stolen or used by an individual

unauthorised lo do so. Data breaches may involve personal health

information (PHI), personally identifiable information (PIl), trade secrets or

intellectual property.

DoS and DDoS are both denial-of-service attacks. The attacks work by D SRCS1
requesting more resources from a server than the server has available. In

the case of DS, it is an attack that originates from a single device, as

opposed to DDoS which is distributed and relies on multiple devices.

SPECS Project - Deliverable 1.5.2

WASC-10

CWE-67
CWE-134
CWE-285
CWE-364
CWE-382
CWE-400
CWE-412
CWE-479
CWE-512
CWE-524
CWE-589
CWE-594
CWE-606
CWE-617
CWE-646
CWE-730
CWE-772
CWE-775
CWE-776
CWE-781
CWE-799
CWE-824
CWE-825

66

Secure Provisioning of Cloud Services based on SLA Management

T8 Injection

T9 Insecure Direct
Object
References

T10 Man in the
Middle attack

The Injection Flaws, such as SQL Injection, OS Injection and LDAP injection, T SRC2
occur when data not validated are sent as part of a command or query to

their interpreter. The data can deceive the interpreter running commands

not provided or accessing data for which you have no authorization.

When a developer exposes a reference to an internal implementation I SRC2
object, such as a file, directory, or a key in a database, it has a direct

reference to an object. Without proper access control or other protection,

attackers can manipulate these references to access unauthorized data.

MITM is an attack where the attacker secretly relays and possibly alters the S SRC1
communication between two parties who believe they are directly
communicating with each other.

SPECS Project - Deliverable 1.5.2

WASC-05
WASC-19
WASC-20
WASC-23
WASC-25
WASC-28
WASC-29
WASC-30
WASC-31
WASC-36
WASC-39
WASC-46

WASC-01
WASC-02
WASC-33

WASC-32

CWE-826
CWE-828
CWE-831
CWE-862
CWE-863
CWE-922
CWE-927
CWE-941
CWE-98
CWE-426
CWE-73
CWE-89
CWE-564
CWE-20
CWE-91
CWE-113
CWE-158
CWE-90
CWE-88
CWE-78
CWE-97
CWE-643
CWE-652
CWE-434
CWE-287
CWE-862
CWE-863
CWE-22

67

Secure Provisioning of Cloud Services based on SLA Management

Ti1

T12

Ti3

Ti14

T15

T16

T17

T18

Missing Function
Level Access
Control

Over-privileged
application and
accounts
Sensitive Data
Exposure

Unauthorized
access to admin
interface
Invalidated
Redirects and
Forwards

Weak Identity,
Credential &
Access
Management

Sniffing Storage
Traffic
Snooping on
Buffer Cache

Many applications check the level of access rights before its functionality is
made visible in the user interface. However, applications need to perform
access control on the server each time the feature is accessed. If access
requests are not verified, the attackers can falsify them to gain unauthorized
access to features.

Threat aimed to gain privileged access to resources for gaining unauthorized
access to information or to compromise a system.

Many web applications do not adequately protect data such as credit card
numbers or authentication credentials. Attackers can take possession of the
data or take advantage of the weaknesses in the security measures for the
theft of credentials, for fraudulent transactions with CdC, etc. This type of
data, require additional protective measures, such as encryption for data in
transit, as well as special precautions when they are exchanged with the
browser.

Threat aimed to gain privileged access to resources for gaining unauthorized
access to information or to compromise a system.

Web applications often redirect or forward users to other pages or sites and
use data not validated to determine the destination pages. Without proper
validation, attackers can redirect victims to phishing or malware sites, or use
forwards to access unauthorized pages.

Lack of highly scalable identity access management systems, lack of multi-
factor authentication capabilities, weak password usage, and lack of ongoing
automated rotation of cryptographic keys, passwords, and certificates.
Furthermore, hygiene of credentials ranging from embedding in source code
and distribution in publicly available source code may be considerations.
Storage traffic on dedicated storage networks or shared networks can be
sniffed revealing data, metadata, and storage protocol signalling.

Most file systems utilize buffer caches to read and write storage blocks from
and into the storage media. This is the norm regardless of the file system

SPECS Project - Deliverable 1.5.2

SRC2

SRC1

SRC2

SRC1

SRC2

SRC1

SRC3

SRC3

WASC-02
WASC-21
WASC-34

WASC-50
WASC-04

WASC-15
WASC-17
WASC-14
WASC-38

CWE-285
CWE-799
CWE-084
CWE-425

CWE-311
CWE-327
CWE-759
CWE-326

CWE-601

68

Secure Provisioning of Cloud Services based on SLA Management

T19

T20

T21

T22

T23

Snooping on
Deleted Storage
Blocks

Snooping on
Deallocated
Memory

File System
Profiling

Modifying
Metadata

Subversion
Attacks

technology used. The buffer caches are allocated on demand. If an attacker
can snoop into the buffer caches in memory she can access storage blocks
and hence stored information she is not authorized to access.

In most file systems, storage blocks are allocated to files on demand. When
afile is deleted, the storage block contents are not necessarily erased.
Rather, most of the storage systems implement file deletion by erasing the
file name and links from metadata and deleting the file i-node. Thus, data
contents can be left un-erased in deleted and now free storage blocks. By
accessing these storage blocks, it is possible for an attacker to gain access to
sensitive data.

Although most modern software deallocate data in memory after its last
usage, it is possible for attackers to snoop on deallocated memory because
the content of freed memory stays intact until it gets overwritten. Chow et
al. point out in that after deallocation, sensitive data such as passwords,
social security numbers, and credit card numbers, often remain in memory
indefinitely, possibly for days. This increases the risk of exposing sensitive
data when a system is compromised, or of data being accidentally leaked
due to unexpected feature interactions such as core dumps, logging, etc.
One solution to this problem is to reduce data lifetime by zeroing at time of
deallocation.

File system profiling attacks attempt to use access type, timestamps of last
modification, file names, and other file system metadata to gain insight
about storage system operation. For example, if a set of files are accessed in
regular patterns, the attacker may infer the importance, function, and
possibly even the content of these files.

Modifying metadata will disrupt a storage system. In any file system, if the i-
node or file table are corrupted, the storage linked to the metadata cannot
be accessed.

Attacks which modify operating system (OS) commands, kernel system calls,
and/or storage system drivers to cause the wrong files, metadata or blocks
to be modified or deleted.

SPECS Project - Deliverable 1.5.2

SRC3

SRC3

SRC3

SRC3

SRC3

69

Secure Provisioning of Cloud Services based on SLA Management

T24 Exhausting Log, Storage systems use different types of logging. In log-structured file systems, D
Data and the whole file system is a series of logs. An attacker can create a large
Metadata Space | number of small modifications to fill up the log space and lock up the
system. Moreover, an attacker can create a large number of data files with
random content to use up the available disk space. An attacker may create
also many empty/small/hidden files. While each file uses only a small
amount of metadata space, a large number of metadata entries will degrade
storage system performance.

T25 Creating Some versioning file systems, like S4 and Elephant create multiple versions D
Redundant of objects. Taking advantage of this, an attacker may launch a DoS attack by
Versions creating multiple versions of objects with minimal changes that will
eventually exhaust storage space.
T26 Exhausting File In most storage systems, file handles are used to access files, and these are D
Handles locked until the file is closed. Also, file systems usually have a fixed number

of file handles. An attacker may create a DoS by opening up multiple files
but not closing them, thereby holding the file handle and degrading storage
system performance.
T27 Deletion of Data Deleting data or metadata is an extreme DoS attack but also one that is D
easily detectable and possibly recoverable given versioning or backups in
time or space. If the deleted data is unrecoverable, the cost may range from
insignificant to incalculable. Deleting system and network logs is commonly
used by attackers to cover their attack traces.

T28 Storage Device An attack storage device authenticates as a legitimate storage device to the S
Masquerading OS in order to access/modify/deny data or metadata.

T29 Flash Memory Attacks on flash memory are designed to force inordinate numbers of erase D
Attacks cycles to exhaust that capability.

T30 Power Disruption | If the power supply to a storage device is disrupted, storage systems can
become unavailable and data/metadata lost. Many storage systems have
backup power sources for this reason; however, even in these cases long
term power disruption is possible.

SPECS Project - Deliverable 1.5.2

SRC3

SRC3

SRC3

SRC3

SRC3

SRC3

SRC3

70

Secure Provisioning of Cloud Services based on SLA Management

T31

T32

T33

T34

T35

T36

Network
Disruption

Storage Theft

Data Recovery
from Discarded
Storage Media

Physical

Destruction of
Storage Media

Hardware Trojan

Security
Misconfiguration

Regardless of the underlying network technology, any hardware component
or cable disruption to the network between the user and the storage system
can degrade or disable storage.

Thefts of storage media, storage devices, and computers containing storage
systems occur. Recently, there has been an epidemic of thefts of
unencrypted storage tapes containing confidential customer information.
The decreasing size of portable storage combined with increasing capacity—
e.g., a USB memory stick with 4GB capacity—makes it easier to steal storage
media. Although such thefts require low levels of sophistication on the
attacker’s part, they may result in large economic and security damages
unless the stolen data/metadata is encrypted and replicated.

Neglecting to properly sanitize storage media before disposing of them
allows attackers (or other third parties) access to data and metadata. Proper
sanitation techniques include:, e.g. overwriting, degaussing, and encryption
(along with destruction of corresponding decryption key).

Storage media can be physically destroyed by attackers using disintegration,
incineration, pulverization, shredding, or melting. If storage media is
intentionally destroyed by the owner with a purpose of retiring it, the data
may still be recoverable. Hughes demonstrates that even after shooting at a
hard disk with a bullet, it is still possible to read data using special
instruments such as a Magnetic Force Microscope.

A USB driver can be exploited to load malicious software. Barrall et al.
describe how a custom-built USB device can fool an operating system into
believing the device is any form of USB peripheral. Attackers can load
malicious software, such as a keystroke logger, onto a target system simply
by physically plugging the device into a USB port, bypassing the built-in OS
security. A file containing harvested passwords can be retrieved through the
USB port after a few days or a week.

Good security requires having a secure configuration defined and deployed
for the application, frameworks, application server, web server, database
server, and platform. Secure settings should be defined, implemented, and

SPECS Project - Deliverable 1.5.2

SRC3

SRC3

SRC3

SRC3

SRC3

SRC2

WASC-13
WASC-14
WASC-15

CWE-209
CWE-219
CWE-200

71

Secure Provisioning of Cloud Services based on SLA Management

T37

T38

Using
Components with
Known
Vulnerabilities

Overly Permissive
Cross-domain
Whitelist

maintained, as defaults are often insecure. Additionally, software should be
kept up to date.

Components, such as libraries, frameworks, and other software modules,
almost always run with full privileges. If a vulnerable component is
exploited, such an attack can facilitate serious data loss or server takeover.
Applications using components with known vulnerabilities may undermine
application defenses and enable a range of possible attacks and impacts.
The software uses a cross-domain policy file that includes domains that
should not be trusted. The software uses a cross-domain policy file that
includes domains that should not be trusted. A cross-domain policy file
("crossdomain.xml" in Flash and "clientaccesspolicy.xml" in Silverlight)
defines a whitelist of domains from which a server is allowed to make cross-
domain requests. When making a cross-domain request, the Flash or
Silverlight client will first look for the policy file on the target server. If it is
found, and the domain hosting the application is explicitly allowed to make
requests, the request is made.

Therefore, if a cross-domain policy file includes domains that should not be
trusted, such as when using wildcards, then the application could be
attacked by these untrusted domains.

An overly permissive policy file allows many of the same attacks seen in
Cross-Site Scripting (CWE-79). Once the user has executed a malicious Flash
or Silverlight application, they are vulnerable to a variety of attacks. The
attacker could transfer private information, such as cookies that may include
session information, from the victim's machine to the attacker. The attacker
could send malicious requests to a web site on behalf of the victim, which

SPECS Project - Deliverable 1.5.2

WASC-16
WASC-17

SRC2

CWE-754
CWE-16
CWE-548
CWE-250
CWE-732
CWE-280
CWE-538
CWE-552

CWE-942

72

Secure Provisioning of Cloud Services based on SLA Management

could be especially dangerous to the site if the victim has administrator
privileges to manage that site. In many cases, the attack can be launched
without the victim even being aware of it.

T39 buffer overflow Buffer overflow errors are characterized by the overwriting of memory
spaces of the background web process, which should have never been
modified intentionally or unintentionally.

T40 FORMAT STRING | A format string error occurs when an input string is interpreted by the

ERROR application as a command.

T41 Password AUTOCOMPLETE attribute is not disabled in HTML FORM/INPUT element
Autocompletein | containing password type input. Passwords may be stored in browsers and
browser retrieved.

T42 Content-Type Content-Type header missing.

Header Missing

SPECS Project - Deliverable 1.5.2

WASC-07

WASC-06

CWE-120

CWE-134

73

Secure Provisioning of Cloud Services based on SLA Management

Appendix 7. Results of the security review

In the following we present results of the security review performed for the SPECS artifacts. The review is defined in deliverable D4.5.2 and
is based on the Application Security Verification Standard (ASVS 2.0) proposed by OWASP=. The checklist comprises a set of requirements
that should be addressed during the development stage in order to assure secure software. SPECS developers have assessed SPECS
artifacts (SLA Platform (SLAP), Negotiation module (NEG), Enforcement module (ENF), Monitoring module (MON), Vertical Layer (VL),
Enabling Platform, default SPECS Application, and the EMC Testbed) by verifying whether each requirement on the defined checklist has
been covered or not (these requirements are labelled as v" or X, respectively). The results are presented in the following tables, which
group defined requirements across different security areas.

Note that the questionnaire has been developed to be used for the overall applications; therefore some requirements may not be applicable
to all components/module; in this case we report the N label. Moreover, in some other cases the replies depend on the configuration and on
the adoption of specific layers. For example, the adoption of the TLS for all communication (requirement SC69) is a matter of deployment
and does not affect the development process. For such cases we use the label D.

13 The Open Web Application Security Project, “Application Security Verification Standard (2014)”, 2014. [Online]. Available online,
https://www.owasp.org/images/5/58/OWASP ASVS Version 2.pdf, last accessed in March 2016.
SPECS Project - Deliverable 1.5.2 74

https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf

Secure Provisioning of Cloud Services based on SLA Management

SPECS secure web application requirements

SLAP NEG ENF MON VL
— =
= — S5 g =|
= = @ o] = 2
=) =) =) %]
“8 = % %D E = = 8 g S S 5 % 5 § o]
s|lolS|l=|S|S|E|g S = = <ol =T
(o =Tl I P B =l R = al = = Ol=| o| &l
S| 8|5 SS|% ARz 5| = S NEIRIRE:
eo| < Slo| 8|0 eo| O | = k= oo Sl sl @
ElS|g|2|2 3|52 E|E|8 T2 © | B 8|S o
S|=|2|E|2|=|=2|5|E|2| 8 2= HEEEIEIE
si<|z| 8| 8|35 58 el5|=lclEE38 2 m|S
— | O el 2|3 o|=E|l =8~ = > S|lo| s v|e|=
ID Requirement Ml A= S |laanlunlalS|lale@mE|lomz|<|vnld|D|un|m
a. Authentication verification requirements
SC1 Yerlfyall resources reqw're z'authentlcatlon except.th.ose specifically viv v viInlvIivivIiv]y vl Jivivivivivlig
intended to be public (Principle of complete mediation).
SC2 Verify all authentication controls are enforced on the server side. vV vIv|IN|N 4 vV vV
SC3 VerifyaI.IathenticaTtion controls (incIUfjing.Iibrariesthat.call external N v vIvInlN NN NN
authentication services) have a centralized implementation.
SC4 I\/erl.fyallauthentlcatlon controls fail securely to ensure attackers cannot vvivivivinInIvIiviviviviviviviviviviviviviv]v
ogin.
SC5 Verify all account identity authentication functions (such as registration,
updateprofile,forgotus.ername,.forgotpassword,disabled/losttoken, NINININININ I N I NN I NN I N N I N I N N N N I N I N N] [y
help desk or IVR) that might regain access to the account are at least as
resistant to attack as the primary authentication mechanism.
SC6 Verlfyusersc:.msafelychangethelrcr?dentlalsusmga n'wechanlsmt'hatls NINININININ N I N I N I N I N I N I N I N I N N I N N I N N N < v
at least as resistant to attack as the primary authentication mechanism.
SC7 Verify that all authentication decisions are logged. This should include
requests with missing required information, needed for security N|IN|{N|N|[N|[N|{N|[N|N|{N[N|N|[N|N|Y|N|N[N|Y|N[N|x|V
investigations.
SC8 Verify that account passwords are salted using a salt that is unique to that
account (e.g., internal user ID, account creation) and use berypt, scryptor [N [N [N |N [N |N|[N|N|{N|[N|N|[N|N|{N[N|N|[N|IN|{N[N|N|Y|N
PBKDF2 before storing the password.
SC9 Verlfythatcredentlals,andallotherldentltylnformatlonhandled.bythe olololololInIntioInInININIDlDIvIDIDINIvIDIDlD!Y
application(s), do not traverse unencrypted or weakly encrypted links.

SPECS Project - Deliverable 1.5.2

75

Secure Provisioning of Cloud Services based on SLA Management

SC10

Verify that the forgotten password function and other recovery paths do
not reveal the current password and that the new password is not sent in
clear text to the user.

SC11

Verify that username enumeration is not possible via login, password
reset, or forgot account functionality.

SC12

Verify there are no default passwords in use for the application framework
or any components used by the application (such as “admin/password”).

SC13

Verify that a resource governor is in place to protect against vertical (a
single account tested against all possible passwords) and horizontal brute
forcing (all accounts tested with the same password e.g. “Password1”). A
correct credential entry should incur no delay. Both these governor
mechanisms should be active simultaneously to protect against diagonal
and distributed attacks.

SC14

Verify that all authentication credentials for accessing services external to
the application are encrypted and stored in a protected location (not in
source code).

SC15

Verify that forgot password and other recovery paths send a link including
a time-limited activation token rather than the password itself. Additional
authentication based on soft-tokens (e.g. SMS token, native mobile
applications, etc.) can be required as well before the link is sent over.

SC16

Verify that forgot password functionality does not lock or otherwise
disable the account until after the user has successfully changed their
password. This is to prevent valid users from being locked out.

SC17

Verify that there are no shared knowledge questions/answers (so called
"secret" questions and answers).

N

N

N

N

N

N[N

b. Access control verification requirements

SC18

\Verify that users can only access secured functions or services for which
they possess specific authorization.

v

v

v

v

v

N | N

SC19

Verify that users can only access secured URLs for which they possess
specific authorization.

v

v

v

v

N |N

SC20

Verify that users can only access secured data files for which they possess
specific authorization.

SC21

Verify that direct object references are protected, such that only

SPECS Project - Deliverable 1.5.2

76

Secure Provisioning of Cloud Services based on SLA Management

authorized objects or data are accessible to each user (for example,
protect against direct object reference tampering).

SC22 |Verify that access controls fail securely. VIVIVI|IV|YIN|[N|V
Verify that all user and data attributes and policy information used by

SC23 [access controls cannot be manipulated by end users unless specifically VIVIVI|IV|YIN|[N|V
authorized.

SC24 \Verify that all access controls are enforced on the server side. VIVIVI|VIYV|N|[N|Y
Verify that there is a centralized mechanism (including libraries that call

SC25 |external authorization services) for protecting access to each type of N|Y|IVIV|[YIN|N|V
protected resource.

SC26 Verify that all access control decisions are logged and all failed decisions x| x| x|x|x|NINIx
are logged.
IAggregate access control protection — verify the system can protect
against aggregate or continuous access of secured functions, resources, or

SC27 |data. For example, possibly by the use of a resource governor to limitthe | % | x | x | x | x N | N | %
number of edits per hour or to prevent the entire database from being
scraped by an individual user.

c. Malicious input handling verification requirements

sc28 \Verify that the runtime environment is not susceptible to buffer x| x| x|x|x|N]|x|x
overflows, or that security controls prevent buffer overflows.

SC29 |Verify that all input validation failures result in input rejection. Vik|x|x|x|v|IVv]|x

sC30 Yerify that a character set, such as UTF-8, is specified for all sources of wlxlxlx|x|vic!|x
input.

sc31 Verify that all input validation or encoding routines are performed and wlxlxlx|x|vlivelx
enforced on the server side.

sC32 Verify that a single input validation control is used by the application for el xlxlx|x|vc!|x
each type of data that is accepted.

SC33 |Verify that all input validation failures are logged. X | x| x| x| x| N|x|x

sc3a Verify that all input data is canonicalized for all downstream decoders or x| x| x|x|x|N]|x|x
interpreters prior to validation.

sc35 Verify that the runtime environment is not susceptible to SQL Injection, or vy
that security controls prevent SQL Injection.

SC36 |Verify that the runtime environment is not susceptible to OS Command V|V

SPECS Project - Deliverable 1.5.2

77

Secure Provisioning of Cloud Services based on SLA Management

Injection, or that security controls prevent OS Command Injection.

SC37

Verify that the runtime environment is not susceptible to XML External
Entity attacks or that security controls prevents XML External Entity VIV IVIVIVIVIVIVIV
attacks.

SC38

Verify that the runtime environment is nc?t sgsceptlble to XML Injections NIvIiviviviviviv]v
or that security controls prevents XML Injections.

SC39

If the application framework allows automatic mass parameter
assignment (also called automatic variable binding) from the inbound
request to a model, verify that security sensitive fields such as N|IV|VIV|VIN|VIV |V

“accountBalance”, “role” or “password” are protected from malicious
automatic binding.

SC40

Verify that for each type of output encoding/escaping performed by the
application, there is a single security control for that type of output forthe| N | ¥ | % | X | x | N [¥ | x | x
intended destination.

d. Cryptography at rest verification requirements

SC41

\Verify that all cryptographic functions used to protect secrets from the

. . . N|{N|N|N|[N|N|N|N|N
application user are implemented server side.

SC42

Verify that all cryptographic modules fail securely. N[{N[N|[N|[N|{N|N|N|N

SC43

\Verify that access to any master secret(s) is protected from unauthorized
access (A master secret is an application credential stored as plaintexton |N|N |N|[N|N|N|N|N|N
disk that is used to protect access to security configuration information).

SC44

Verify that all random numbers, random file names, random GUIDs, and
random strings are generated using the cryptographic module’s approved
random number generator when these random values are intended to be
unguessable by an attacker.

SC45

Verify that cryptographic modules used by the application have been
\validated against FIPS 140-2 or an equivalent standard.

SC46

\Verify that cryptographic modules operate in their approved mode
according to their published security policies.

SC47

Verify that there is an explicit policy for how cryptographic keys are
managed (e.g., generated, distributed, revoked, expired). Verify thatthis |N [N |N|{N|N|N|N|N|[N

policy is properly enforced.

e. Error handling and logging verification requirements

SPECS Project - Deliverable 1.5.2

78

Secure Provisioning of Cloud Services based on SLA Management

SC48

Verify that the application does not output error messages or stack traces
containing sensitive data that could assist an attacker, including session id
and personal information.

SC49

Verify that all error handling is performed on trusted devices

SC50

Verify that all logging controls are implemented on the server.

AN

AN

SC51

Verify that error handling logic in security controls denies access by
default.

SC52

Verify security logging controls provide the ability to log both success and
failure events that are identified as security-relevant.

SC53

Verify that each log event includes: a timestamp from a reliable source,
the severity level of the event, an indication that this is a security relevant
event (if mixed with other logs), the identity of the user that caused the
event (if there is a user associated with the event), the source IP address
of the request associated with the event, whether the event succeeded or
failed, and a description of the event.

SC54

Verify that all events that include untrusted data will not execute as code
in the intended log viewing software.

SC55

Verify that security logs are protected from unauthorized access and
modification.

SC56

Verify that there is a single application-level logging implementation that
is used by the software.

SC57

Verify that the application does not log application-specific sensitive data
that could assist an attacker, including user’s session identifiers and
personal or sensitive information. The length and existence of sensitive
data can be logged.

SC58

Verify that a log analysis tool is available which allows the analyst to
search for log events based on combinations of search criteria across all
fields in the log record format supported by this system.

SC59

\Verify that all non-printable symbols and field separators are properly
encoded in log entries, to prevent log injection.

SC60

Verify that log fields from trusted and untrusted sources are
distinguishable in log entries.

SC61

Verify that logging is performed before executing the transaction. If

SPECS Project - Deliverable 1.5.2

79

Secure Provisioning of Cloud Services based on SLA Management

logging was unsuccessful (e.g. disk full, insufficient permissions) the
application fails safe. This is for when integrity and non-repudiation are a
must.

f. Data protection verificati

on r

SC62

\Verify that the list of sensitive data processed by this application is
identified, and that there is an explicit policy for how access to this data
must be controlled, and when this data must be encrypted (both at rest
and in transit). Verify that this policy is properly enforced.

SC63

\Verify that all sensitive data is sent to the server in the HTTP message
body (i.e., URL parameters are never used to send sensitive data).

SC64

Verify that all cached or temporary copies of sensitive data stored on the
server are protected from unauthorized access or purged/invalidated after
the authorized user accesses the sensitive data.

SC65

Verify that there is a method to remove each type of sensitive data from
the application at the end of its required retention period.

SC66

Verify the application has the ability to detect and alert on abnormal
numbers of requests for information or processing high value transactions
for that user role, such as screen scraping, automated use of web service
extraction, or data loss prevention. For example, the average user should
not be able to access more than 5 records per hour or 30 records per day,
or add 10 friends to a social network per minute.

g. Communications security

verification re

SC67

Verify that a path can be built from a trusted CA to each Transport Layer
Security (TLS) server certificate, and that each server certificate is valid.

D

D

D

D

D

SC68

\Verify that failed TLS connections do not fall back to an insecure HTTP
connection.

D

D

D

D

D

SC69

Verify that TLS is used for all connections (including both external and
backend connections) that are authenticated or that involve sensitive data
or functions.

SC70

\Verify that backend TLS connection failures are logged.

SC71

Verify that certificate paths are built and verified for all client certificates
using configured trust anchors and revocation information.

SC72

Verify that all connections to external systems that involve sensitive

SPECS Project - Deliverable 1.5.2

80

Secure Provisioning of Cloud Services based on SLA Management

information or functions are authenticated.
Verify that all connections to external systems that involve sensitive
SC73 (information or functions use an account that has been set up tohavethe [N | x| x| x [x | N |N
minimum privileges necessary for the application to function properly.
Verify that there is a single standard TLS implementation that is used by
the application that is configured to operate in an approved mode of
SC74 |operation. (See N|{D|D|D|D|N|N
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-
2/FIPS1402IG.pdf).
sc75 Verify that specific character encodings are defined for all connections x| x|x|x|x|N|N
(e.g., UTF-8).
h. HTTP security verification requirements
Verify that the application accepts only a defined set of HTTP request
SC76 |methods, such as GET and POST and unused methods are explicitly VI IVIVIVIV|YIN
blocked.
sc77 \Verify that every HTTP response contains a content type header specifying vivivivivivin
a safe character set (e.g., UTF-8).
SC78 Verify that HTTP headers in both requests and responses contain only vix|x|x|x|v|N
printable ASCII characters.
sc79 Verify that H'I'I'P.hea.ders added by a frontend (such as X-Real-IP), and x| x|x|x|x|v|N
used by the application, cannot be spoofed by the end user.
SC80 Verify that the HTTP headers do not expose detailed version information Vixlx|x|x|vIN
of system components.
i. Malicious controls verification requirements
scs1 Verlfly.tha.t no malicious code is in ar?y cgde that was either developed or Jivivivivivlig
modified in order to create the application.
scs2 Verify that the integrity of interpreted code, libraries, executables, and x| xlxlx|x|vlx
configuration files is verified using checksums or hashes.
sc83 \Verify that all code |.rr?plement|ng or using authentication controls is not ivivivivinly
affected by any malicious code.
scsa Verify that.al.l code implementing or using access controls is not affected ivivivivinly
by any malicious code.
SC85 |Verify that all input validation controls are not affected by any malicious |v' | D | D vID

SPECS Project - Deliverable 1.5.2

81

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

Secure Provisioning of Cloud Services based on SLA Management

code.

SC86

Verify that all code implementing or using output validation controls is not
affected by any malicious code.

SC87

Verify that all code supporting or using a cryptographic module is not
affected by any malicious code.

SC88

Verify that all code implementing or using error handling and logging
controls is not affected by any malicious code.

SC89

Verify all malicious activity is adequately sandboxed.

SC90

Verify that sensitive data is rapidly sanitized from memory as soon as it is
no longer needed and handled in accordance to functions and techniques
supported by the framework/library/operating system.

N

j- Business logic ve

rification requirements

SCI1

Verify the application processes or verifies all high value business logic
flows in a trusted environment, such as on a protected and monitored
server.

v

v

v

v

v

N

v

SC92

Verify the application does not allow spoofed high value transactions,
such as allowing Attacker User A to process a transaction as Victim User B
by tampering with or replaying session, transaction state, transaction or
user IDs.

SC93

Verify the application does not allow high value business logic parameters
to be tampered with, such as (but not limited to): price, interest,
discounts, Pll, balances, stock IDs, etc.

SC94

Verify the application has defensive measures to protect against
repudiation attacks, such as verifiable and protected transaction logs,
audit trails or system logs, and in highest value systems real time
monitoring of user activities and transactions for anomalies.

SC95

\Verify the application protects against information disclosure attacks, such
as direct object reference, tampering, session brute force or other attacks.

SC96

\Verify the application has sufficient detection and governor controls to
protect against brute force (such as continuously using a particular
function) or denial of service attacks.

SC97

Verify the application has sufficient access controls to prevent elevation of

privilege attacks, such as allowing anonymous users from accessing

SPECS Project - Deliverable 1.5.2

82

Secure Provisioning of Cloud Services based on SLA Management

secured data or secured functions, or allowing users to access each other’s
details or using privileged functions.

SC98

Verify the application will only process business logic flows in sequential
step order, with all steps being processed in realistic human time, and not
process out of order, skipped steps, process steps from another user, or
too quickly submitted transactions.

SC99

Verify the application has additional authorization (such as step up or
adaptive authentication) for lower value systems, and / or segregation of
duties for high value applications to enforce anti-fraud controls as per the
risk of application and past fraud.

SC100

Verify the application has business limits and enforces them in a trusted
location (as on a protected server) on a per user, per day or daily basis,
with configurable alerting and automated reactions to automated or
unusual attack. Examples include (but not limited to): ensuring new SIM
users don’t exceed $10 per day for a new phone account, a forum allowing
more than 100 new users per day or preventing posts or private messages
until the account has been verified, a health system should not allow a
single doctor to access more patient records than they can reasonably
treat in a day, or a small business finance system allowing more than 20
invoice payments or $1000 per day across all users. In all cases, the
business limits and totals should be reasonable for the business
concerned. The only unreasonable outcome is if there are no business
limits, alerting or enforcement.

x| x|V
x| x|N
v | v I[N

k. Files and resources

verification requirem

ents

SC101

Verify that file names and path data obtained from untrusted sources is
canonicalized to eliminate path traversal attacks.

N

x

x

SC102

Verify that files obtained from untrusted sources are scanned by antivirus
scanners to prevent upload of known malicious content.

N

SC103

Verify that parameters obtained from untrusted sources are not used in
manipulating filenames, pathnames or any file system object without first
being canonicalized and input validated to prevent local file inclusion
attacks.

SC104

\Verify that parameters obtained from untrusted sources are

canonicalized, input validated, and output encoded to prevent remote file

x| x|N
x| x|N
x| x|N
x| x|N

SPECS Project - Deliverable 1.5.2

83

Secure Provisioning of Cloud Services based on SLA Management

inclusion attacks, particularly where input could be executed, such as
header, source, or template inclusion

Verify that web or application server is configured by default to deny
SC105 [access to remote resources or systems outside the web or application
server.

Verify the application code does not execute uploaded data obtained from vl
untrusted sources.

SC106

SPECS Project - Deliverable 1.5.2

84

