

Secure Provisioning of Cloud Services

based on SLA Management

SPECS Project - Deliverable 2.3.2

Reference Architecture for

Cloud SLA Negotiation:

Development and Tests – Final Prototype

Version no. 1.1

30 April 2016

The activities reported in this deliverable are partially supported

by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

2

Deliverable information

Deliverable no.: D2.3.2
Deliverable title: Reference Architecture for Cloud SLA Negotiation: Development

and Tests – Final Prototype

Deliverable nature: Prototype
Dissemination level: Public

Contractual delivery: 30 April 2016
Actual delivery date: 30 April 2016

Author(s): Madalina Erascu (IeAT)
Contributors: Alessandra De Benedictis (CeRICT), Jolanda Modic (XLAB),

Damjan Murn (XLAB), Massimiliano Rak (CeRICT), Adrian
Spătaru (IeAT)

Reviewers: Valentina Casola (CeRICT), Silvio La Porta (EMC)
Task contributing to the
deliverable:

T2.3

Total number of pages: 38

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

3

Executive summary

The current deliverable is the second of the three deliverables (D2.3.1, D2.3.2, and D2.3.3)
reporting the development activities that have been undertaken in the Negotiation module.
The module is in charge of managing the negotiation and renegotiation phases of a Service
Level Agreement (SLA) life-cycle. More precisely, it analyses users’ security requirements,
transforming them into a machine-readable language in order to be usable to the SPECS
framework, as well as delivering the result of the negotiation/renegotiation back to the users.

As described in the previous deliverables, in order to cover the large number of requirements,
the Negotiation module is composed by the three components: SLO Manager, Supply Chain
Manager, and Security Reasoner and by a number of different artifacts, mainly conceptual
models to cope with the security SLA structure.
The final description of the design of this module is reported in D2.3.3 that is released at M30,
too. This deliverable is devoted to describe the final implementation details of the prototype;
it reports (i) the final architecture of the Negotiation module (ii) the development activities
related to T2.3 from M18 (release of D2.3.1) to M30 (release of this deliverable), (iii)
references on how to install and use the prototype components developed in this task, and
(iv) functional and performance test results, in accordance with the methodology respectively
proposed in D4.5.2 and D1.5.2.

A preliminary prototype of the SLO Manager component was released at M18. The main
functionality of the component, namely, translating the security requirements specified by the
users into an SLA, did not change, but it was slightly adapted based on the other components’
requirements.

The Supply Chain Manager component is first described in this deliverable. It orchestrates
(with the support of the Enforcement module) the generation of supply chains to build proper
SLA Offers for the users security requirements specified in a SLA Template.

The Security Reasoner component evaluates the security levels of different SLA Offers and
compares them with the users security requirements. At M18, the component provided these
functionalities, but as a standalone application. In this deliverable, we present it as a service,
fully integrated in the Negotiation module, but offering specific APIs.

The components of the Negotiation module cover a very large number of requirements and
are core components of the SPECS solution, although not transparent to the users. The
components are available online.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

4

Table of contents

Deliverable information .. 2

Executive summary ... 3

Table of contents .. 4

Index of figures ... 5

Index of tables ... 6

1. Introduction .. 7

2. Relationship with other deliverables.. 8

3. Service Level Agreement Negotiation Module .. 10

3.1 Status of development activities ... 11

3.2 SLO Manager ... 12

 Installation .. 12

 Usage ... 14

 Functional Tests .. 14

 Performance Tests ... 16

3.3 Supply Chain Manager .. 19

3.3.1 Installation .. 19

3.3.2 Usage ... 19

3.3.3 Functional Tests .. 20

3.4 Security Reasoner ... 21

3.4.1 Installation .. 21

3.4.2 Usage ... 22

3.4.3 Functional Tests .. 23

3.4.4 Performance Tests .. 24

4. Conclusions ... 28

5. Bibliography ... 29

Appendix 1. Negotiation Module – Functional Tests .. 30

SLO Manager Tests ... 30

Supply Chain Manager Tests ... 32

Security Reasoner Tests ... 32

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

5

Index of figures

Figure 1. Relationship with other deliverables .. 8

Figure 2. High-level Negotiation Module Architecture as of D2.2.2 ... 10

Figure 3. Negotiation Module Architecture ... 11

Figure 4. Retrieval of SLA Templates Collection ... 14

Figure 5. Code Properties for SLO Manager Component .. 15

Figure 6. Quality Analysis for SLO Manager Component .. 16

Figure 7. SLO Manager Performance Tests. Get SLA Template (b) .. 17

Figure 8. SLO Manager Performance Tests. Create SLA Template (b) ... 18

Figure 9. SLO Manager Performance Tests. Start Negotiation (b) .. 18

Figure 10. Code quality report - Supply Chain Manager, part 1 ... 20

Figure 11. Code quality report - Supply Chain Manager, part 2 ... 21

Figure 12. Code quality report – Security Reasoner, part 1 .. 23

Figure 13. Code quality report – Security Reasoner, part 2 .. 24

Figure 14. Security Reasoner POST CAIQ call performance (2) ... 25

Figure 15. Security Reasoner GET all CAIQs call performance (2) ... 25

Figure 16. Security Reasoner POST Judgement performance (2) ... 26

Figure 17. Security Reasoner GET judgement performance (2) .. 26

Figure 18. Security Reasoner Evaluate performance (2) ... 27

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

6

Index of tables

Table 1. SPECS Components related to the Negotiation module and related requirements 12

Table 2. SLO Manager User Profiles for Performance Tests .. 16

Table 3. SLO Manager Performance Tests. Get SLA Template (a).. 17

Table 4. SLO Manager Performance Tests. Create SLA Template (a) ... 17

Table 5. SLO Manager Performance Tests. Start Negotiation (a) ... 18

Table 6. Security Reasoner POST CAIQ call performance (1) ... 25

Table 7. Security Reasoner GET all CAIQs call performance (1).. 25

Table 8. Security Reasoner POST Judgement performance (1) ... 26

Table 9. Security Reasoner GET judgement performance (1) .. 26

Table 10. Security Reasoner Evaluate performance (1) ... 27

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

7

1. Introduction

The Negotiation module prototype presented in this document is devoted to implement the
SPECS Negotiation phase of an SLA life cycle. More precisely, we present the prototypes of the
SLO Manager, Supply Chain Manager and Security Reasoner components of the Negotiation
module.

The SLO Manager is the component that offers the negotiation API to the SPECS Application. It
orchestrates the entire negotiation and renegotiation processes. It manages the creation of
SLA Templates; it triggers generation of supply chains according to the End User’s (EU)
security requirements; and it invokes evaluation and ranking of the SLA Offers that are built
according to the supply chains.

The Supply Chain Manager orchestrates (with the support of the Enforcement module) the
generation of supply chains for the EU's security requirements specified in an SLA Template.

The Security Reasoner evaluates and ranks the SLA Offers created during the negotiation
process. The evaluation is done by using security evaluation techniques that apply
quantification algorithms to reason about the level of security provided by each of the SLA
offers, with respect to the EU requirements.

The three prototypes are available on line and can be downloaded from the project
repository: [1] (SLO Manager), [2] (Supply Chain Manager) and [3] (Security Reasoner).

In the reminder of this deliverable we discuss on the coverage of the negotiation

requirements (Section 3.1) and for each component we will report about implementation,
installation, usage and testing (both functional and performance evaluation), respectively in
Section 3.2 (SLO Manager), Section 3.3 (Supply Chain Manager), and Section 3.4 (Security
Reasoner). Regarding Security review and assessment, for the three components developed
within Negotiation module, they have been reported in D1.5.2 (Appendix 7).

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

8

2. Relationship with other deliverables

The overview of the relationship of this deliverable with others from different WPs is
presented in Figure 1. This deliverable is based on the existing work on architecture,
requirements, use cases, etc., developed in the previous deliverables, but also constitutes an
input for the deliverables finalizing the architecture, core modules and their integration, and
use cases.

Figure 1. Relationship with other deliverables

The following deliverables are input for D2.3.2:

 D1.1.3: The final design of the SPECS solution provided input for the implementation of
the Negotiation components.

 D2.2.2: The final report on the conceptual framework for Cloud SLA Negotiation is
taken into consideration for the design and development in this deliverable.

 D2.3.1: The preliminary prototype of the Negotiation module is enhanced in the
current deliverable.

 D4.3.3: During the SLA negotiation phase, the Enforcement module also supports the
generation of valid supply chains according to EU security requirements, Cloud Service
Providers (CSPs) capabilities, and possible SPECS security enhancements.

 D4.5.2: The verification and testing methodologies developed in this deliverable play
an important role in the development of the prototype implementation of the
Negotiation components.

 D5.1.2, D5.1.3: The use cases developed in these deliverables provided feedback for the
implementation of the prototypes of the Negotiation module.

The following are the deliverables and WPs that take, as input, the results obtained in this
deliverable:
 D1.5.1, D1.5.2: In the integration testing and examples, which will be presented in

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

9

these two deliverables, the Negotiation components are used.
 D5.2.1, D5.2.2, D5.3, D5.4: In the evaluation of the scenarios in these deliverables, the

Negotiation components will be utilized.
Note that there is an input-output dependency between this deliverable and D2.3.3 where we
present the report of the final architecture of the Negotiation module.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

10

3. Service Level Agreement Negotiation Module

SPECS Negotiation implies an agreement on the security level of services requested by a Cloud
Service Consumer (CSC), referred in the following as EU, and offered by the CSP, agreement
finalized in a signed SLA. Furthermore, according to D1.1.1, D2.1.2 and D2.2.2, the negotiation
module takes care of both negotiation and renegotiation SLA phases.

During the last year of the project, the negotiation and renegotiation process was finalized
and its relationship with the Enforcement module and the application was clarified thanks to
the definition of the supply chain generation method, offered by the Enforcement core
components and the final set of APIs offered to the SPECS applications.

The final architecture of the Negotiation module is reported in Figure 3. Negotiation Module
Architecture; we present components and the functionalities exposed to the other modules of
the SPECS framework and the interactions among them.

Figure 2. High-level Negotiation Module Architecture as of D2.2.2

In Figure 2 we report the preliminary architecture of the Negotiation module, as reported in
D2.2.2, where (1) Negotiation API was an interface between the SPECS Application and SLO
Manager, (2) Renegotiation API was an interface between Service Manager and SLO Manager,
(3) Service Manager was a component of the Enforcement module.
As we mentioned above, the Negotiation API (see D2.3.3 Annex A) serves both negotiation and
renegotiation activities, the only difference is in the flow in which methods are invoked.
In D2.3.3 (Section 3) we present a detailed flow of the negotiation and the two types of
renegotiation in SPECS (EU triggered renegotiation process and CSP triggered renegotiation
process). In order to better address these aspects, in the final Negotiation architecture (Figure
3) Negotiation and Renegotiation methods are offered by the same API (the Negotiation API)
and the Service Manager component does not communicate with the Negotiation module
anymore.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

11

Figure 3. Negotiation Module Architecture

This deliverable focuses on the installation, usage and tests (Functional and Performance
Tests) of the components developed in the framework.

As already said, Security review and assessment for the three components developed within
Negotiation module are reported in D1.5.2 (Appendix 7).

3.1 Status of development activities

In Table 1 we schematically report the list of SPECS software components associated with the
Negotiation module, together with the requirements (as stated in D2.2.2) that they,
respectively, cover.

Negotiation
Module

SPECS Software Components

Requirements SLO Manager Supply Chain Manager Security Reasoner

SLANEG_R1 X

SLANEG_R2 X

SLANEG_R3 X

SLANEG_R4 X

SLANEG_R5

X

SLANEG_R6 X

SLANEG_R7

X

SLANEG_R8

X
SLANEG_R9 X
SLANEG_R10 X X
SLANEG_R11 X
SLANEG_R12 X
SLANEG_R13 X
SLANEG_R16 X
SLANEG_R17 X
SLANEG_R18 – R29 Covered by the SLA models

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

12

SLANEG_R30 – R31 Covered by the Enforcement module
SLANEG_R32 – R33 Covered by the SLA Platform module
SLAPL_R10 X
SLAPL_R14 X
SLAPL_R21 X
SLAPL_R33 X
ENF_PLAN_R1 X
ENF_PLAN_R12 X

Table 1. SPECS Components related to the Negotiation module and related requirements

In the previous version of this deliverable we reported the coverage of 17 out of 33
requirements. As discussed in D2.3.3, in the current implementation, available artifacts and
models cover all elicited requirements. In particular, requirements from SLANEG_R18 to
SLANEG_R29 are covered by the SLA models, as reported in D2.3.3; SLANEG_R30 and
SLANEG_R31 are covered by the Enforcement module (RDS component); SLANEG_R32 and
SLANEG_R33 are covered by the SLA Platform module.
All components are available for download from the SPECS repository.

3.2 SLO Manager

SLO Manager is the main component of the Negotiation module, representing the interface for
the negotiation and renegotiation of Security SLAs. It exposes a REST API for interaction (see
D2.3.3 Annex A) with other components and modules of the SPECS solution (see D2.3.3 for
more details). An EU negotiates her/his security requirements through an SLA Template. An
SLA Template contains EU security requirements, the services and their security levels which
are subject to negotiation. After the requirements have been set, a list of SLA Offers is
generated, using the information provided by the Planning component of the Enforcement
module, via the Supply Chain Manager component. An SLA Offer corresponds to a supply chain
and each supply chain is composed of one CSP and a set of resources (e.g. virtual machines)
enriched with security mechanisms enforcing and monitoring EU’s chosen security features.
Hence, one could see SLA Offers as instances of SLA Templates. The supply chains are created
by SPECS according to the available security mechanisms (either offered by SPECS or
provided by external CSPs) and security requirements provided by the EU. Before each SLA
Offer is proposed to the EU, it is validated by the CSP in order to guarantee for example that
the services and their security levels can be actually met (valid SLA Offer). Valid SLA Offers are
then ranked according to the EU’s requirements by applying the reasoning algorithms that
perform comparisons and evaluations to determine what are the valid SLA Offers that better
match EU requirements.
SLO Manager is available for download at [1].

 Installation

In this section, we report the installation guide, which covers two scenarios:

 Installing by using precompiled binaries (SPECS recommended);
 Compiling and installing from source (for advanced users).

Install using precompiled binaries

The precompiled binaries are available under the SPECS Artifact Repository1

1 http://ftp.specs-project.eu/public/artifacts/

http://ftp.specs-project.eu/public/artifacts/

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

13

Prerequisites:

 Oracle Java JDK 7;
 MongoDB;
 Java Servlet/Web Container (recommended: Apache Tomcat 7)
 Download the web application archive (war) from the artifact repository2

Installation steps:
 The application must be deployed to the Application Server (Tomcat) If Apache

Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps” folder inside
the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

 MongoDB must be up and running, listening on the default port of 27017.

Install from source

Prerequisites:

 Git client
 Apache Maven
 Maven dependencies (not available in the maven repo, have to be downloaded and

installed):
o specs-data-model3
o specs-negotiation-supply-chain-manager4

 Apache Tomcat
 MongoDB
 SPECS components:

o planning-api5
o service-manager-api6
o sla-manager-api7
o security-reasoner-api [3]

Downloading the source code:

git clone https://bitbucket.org/specs-team/specs-core-negotiation-slomanager.git

Database configuration:

 During the application start up MongoDB must be up and running, accepting traffic on
the default port 27017.

How to run tests:

 change directory in the root of the project

 run mvn test

Deployment instructions:

1. Manual deployment to Tomcat:

2 http://ftp.specs-project.eu/public/artifacts/sla-negotiation/slo-manager/slomanager-api-0.1-SNAPSHOT.war
3 https://bitbucket.org/specs-team/specs-utility-data-model.git
4 https://bitbucket.org/specs-team/specs-core-negotiation-supply_chain_manager
5 https://bitbucket.org/specs-team/specs-enforcement-planning
6 https://bitbucket.org/specs-team/specs-sla_platform-service_manager-services_api
7 https://bitbucket.org/specs-team/specs-sla_platform-sla_manager-sla-api

http://ftp.specs-project.eu/public/artifacts/sla-negotiation/slo-manager/slomanager-api-0.1-SNAPSHOT.war
https://bitbucket.org/specs-team/specs-utility-data-model.git
https://bitbucket.org/specs-team/specs-core-negotiation-supply_chain_manager
https://bitbucket.org/specs-team/specs-enforcement-planning
https://bitbucket.org/specs-team/specs-sla_platform-service_manager-services_api
https://bitbucket.org/specs-team/specs-sla_platform-sla_manager-sla-api

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

14

a. change directory to the root of the project
b. run mvn package
c. in directory target you will find slomanager-api.war. Deploy it to your

Application Server by copying it into the “/webapps” folder inside the home
directory for Apache Tomcat 7.0.x (the one pointed to by the CATALINA_HOME
variable.

2. Maven Tomcat deployer:
a. Create a user as script manager in tomcat-users.xml:

<user name = “deploy” password=”s3cret” roles=”manager-script”>

b. change directory to the root of the project
c. run mvn tomcat7:deploy
d. the application will be deployed on the context path /slomanager-api

 Usage

The SLO Manager component is accessible via a REST APIs interface. The development of
RESTful Web Services is done in Spring Boot Framework [4], more specifically the spring-
boot-starter-web and spring-boot-data-mongo artifacts for maintaining resources’
persistence using a MongoDB [5] database.
All REST operations over resources are mapped under the path /sla-negotiation/*. They
are represented by specific Java classes under the packages eu.specs.datamodel.sla and
eu.specs.datamodel.agreement, inside the repository specs-utility-datamodel3.

In Figure 4, we give an example of REST call to retrieve the SLA Template collection. There are
two SLA Templates available, NIST [6], respectively CCM [7] compliant.

Figure 4. Retrieval of SLA Templates Collection

 Functional Tests

In order to test the functionality of the SLO Manager REST API and the correctness of the
underlying methods and procedures, JUnit [8] tests have been implemented (see Appendix 1.
Negotiation Module – Functional Tests SLO Manager Tests). Since the component leverages
other SPECS components and depends on the result of their actions in the negotiation process,
mocking techniques (WireMock [9]) have been used to mimic their expected behaviour
during unit and component tests.

SonarQube [2] has been used to assess quality of software, code coverage and conditions
during tests. The results can be accessed online at [10]. Figure 5 gives an overview of the

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

15

code, such as number of lines of code, files and functions, and details about the complexity of
the code. Figure 6 provides quality analysis information for the component, with regard to
maintenance of the code, coding standards and the amount of code that has been tested. The
major issue, shown in Figure 6, means that the main class has not been covered by tests; this
is because it contains code that cannot be tested statically. This part of the code has been
covered by integration tests in Section 4 of D1.5.2. Besides this issue, all written tests have
successfully passed, obtaining a coverage of over 90% of the application. There is no critical
issue meaning that no bug or security flow is present in the code. Since the Technical Debt
Ratio is 0.1% (see http://docs.sonarqube.org/display/PLUG/SQALE+Plugin for an
explanation how this number is computed), SonarQube decides that SQALE Rating is A, hence
the SLO Manager component ready to be deployed and used by other SPECS components in its
current state.

Figure 5. Code Properties for SLO Manager Component

http://docs.sonarqube.org/display/PLUG/SQALE+Plugin

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

16

Figure 6. Quality Analysis for SLO Manager Component

 Performance Tests

The performance and scalability of the SLO Manager was evaluated according to the
methodology presented in D1.5.2 and adopted at project level. Two indicators are considered:

 response time (the time elapsed between the request of a service up to the production
of the result), and

 throughput (the number of services executed per second).
These indices were evaluated based on a set of increasing workloads and the testing was
conducted in the testing environment discussed in D1.5.2 and D1.6.2.
We prepared three user profiles for the SLO Manager component (see Table 2).

User profile Description Scripts
Create
SLATemplate

Create a new SLATemplate SLATemplatePostAtOnce.scala

Get
SLATemplate

Retrieve the list of SLATemplates
get one of them and store it

SLATemplateGetAtOnce.scala

Start
Negotiation

Retrieve the list of SLATemplates,
start negotiation for one of them

StartNegotiationAtOnce.scala

Table 2. SLO Manager User Profiles for Performance Tests

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

17

The component was stressed by issuing an increasing number of requests targeted to the
exposed API calls endpoints involved in the user profiles described above.

Input Rate (users / s) Throughput (req / s) Response Time (ms)

0 0 0

1 2.44 6

100 108,25 196

200 142,44 394

500 228,53 1932

750 245,37 4048

1000 267,53 8235

Table 3. SLO Manager Performance Tests. Get SLA Template (a)

Figure 7. SLO Manager Performance Tests. Get SLA Template (b)

Input Rate (users / s) Throughput (req / s) Response Time (ms)

0 0 0

1 1,217 50

100 97,523 203

200 116,986 96

500 149,022 312

750 206,157 433

1000 194,32 771

Table 4. SLO Manager Performance Tests. Create SLA Template (a)

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

18

Figure 8. SLO Manager Performance Tests. Create SLA Template (b)

Input Rate (users / s) Throughput (req / s) Response Time (ms) Failed (%)

0 0 0 0

1 4.53 29 0

10 1.38 68 0

100 48,888 877 0

150 52,845 364 0

200 68,347 505 0

300 76,6 346 0

500 111,682 408 0

750 111,757 2225 0

900 94,972 8922 2

Table 5. SLO Manager Performance Tests. Start Negotiation (a)

Figure 9. SLO Manager Performance Tests. Start Negotiation (b)

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

19

3.3 Supply Chain Manager

The Supply Chain Manager component orchestrates (with the support of the Enforcement
module) the generation of supply chains for the EU's security requirements specified in an
SLA Template. As discussed in deliverable D2.3.3, the Supply Chain Manager component (i)
takes the SLA Template received from the SLO Manager, (ii) parses it to prepare the input for
the Enforcement module, (iii) triggers the generation of supply chains, and returns a list of IDs
of the generated supply chains.
The prototype of the component is available on Bitbucket [2]. In the following subsections, we
report the installation and usage guideline, and tests preformed for the component.
Note that the Supply Chain Manager is not a web application (with a defined REST API), but
just a Java library, directly and internally invoked by the SLO Manager. For this reason, we do
not report in this deliverable Performance Tests for the Supply Chain Manager component
since it is implemented as a Java library acting as an interface between the SLO Manager and
the Planning componnent (responsible with the generation of supply chains) of the
Enforcement module. We direct the reader to WP4 deliverables for Performance Tests for the
Planning component.

3.3.1 Installation

Prerequisites:
 Java 7

The Supply Chain Manager is a Java library which can be included in the Maven-based project
as a dependency:

<dependency>

 <groupId>eu.specs-project.core.negotiation</groupId>

 <artifactId>supply-chain-manager</artifactId>

 <version>0.1-SNAPSHOT</version>

</dependency>

In a non-Maven project, the Supply Chain Manager can be downloaded manually from the
SPECS Maven repository and included in the project's classpath:

https://nexus.services.ieat.ro/nexus/content/repositories/specs-

snapshots/eu/specs-project/core/negotiation/supply-chain-manager/

To build the Supply Chain Manager component from the source code, the Apache Maven 3 tool
is needed. First, clone the project from the Bitbucket repository using a Git client:

git clone https://bitbucket.org/specs-team/specs-core-negotiation-

supply_chain_manager

Then, go into the cloned directory and run:

mvn package

3.3.2 Usage

The Supply Chain Manager is implemented as a Java library and is packed as a Java archive
(JAR) file, which has to be added to the Java classpath. The Supply Chain Manager provides the
following Java API:

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

20

SupplyChainManager(String serviceManagerApiAddress, String planningApiAddress)

The Supply Chain Manager constructor accepts two parameters: address of the Service
Manager and address of the Planning component.
List<SupplyChain> buildSupplyChains(AgreementOffer agreementOffer) throws

SupplyChainManagerException

The method buildSupplyChains accepts one parameter: SLA Template, which is of type
AgreementOffer. The method returns a list of built supply chains. In case anything goes
wrong, the method throws SupplyChainManagerException.

3.3.3 Functional Tests

In order to verify the correctnes of the behaviour of the Supply Chain Manager component, a
JUnit [8] test has been implemented. Dependencies on other SPECS components (the Service
Manager component of the SLA Platform and the Planning component of the Enforcement
module) have been mocked with the WireMock farmework [9]. For the code quality
assessment, SonarQube [2] has been used.

The unit tests are described in Appendix 1, whilst the code quality report is depicted in Figure
10 and Figure 11. Note that there are no critical nor major errors which determines a low rate
of Technical Debt Ratio (0.4%), hence Supply Chain Manager component, by a SQALE rating of
A, is ready to be deployed and used by other SPECS components in its current state (see
Figure 11).

Figure 10. Code quality report - Supply Chain Manager, part 1

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

21

Figure 11. Code quality report - Supply Chain Manager, part 2

3.4 Security Reasoner

The Security Reasoner is invoked by the Supply Chain Manager to rank SLA Offers. Moreover,
its functions may be invoked to help the SPECS Owner evaluate and compare available CSPs,
independently of the SPECS flow.
The prototype of the component is available on Bitbucket at [3]. In the following subsections,
we report the installation and usage guidelines, along with the results of the tests performed
for the component.

3.4.1 Installation

In this section, we report the installation guide, which covers two scenarios:
 Installing by using precompiled binaries (SPECS recommended);
 Compiling and installing from source (for advanced users).

Installing by using precompiled binaries

The precompiled binaries are available under the SPECS Artifact Repository [3].
Requirements

 Oracle Java JDK 7;
 Java Servlet/Web Container (recommended: Apache Tomcat 7)

Installation steps

1. Download the web application archive (war) from the artifact repository [3];

2. Deploy the war in the java servlet/web container. If Apache Tomcat 7.0.x is used, the
war file needs to be copied into the “/webapps” folder inside the home directory
(CATALINA_HOME) of Apache Tomcat 7.0.x.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

22

Compiling and installing from source

In order to compile and install the Security Reasoner, the following requirements must be
satisfied:

Requirements

 a Git client
 Apache Maven 3.3.x
 Oracle Java JDK 7
 Apache Tomcat 7

Installation steps:

1. clone the Bitbucket repository with the following command:
git clone https://bitbucket.org/specs-team/specs-core-negotiation-

securityreasoner.git

2. change directory to the root of the project.
3. Under specs-core-negotiation-securityreasoner run:

mvn install

The installation generates a web application archive (war) file, under the “/target” subfolder.
In order to use the component, the war file has to be deployed in the java servlet/web
container. If Apache Tomcat 7.0.x is used, the war file needs to be copied into the “/webapps”
folder inside the home directory (CATALINA_HOME) of Apache Tomcat 7.0.x.

3.4.2 Usage

In deliverable D2.3.1, we illustrated how to use the Security Reasoner standalone application
via its web interface. As discussed in D2.3.3, the Security Reasoner is now available as a
component exposing a REST API (i.e., the Evaluation API). Therefore, the functionalities
discussed in D2.3.1 (Single Evaluation, Comparison Evaluation, Upload the CAIQ template,
Upload/Edit weights) are now available as REST API calls. A detailed description of API calls
is reported in Annex A of D2.3.3; in the following, we discuss only how to use the Security
Reasoner in the SPECS Negotiation flow.
With regards to the Negotiation flow, the Security Reasoner allows to:

 upload an SLA Offer and obtain an updated CAIQ for the involved provider, including all
the security controls offered by SPECS.
This is done by accessing the resource:
/specs-app-SecurityReasoner/slacaiqs, with the POST HTTP method, by giving, as an
input, an SLA Offer in the SPECS SLA machine readable format. The call returns the URI
of the updated CAIQ.

 retrieve the score of an SLA Offer.
This is done by accessing the resource:
/specs-app-SecurityReasoner/slacaiqs/{id-slacaiq}/score, with the GET HTTP method.
No request body is specified and the call returns the score associated with the root of
the specified SLACaiq. If a category parameter is specified in the query string, the score
of the requested category is returned.
Note that this call must follow the previous one. The two calls together allow a set of
ranked SLA Offers to be obtained, from which the EU can make a selection.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

23

3.4.3 Functional Tests

In order to test the functionality of the Security Reasoner and the correctness of the
underlying methods and procedures, JUnit tests have been implemented. The component does
not depend directly on other SPECS components, therefore it was not necessary to use mock-
ups.
SonarQube was used to assess the quality of software, code coverage and conditions during
tests. The unit tests are described in Appendix 1, whilst the code quality report is available at
[11] and summarized in Figure 12 and Figure 13.

The code quality report in Figure 13 states that there is one critical issue, related to a static
variable not declared as final. Moreover, there are still some major issues. Since the new
version of the Security Reasoner has been derived from the standalone application, which was
developed as a proof-of-concept application, the presence of these issues is reasonable.
However, the detailed report, available at [11], shows that most of these issues are related to
duplicate code blocks and imperfect use of counters. Hence the SQALE Rating is A also for this
component.

Figure 12. Code quality report – Security Reasoner, part 1

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

24

Figure 13. Code quality report – Security Reasoner, part 2

3.4.4 Performance Tests

In order to evaluate the performance and scalability of the Security Reasoner according to the
approach defined in deliverable D1.5.2, we considered the two performance indices response
time (the time elapsed between the request of a service up to the production of the result) and
throughput (the number of services executed per second). These indices were evaluated
based on a set of increasing workloads and the testing was conducted in the testing
environment discussed in D1.5.2 and D1.6.2.
The component was stressed by issuing an increasing number of contemporary requests
targeted to the exposed API calls’ endpoints. In particular, we tested the following calls for a
number of requests (i.e., contemporary users) up to 40.

 /specs-app-SecurityReasoner/caiqs (POST): used to create a new CAIQ
resource;

 /specs-app-SecurityReasoner/caiqs (GET): used to retrieve all stored
CAIQs;

 /specs-app-SecurityReasoner/judgements (POST): used to upload a new
judgement resource;

 /specs-app-SecurityReasoner/judgements/{judgement-id} (GET):
used to retrieve a judgement by its id;

 /specs-app-SecurityReasoner/caiqs/{caiq-id}/evaluate (GET): used
to evaluate a CAIQ based on a judgement and create a tree-like structure.

Results are reported in the following tables and graphs.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

25

Table 6. Security Reasoner POST CAIQ call performance (1)

Figure 14. Security Reasoner POST CAIQ call performance (2)

Table 7. Security Reasoner GET all CAIQs call performance (1)

Figure 15. Security Reasoner GET all CAIQs call performance (2)

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

26

Table 8. Security Reasoner POST Judgement performance (1)

Figure 16. Security Reasoner POST Judgement performance (2)

Table 9. Security Reasoner GET judgement performance (1)

Figure 17. Security Reasoner GET judgement performance (2)

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

27

Table 10. Security Reasoner Evaluate performance (1)

Figure 18. Security Reasoner Evaluate performance (2)

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

28

4. Conclusions

This document presents the final prototype of the Negotiation module, which is composed of
three components (SLO Manager, Supply Chain Manager and Security Reasoner). All
components are available online and their functionalities and performance has been
successfully tested. We conclude that the final implementation of the Negotiation module
implements all the corresponding requirements.

Performance analysis illustrates that the components of the Negotiation module are able to
handle up to 700 users/second for the SLO Manager or up to 5 users/second for POST
methods, respectively 40 users/second for GET methods for the Security Reasoner. We remind
the reader of this deliverable that the Performance Tests of the Supply Chain Manager are not
reported in this deliverable since it is implemented as a Java library acting as an interface
between the SLO Manager and the Planning. We direct the reader to WP4 deliverables for
Performance Tests for the Planning component.

In D2.3.3 Reference architecture for Cloud SLA negotiation: development and tests - Final
Report, we will present how the Negotiation module advanced the state of the art of Security
SLA Negotiation and how the second objective of the project (Allow user-centric negotiation of
Cloud SLA) related to WP2 (Negotiation) has been successfully fulfilled. A detailed description
of the negotiation and renegotiation flows will also be available.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

29

5. Bibliography

[1] SPECS, “Negotiation Module. SLO Manager Component,” 2015. [Online]. Available:

https://bitbucket.org/specs-team/specs-core-negotiation-slomanager.

[2] “Negotiation Module. Supply Chain Manager.” [Online]. Available:

https://bitbucket.org/specs-team/specs-core-negotiation-supply_chain_manager.

[3] “Negotiation Module. Security Reasoner.” [Online]. Available: https://bitbucket.org/specs-

team/specs-core-negotiation-securityreasoner.

[4] “Spring Boot Framework.” [Online]. Available: https://spring.io/.

[5] “MongoDB.” [Online]. Available: https://www.mongodb.org/.

[6] “NIST SP-800-52: Guidelines for the Selection, Configuration, and Use of Transport Layer

Security (TLS) Implementations,” 2014.

[7] Cloud Security Alliance, “CSA CAIQ Questionnaire.” [Online]. Available:

https://cloudsecurityalliance.org/star/?r=4376#_registry.

[8] “JUnit.” [Online]. Available: http://junit.org/.

[9] “WireMock.” [Online]. Available: http://wiremock.org/.

[10] “Code quality report - SLO Manager.” [Online]. Available:

https://sonar.services.ieat.ro/dashboard/index/1480.

[11] “Code quality report – Security Reasoner.” [Online]. Available:

https://sonar.services.ieat.ro/dashboard/index/2116

https://sonar.services.ieat.ro/dashboard/index/1480
https://sonar.services.ieat.ro/dashboard/index/2116

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

30

Appendix 1. Negotiation Module – Functional Tests

This annex briefly summarizes the results of the tests performed on the Negotiation Module,
namely on SLO Manager, Supply Chain Manager and Security Reasoner components. The SPECS
Continuous Integration System (https://bamboo.services.ieat.ro), introduced in deliverable
D4.5.2, continuously performs these tests, updating the results every time the code changes.

SLO Manager Tests

In order to test the functionality of the REST API and its underlying methods, we considered
writing tests which cover application setup and REST operations over simple resources and
over collections. These are mandatory tests that check the persistence in the database and the
correctness of resource representation, via XML, such that the negotiation process can be
tested.
The most complex test is the one which covers the negotiation process (Test ID
negotiationFlow). Since errors have been covered by persistence and representation tests, as
explained above, during the negotiation flow test, only the expected behaviour of a user,
engaged in the negotiation process, is tested.

Test ID testSetUp
Test objective Checks if the configuration of leveraged components is done correctly.
Verified
requirements

Inputs SLO Manager properties file
Expected results Properties are mapped without exceptions
Outputs N/A
Comments Operation completed successfully

Test ID testCollection
Test objective Checks if Collection representation is serialized and deserialized

correctly.
Verified
requirements

SLANEG_R10

Inputs none
Expected results Collection information persists after deserialization.
Outputs N/A
Comments Operation completed successfully

Test ID offerErrors
Test objective Verifies functionality of REST API on SLA Offers. Checks return messages

in case of errors. Retrieval operations for non-existent SLA Templates will
result in NOT FOUND status, while PUT/POST operations on non-existent
SLA Templates will result in BAD REQUEST status.

Verified
requirements

SLANEG_R7, SLANEG_R8, SLANEG_R9, SLANEG_R10

Inputs none
Expected results 1. Request creation of SLA Offers for non-existent SLA Template:

 400 BAD REQUEST
2. Create SLA Offers for non-existent template:
 404 NOT FOUND
3. PUT selected SLA Offer for non-existent SLA Template:

400 BAD REQUEST
4. Retrieve current SLA Offer for non-existent SLA Template:

 404 NOT FOUND

https://bamboo.services.ieat.ro/

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

31

Outputs N/A
Comments All operations completed successfully

Test ID retrieveTemplateNotFound
Test objective Checks status code in case of retrieval of non-existent SLA Template.
Verified
requirements

SLANEG_R7

Inputs none
Expected results 404 NOT FOUND
Outputs N/A
Comments Operation completed successfully

Test ID deleteAllTemplates
Test objective Checks Delete REST method and empty Collection representation.

After the DELETE method returned 204 NO CONTENT, a GET request is
made to retrieve the collection of SLA Templates. This collection should
contain no SLA Template resource URIs.

Verified
requirements

SLANEG_R7

Inputs none
Expected results 1. Delete method status: 404 NOT FOUND

2. Retrieval of SLA Templates collection has status: 200 OK
3. Returned resource Collection equal to
<collection resource="sla-templates" total="0" items="0"

members="0"/>"

Outputs N/A
Comments All operations completed successfully

Test ID createAndDeleteTemplate
Test objective Verifies return status for SLA Template operations.
Verified
requirements

SLANEG_R7, SLANEG_R19, SLANEG_R20, SLANEG_R21

Inputs SLA Template
Expected results SLA Template is:

1. created: 201 CREATED
2. retrived: 200 OK
3. updated: 200 OK
4. deleted: 204 NO CONTENT
5. not found: 404 NOT FOUND

Outputs N/A
Comments All operations completed successfully

Test ID negotiationFlow
Test objective This test mimics a negotiation scenario in which a NIST SLA Template is

used to generate two SLA Offers, where one is selected to be implemented.
The SLA Manager, Planning and Services Manager components are
mocked to return predefined behaviour. The mocked services verify REST
calls and their content.

Verified
requirements

SLANEG_R1, SLANEG_R2, SLANEG_R3, SLANEG_R7, SLANEG_R8,
SLANEG_R10, SLANEG_R11, SLANEG_R16 SLANEG_R19, SLANEG_R20,
SLANEG_R21, SLANEG_R22, SLANEG_R23

Inputs SLA Template
Expected results 1. The negotiation process starts by making a POST to a previously

selected template.
Side effects: a new SLA Template is created in SLA Manager mock.
This template is returned.
Expected status: 200 OK.

2. Request for SLA Offers, two SLA Offers are generated for a given

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

32

SLA Template, based on two predefined supply chains offered by
the Planning mock.
Side effects: A SLA Offer is created in SLA Manager mock for each
supply chain. The collection of SLA Offers is returned.
Expected status: 201 CREATED, SLA Offers are ordered by rank.

3. One SLA Offer is selected and the initial SLA Template is updated
with this value.
Side effects: All SLA Offers are deleted from SLA Manager mock.
All supply chains that are not associated with the selected SLA
Offer will be deleted.
Expected status: 200 OK.

4. Retrieval of current selected SLA Offer.
Expected status: 200 OK.

5. SLA Offer retrieved using the REST API at Step 4 coincides with
the SLA Offer which was serialized at Step 3.

Outputs N/A
Comments All operations completed successfully

Supply Chain Manager Tests

In the following tables we present two unit tests executed for the verification of the behaviour
of the Supply Chain Manager.

Test ID testSupplyChainManager
Test objective Verifies the whole process of building supply chains based on the test SLA

Template.
Verified
requirements

ENF_PLAN_R3, ENF_PLAN_R14

Inputs Test SLA Template, Planning and Service Manager components are
mocked to return expected behaviour.

Expected results Supply chains should be created successfully and correspond to the test
SLA Template.

Outputs List of built supply chains.
Comments All operations completed successfully.

Test ID testUnsupportedMetric
Test objective Verifies Supply Chain Manager behaviour in case the SLA Template

contains metric for which no security mechanisms are available.
Verified
requirements

ENF_PLAN_R3, ENF_PLAN_R14

Inputs Test SLA Template, Planning and Service Manager components are mocked
to return expected behaviour.

Expected results The Supply Chain Manager should throw SupplyChainManagerException
with corresponding description.

Outputs No outputs.
Comments All operations completed successfully.

Security Reasoner Tests

In the following tables, we present the unit tests executed for the verification of the behaviour
of the Security Reasoner.

Test ID Create caiq
Test objective Tests if a caiq resource is created correctly when submitting a valid Caiq

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

33

Template
Verified
requirements

Inputs A CaiqTemplate in a valid format
Expected results The resource should be created and a 201 CREATED code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Fail Create caiq
Test objective Tests if an error is raised when trying to create a new caiq resource from

an invalid Caiq Template
Verified
requirements

Inputs A CaiqTemplate in an invalid format
Expected results The resource should not be created and a 435 INVALID INPUT code

should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Update caiq
Test objective Tests if a Caiq is updated correctly when a valid caiq template and a valid

resource endpoint are provided
Verified
requirements

Inputs CaiqTemplate in a valid format
Expected results The resource should be correctly updated and a 200 OK code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Update caiq bad resource
Test objective Tests if an error is raised when trying to update a non-existing caiq

resource
Verified
requirements

Inputs CaiqTemplate in a valid format
Expected results A 404 NOT FOUND error code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Update caiq fail
Test objective Tests if an error is raised when trying to update a caiq resource by

submitting an invalid caiq
Verified
requirements

Inputs CaiqTemplate in an invalid format
Expected results The resource should not be updated and a 435 INVALID INPUT code

should be returned
Outputs N/A
Comments Operation completed successfully

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

34

Test ID Delete caiq
Test objective Tests if an existing caiq resource is deleted properly
Verified
requirements

Inputs
Expected results The resource should be deleted and a 204 DELETED code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Delete caiq fail
Test objective Tests if an error is raised when trying to delete a non-existing caiq

resource
Verified
requirements

Inputs
Expected results A 404 NOT FOUND error code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Retrieve caiq
Test objective Tests if an existing caiq resource is retrieved properly
Verified
requirements

Inputs
Expected results The resource should be retrieved and a 200 OK code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Retrieve caiq fail
Test objective Tests if an error is raised when trying to retrieve a no-existing caiq

resource
Verified
requirements

Inputs
Expected results A 404 NOT FOUND error code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Retrieve All caiqs
Test objective Tests if the Caiq Collection is retrieved properly.
Verified
requirements

Inputs
Expected results The collection should be retrieved and a 200 OK code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Create association caiq/judgement
Test objective Tests if the association caiq/judgement is properly created
Verified
requirements

Inputs Judgement-id
Expected results The association should be created and a 201 CREATED code should be

returned
Outputs N/A
Comments Operation completed successfully

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

35

Test ID Create association caiq/judgement bad caiq
Test objective Tests if an error is raised when trying to create an association

caiq/judgement with a non-existing caiq
Verified
requirements

Inputs Judgement-id
Expected results The 404 NOT FOUND error code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Create association caiq/judgement bad judgment
Test objective Tests if an error is raised when trying to create an association

caiq/judgement with a non-existing judgement
Verified
requirements

Inputs Judgement-id
Expected results The 422 UNPROCESSABLE ENTITY error code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Evaluate caiq
Test objective Tests if a caiq is correctly evaluated based on an existing caiq-judgement

association
Verified
requirements

Inputs Judgement-id or none
Expected results The Caiq should be correctly evaluated and a 201 CREATED code should

be returned. If no judgement parameter is specified in the query string,
the evaluation is done with the default judgement.

Outputs N/A
Comments Operation completed successfully

Test ID Evaluate caiq no association
Test objective Tests if an error is raised when trying to evaluate a caiq based on a non-

existing caiq-judgement association
Verified
requirements

Inputs Judgement-id or none
Expected results A 409 CONFLICT error code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Create judgement
Test objective Tests if a judgement resource is properly created when submitting a

judgment in a valid format
Verified
requirements

Inputs JudgementTemplate
Expected results The association should be created and a 201 CREATED code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Create judgement invalid format
Test objective Tests if an error is raised when trying to create a new judgment from an

invalid template

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

36

Verified
requirements

Inputs JudgementTemplate
Expected results The judgement should not be created and a 435 INVALID INPUT code

should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Update judgement
Test objective Tests if a Judgement is properly updated when submitting a valid

template
Verified
requirements

Inputs JudgementTemplate
Expected results The Judgement should be created and a 201 CREATED code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Update judgement invalid format
Test objective Tests if an error is raised when trying to update a judgment with an

invalid template
Verified
requirements

Inputs JudgementTemplate
Expected results The Judgement should not be updated and a 435 INVALID INPUT code

should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Update judgement bad resource
Test objective Tests if an error is raised when trying to update a non-existing judgment

resource
Verified
requirements

Inputs JudgementTemplate
Expected results A 404 NOT FOUND code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Delete judgement
Test objective Tests if a judgement is deleted properly
Verified
requirements

Inputs
Expected results The Judgement should be deleted and a 204 DELETED code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Delete judgement bad resource
Test objective Tests if an error is raised when trying to delete a non-existing judgment

resource
Verified
requirements

Inputs
Expected results A 404 NOT FOUND code should be returned

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

37

Outputs N/A
Comments Operation completed successfully

Test ID Retrieve judgement
Test objective Tests if an existing judgement is correctly retrieved
Verified
requirements

Inputs
Expected results The judgement should be retrieved and a 200 OK code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Retrieve All judgements
Test objective Tests if the Judgement Collection is correctly retrieved
Verified
requirements

Inputs
Expected results The Collection should be retrieved and a 200 OK code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Create Slacaiq
Test objective Tests is a SlaCaiq resource is created correctly
Verified
requirements

SLANEG_R7, SLANEG_R8, SLANEG_R9, SLANEG_R11, SLANEG_R14

Inputs SlaCaiqTemplate
Expected results The SLACaiq resource should be created and a 201 CREATED code

should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Create Slacaiq invalid template
Test objective Tests if an error is raised when trying to create a SlaCaiq resource from

an invalid template
Verified
requirements

SLANEG_R7, SLANEG_R8, SLANEG_R9, SLANEG_R11, SLANEG_R14

Inputs SlaCaiqTemplate
Expected results A 435 INVALID INPUT code should be returned
Outputs N/A
Comments Operation completed successfully

Test ID Create Slacaiq judgement not existing
Test objective Tests if an error is raised when trying to create a SlaCaiq resource from

an invalid template
Verified
requirements

SLANEG_R7, SLANEG_R8, SLANEG_R9, SLANEG_R11, SLANEG_R14

Inputs SlaCaiqTemplate
Expected results A 409 SYSTEM NOT INITIALIZED code should be returned

Outputs N/A
Comments Operation completed successfully

Test ID Retrieve All Slacaiqs
Test objective Tests if the SlaCaiq Collection is retrieved properly
Verified

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 2.3.2

38

requirements
Inputs
Expected results The Collection should be retrieved and a 200 OK code should be

returned
Outputs N/A
Comments Operation completed successfully

Test ID Retrieve Slacaiq score
Test objective Tests if the SlaCaiq score is properly retrieved
Verified
requirements

SLANEG_R7, SLANEG_R8, SLANEG_R9, SLANEG_R11, SLANEG_R14

Inputs SlaCaiq-id OR SlaCaiq-id and QueryString
Expected results The SlaCaiq score should be retrieved and a 200 OK code should be

returned
Outputs N/A
Comments Operation completed successfully

