ﬁ Secure Provisioning of Cloud Services

based on SLA Management

SPECS Project - Deliverable 2.3.3

Reference Architecture for Cloud SLA
Negotiation: Development and Tests —
Final Report

Version no. 1.1
30 April 2016

o

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.:

D2.3.3

Deliverable title:

Reference Architecture for Cloud SLA Negotiation: Development
and Tests — Final Prototype

Deliverable nature: Report

Dissemination level: Public

Contractual delivery: 30 April 2016

Actual delivery date: 30 April 2016

Author(s): Madalina Erascu (IeAT)

Contributors: Alessandra De Benedictis (CeRICT), Jolanda Modic (XLAB),
Damjan Murn (XLAB), Adrian Spataru (IeAT)

Reviewers: Valentina Casola (CeRICT), Silvio La Porta (EMC)

Task contributing to
deliverable:

the

T2.3

Total number of pages:

31

Annexes

2

SPECS Project - Deliverable 2.3.3

Secure Provisioning of Cloud Services based on SLA Management

Executive summary

This deliverable is the last of three deliverables (D2.3.1, D2.3.2) presenting the final report on
the Negotiation phase and architecture of the SPECS solution.

At the end of year two of the SPECS project the following results of WP2 were presented in the
corresponding deliverables, most notably D2.2.2:

e A conceptual model to represent SLAs compliant with the latest outcomes of standards
and working groups.

e Ametric catalogue compliant with the conceptual model and enriched with the feedback
received from the Platform (WP1), the Enforcement module (WP4), and the validation
scenarios (WP5).

e An architecture of the module as well as the interaction with external modules.

e A negotiation process which was designed and successively refined based on the
feedback received from the Enforcement module and from preliminary prototypes of
the Negotiation module (D2.3.1).

e Arenegotiation process which was designed and refined based on the feedback received
from the Enforcement module which oversees the remediation processes that triggers
the renegotiation.

e Aspects related to the security assessment methodologies, namely REM methodology to
evaluate the SLA Model of SPECS and QHP methodology that considers uncertainty on
qualitative End-Users (EUs) requirements by using quantification of fuzzy numbers.

Moreover, in D2.3.1 we presented a prototype implementation of the SLO Manager component
of the Negotiation module as well as Security Reasoner standalone application.

In D2.3.2, which is released also at month 30, we presented the following information on the
three components (SLO Manager, Supply Chain Manager, Security Reasoner) of the Negotiation
module: (i) final architecture, (ii) the development activities, (iii) references on the installation
procedure and the usage of the prototype components developed in this task, (iv) functional
tests results, in accordance with the methodology proposed in D4.5.2, and (v) performance
tests results, in accordance with the methodology proposed in D1.5.2.

In this document, we present:

o the final stage of the artifacts developed within the Negotiation module, namely the SLO
Manager, Supply Chain Manager, Security Reasoner, SLA conceptual model, SLA
machine-readable format, security metrics, catalogue;

e how these artifacts addressed the objective and subobjectives of WP2 of SPECS, and

e how the research activities carried out in the framework of this WP advanced the state
of the art in Security SLAs.

SPECS Project - Deliverable 2.3.3 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

DEliVErable INTOTTNALION ...eueueueuceseesceseeseesseeeseeeesesesese e sesses s s bbb s b e 2
EXCCULIVE SUIMIMIATY 1uurvurereeesssessessssessessssesssesssssssesssssssessssssssssssssssssssssssssssssssssasas 3
21 o) (S0 A eTa) 4113 1T 4
INAEX OF FIGUIES.ciururiierecireireeiresses et 5
TG 30 1 0 LT 6
1. I OAUCTION ettt 7
2. Relationship with other deliverables........ s 8
3. Negotiation and renegotiation ProCeSSES OVEIVIEWcuimmirssesnessesssssssssssssssssssssssssssssssens 9
4, Negotiation MOAUIE ...t 14
4.1. List of requirements covered and diSCUSSIONccneneseninenesimsnissssssssssssssssssssens 16
4.2, SLO MANAZET . s 21
4.2.1. SLO Manager BENAVIOUTccececeeceeeeesesesesesesesssens 21
4.2.2. SLO Manager ATCHITECTUTEooecececececeeeeeeeeeeeseesssssessessssssssssesssssssssessssssssssssesns 22
4.2.3. Negotiation API UDPAAtes.......cvmemirneninssssssssessses 23

4.3. SUPPLY Chain MANAGET ...ceeeueeurereercercesseeesseseessessesseseessensessessens 24
4.3.1. Supply Chain Manager BENAVIOUT ... ssssssssssssssssssssssssssssssssens 24
4.3.1. Supply Chain Manager ATChITECTUTE ... 26
4.3.2. Supply Chain Manager INTETTACEccererererreresesesesesesessessessessessessessessessessessessessens 26

4.4, SECUTILY REASONET ..o s 26
4.4.1. Security Reasoner BENAVIOUT ... sses 26
4.4.2. Security Reasoner ATCHITECTUTE ... ssss s 27
4.4.3. Security Reasoner REST APlL...... s 28

T 00 Vol 103 o) o - 29
6. BIDlIOGIaPhY .o 31

Annex A - Evaluation API
Annex B - Negotiation API

SPECS Project - Deliverable 2.3.3 4

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

Figure 1. Relationship with other deliverables ... 8
Figure 2. Detailed negotiation PIrOCESScoeererrereeeeesesesesessssssesssns 10
Figure 3. Detailed End-User triggered renegotiation ProCess........ s 12
Figure 4. Detailed CSP triggered renegotiation PrOCESSeerereereenseseessmseessesesssssesssssesssssssssssssseens 13
Figure 5. Negotiation module archit@CtUIeoceececeeeeercereeseeseseeee s sesseens 14
Figure 6. Security SLA conceptual Model ... 15
Figure 7. SLA machine-readable fOrmat.........oenrneeeessssssses s ssessssssssssssssaseens 15
Figure 8. SLO Manager arChit@CtUTE. ... s sasssns 23
Figure 99. Supply Chain Manager Sequence Diagram ... ssssssssssssssssssssseens 25
Figure 10. Security Reasoner USE CASES ... s sssssssssssssssssens 27
Figure 11: Security Reasoner archit@Cture ... ssssssssssssssssseens 27

SPECS Project - Deliverable 2.3.3 5

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1 Coverage of Negotiation Module Requirements

Table 2. WP2 objectives and results

SPECS Project - Deliverable 2.3.3

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

This document describes the final outcomes regarding the Negotiation module developed in
SPECS. The content of this deliverable updates the information presented in D2.2.2 and D2.3.1
by adding updated information, changes in the design and implementation, and improvements
to the techniques and methods introduced in the second year. It also complements the
information from D2.3.2, which was developed simultaneously, by refining the main aspects of
the negotiation and renegotiation process; in Section 3 an overview of the negotiation and
renegotiation process will be summarized in order to better illustrate the final details on the
architecture. A throughout explanations on how the requirements of D2.2.2 were successfully
addressed is presented in Section 4.1. In particular, the behaviour, the architecture of all
components developed in the Negotiation module are presented in Section 4.2 (SLO Manager),
Section 4.3 (Supply Chain Manager) and Section 4.4 (Security Reasoner), while the final list of
available API interface will be described in Annexes A and B. We conclude by presenting how
the objectives of WP2 were fulfilled.

SPECS Project - Deliverable 2.3.3 7

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables

This deliverable is based on the existing work on architecture, requirements, use cases, etc.,
developed in the deliverables released at the end of second year of the project, it constitutes an
input for and receives feedback from the deliverables finalizing the architecture, core modules
and their interplay, use cases.

The overview of the relationship of this deliverable with others from other WPs is presented
in

Figure 1.

D1.5.1 D1.5.2 D5.4
A

D1.1.3

h
D2.2.2

D5.2.3

D2.3.2 D4.3.3

Figure 1. Relationship with other deliverables
In particular, the following deliverables are input for D2.3.3:

e D1.1.3: The final design of the SPECS solution provided input for the implementation of
the Negotiation components.

e D2.2.2: The final report on the conceptual framework for Cloud SLA negotiation
provided the basis for the negotiation and renegotiation processes as well as for the
architecture and development of the Negotiation module.

The rest of the deliverables presented in the picture above are either an input for D2.3.3 or
received input from D2.3.3:

e D1.5.1,D1.5.2: In the integration testing and examples, which are reported in these two
deliverables, the Negotiation components are used; moreover, these two deliverables
were taken into consideration when finalizing the architecture and implementation of
the Negotiation module.

e D2.3.2: This deliverable is an input/output deliverable for D2.3.3 as use cases, design,
implementation and testing activities were conducted with an iterative approach, in
order to benefit of possible feedback.

e D4.3.3: The final prototypes of the Negotiation module takes in consideration the
interaction with the SPECS Enforcement components for the building and validation of
different supply chains.

e D5.2.1, D5.2.2, D5.3, D5.4: In the evaluation of the scenarios in these deliverables, the
Negotiation components are utilized or provided feedback for the scenarios reported.

SPECS Project - Deliverable 2.3.3 8

Secure Provisioning of Cloud Services based on SLA Management

3. Negotiation and renegotiation processes overview

The SPECS negotiation process, as introduced in D2.2.2, comprises a set of steps that allows to
define the security features demanded by EU for a selected service. SPECS also defines a
renegotiation process to negotiate a new SLA in case of changes on EU’s requirements, violation
of a previously negotiated SLA or in case of changes on CSPs.

The negotiation process in SPECS is user centric and is based on the extraction of requirements
for a set of services available in the platform. EU starts by selecting the type of service (i.e,
secure storage). Each service is associated to a set of possible capabilities (understood as
security mechanisms such as E2E encryption). Each capability is associated to a set of controls
and metrics, according to the adopted Control Framework and the proposed Security SLA
model. The process of negotiation has been designed in a way that EUs define the requested
capabilities for a chosen service. Then EUs can choose the expected security level for the
controls associated to the chosen capabilities. Expert EUs can also choose specific values for the
SLOs associated to controls.

Once EUs requirements have been obtained the negotiation module searches among CSPs and
SPECS services for those combinations that matches with requirements. The negotiation
module trusts on the Enforcement module to build a set of supply chains. Each supply chain is
the result of a combination of a CSP with one or more SPECS services. These supply chains are
then used to build a set of SLA offers. To this end, the Negotiation module uses SLA templates
which are used to define an SLA for each supply chain defined by the Enforcement module.
During this process the Enforcement module will have checked that the supply chains created
are valid (for example, checking that the combination of some CSP with one of the selected
SPECS services is possible).

The resulting set of valid SLA offers are then passed to the reasoner component of the
negotiation module. The SLAs offers are evaluated, compared with the EU requirements and
ranked. As part of the negotiation process the valid SLA offers are also signed by CSPs, as a
guarantee that they are able to provide the selected service. With this step the EU is provided
with a ranked list of SLA offers. The EU can choose one of them to sign it. The signed SLA is then
enforced and monitored.

The next sequence diagram shows the negotiation process further detailing it with respect to
the one introduced in D2.2.2. It includes details of the interfaces invoked between the
negotiation module and the rest of the modules and details on the mechanism to retrieve SLA
templates to build SLA offers and manage EU requirements.

This diagram hides the internals of the process to generate supply chains. This process will be
detailed in D4.3.3.

SPECS Project - Deliverable 2.3.3 9

Secure Provisioning of Cloud Services based on SLA Management

[®]

1: start negotiation

SPECS
Application

4: offer services

5: submit chosen service

10: offer capabilities

11: submit chosen

capabilities »

12: offer security controls

13: submit chosen
controls

14: offer security metrics

15: submit chosen metrics

28: return ranked

29: submit chosen
signed SLA Offer

If all SLAs are rejected,
associated Offers and
Supply Chains are
deleted.

SLO Supply Security SLA Planning
Manager Chain Reasoner Manager
} : Manlagar : } I
L 2: retrieve SLA Templates for all services ! | ! } I
(GET/sla-negotiation/sla-templates) g ! ! | |
Ll | I I |
2 3: return a collection of SLA Templates i : } i
************************************ I I
7 .- L a
| I I I
g 6: retrieve SLA Template for the chosen service ! ! ! ! !
d (GET/sla-negotiation/sla-templates/{t-id}) | ! | I :
7: create SLA (PO#TIcIoud—slafslés) } :
8: return SLAID | i |
» 9:retum SLA Template ~ |le————Z-Z2-TTTIT L i ————————— - i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, !
i H | i i |
i | | | | |
I | | | | |
0 1 [1 I [
	1 I
	1 I
	1 I
! I I !	
I ! 1 I !	
I ! 1 I !	
I ! 1 I !	
	I I
! I I I	
> 1 ! 1 I !
I ! I I !
| ! I I I
| ! I I !
| ! | I !
: | I i |
"T 16: build a custom SLA Template ! ! ! ! !
+ (POST/sla-negotiation/sla-templates/t-id}/slaoffers) 1| 17: build supply } I I :
»{] chains (JSON) i E i |
For details about the generation of I
18: return list of built I 7y CIED EEDEEE A |
supply chains IDs i I
,,,,, - !
I
loop for each supply chain) : !
19: get s{ipply chain |
(GET/sla-enforcement/supply-chains/{sc-id}) !
T
l_______20:return supply chain (scgon) | j]
|
: T
] 21: build SLA Offers | i i
! | |
loop for each SLA Offer) I : {
I I
22: create SLA (PUT.'clbud-slafslas/{slh-id}) ‘
H T
| 23reum SLAOfferiDl i j]

26: return ranked SLA Offers (SLA IDs)

27: verify SLA Offers
(CSP signature)

30: submit chosen SLA Offer
PUT/sla-negotiation/sla-templates/{t-id}/slaoffers/current

34: return result

35: implement signed SLA
(POST/sla-enforcement/plan-activities)

|
|
24:rank SLA Offers |
(list of SLA Offers IDs) !

25: return ranked SLA

|
31: update SLA Templaté with the chosclan SLA Offer

(JSON{SLA ID, rankihg})

pifers

32: delete rejeq
(DELETE/sla-enforcem

(PUTICIOyd-SlaJ‘(t—id}) E
|

I
ted supply chajns
ent/supply-chajnsKsc-id})

33: delete rejec

(DELETE/cloud-slalslas/{sla-id})

ed SLAs

Figure 2. Detailed negotiation process

The aforementioned flow to negotiate SLAs is reused to renegotiate them. The process of
renegotiation is triggered either by EUs by the CSPs/SPECS.

The first case occurs when the EU asks for different requirements. The sequence diagram of
Figure 3 details this process.

SPECS Project - Deliverable 2.3.3

10

Secure Provisioning of Cloud Services based on SLA Management

Changing the requirements (controls or even capabilities) invalidates the previously signed
SLA and as a result a new one can be negotiated. In this process the previously signed SLA is
retrieved from the platform, which is used to prompt the EU with her/his previous preference,
so that she/he can modify only some aspects of the SLA. Once the new requirements have been
retrieved, the negotiation process is repeated again, with the difference that the invalid SLA has
to be withdrawn from the system.

The other case of renegotiation is shown in Figure 4. It happens when an SLA has been violated.
Two situations can provoke the violation of an SLA:

1. The detection (at monitoring time) of an unfulfillment of an SLO that cannot be
remediated by Enforcement,

2. The CSP changing some aspect of the service that derive in the unfulfillment of the
previous commitments.

In this case the negotiation process is repeated again. Same as for the EU triggered
renegotiation, the previously enforced SLA is also withdrawn from the system.

SPECS Project - Deliverable 2.3.3 11

Secure Provisioning of Cloud Services based on SLA Management

=]

1: start renegotiation

SPECS
Application

| 9:offer capabilities |

10: submit chosen
capabilities

—

11: offer security controls

12: submit chosen controls

13: offer security metrics

14: submit chosen metrics

28: return ranked
SLA Offers

29: submit chosen
signed SLA Offer

T
|

SLO SLA
Manage Manager
|
i =
2: refrieve SLA (GET/cloud-sla/slasAsla-id)) | i I | i
1 1 -
1 T 1 T
. I |
o semsapMy R I I]
| |
4: retrieve SLA Template for the current service : l : ! I
(GET/sla-negotiation/sla-templates/{t-id}) i ! ! |
P 5:create SLA (POS{lcloud-sla/sids) | |
T >
7: return SLA Template _6returnSLAD | R ﬂ
< _____________________________________

; 8: customize SLA Template

15: build a custom SLA Template
(POST/sla-negotiation/sla-templates/t-id}/slaoffers)

16: build supply chains

(JSON)

17: return list of built

For details about the generation
of supply chains see dedicated
diagram in D4.3.3

]

supply chains IDs

p for each supply chain) |

(GET.sta-enioroement'('su

I
18: get supply chain

1
pply-chainlsw‘{sc-id})

T
|
|
|
T
|
|
|
|
|

19: return supply chéin (sc.json)

Compare
#VMs and
allocation

I

|
ars

I

|

I

:‘ 21: build SLA off

|
:l 20: compare new jsupply chainsi to the old on
I

¢

p for each supply chain) |

22: create SLA (PUT/cloud-sla/slal

s/{sla-id})

26: return ranked SLA Offers (SLA IDs)
< ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

; 27: verify SLA Offers (CSP signature)

If all SLAs are rejected,
associated new Offers

and new Supply Chains
are deleted.

——— I

Label in reconfiguration.json
should be "reconfigure”.

30: submit chosen SLA Offer ! ! ! A B S oD
(PUT/sla-negotiation/sla-templates/{t-id}/slaoffers/current) 31: update SLA Teinplate with the chosen SLA|Offer |SLA (the ID stays the same).
(Pqchloud-sIaJ{t}id}) !
! ! 1 >
| |
|
32: delete rejected supply chains } i
(DELETEn's\aa-enfuroer'lentfsupply-ch.ains:‘{sc-iv:i&_\L !
| | g |
1 I
33: delete refected SLAs | ! !
(DELETE/cloud-Sla/slas/(sla-id}) ! R
34: return result 1 } =0
[! | ! |
L I ! |
35: update implementation plan ! ! ! ! :
(POST/sla-enforcement/reconfigs) ! ! ! ! !
>
| | ! g |
1 | 1 ! 1
| ! | I |
1 : I } 1
[} H I 1 :

Figure 3. Detailed End-User triggered renegotiation process

SPECS Project - Deliverable 2.3.3

12

Secure Provisioning of Cloud Services based on SLA Management

RDS SPECS
Application

IJ‘ 1: notify EU_, |

Security Planning
Reasoner

SLA
Manager
1
1
|

»-

1
4: retrieve SLA Template for the curfent service

[}

1

7: return SLA Template i
e r
1
1
1

:‘ 8: customize SLA Template

9: update SLA Template (PUT/cInud-sIa]{h:id})

GET/sla-negotiation/sla-templates/t-id

10: notify EU !

12: retrieve associated SLA Template
GET/sla-negotiation/sla-templates/{t-id})

If the EU requests
Termination, see

diagram.

13: return SLA Template

14: offer capabilities

15: submit chosen capabilities

16: offer security controls »

17: submit chosen controls

18: offer security metrics

19: submit chosen metrics

20: build a custom SLA Template:
(FOSTIsIa-neguriationlsla-1emplates.’{t-id}!i;l

aoffers)

Compare #VMs O
and allocation

If all SLAs are rejected,
associated new Offers

and new Supply Chains
are deleted.

:‘ 32: verify SLA Offers (CSP signature)
33: send ranked SLA Offers

34: submit chosen signed SLA Offer

35: submit chosen SLA Offer |
(F'UT;‘sIa-negotia1ionfslaltemplatesl{t-id}lslau[f

termination_EU_triggered

22: return list of built
supply chains IDs

supply chains see dedicated
diagram in D4.3.3

op for each supplycnmn)

i
23: get supply chain

£.json)

<
<

25: compare new supply
chains to the old one

26: build SLA offers

g

plor each supply chain]

2

7: create SLA (PUT/cloud-s

2

8: return SLA Offer ID

| 1
! | i
| | |
1 1 1
po—————— e Tm——— = -
| | |

! | ! !

5: create SLA (POST/cloud-sla/slas) | : |

6: return SLA ID i ! i jl

———————————————————— e Rt

i | i !

: i : |

| 1

i | l !

i ! i |

! | ! 1

I | I 1

SLA | } I !

i ! | !

| | | |

| | i i

! | ! 1

| | | '

| | I 1

i ! i :

! | ! |

| | | |

: 1 : |

i | | |

i | i |

: | ! !

| i I i

i | | H

i | i |

! | ! i

| 1

| : | |

| i i i

1 | | I

! | ! 1

| | | 1

21: build supply chains | } ! !

(JSON) .I For details about the generation of :

1

1

1

1

1

1

1

1

T

1

1

1

1

]

1

1

1

1

|

1

1

)

1

1

1

1

1

H

1

1

1

j]

29: rank SLA Offers (list of SLA Offers IDs),
»

ers/current)

30: return ranked SLA Offers

Old SLA is replaced by new
SLA (the ID stays the same).

40: update implementation plan
(POST/sla-enforcement/reconfigs)

I
36: update SLA Template with the chn*en SLA Offe
(PUT/cloud-sla/t-id})

37: delete rejected Slllpply chains

ra
w
o
=
2
w
—
b
5
o
=
=
=3
8
SN VO N S SO N

h 4

r

(DELETEfsla-eniurr:emenl.'sdpp\y-chainsl{s#:-id})
t T

I
38: delete rejected SLAs
(DELETEicIDud-slafslas:‘(slla-id})

. s

r

—————

e

Label in reconfiguration json |
should be "reconfigure”.

L
|
|
|
|
|
t
|
|
|
|
|

I S

Figure 4. Detailed CSP triggered renegotiation process

SPECS Project - Deliverable 2.3.3

13

Secure Provisioning of Cloud Services based on SLA Management

4. Negotiation Module

In this section we first present the final architecture of the Negotiation module and then the
artifacts (software components and models) developed within WP2 and then shows how these
have covered the list of requirements (Section 4.1).

The Negotiation module comprises a list of artifacts (components and models) as follows.

component:SLOManager: the SLO Manager is the component that offers the Negotiation and
Renegotiation API to the SPECS Application. It orchestrates the entire negotiation and
renegotiation processes. It manages the creation of SLA Templates, it triggers generation of
supply chains according to the EUs security requirements, and invokes evaluation and ranking
of the SLA Offers that are built according to the supply chains. The complete description of the
component is available in Section 4.2 while the final implementation details are reported in the
prototype deliverable D2.3.2.

component:SupplyChainManager: the Supply Chain Manager is the component in charge of
building supply chains according to the set of security requirements chosen by the EU. The
creation of supply chains is supported by the Enforcement module (through the Planning
component); for further details see D4.3.2. The complete description of the component is
available in Section 4.3 while the final implementation details are reported in the prototype
deliverable D2.3.2.

component:SecurityReasoner: the Security Reasoner component evaluates and ranks the SLA
Offers created during the negotiation and renegotiation process. The evaluation is done by using
security assessment techniques that apply quantification algorithms to reason about the level
of security provided by each of the SLA Offer with respect to the EU requirements. The complete
description of the component is available in Section 4.4 while the final implementation details
are reported in the prototype deliverable D2.3.2.

The final architecture of the Negotiation module is presented in Figure 5.

=

SLA Platform —‘
<<component>> SLAAM Negotiation
SLA Manager @ <<gomponent>=
SLO Manager
<<component>> i g
SPECS Application Ne%m" AP

A\ builds Chail
Enforcement Q uildSupplyChains

Enforcement API <<components> <<component>> E
=<com Supply Chain (C Security
ponent=> S\ &
Planning O_/ Manager . Reasoner
rankSupplyChains
Powered By Visual Paradigm Community Edition @
Figure 5. Negotiation module architecture
SPECS Project - Deliverable 2.3.3 14

Secure Provisioning of Cloud Services based on SLA Management

The models developed within this module contributed to the reasoning about Security SLAs,
in particular the process of negotiating Service Level Objectives (SLOs). At state of the art the

main issues were:

1. A common language, understandable by both Cloud Service Providers an
Consumers, allowing quantitative representation of security, via SLOs;
2. Automation the provisioning of security mechanisms able to grant desired security
features (activities of WP4 - Enforcement module);
3. Continuously monitoring the services in order to verify the fulfillment of specified
Security SLOs (activities of WP3 - Monitoring module).
The first issue was solved within SPECS by proposing model:SLAConceptualModel (Figure 6)
and model:SLAMachineReadableFormat (Figure 7), see D2.2.2 for a detailed description.

Capability

Security SLA

-name : String

-id : String
-name : String

-description : String

-Agreement|nitiator : String

-AgreementResponder : String
-ServiceProvider : String

SecurityMetric

-name : String

*|-referenceld : String

-ExpirationTime : Date

-Templateld : String
-TemplateName : String

‘ -unit : String

-scale ! String
-definition : String

SLO

-SLO_id : String
-metric : String
-weight : Integer
-expression : String

Figure 6. Security SLA conceptual model

ControlFramework

-id : String
-frameworkName : String

¢

1.¢

SecurityControl

-id : String
-name : String
-control_category : String

ResourcesProvider VM
seviceResources id: Sting o, -appliance : String
ServiceTerm) . ServiceDescriptionTerm ._mame:Stling ‘s_-hatdwam:Slring
seviceDescription name : Sting 1."|.z0ne : String 1..* |-description : String
1. |-serviceName ! String -maxAllowedVMs : Integer
g ControlFramework
,) . . controlFramework Lig : String
ST serviceProperties securityMetrics capabilties Capability -frameworkName : String
. 1." |d : String !
Dk musot:msm =
1 Terms -name : String oA 1 securityControls
referenceld : String L
terms -unit : String 1 Location 1.t
’ -scala. Sm . SecurityControl
guarantee Terms Bl e -id | String
Name -name : String
= - ; , -control_family | String
'SLO_-‘dl Sm . GuaranteeTerm ServiceProperties) Variable
[=y A - @ OViated:Strng -name : Stiing Q_va"ablesm name : Stiing
raxression ;Sing 0.* |-serviceName : String 1
-weight : Integer objectiveList 1 Naivg 2

Figure 7. SLA machine-readable format

SPECS Project - Deliverable 2.3.3

15

Secure Provisioning of Cloud Services based on SLA Management

Another important artifact developed for the purpose of negotiation is the security metrics
catalogue (model:SecurityMetricsCatalogue). This catalogue provides a list of quantitative and
qualitative metrics which are measurable hence their values can be negotiated, monitored and
enforced. These metrics rely on control categories from relevant standards such as NIST [1]
and Cloud Security Alliance’s CCM [2].

4.1. List of requirements covered and discussion

In the framework of WP2, the following artifacts (components and conceptual models) were
developed:
e component:SLOManager
component:SupplyChainManager
component:SecurityReasoner
model:SLAConceptualModel
model:SLAMachineReadableFormat
model:SecurityMetricsCatalogue

In the other two deliverables of this task (D2.3.1 and DZ2.3.2), we reported how the
requirements of the Negotiation module were covered by the component artifacts (see D2.3.1
for the coverage at M18, respectively D2.3.2 for the coverage at M30).

In Table 1 of this deliverable, we report the final analysis of the requirements, with respect to

their coverage by Negotiation artifacts.
REQ_ID Requirement Comment

SLANEG_R1 SLA language should | The conceptual model allows resources to be
support specification | specified at the metric level, or higher.
of required cloud The machine readable format allows resources to
resources be specified at the metric level, or higher.
The SLA Lifecycle has been designed in an
extensible way so as to support composition.
SLANEG_R2 SLA language should | The conceptual model allows security
support simple | commitments, composed from several Cloud
composition Service Providers (CSPs), to be specified.
The machine readable format is extensible to
allow composition of services.
SLANEG_R3 The negotiation | The evaluation techniques are based on
process should | aggregation rules that allow composition.
support _comp OSI€ | The machine readable format is extensible to
cloud services . .
allow composition of services.
SLANEG_R4 Negotiated Service | The conceptual model defines measurable
Level Objectives | metrics.
[SLO_S) should be The machine readable format defines measurable
monitorable and .
metrics.
enforceable
The negotiation API allows the configuration of
the monitoring policies through the enforcement.

SPECS Project - Deliverable 2.3.3 16

Secure Provisioning of Cloud Services based on SLA Management

The Supply Chain Manager parses an SLA to
prepare the input for the Planning which builds
supply chains.

The SLA Lifecycle considers the monitoring and
enforcement of the SLA.

SLANEG_R5

Support the
evaluation of trade-

offs

The conceptual model is designed to support
dependencies among elements.

The machine readable format is designed to
support dependencies among elements.

SLANEG_R6

Evidence associated
with measured SLO

The conceptual model allows resources to be
specified at the metric level, or higher, that are
monitorable and can provide evidence of the
measurement.

The machine readable format allows resources to
be specified at the metric level, or higher, that are
monitorable and can provide an evidence of the
measurement.

The metric catalogue is compliant with the
conceptual model and the conceptual model
allows resources to be specified at the metric
level, or higher, that are monitorable and can
provide evidence of the measurement.

SLANEG_R7

Interactive and
customer centric
process

The conceptual model allows qualitative and
quantitative requirements from customers to be
specified.

The machine readable format allows qualitative
and quantitative requirements from customers to
be specified.

The Negotiation protocol allows EUs preferences
to be considered to negotiate the level of security
demanded.

SLANEG_RS8

Specification of
customer’s security
requirements

The conceptual model allows qualitative and
quantitative requirements from customers to be
specified.

The SLAMachineReadableFormat allows

qualitative and quantitative requirements from
customers to be specified.

The Negotiation protocol allows EUs to negotiate
the level of security demanded, specifying their
preferences.

The metric catalogue is compliant with the
conceptual model specification.

SPECS Project - Deliverable 2.3.3

17

Secure Provisioning of Cloud Services based on SLA Management

security SLO’s can be
negotiated

SPECS Project - Deliverable 2.3.3

SLANEG_R9 Reasoning about | The conceptual model is used by the assessment
security algorithms.

SLOs in cloud SLA The machine readable format is compliant with
the conceptual model.

SLANEG_R10 Follow standards and | The conceptual model is compliant with current
industrial-accepted standards: CSA CCM, ISO 19086, NIST 800.53 and
practices NIST RATAX.

The machine readable format is compliant with
the conceptual model.

SLANEG_R11 Mapping the user’s | The conceptual model allows qualitative and
security requirements | quantitative requirements from customers to be
to the CSP’s offered | specified.

SLOs The machine readable format is compliant with
the conceptual model.
The metric catalogue is compliant with the
conceptual model specification.

SLANEG_R12 Adoption of a | The conceptual model was created.
concep tu;LI Omodel for The machine readable format is compliant with
security SLUs the conceptual model.

SLANEG_R13 Security SLO should | The conceptual model is compliant with current
be measurable in the | standards: CSA CCM, ISO 19086, NIST 800.53 and
real-world NIST RATAX.

The machine readable format is compliant with
the conceptual model.

SCM parses a set of SLOs to prepare the input for
the Planning which builds supply chains.

SLANEG_R13 Security SLO should | The conceptual model is compliant with current
be measurable in the | standards: CSA CCM, ISO 19086, NIST 800.53 and
real-world NIST RATAX.

The machine readable format is compliant with
the conceptual model.

SCM parses a set of SLOs to prepare the input for
the Planning which builds supply chains.

SLANEG_R16 Only measurable | The conceptual model specifies security at the

metric level and measurable metrics are

compatible with the model.

The machine readable format is compliant with
the conceptual model.

The negotiation protocol can negotiate
measurable and unmeasurable parameters.

18

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project - Deliverable 2.3.3

The negotiation API can negotiate measurable and
unmeasurable parameters.
The metric catalogue is compliant with the
conceptual model.
SLANEG_R18 Management of Alerts | The conceptual model allows the SLOs to be
on agreed SLA’s defined with the thresholds that must be fulfilled.
The machine readable format is compliant with
the conceptual model.
The SLA Lifecycle considers the management of
events that may entail violations or alerts
SLANEG_R19 SLO representation | The conceptual model can be represented using a
using a machine- | machine readable format.
read.a.ble) SLA A machine readable format was created.
specification
SLANEG_R20 Security metrics | The conceptual model allows EUs requirements to
might have | be represented, both qualitative and quantitative.
quan.tzta.tzve 9" | The machine readable format is compliant with
qualitative values.
the conceptual model.
The metric catalogue is compliant with the
conceptual model.
SLANEG_R21 Ordered values for | The conceptual model is compatible with the
security metrics. order relationship.
The machine readable format is compliant with
the conceptual model.
The metric catalogue is compliant with the
conceptual model.
SLANEG_R22 Security metrics | The conceptual model is compatible with
operators operators for metric values.
The machine readable format is compliant with
the conceptual model.
The metric catalogue is compliant with the
conceptual model.
SLANEG_R23 Output of a successful | The conceptual model represents the SLA
negotiation process hierarchy to negotiate.
The machine readable format is compliant with
the conceptual model.
The negotiation protocol uses the machine
readable representation created.
The negotiation API uses the machine readable
representation created.

19

Secure Provisioning of Cloud Services based on SLA Management

The negotiation protocol uses the machine
readable representation created.

SPECS Project - Deliverable 2.3.3

SLANEG_R24 Independence from | The conceptual model can be reused in other
Interaction models domains.
The machine readable format can be reused in
other domains.
The negotiation protocol format can be reused in
other domains.
SLANEG_R25 Renegotiation The conceptual model is also used to manage the
triggered by CSP or | renegotiation.
the EU The machine readable format is compliant with
the conceptual model.
The negotiation protocol is also used to manage
the renegotiation.
The negotiation API is also used to manage the
renegotiation.
SLANEG_R26 Input for | The conceptual model is used to manage the
renegotiation renegotiation.
SLANEG_R27 Output of a successful | The conceptual model is used to manage the
renegotiation renegotiation.
SLANEG_R28 Human-assessment of | The conceptual model allows any type of metrics
security metrics to be integrated.
The machine readable format allows any type of
metrics to be integrated.
The negotiation protocol allows any type of
metrics to be integrated.
The metric catalogue allows any type of metric to
be included.
SLANEG_R29 Uncertainty/assuranc | The conceptual model allows any type of metrics
e of performed | to be integrated.
measurements The machine readable format allows any type of
metrics to be integrated.
SLANEG_R30 Remediation through | RDS triggers renegotiation if no other remediation
SLA renegotiation actions recover from SLA violation.
SLANEG_R31 Alerts/violations RDS considers metric interrelationships when
affecting multiple | identifying optimal remediation actions.
elements of the secure
SLA hierarchy

20

Secure Provisioning of Cloud Services based on SLA Management

SLANEG_R32 Platform repositories | The conceptual model is used as the format to
store SLAs in the repository.

The machine readable format is used as the format
to store SLAs in the repository.

The metric catalogue is part of the SLAs that are
stored in the repository.

The SLA Lifecycle considers the storage of SLAs in
the repository.

SLANEG_R33 SLA Management The SLA Lifecycle was created to model the SLA
Management.
SLANEG_R34 Representing security | The negotiation protocol uses the machine

requirements of non- | readable representation created.
expert users

SLAPL_R14 Search CSP SLA The conceptual model and the machine readable
format permit SLAs from CSPs to be represented.
SLAPL_R21 Get SLA The conceptual model and the machine readable

format permit SLAs from CSPs to be represented.

SLAPL_R33 Sign SLA The negotiation protocol and the negotiation API
allows the chosen SLA to be signed by EUs.

Table 1 Coverage of Negotiation Module Requirements

4.2. SLO Manager

SLO Manager is a core component of the Negotiation module and of the SPECS solution,
although it is not visible to the users. It consists of a RESTful web service that captures EU
security requirements, translates them into a machine-readable format to be used by the other
Negotiation module components and SPECS modules, and, finally, translates the result of the
negotiation into SLA Offers, from which the EU must choose one to be signed.

4.2.1. SLO Manager Behaviour

SLO Manager provides support for negotiating SLA Offers. At M18, in D2.3.1, we presented the
behaviour of this component, constructing an SLA Offer starting from a ServiceDescriptionTerm.
The security capabilities contained in the ServiceDescriptionTerm have been used to construct
the SLOs based on the user input, which together constructed the SLA for which offers had to be
generated. Following the definition of the Negotiation and Renegotiation flow, given at M24, in
D2.2.2, SLOManager maintains a collection of SLA Templates describing default configurations
for security metrics and SLOs. Such a SLA Template can be retrieved and customized based on
the user’s needs before starting a negotiation process. The negotiation process starts with the
creation of a new SLA in the SLA Manager. Once the negotiation started the user can request
offers for requested requirements. This process involves the Supply Chain Manager, which
generates the supply chains consisting of the resources needed to fulfil the requirements. For
each supply chain received, SLO Manager generates a SLA Offer and creates the associated SLA
in the SLA Manager. When the user selects one of the offers to be implemented, SLO Manager
deletes the unused SLAs and supply chains from the SLA Manager and Planning components,
respectively, and updates the value of the initial created SLA with the value of the selected offer.
In case the SLA needs to be renegotiated, the implemented SLA is deleted from the SLA Manager,
and the template is updated in the SLO Manager, after which the usual negotiation process can

SPECS Project - Deliverable 2.3.3 21

Secure Provisioning of Cloud Services based on SLA Management

take place. From this step ahead, there is no distinction between negotiation and renegotiation
of an SLA from the point of view of SLO Manager. Depending on external events, such as a CSP
triggering renegotiation, due to an unsupported service, the associated SLA Template will be
deleted or updated, but SLO Manager is agnostic to the context in which the operation is made.
After the update has been made on the associated SLA Template, triggering renegotiation, the
process continues as a normal negotiation process: the SLA Template is retrieved, SLA Offers are
generated for it, and one is accepted. In the case that the EU wants to terminate his/her SLA,
this can be done via the SPECS Application, not requiring the negotiation module.

4.2.2. SLO Manager Architecture

The SLO Manager component is responsible for the negotiation process, by maintaining a
collection of SLA Templates which can be adjusted and used to generate SLA Offers, from which
one can be selected to be implemented. For the creation of SLA Offers, several SPECS
components are used: SLA Manager is used to store details of the currently negotiated SLA; the
Planning component is used through Supply Chain Manager to generate supply chains for
negotiated security capabilities; and Security Reasoner is used to rank the SLA Offers.

The architecture of SLO Manager is composed of three layers, designed to address the afore-
mentioned functionality; it is presented in Figure 8.

The Persistence Layer uses the SPECS Data Model artefact, in order to translate XML data into
Java data structures used for storing the XML fields, which provide access to database
operations and indexing over specific fields. Additionally, other components can use the same
objects, to avoid serialization/deserialization issues. MongoDB is used to store SLA Templates
and a mapping between them and negotiated SLA Offers.

The Components Interaction Layer is represented by the interaction with the interfaces
exposed by other SPECS components; the logic and implementation for accessing, updating and
deleting external resources through their REST API are implemented at this layer. The logic of
supply chain generation is implemented in Supply Chain Manager artefact, the creation of
supply chains being made as a method invocation.

SPECS Project - Deliverable 2.3.3 22

Secure Provisioning of Cloud Services based on SLA Management

The Resource Presentation Layer is responsible for the REST API implementation, including
the implementation for CRUD ! operations over SLA Templates, as well as the logic for
generating, presenting and implementing SLA Offers.

| Mongo DB
SPECS Data Model
X o
T-.
W SLATemplate Controller
<<component>>] REST
SLO Manager
REST
= s ok 3
S e T SLAOffer Controller

Security Reasoner

) O

Planning S| AManager

Figure 8. SLO Manager architecture

4.2.3. Negotiation APl Updates

In D2.3.1 we described the preliminary version of the Negotiation API, namely the RESTful
interface, which provided access to the SLO Manager component. That interface provided
functionalities for manipulating security capabilities, service description terms (SDTs), security
metrics, Service Level Objectives (SLOs) and uses the functionalities of other modules, e.g. SLA
Platform (stores the security capabilities together with their metadata), Supply Chain Manager
(stores valid supply chains), Security Reasoner (stores ranked and valid supply chains).

Compared to the prototype available at M18, the SLO Manager REST API required some
modifications, due to the final requirements of the SPECS solution architecture and modules
interactions protocols. Therefore, the current list of REST API methods manipulates:
e SLA Templates (retrieval and deletion of SLA Templates collection, retrieval of an SLA
Template with a certain id, creation of a new SLA Template, update and deletion of an
SLA Template with a certain id), and
e SLA Offers (retrieval and deployment of SLA Offers constructed for the SLA Template with
a certain id, retrieval of Currently employed SLA Offers).
Note that the renegotiation logic is embedded in the Negotiation API. If renegotiation is
triggered by the EU, the current SLA is deleted from SLA Platform and a new negotiation process
starts based on the SLA Template the SLA was generated. In the case of a CSP triggered
renegotiation because a service can no longer be provided, after the deletion of the current SLA,
the SLA Template used for its generation is updated with regard to the supported services and
a new negotiation process starts based on the updated SLA Template.

1 CRUD - Create, Read, Update, Delete
SPECS Project - Deliverable 2.3.3 23

Secure Provisioning of Cloud Services based on SLA Management

In Annex B - Negotiation API we present the complete description of the REST API associated
to the SLO Manager.

4.3. Supply Chain Manager

As discussed in Section 3, the Negotiation module in SPECS oversees (i) the elicitation of EU's
requirements and (ii) their translation into a set of ranked SLA Offers. In order to prepare a set
of SLA Offers that comply with EU's requirements, on one side, and CSPs' and SPECS' offers, on
the other side, the Negotiation module relies on the Enforcement module, to analyse the input
and generate a set of feasible supply chains. The Supply Chain Manager component has a Client
that invokes functionalities of the Enforcement module in order to build feasible supply chains.
In particular, it parses the SLA Template customized by the SLO Manager with the EU's
requirements, and prepares the input for the Enforcement module.

In the next subsections, we introduce the process orchestrated by the Supply Chain Manager
component in detail, and present the architecture and the interface.

4.3.1. Supply Chain Manager Behaviour

As previously said, SLO Manager component customizes an SLA Template with security controls
and security metrics for the security service chosen by the EU. The customized SLA Template is,
then, used by the Supply Chain Manager component to prepare the input for the Enforcement
module (in particular, for the Planning component), to trigger the generation of feasible supply
chains, and to return the list of their IDs to the SLO Manager. The detailed process is depicted
in the sequence diagram in Figure 9.

SPECS Project - Deliverable 2.3.3 24

Secure Provisioning of Cloud Services based on SLA Management

Negotiation module) Enforcement module) SLA Platform)
SLO Supply Chain Planning Service
Manager Manager Manager
1 1

B

1: build supply chains

loopfor each metric)

3: get mechanisms

1
|
|
:‘ 2: extract metrics :
|
|
|
|
|
I
|

4: retum mechanisms

Pl et ok P R -

1

’ |

5: build sets of |
mechanisms :

|

loop for each set of mechanisms) |
|

6: build valid supply chains '
pply L

7: return supply chain activity ID

————————]

8: build supply
chains
P
10: return supply chain activity status
<.. ___________________
11: get list of built supply chains >
12: return list of built supply chains IDs

9: check supply chain activity status

13: return list of built
supply chains IDs

-
|
|
|
|

s
I |

Figure 9. Supply Chain Manager Sequence Diagram

The process starts (Step 1 in the diagram) with the SLO Manager component triggering the
Supply Chain Manager to parse the SLA Template and to prepare the input for the Enforcement
module. The SLA Template contains the information about the security service, controls, and
metrics, selected by the EU, to be enforced on top of the selected service. The Supply Chain
Manager extracts the list of security metrics (Step 2), to identify SPECS security mechanisms
that are able to enforce and monitor the metrics. To this end, the Supply Chain Manager uses
the information provided by the Service Manager component (Steps 3 and 4). Since each
security metric can be enforced and monitored with more than one security mechanisms, the
Supply Chain Manager prepares all possible combinations of available security mechanisms
which implement the SLA (Step 5). For each set, the Supply Chain Manager then triggers the
Planning component to build feasible supply chains (Step 6). The Planning component creates
a supply chain activity object that contains all information about the process itself (e.g., the ID
of the SLA Template, the set of security mechanisms for which the supply chains are being
generated, the state of the process, etc.). Its ID is then returned to the Supply Chain Manager
(Step 7) and the generation of the supply chains begins (Step 8). The Supply Chain Manager
continuously checks the status of the supply chain activity (Steps 9 and 10), and when the status
is Completed, the list of IDs of the generated supply chains (stored by the Enforcement module)
can be retrieved (Steps 11 and 12). At the end of this process, the Supply Chain Manager collects

SPECS Project - Deliverable 2.3.3 25

Secure Provisioning of Cloud Services based on SLA Management

the IDs of all generated supply chains (for all sets of security mechanisms) and returns them to
the SLO Manager component (Step 13).

For the steps covered by the Enforcement module (Step 8), see deliverables D4.3.2 and D4.3.3.
For details about the REST APIs (for calls to the Enforcement module and the Service Manager
in Steps 3, 6,9, and 11) and resources (the supply chain activity object), see deliverable D1.3.

4.3.1. Supply Chain Manager Architecture

The Supply Chain Manager is implemented as a Java library and is packed into a Java archive
(JAR) file. The SLO Manager uses the Supply Chain Manager as a dependency and calls its Java
API directly.

4.3.2. Supply Chain Manager Interface

The Supply Chain Manager component offers a simple Java API which is used by the SLO
Manager:

SupplyChainManager (String serviceManagerApiAddress, String planningApiAddress)
List<SupplyChain> buildSupplyChains (AgreementOffer agreementOffer) throws
SupplyChainManagerException

The Supply Chain Manager constructor accepts two parameters: address of the Service manager
and address of the Planning component. The method buildSupplyChains accepts SLA Template
as an AgreementOffer object and returns a list of built supply chains objects. In case anything
goes wrong, the method throws SupplyChainManagerException.

4.4, Security Reasoner

4.4.1. Security Reasoner Behaviour

The Security Reasoner is a SPECS component devoted to ranking Security SLAs. In particular,
the component offers functionalities to evaluate and rank Cloud Service Providers based on the
publicly available information, regarding the security controls they put in place (cf. the CAIQ
initiative by CSA). Building on this knowledge, as discussed in D2.2.2, the Security Reasoner
enables per-service SLA Offers to be ranked, by taking into account the CSPs that will host the
service resources (i.e., the virtual machines) and the specific security capabilities offered, both
included in the SLA.

In the default SPECS flow (see deliverable D1.3), the Security Reasoner component will be used
only by the Supply Chain Manager in order to rank the SLA Offers generated during the
negotiation process. Currently, the component is available, also, to the SPECS Owner, in order
to help him/her compare available providers based on specific evaluation criteria. Figure 10.
Security Reasoner Use Cases summarizes the component use cases.

SPECS Project - Deliverable 2.3.3 26

Secure Provisioning of Cloud Services based on SLA Management

submit CSP SLA

define default importance levels for
security controls
evaluate CSP
SPECS Owner
e
s

COMpar
CsP

Supply Chain Manager & -ered By Wisual Pamdgm Communily Bditon LY
Figure 10. Security Reasoner Use Cases

As shown, the only use case related to the Supply Chain Manager actor is the comparison of SLA
Offers, carried out by means of the techniques illustrated in D2.2.2. Conversely, for the SPECS
Owner, several functionalities are supported:

Submit CSP SLA: when the SPECS Owner wants to support a new CSP (e.g., a new
provider from which the broker can acquire resources), he/she has to upload the
security-related information associated with such a new CSP. Due to the need for
concrete information on the security offered by a CSP, we adopt the information
retrieved from the CAIQ and consider it as the provider’s SLA. Therefore, the Security
Reasoner offers a simple web interface that enables the CAIQ responses for the new CSPs
to be submitted.

Define default importance levels for security controls: CAIQ entries refer to specific
controls, which are all given the same importance by default. In order to support a
different weighting strategy, we allow the SPECS Owner to update the default
importance levels for security controls.

Evaluate CSP: the SPECS Owner can evaluate a specific provider in order to obtain a
score for each control family that expresses the level of coverage of the family.
Compare CSPs: the SPECS Owner can compare a set of providers based on specific
criteria.

4.4.2. Security Reasoner Architecture

The updated Security Reasoner Architecture is depicted in Figure 11 The first release of the
Security Reasoner, described in D2.3.1, was accessible as a standalone SPECS Application. In the
current version, the functionalities of the Security Reasoner are now available through the
Evaluation REST API, later described, and have been integrated into the SPECS flow.

<< COIMY ponent= >

Oi Security Reasoner

Evaluation API
1 By Vizual PREdgmCammlnity Editian e

Figure 11: Security Reasoner architecture

SPECS Project - Deliverable 2.3.3 27

Secure Provisioning of Cloud Services based on SLA Management

4.4.3. Security Reasoner REST API

The Security Reasoner Evaluation REST API provides the functionalities to:

Manage (access, update, delete) the Consensus Assessment Initiative Questionnaire
(CAIQ) data of cloud providers, represented in a tree-like structure;

Manage (access, update, delete) judgements, which define the weights assigned to each
element of the CAIQ structure;

Associate a judgement with a CAIQ;

Evaluate CAIQs based on a judgement;

Rank CAIQs;

The complete documentation of the Evaluation API is illustrated in Annex A - Evaluation API.

SPECS Project - Deliverable 2.3.3 28

Secure Provisioning of Cloud Services based on SLA Management

5. Conclusions

The SPECS project aimed at designing and implementing a framework for the management of
the whole SLA life cycle (Negotiation, Monitoring, Enforcement), intended to build applications
(SPECS Applications) devoted to offering services to SPECS Customers, whose security features
are stated in and granted by a Security SLA.

A potential user of our Negotiation module might wonder what elements from the
negotiation/renegotiation processes might include latency. One would be the interaction of
with the EU because she/he has to specify his/her security requirements and decide which SLA
Offer suits his requirements the best. Second would be in the creation and validation of the
supply chains via calls to the Enforcement module. More precisely, checking the availability of
resources in order to determine the valid supply chains might lead to latency that depends on
things such as the availability of the cloud resources and services.

As stated in the DoW and detailed in D2.1.2, the main issues related to the adoption of Security
SLAs are:

e representing security features so that it is understandable by both customers and
providers and measurable (by means of verifiable security-related Service Level
Objectives (SLOs)),

e automating the provisioning of security mechanisms able to grant desired security
features (by means of a security-driven resource allocation process), and

e continuously monitoring the services in order to verify the fulfillment of specified
Security SLOs (by means of Cloud security monitoring solutions).

In [3], [4], we proposed to face the Security SLA life cycle management with a framework able
to enrich Cloud applications with security features. We presented a novel Security SLA model
which was applied to a security-driven planning process that can be adopted to determine the
(optimum) deployment of security-related software components. It was applied in a read case
study from our EMC partner, see [5].

Other impediments for the wide adoption of Security SLAs is that the security features offered
by different Cloud Service Providers (CSPs) are very similar and one does not have an overview
of these differences and how they imply the costs. Moreover there might be differences
between security related services therefore more challenges occur, e.g. specification of security
requirements taking service dependencies into consideration and determining which CSP can
satisfy these requirements.

In [6], we proposed a framework which automatically detects conflicts resulting from
inconsistent customer requirements, provides an explanation for the detected conflicts
allowing customers to resolve these conflicts. Moreover, it assesses the security level provided
by various CSPs and ranks the CSPs according to the desired customer requirements. The
framework was tested on case studies from CSA partner and Trust and Assurance Registry.

Lack of security assurance and transparency on Cloud Services is another impediment for the
adoption of Security SLAs.

In [7] we developed two evaluation techniques, namely QPT and QHP, for conducting the
quantitative assessment and analysis of the Security SLA based security level provided by CSPs
with respect to a set of Cloud Customer security requirements. These proposed techniques help
to improve the security requirements specifications by introducing a flexible and simple
methodology that allows Customers to identify and represent their specific security needs.

SPECS Project - Deliverable 2.3.3 29

Secure Provisioning of Cloud Services based on SLA Management

In order to address the issues above, within WP2 we proposed and developed a set of artifacts,
mainly models and components, which were also designed with the goal of allowing user-centric
negotiation of Cloud SLA by proposing a solution assisting End Users to negotiate security
features effectively with a set of CSP, by understanding the resulting trade-offs.

In the table below we present the list of objectives associated to the task T2.3 and report the
outcomes which verify the benefits of the results achieved in this task in the entire duration of

the project.

negotiation solution for
security parameters

Objective Result
$02.1: Design of user- We developed an innovative solution able to automatically negotiate
centric Cloud SLA and configure cloud resources to (optimally) deploy security-related

software components for the enforcement of the Security

SLOs included in the SLA [3], [4]. This was possible due to the
development of a conceptual model for SLAs, a machine-readable
format for representing them as well as security metrics catalogue
standards-compliant which allow matching customers security
requirements reported in an SLA with a set of security mechanisms
offered as a service (Security-as-a-Service).

S02.2: Develop the
techniques to
systematically evaluate
the trade-offs related with
offered

security in Cloud SLA

One important phase of Negotiation is the generation of supply
chains. One supply chain comprises one CSP and the security
capabilities offered by SPECS enhancing some specific security
features according to the EU’s preferences. A supply chain is
materialized in an SLA Offer to be signed by the EU. In order to assist
the EU in choosing the SLA Offer suitable to his/her security needs,
we designed the Security Reasoner. It is based on two assessment
algorithms that are able to compare EU security requirements with
respect to the security controls provided by CSPs. SPECS has
designed two algorithms:

e REM [8] that uses aggregation techniques to perform an
evaluation of the security level provided by a provider.

o A fuzzy logic [6], [7] based security assessment methodology
based on fuzzy-AHP that is able to manage uncertainty of
EU’s requirements to provide a multi-layered comparison of
the security provided by providers and requirements
demanded by EUs.

$02.3: Provide a
reference
implementation of
security negotiation
services for Cloud SLA

The Negotiation module architecture [9] is composed of three
components: SLO Manager, Supply Chain Manager, Security Reasoner.
SLO Manager is in charge of managing the entire negotiation and
renegotiation processes in a user-centric manner. The Supply Chain
Manager is in charge of building supply chains according to the set of
security requirements chosen by the End User. Finally the Security
Reasoner component evaluates and ranks the SLA Offers created during
the negotiation and renegotiation process ensuring the evaluation of
the trade-offs related with offered SLAs.

SPECS Project - Deliverable 2.3.3

Table 2. WP2 objectives and results

30

Secure Provisioning of Cloud Services based on SLA Management

6. Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

“(Draft) Cloud Computing: Cloud Service Metrics Description”,
http://www.nist.gov/itl/cloud /upload/RATAX-CloudServiceMetricsDescription-
DRAFT-20141111.pdf.

Cloud Security Alliance, “Cloud Control Matrix v3.0.7,
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3/ .

V. Casola, A. De Benedictis, M. Erascu, J. Modic, and M. Rak, “Automatically Enforcing
Security SLAs in the Cloud,” IEEE Trans. Serv. Comput., no. Special Issue on Security and
Dependability of Cloud Systems and Services, 2016.

A. De Benedictis, M. Rak, and U. Villano, “SLAs for Cloud Applications: Agreement Protocol
and REST-based Implementation,” Int. J. Grid Util. Comput. by Inderscience, 2016.

V. Casola, M. Rak, S. La Portailvio, and A. Byrne, “Providing Security SLA in next
generation Data Centers with SPECS: the EMC Case Study,” in CLOSER, 2016.

A. Taha, P. Metzler, R. Trapero, J. Luna, and N. Suri, “Identifying and Utilizing
Dependencies Across Cloud Security Services,” in AsiaCCS, 2016.

J. Luna, A. Taha, R. Trapero, and N. Suri, “Quantitative Reasoning About Cloud Security

Using Service Level Agreements,” IEEE Trans. Cloud Comput., no. 99, 2015.

[8]

[9]

V. Casola, A. Mazzeo, N. Mazzocca, and M. Rak, “A SLA evaluation methodology in service
Oriented Architectures,” Adv. Inf. Secur., vol. 23, pp. 119-130, 2006.

V. Casola, A. De Benedictis, M. Rak, and U. Villano, “SLA-based Secure Cloud Application
Development: the SPECS Framework,” in MICAS, 2015.

SPECS Project - Deliverable 2.3.3 31

