

Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 3.4.2

SPECS Monitoring Services
Final

Version no. 1.0
30 April 2016

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

2	

Deliverable information

Deliverable no.: D3.4.2
Deliverable title: Design of the SPECS Monitoring Services - Final

Deliverable nature: Prototype
Dissemination level: Public

Contractual delivery: 30 April 2016
Actual delivery date:

Author(s):

Silviu Panica (IeAT)

Contributors: Marina Bregou (CSA), Valentina Casola (CeRICT), Alessandra De
Benedictis (CeRICT)

Reviewers: Madalina Erascu (IeAT), Jolanda Modic (XLAB)
Task contributing to the
deliverable:

T3.4

Total number of pages: 36

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

3	

Executive summary

This	deliverable	 is	associated	with	 the	prototype	 implementation	of	 the	Monitoring	module	
(Task	3.4).			
	
The	goal	of	this	document	is	to:	

• report	the	final	status	of	implementation	activities;	
• discuss	the	updates	done	to	the	architecture	of	the	Monitoring	core	(two	components,	

Event	Aggregators	and	SLOM	Exporter,	were	suppressed	and	their	functionalities	where	
transferred	to	other	monitoring	components);	

• discuss	 about	 the	 integration	 of	 all	 the	 monitoring	 components	 into	 the	 SPECS	
framework	with	respect	to	M18	report;	

• give	instructions	on	how	to	install	and	use	the	code	for	the	new	components	developed	
in	task	T3.4;	

• provide	links	to	the	SPECS	public	repository	where	the	source	code	is	available.	
	
Moreover,	 this	 document	 tackles	 the	 scalability	 and	 performance	 aspect	 of	 the	Monitoring	
module.	 The	 analysis	 is	 focused	 on	 both	 component	 level,	 where	 each	 Monitoring	 module	
component	 is	 discussed	 from	 this	 perspective,	 and	 at	 module	 level	 where	 the	 discussion	
focuses	over	the	entire	Monitoring	module	architecture.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

4	

Table of contents
Deliverable information	...	2	
Executive summary	...	3	
Table of contents	..	4	
Index of figures	..	5	
Index of tables	...	6	
1.	 Introduction	...	7	
2.	 Relationship	with	other	deliverables	..	9	
3.	 Monitoring	core	..	10	
3.1.	 Status	of	development	activities	..	11	
3.2.	 Event	Hub	..	14	
3.2.1.	 Tests	...	14	

3.3.	 Event	Archiver	...	14	
3.3.1.	 Installation	and	configuration	..	15	
3.3.2.	 Usage	..	16	
3.3.3.	 Tests	...	16	

3.4.	 MoniPoli	...	17	
3.4.1.	 Installation	and	configuration	..	18	
3.4.2.	 Usage	..	18	
3.4.3.	 Tests	...	20	

4.	 Monitoring	scalability	and	performance	...	22	
4.1.	 Monitoring	scalability	..	22	
4.2.	 Monitoring	performance	...	25	

5.	 Monitoring	systems	..	28	
5.1.	 NMAP	Monitoring	System	and	Adapter	...	28	
5.1.1.	 Installation	and	configuration	..	28	
5.1.2.	 Usage	..	29	

5.2.	 CloudTrust	Protocol	Monitoring	System	...	30	
5.2.1.	 Installation	and	configuration	..	31	
5.2.2.	 Usage	..	32	

5.3.	 ViPR	Monitoring	adapter	..	33	
6.	 Conclusions	...	34	
7.	 Bibliography	...	36	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

5	

Index of figures
Figure	1.	Simplified	monitoring	process.	..	7	
Figure	2.	Relationships	with	other	deliverables	..	9	
Figure	3.	Monitoring	module	-	Final	architecture	...	10	
Figure	4.	Monitoring	core	-	Event	Archiver	architecture	...	15	
Figure	5.	Monitoring	core	-	MoniPoli	architecture	..	18	
Figure	6.	Event	Hub	-	Global	Naming	Convention	...	22	
Figure	7.	Event	Archiver	-	Distributed	Architecture	..	23	
Figure	8.	MoniPoli	-	Distributed	Architecture	...	24	
Figure	9.	Monitoring	module	-	Distributed	architecture	..	25	
Figure	10.	Performance	test	results	..	26	
Figure	11.	Performance	tests:	Response	vs	Throughput	vs	Errors	...	26	
Figure	12.	Performance	tests:	Requests	vs	CPU	vs	RAM	..	27	
Figure	13.	The	structure	of	component	deployment	...	29	
Figure	14:	CTP	integration	with	SPECS	Platform	..	31	
Figure	15.	CTP	-	Service	committed	to	provide	..	33	
Figure	16.	CTP	-	Service	reached	in	the	past	month	...	33	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

6	

Index of tables
Table	1.	SPECS	Components	related	to	the	Monitoring	module	and	related	requirements	13	
Table	2.	Monitoring	Module	Implementation	Status	...	13	
Table	3:	Commands	and	Filters	accepted	by	the	Nmap	Monitoring	System	29	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

7	

1. Introduction
The	SPECS	Monitoring	module	collects	 information	about	 the	state	of	 target	services	 that	 is	
relevant	 to	 the	 set	 of	 signed	 SLAs,	 and	 by	 forwarding	 notifications	 of	 possible	 alerts	 and	
violations	 to	 the	 Enforcement	 module.	 Any	 changes	 in	 target	 services	 that	 may	 affect	 the	
validity	of	any	signed	SLA	are	reported	to	the	Enforcement	module,	which	is	in	charge	of	the	
main	reasoning	and	analysis	parts	(cf.	Diagnosis	component	presented	in	deliverable	D4.3.3).	
	
To	 summarize	 the	Monitoring	module	 components,	we	 next	 briefly	 present	 the	monitoring	
process	(detailed	in	D3.3).	The	monitoring	process	comprises	a	set	of	steps	that	transform	and	
filter	 the	 monitoring	 data	 collected	 from	 the	 target	 services.	 A	 simplified	 view	 over	 the	
monitoring	process	is	depicted	in	Figure	1.	 	Observe	and	Collect	 is	an	activity	covered	by	the	
Monitoring	 Agents.	 The	 collected	 monitoring	 data	 is	 first	 filtered	 and	 aggregated	 by	 the	
Monitoring	 Adapters	 (an	 extension	 to	 the	 Monitoring	 agents)	 and	 transformed	 into	
monitoring	 events	 (the	 Events)	 by	 expressing	 the	 collecting	 information	 using	 the	 SPECS	
Monitoring	 format	 (D3.3,	 Section	 4.1).	 Next,	 the	 Events	 are	 sent	 to	 the	 SPECS	 platform	 for	
further	processing.	The	Events	are	published	to	the	monitoring	core	router,	 the	Event	Hub.	
From	here,	the	Events	are	stored	in	the	Event	Archiver	database	(used	for	auditing	or	post	
processing)	and	filtered	by	the	Monitoring	Policy	Filter	(Monipoli	Filter)	component,	that	
correlates	 the	 Events	with	 the	 filtering	 rules	 defined	 by	 the	Monitoring	 policy	 filter.	 If	 the	
monitoring	 policy	 is	 broken,	 some	 of	 the	 filtered	 Events	 are	 possible	 alerts	 or	 violations,	 a	
notification	is	sent,	using	the	SLOM	Exporter,	to	the	Enforcement	module.		
	

Figure	1.	Simplified	monitoring	process.	
	
Monitoring	 module	 components	 are	 configured	 by	 the	 Enforcement	 module	 in	 the	 SLA	
implementation	 phase	 after	 each	 new	 SLA	 is	 signed.	 The	 Enforcement	 module	 extracts	
negotiated	security	metrics	from	the	SLA	in	order	to	properly	configure	monitoring	systems	for	
associated	target	services	(to	determine	what	to	observe),	and	to	translate	metric	values	(the	
SLOs	in	the	signed	SLA)	into	alert	and	violation	thresholds	(to	determine	when	 to	notify	the	
Enforcement	module	 about	 a	 given	monitoring	 event).	 	 See	 deliverable	 D3.3	 for	 all	 design	
details	 for	 the	 Monitoring	 module	 and	 deliverable	 D4.3.3	 for	 the	 final	 prototypes	 of	 the	
Enforcement	module.	
	
In	 this	 deliverable,	 we	 report	 the	 current	 status	 of	 development	 of	 the	 SPECS	 Monitoring	
module	and	of	associated	monitoring	systems.	Compared	to	M18,	where	only	the	Event	Hub	
component	and	the	adapters	for	the	SVA,	OpenVAS,	OSSEC,	and	Nmap	monitoring	systems	were	

2. Collect
monitoring

data

3. Aggregate
monitoring

data

5. Filter
aggregated

events
6. Notify alerts

b. Events c. Aggregated

events

d. Notify
monitoring
events

e. Alerted
metrics
notification

7. Metrics
diagnosis for

SLA violations

4. Archive
aggregated

events
Monitoring

policy

1. Observe
services

a. Raw
monitoring
data

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

8	

available,	 at	 current	 state	 all	 Monitoring	 core	 components	 have	 been	 completed	 and	 are	
available.	Actually,	as	discussed	in	detail	in	Section	3,	the	architecture	of	the	Monitoring	core	
has	been	updated	in	order	to	better	fulfil	the	requirements	originally	defined.	In	particular,	two	
of	the	Monitoring	core	components	(i.e.,	SLOM	Exporter	and	MoniPoli	Filter)	were	substituted	
by	the	new	MoniPoli	Filter	component	and	the	functionalities	offered	by	the	Event	Aggregators	
were	integrated	into	the	adapters.	For	what	regards	the	monitoring	systems,	in	this	deliverable	
we	report	on	the	implementation	of	two	additional	adapters:	one	adapter	has	been	developed	
for	Nmap,	used	 to	monitor	 the	SPECS	Platform	core	components	 to	detect	anomalies	 in	 the	
functionality	 of	 these	 components;	 another	 adapter	 has	 been	developed	 for	 the	 CloudTrust	
Protocol	(CTP)	from	CSA.	In	addition	to	these	two,	we	also	developed	a	specific	adapter	for	the	
ViPR	system	from	EMC.	However,	it	is	closed-source	as	the	rest	of	the	adapters,	so	no	details	
are	given	in	this	deliverable.	
	
The	document	is	structured	as	follows.	In	Section	2	we	describe	the	relationships	with	other	
deliverables.	 Section	 3	 is	 dedicated	 to	 the	 core	Monitoring	 components	 developed	 and	 not	
covered	or	updated	with	respect	to	the	components	described	in	D3.4.1.	It	reports	the	status	of	
development	activities	and	provides	installation	and	usage	guides	for	the	Event	Archiver	and	
the	MoniPoli	Filter,	which	also	integrates,	in	the	final	version,	the	functionalities	of	the	SLOM	
Exporter	component.	Section	4	describes	the	scalability	potential	of	the	Monitoring	module	and	
the	performance	tests	conducted.	Section	5	describes	the	monitoring	systems	Nmap	and	CTP,	
which	are	used	for	evaluating	the	overall	status	of	the	SLA	Platform	core	components,	and	for	
establishing	digital	trust	between	a	Cloud	Service	Customer	(CSC)	and	a	Cloud	Service	Provider	
(CSP),	respectively.	
	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

9	

2. Relationship with other deliverables
The	work	presented	in	this	document	is	related	mainly	to	activities	of	other	tasks	in	WP3.	The	
deliverable	 D3.1	 provided	 an	 overview	 of	 existing	monitoring	 tools	 and	 frameworks;	 D3.2	
discussed	 the	 requirements	 that	 the	 integrated	 monitoring	 systems	 should	 respect,	 D3.3	
presents	 the	 design	 of	 the	 entire	Monitoring	module	 and	D3.4.1	 described	 the	 initial	 set	 of	
components	 that	 were	 already	 developed.	 Moreover,	 there	 are	 also	 indirect	 relations	 with	
deliverable	 D4.3.3	 (the	 Monipoli	 Filter	 configuration	 process,	 Enforcement	 components	
interaction	with	 Event	 Archiver	 and	 security	mechanisms'	monitoring	 adapters	 interaction	
with	the	Event	Hub	component)	and	D1.5.2	where	integration	scenarios	are	described	and	they	
rely	on	the	Monitoring	module	components.	
	
Figure	2	shows	the	relationships	described	above.	
	

	
	

Figure	2.	Relationships	with	other	deliverables	

	

D	4.3.3

D	1.5.2

D	3.2	 D	3.4.2 D	3.4.1

D	3.3

D	3.1	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

10	

3. Monitoring core
The	 design	 of	 the	 architecture	 of	 the	 Monitoring	 module	 was	 covered	 by	 D3.3	 The	 same	
document	 also	 describes	 into	 detail	 the	 components	 of	 the	Monitoring	module.	 Briefly,	 the	
Monitoring	module	consists	of	the	following	components	(their	role	in	the	monitoring	process	
was	explained	in	Section	1):	

• the	Event	Hub	(central	monitoring	event	router),	
• the	Event	Archiver	(monitoring	events	database	used	for	audit	or	post	processing),	
• the	Monipoli	Filter	(filtering	service	that	detect	anomalies),	
• the	SLOM	Exporter	(the	component	used	to	notify	the	Enforcement	module),	
• the	Monitoring	Agents	and	Monitoring	Adapters	(used	to	observe	and	collect	monitoring	

data	from	target	services),	
• the	Monitoring	Aggregators	(used	to	aggregate	the	monitoring	data).	

	
Due	 to	 the	 implementation	 process,	 some	 of	 the	 functionalities	 of	 two	 initially	 stand-alone	
components,	Event	Aggregators	and	SLOM	Exporter,	were	transferred	to	be	supported	by	the	
Monitoring	Adapters	(Adapters)	and	the	Monipoli	Filter.	
	
In	terms	of	artefacts,	the	list	was	updated	as	we	have	merged	the	two	artefacts	SLOM	Exporter	
and	MoniPoli	Filter	in	a	new	one,	named	Monipoli	and	we	have	covered	all	Event	Aggregators	
functionalities	with	the	Adapters	and	deprecated	the	Event	aggregator	artefact.	In	conclusion,	
three	 artefacts	 were	 deprecated	 and	 removed	 from	 the	 final	 design.	 With	 respect	 to	 this	
changes	we	also	updated	the	Monitoring	module	architecture,	depicted	in	Figure	3.	

Figure	3.	Monitoring	module	-	Final	architecture	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

11	

The	 SLOM	Exporter	 component	was	designed	 to	 translate	 the	monitoring	 events	messages,	
described	 in	 a	 custom	 format,	 into	 notifications	 that	 are	 handled	 by	 the	 Enforcement	
component,	which	uses	a	different	 format.	While	 initially	 this	was	designed	as	a	standalone	
component,	in	the	final	version	we	integrate	it	into	the	MoniPoli	Filter.	The	reason	to	do	this,	
was	to	simplify	the	overall	architecture	in	order	to	address	the	scalability	problem.	The	Event	
Aggregators	were	also	moved	into	the	Adapters	based	on	the	same	reason.	Moreover,	having	
the	aggregators	tide	with	the	Adapters	also	boosts	the	performance	because	it	distributes	the	
aggregation	operation	instead	of	having	it	delivered	by	a	central	component.	
	
In	 the	 same	 line,	 some	monitoring	 components	were	 slightly	modified	 in	 terms	of	 backend	
support	 by	 adding	 a	 distributed	 database.	 The	 distributed	 database	 makes	 the	 scalability	
process	more	simple	and	effective.	More	details	about	the	performance	and	scalability	analysis	
are	reported	in	Section	4.		

3.1. Status	of	development	activities	
In	 Table	 1	 we	 report	 the	 list	 of	 Monitoring	 module	 components	 under	 development,	 as	
discussed	in	D1.1.2,	D3.2,	D3.3,	and	D3.4.1,	together	with	the	requirements	they	respectively	
cover.	
	

Monitoring	
module	

Requirements	

SPECS	Software	Components	

Event	Archiver	 Event	Hub	
MoniPoli	(supersedes	
SLOM	Exporter	and	
MoniPoli	Filter)	

Adapters	

MON_STA_R1	 	 	 	 x	
MON_STA_R2	 	 	 x	 	
MON_STA_R3	 	 	 	 x	
MON_STA_R4	 x	 	 	 	
MON_STA_R5	 deprecated	
MON_STA_R6	 x	 	 	 	
MON_STA_R7	 x	 	 x	 	
MON_DSH_R1	 	 	 x	 	
MON_DSH_R2	 	 	 	 x	
MON_DSH_R3	 	 	 	 x	
MON_DSH_R4	 	 	 x	 	
MON_DSH_R5	 	 	 x	 	
MON_DSH_R6	 covered	by	the	User	Management	component	
MON_SWC_R1	 	 	 	 x	
MON_SWC_R2	 	 	 	 x	
MON_SWC_R3	 	 	 	 x	
MON_SWC_R4	 superseded	by	MON_BSC_R5	
MON_SWC_R5	 	 x	 	 	
MON_SWC_R6	 superseded	by	MON_BSC_R4	
MON_SWC_R7	 x	 	 	 	
MON_SWC_R8		 deprecated	
MON_SWC_R9	 superseded	by	MON_BSC_R1	
MON_SWC_R10	 covered	by	the	Enforcement	module	
MON_SWC_R11	 superseded	by	MON_BSC_R1	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

12	

MON_SWC_R12	 superseded	by	MON_BSC_R2	
MON_SWC_R13	 superseded	by	MON_BSC_R3	
MON_SWC_R14	 superseded	by	MON_BSC_R4	
MON_SWC_R15	 superseded	by	MON_BSC_R5	
MON_SWC_R16	 superseded	by	MON_BSC_R6	
MON_SWC_R17	 superseded	by	MON_BSC_R7	
MON_SWC_R18	 superseded	by	MON_BSC_R8	
MON_SWC_R19	 	 	 	 x	
MON_SWC_R20	 	 	 x	 	
MON_SWC_R21	 	 	 x	 	
MON_SWC_R22	 deprecated	
MON_SWC_R23	 	 	 	 x	
MON_SST_R1	 	 	 	 x	
MON_SST_R2	 	 	 	 x	
MON_SST_R3	 superseded	by	MON_BSC_R6	
MON_SST_R4	 superseded	by	MON_BSC_R8	
MON_SST_R5	 superseded	by	MON_BSC_R12	
MON_SST_R6	 	 	 	 x	
MON_SST_R7	 	 	 	 x	
MON_SST_R8	 superseded	by	MON_BSC_R6	
MON_SST_R9	 superseded	by	MON_BSC_R8	
MON_SST_R10	 superseded	by	MON_BSC_R12	
MON_NEG_R1	 	 	 x	 	
MON_NEG_R2	 	 	 x	 	
MON_NEG_R3	 	 	 x	 	
MON_COS_R1	 	 	 	 x	
MON_COS_R2	 	 	 	 x	
MON_COS_R3	 	 	 	 x	
MON_COS_R4	 	 	 	 x	
MON_COS_R5	 	 	 	 x	
MON_COS_R6	 covered	by	the	Enforcement	module	
MON_COS_R7	 covered	by	the	Enforcement	module	
MON_COS_R8	 	 	 	 x	
MON_COS_R9	 	 	 	 x	
MON_COS_R10	 x	 	 	 x	
MON_COS_R11	 	 	 	 x	
MON_COS_R12	 superseded	by	MON_BSC_R9	
MON_COS_R13	 	 x	 	 x	
MON_BSC_R1	 	 	 	 x	
MON_BSC_R2	 	 x	 	 x	
MON_BSC_R3	 	 x	 	 x	
MON_BSC_R4	 	 	 	 x	
MON_BSC_R5	 	 	 x	 	
MON_BSC_R6	 	 	 x	 	
MON_BSC_R7	 	 	 x	 x	
MON_BSC_R8	 x	 x	 x	 	
MON_BSC_R9	 	 x	 	 x	
MON_BSC_R10	 	 x	 	 x	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

13	

MON_BSC_R11	 	 x	 	 x	
MON_BSC_R12	 x	 x	 	 	
MON_BSC_R13	 x	 	 x	 x	
MON_DRE_R1	 	 	 	 x	
MON_DRE_R2	 	 	 	 x	
MON_DRE_R3	 	 	 	 x	
MON_DRE_R4	 	 	 	 x	
MON_DRE_R5	 	 	 	 x	
MON_DRE_R6	 	 	 	 x	
MON_DRE_R7	 	 	 	 x	
MON_DFE_R1	 	 	 	 x	
MON_DFE_R2	 	 	 	 x	
MON_SSB_R1	 	 	 	 x	
MON_SSB_R2	 	 	 	 x	
MON_SSB_R3	 	 	 	 x	
MON_SSB_R4	 	 	 	 x	
MON_SSB_R5	 	 	 	 x	
MON_ENF_R1	 covered	by	the	Enforcement	module	
MON_ENF_R2	 superseded	by	MON_BSC_R5	
MON_ENF_R3	 x	 x	 x	 	

Table	1.	SPECS	Components	related	to	the	Monitoring	module	and	related	requirements	
	
There	are	28	total	requirements	that	are	relevant	to	the	final	prototypes	of	the	core	Monitoring	
components.	 19	 requirements	 have	 been	 superseded,	 8	 requirements	 are	 deprecated	 or	
covered	by	other	SPECS	modules		and	37	requirements	are	exclusively	associated	to	Monitoring	
Adapters	that	are	part	of	security	mechanisms	(Enforcement	module)	and	thus	out	of	scope	of	
this	deliverable	(for	design	and	implementation	details	of	Monitoring	Adapters	see	D4.3.2	and	
D4.3.3).	

With	the	final	core	prototypes,	we	have	covered	100%	of	all	core	requirements	with	unit	tests	
reported	in	Section	3.2.1,	3.3.3	and	3.4.3.	
	
As	reported	in	Deliverable	D3.3,	we	developed	a	set	of	Adapters	to	integrate	already	available	
monitoring	systems	that	monitor	specific	security	metrics	associated	with	the	scenarios	and	
SPECS	applications	developed	 in	WP5.	Furthermore,	with	respect	 to	 the	previous	prototype	
implementation,	 we	 have	 covered	 all	 Event	 Aggregator	 related	 requirements	 with	 the	
Monitoring	Adapter	components	and	deprecated	the	Event	Aggregator	component.	In	Table	2,	
we	report	the	final	development	status	of	all	SPECS	artefacts	associated	with	the	Monitoring	
module.	In	particular,	as	widely	illustrated	in	design	related	deliverables	(cf.	D3.3	and	D1.1.2),	
these	artefacts	include	both	the	components	and	models	that	had	to	be	developed	in	the	tasks	
of	WP3	before	the	end	of	the	project.		
	

Module	 Artefacts	under	development	 Status	

Monitoring	module	

Components:	Event	Hub	 Available	
Components:	Event	Archiver	 Available	
Components:	MoniPoli	 Available	
Components:	Adapters	 Available	
Model:MoniPoli		 Available	
Table	2.	Monitoring	Module	Implementation	Status	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

14	

	
Note	 that	 the	 Adapters	 artefacts	 include	 all	 those	 components	 to	 connect	 different	 kind	 of	
Monitoring	Systems	that	can	be	enforced	depending	on	the	metrics	included	in	the	signed	SLA.	
Six	different	Adapters	have	been	developed,	four	of	these	were	already	presented	in	D3.4.1	(cf.	
Section	4),	last	two	(Nmap	and	CTP)	have	been	finalized	and	presented	in	the	remainder	of	this	
document.	
All	 the	 artefacts	 related	 to	 monitoring	 core	 services	 are	 publicly	 available	 on	 the	 SPECS	
Bitbucket	 repository	 [14]	 and	 integrated	 within	 the	 SPECS	 Framework	 (as	 presented	 in	
deliverables	D1.5.1	and	D1.5.2).	

3.2. Event	Hub	
The	Event	Hub	is	responsible	for	routing	monitoring	events	between	the	other	components	of	
the	Monitoring	module.	The	Event	Hub	was	described	in	details	in	deliverable	D3.4.1.	In	this	
document	 we	 only	 present	 the	 functional	 tests	 conducted	 to	 prove	 the	 correctness	 of	 the	
requirements	coverage.	

3.2.1. Tests	
The	following	tables	include	a	list	of	functional	tests	conducted	in	order	to	test	if	the	event	hub	
requirements	are	properly	covered.	Two	requirements,	MON_BSC_R9	and	MON_BSC_R10,	are	
not	 included	 in	 this	 functional	 tests	 as	 they	 are	 related	 to	 Event	Hub	performance	 and	 are	
covered	by	the	performance	tests	and	analysis,	in	Section	4.2.	The	tests	are	performed	using	
Java	JUnit	library1	and	are	available	at:	

• https://bitbucket.org/specs-team/specs-monitoring-unit-testing		
	

Test	ID	 test_eh_test_event_submit	
Test	objective	 Test	if	the	Event	Hub	(EH)	is	able	to	receive	monitoring	events	and	

correctly	routing	them	based	on	the	`labels`	values.	
Verified	
requirements	

MON_SWC_R5,	MON_COS_R13,	MON_BSC_R3,	MON_BSC_R8,	
MON_ENF_R3	

Inputs	 One	of	a	list	of	monitoring	events.	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
Test	ID	 test_eh_test_monitoring_event_format	
Test	objective	 Test	if	the	EH	is	publishing	a	received	monitoring	event	in	the	

correct	SPECS	Monitoring	Event	format.	
Verified	
requirements	 MON_BSC_R2	

Inputs	 Intermittent	monitoring	events.	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

3.3. Event	Archiver	
This	component	aims	to	store	all	the	monitoring	data	and	events	for	a	defined	period	of	time.	
The	information	regarding	a	specific	monitored	SLA	is	stored	by	the	archiver	during	the	SLA	

																																																								
1	http://junit.org/junit4/	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

15	

lifecycle.	The	architecture	of	the	Event	Archiver	is	depicted	in	Figure	4	and	the	complete	
design	details	are	described	in	D3.3.	
	

	
Figure	4.	Monitoring	core	-	Event	Archiver	architecture	

	

3.3.1. Installation	and	configuration	
The	Event	Archiver	is	publicly	available	on	SPECS	Bitbucket	repository	and	all	the	details	on	
the	installation	and	configuration	procedures	are	described	in	the	dedicated	repository	wiki	
page:	

• https://bitbucket.org/specs-team/specs-core-monitoring-event-archiver		
	
The	Event	Archiver	was	designed	to	run	on	a	Unix/Linux	environment	that	has	support	for	
the	following	requirements:	

• MongoDB	-		Distributed	NoSQL	Database	-	version	3.2.x	[1];	
• Python	Programming	Language	-	version	2.7.x;	
• Python	libraries:	Flask,	Flask-PyMongo,	PyMongo,	Pip,	Virtualenv;	
• Mercurial	for	repository	download	[2];	

	
Assuming	that	the	running	environment	where	the	Event	Archiver	is	intended	to	be	installed	
meets	 the	 above	 requirements,	 the	 following	 command	 lines	 will	 download,	 install	 and	
configure	the	Event	Archiver:	
	
	 mkdir -p /opt/specs-monitoring-event-archiver
 cd /opt/specs-monitoring-event-archiver
 hg clone https://bitbucket.org/specs-team/specs-core-monitoring-
event-archiver .
 virtualenv pyenv
 virtualenv pyenv --relocatable
 source pyenv/bin/activate
 pip install -r requirements.txt
 sed -i 's/VIRTUAL_ENV=\".*/VIRTUAL_ENV=\"\/opt\/specs-monitoring-
event-archiver\/pyenv\"/g' pyenv/bin/activate
	
	 To	start	the	Event	Archiver:	
	
	 (start MongoDB database)
 /opt/specs-monitoring-event-archiver/bootstrap.sh start
	
	 If	 the	 start	 process	 was	 successful	 the	 Event	 Archiver	 should	 now	 be	 available	 at	
http://localhost:10101/monitoring/events	.	The	database	backend	is	automatically	configured	
if	the	storage	system	is	working	and	is	accessible.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

16	

	 For	 the	 complete	 guide	 on	 how	 to	 install	 and	 configure	 the	 Event	 Archiver,	 we	
recommend	following	the	dedicated	wiki	page	available	on	the	Bitbucket	repository.	

3.3.2. Usage	
	 The	 Event	 Archiver	 exposes	 a	 REST-based	 web	 interface	 that	 enables	 the	 following	
operations	for	dealing	with	monitoring	events	data:	
	
Register	monitoring	events	

	
Query	for	monitoring	events	
	
Operation	for	simple	queries	(don't	exceed	255	caracters	in	length):	

	
Operation	for	complex	queries:	

	
Delete	monitoring	events	

	
For	more	detailed	usage	instructions	please	follow	the	recommendations	available	on	the	
dedicated	repository	wiki	page.	

3.3.3. Tests	
In	the	following	table	we	present	a	set	of	tests	conducted	in	order	to	check	the	requirements	
coverage.	The	tests	are	performed	using	Java	JUnit	library	and	are	available	at:	

• https://bitbucket.org/specs-team/specs-monitoring-unit-testing		

Resource	
URL	

http://localhost:10101/monitoring/events	

POST	 Request	body	 SPECS	Monitoring	Event	format	[4]	

Resource	
URL	

http://localhost:10101/monitoring/events	

GET	 Request	query	 /?filter={}&sort={}	
Description	 filter	and	sort	are	strings	expressed	using		MongoDB	Query	

Language	[3]	

Resource	
URL	

http://localhost:10101/monitoring/events	

POST	 Request	body	 {	
"filter"	:	{},	

	 "sort"	:	{}	
}	

Description	 filter	and	sort	are	string	expressed	using		MongoDB	Query	
Language	[3]	

Resource	
URL	

http://localhost:10101/monitoring/events	

DELETE	 Request	body	 {	
"filter"	:	{},	

	 "sort"	:	{}	
}	

Description	 filter	and	sort	are	string	expressed	using		MongoDB	Query	
Language	[3]	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

17	

	
Test	ID	 test_ea_write_event	
Test	objective	 Test	if	the	Event	Archiver	(EA)	is	storing	the	events.	
Verified	
requirements	 MON_SWC_R7,	MON_BSC_R8	

Inputs	 One	event	or	a	list	of	events.	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
Test	ID	 test_ea_delete_events	
Test	objective	 Test	if	the	EA	is	able	to	delete	one	event	or	a	list	of	events.		
Verified	
requirements	 MON_STA_R7	

Inputs	 One	or	a	list	of	event	identifiers.	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
Test	ID	 test_ea_test_search	
Test	objective	 Test	if	the	EA	is	able	return	a	set	of	events	based	on	a	search	

criteria.		
Verified	
requirements	 MON_STA_R6,	MON_COS_R10,	MON_BSC_R13,	MON_ENF_R3	

Inputs	 One	or	a	list	of	event	identifiers.	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	

3.4. MoniPoli		
	 MoniPoli	Filter	component	is	in	charge	of	the	filtering	of	the	monitoring	events.	Based	
on	a	set	of	predefined	filtering	rules,	it	triggers	the	Enforcement	module	with	a	notification	of	
a	possible	SLA	alert	or	violation.	In	the	latest	version,	MoniPoli	component	incorporates	also	
the	 functionality	 of	 the	 SLOM	 Exporter	 component.	 SLOM	 Exporter	 is	 used	 to	 notify	 the	
Enforcement	module	using	a	specific	message	format	(translated	from	the	monitoring	event	
format).	 The	 MoniPoli	 was	 subject	 to	 some	 architectural	 changes	 by	 adding	 as	 a	 backend	
support	a	distributed	database,	namely	MongoDB.	The	new	architecture	is	depicted	in	Figure	
5.	The	overall	architecture	and	functionality	described	in	D3.3	didn't	change	substantially	but	
only	the	backend	was	changed	from	local	file	storing	into	a	database	backend.	
The	MoniPoli	 is	 publicly	 available	 on	 SPECS	Bitbucket	 repository	 and	 all	 the	 details	 on	 the	
installation	and	configuration	procedures	are	described	in	the	dedicated	repository	wiki	page:	

• https://bitbucket.org/specs-team/specs-core-monitoring-monipoli	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

18	

	
Figure	5.	Monitoring	core	-	MoniPoli	architecture		

3.4.1. Installation	and	configuration	
	 The	MoniPoli	is	entirely	written	in	JavaScript	and	it	has	the	following	requirements:	

• NodeJS	4.2.x	or	greater;	
• NodeJS	packages:	express,	xml2js	and	xmlbuilder	(for	compatibility	the	MoniPoli	comes	

with	these	packages	bundled);	
• MongoDB	-		Distributed	NoSQL	Database	-	version	3.2.x;	
• Mercurial	for	repository	download;	

	
Assuming	that	the	running	environment	where	the	MoniPoli	is	intended	to	be	installed	meets	
the	above	requirements,	the	following	command	lines	will	download,	install,	and	configure	the	
MoniPoli:	
	
	 mkdir -p /opt/specs-monitoring-monipoli
 cd /opt/specs-monitoring-monipoli
 hg clone https://bitbucket.org/specs-team/specs-core-monitoring-
monipoli .

Next,	the	MoniPoli	service	can	be	controlled	using:	
	
	 /opt/specs-monitoring-monipoli/bootstrap.sh [start|stop]
	
The	 configuration	 parameters	 of	 the	 MoniPoli	 are	 defined	 in	 (explanatory	 comments	 are	
provided	for	each	configuration	parameter):	
	
	 /opt/specs-monitoring-monipoli/monipoli.sh

The	 database	 backend	 is	 automatically	 configured	 if	 the	 storage	 system	 is	 working	 and	
accessible.	 The	 default	 configuration	 template	 assumes	 that	 the	 Diagnosis	 component	
(Enforcement	module)	and	the	monitoring	router	(the	Event	Hub)	are	hosted	locally.		

3.4.2. Usage	
Interaction	with	the	MoniPoli	is	possible	through	the	RESTful	API	exposed	by	the	component.	
The	default	HTTP	port	is	5000.	MoniPoli	exposes	three	functional	operations:	

• Create	rules	definition	based	on	an	agreed	SLA	(new	or	updated	rules);	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

19	

• List	the	filtering	rules;	
• Delete	the	filtering	rules	associated	with	a	specific	SLA;	

	
Create	monipoli	filtering	rules	

	
List	the	filtering	rules	

	
Delete	the	filtering	rules	associated	with	a	specific	SLA	

	

Resource	
URL	

http://localhost:5000/monipoli	

POST	 Request	body	 SLA	document	
Description	 MoniPoli	will	generate	the	filtering	rules	based	on	the	

content	of	the	SLA	document.		

Resource	
URL	

http://localhost:5000/monipoli	

GET	 Request	query	 Empty	
Description	 this	operation	will	return	the	list	of	filtering	form,	in	plain	

text,	having	the	following	structure:	
	
	 	 Rule1:	

specs_webpool_M1	
level_of_redundancy_m1	
3	
geq	
a3dfddg234fw	
	
Rule2:	
specs_webpool_M2	
level_of_diversity_m2	
2	
geq	
a3dfddg234fw

	
Where:	

• line1:	represents	the	rule	number;	
• line	2:	represents	the	metric	name;	
• line	3:	represents	the	measurement	identifier;	
• line	4:	represents	the	expected	value	of	the	

measurement	identifier;	
• line	5:	represents	the	logical	operator	to	be	applied	

on	the	value;	
• line	6:	represents	the	SLA	identifier;	
• line	7:	empty	line	-	delimiter.	

Resource	
URL	

http://localhost:5000/monipoli	

DELETE	 Request	body	 {	"sla_id"	:	"a3dfddg234fw"	}	
Description	 MoniPoli	will	delete	rules	assigned	to	a	specific	SLA.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

20	

3.4.3. Tests	
In	the	following	table	we	present	a	set	of	tests	conducted	in	order	to	check	the	requirements	
coverage.	The	tests	are	performed	using	Java	JUnit	library	and	are	available	at:	

• https://bitbucket.org/specs-team/specs-monitoring-unit-testing	
	

Test	ID	 test_mp_submit_SLA	
Test	objective	 Test	if	the	Monipoli(MP)	is	able	to	parse	and	extract	the	required	

filtering	rules	from	an	SLA	document.		
Verified	
requirements	 MON_STA_R2	

Inputs	 One	SLA	document.	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
Test	ID	 test_mp_test_delete_SLA	
Test	objective	 Test	if	the	MP	is	able	to	delete	the	filtering	rules	associated	with	a	

given	SLA	identifier.	
Verified	
requirements	 MON_STA_R2,	MON_NEG_R1,	MON_STA_R7	

Inputs	 One	SLA	identifier	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
Test	ID	 test_mp_test_update_SLA	
Test	objective	 Test	if	the	MP	is	able	to	update	its	filtering	rules	based	on		a	new	

SLA	document.	
Verified	
requirements	 MON_BSC_R5	

Inputs	 One	SLA	document	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
Test	ID	 test_mp_test_registered_fitering_rules_SLA	
Test	objective	 Test	if	the	MP	is	correctly	generating	the	filtering	rules	based	on	an	

SLA	document.	
Verified	
requirements	 MON_BSC_R6	

Inputs	 One	SLA	document	
Expected	results	 All	operations	execute	successfully.	
Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
Test	ID	 test_mp_test_alert_violation_behaviour	
Test	objective	 Test	if	the	MP	is	correctly	filtering	the	monitoring	events	that	

might	be	alerts	or	violations.	
Verified	
requirements	

MON_DSH_R4,	MON_NEG_R2,	MON_NEG_R3,	MON_BSC_R7,	
MON_DSH_R1,	MON_BSC_R8,	MON_ENF_R3,	MON_DSH_R5	

Inputs	 Monitoring	events	that	simulate	alerts	or	violations	
Expected	results	 All	operations	execute	successfully.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

21	

Outputs	 None.	
Comments	 All	operations	executed	as	expected.	

	
	 	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

22	

4. Monitoring scalability and performance

4.1. Monitoring	scalability	
The	monitoring	module	is	designed	to	handle	a	large	amount	of	data	in	a	short	period	of	time.	
This	requirement	was	naturally	raised	because	of	the	nature	of	the	SPECS	applications	that	are	
offered	to	the	End-users	and	(ii)	the	number	of	end-users	that	SPECS	is	supposed	to	handle.	
These	 two	 aspects	 are	 translated	 into	 a	 large	 number	 of	 Adapters	 that	 are	 supposed	 to	 be	
deployed.	As	more	and	more	new	End-users	are	using	the	SPECS	Platform	and	deploy	different	
new	applications,	the	Monitoring	module	may	need	to	add	extra	resources	in	order	to	sustain	
the	new	workload.	This	property	is	called	scalability.	Monitoring	module	needs	to	be	able	to	
scale,	with	respect	to	the	workload	that	it	has	to	handle.	
	 In	 order	 to	 establish	whether	 the	Monitoring	module	 is	 scalable	 or	 not,	 we	 need	 to	
analyse	every	component	that	is	part	of	the	module.	Each	component	that	might	be	affected	by	
the	increased	workload	effect	needs	to	be	scalable	as	well.	Therefore,	in	the	remainder	of	this	
section,	each	main	component	is	described	from	the	scalability	point	of	view	and	then	the	entire	
Monitoring	module	is	discussed,	pointing	out	how	scalability	can	be	implemented.	
	 The	main	components	of	the	monitoring	module	are:	

• the	Event	Hub;	
• the	Event	Archiver;	
• the	MoniPoli;	
• the	Monitoring	Agents	(which	are	important	in	the	discussion	but	not	part	of	the	

monitoring	core);	
	
The	Distributed	Event	Hub	
The	Event	Hub	acts	like	a	router	of	messages	among	components	and	delivers	the	messages	
based	on	a	stream	subscriber	policy	to	the	endpoints	waiting	for	specific	messages.	The	streams	
are	preconfigured	and	do	not	change	during	the	lifecycle	of	the	Platform	nor	SLA.	Based	on	this	
assumption,	multiple	instances	of	the	Event	Hub	can	be	started	without	affecting	the	routing	
process.	As	the	Event	Hub	is	the	entry	point	of	the	messages	collected	by	the	Monitoring	core,	
all	its'	instances	should	have	one	entry	point	descriptor.	At	network	level,	SPECS	uses	unique	
hostnames	for	each	component.	When	the	Enabling	Platform	(described	in	D1.6.1	and	D1.6.2)	
deploys	the	component	it	registers	the	component	into	the	internal	DNS	service.	In	the	case	of	
the	 Event	Hub,	 each	 instance	will	 register	 its	 unique	 IP	 address	 under	 the	 same	 hostname	
(Figure	6).	In	this	way	all	the	clients	will	use	one	unique	hostname	to	discover	all	the	instances	
of	the	Event	Hub.	
	

	
Figure	6.	Event	Hub	-	Global	Naming	Convention	

	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

23	

The	Distributed	Event	Archiver	
All	the	monitoring	data	needs	to	be	archived	during	the	life	cycle	of	an	SLA.	SPECS	core	services	
are	using	 the	archiving	service	 to	extract	 information	about	 the	events.	These	core	services	
have	 to	 have	 a	 single	 view	 over	 the	 archived	 data.	 Having	multiple	 instances	 of	 the	 Event	
Archiver	imposes	the	need	of	a	synchronization	mechanism	over	the	stored	data,	across	all	the	
instances.	This	property	is	known	as	eventual	consistency	in	a	distributed	system.	The	Event	
Archiver	 component	uses	 as	 a	backend	a	distributed	database	 called	MongoDB.	Each	Event	
Archiver	 instance	 is	 deployed	 with	 its	 own	 database	 instance.	 In	 order	 to	 achieve	 the	
consistency,	the	database	is	setup	in	replica	mode	[10].		
	

	
Figure	7.	Event	Archiver	-	Distributed	Architecture	

	
In	this	mode,	multiple	instances	of	the	Event	Archiver	will	write	the	monitoring	data	on	its	own	
database	 instance.	 The	 distributed	 database	 will	 handle	 the	 write	 operations	 so	 that	 each	
instance	will	be	synchronized	with	the	others	to	share	the	same	view	of	the	stored	data.	The	
distributed	architecture	is	depicted	in	Figure	7.	
	
The	Distributed	MoniPoli	
The	monitoring	data	is	filtered	in	order	to	detect	deviations	from	the	agreed	SLAs.	MoniPoli	
Filter	uses	filtering	rules	that	are	generated	based	on	the	agreed	SLA	documents.	In	case	of	a	
distributed	MoniPoli	Filter	(multiple	MoniPoli	Filter	instances	that	are	filtering	events	within	
the	same	SLA),	the	filtering	rules	should	be	the	same	across	all	the	instances.	In	other	words,	
the	filtering	rules	needs	to	be	synchronised.	In	order	to	achieve	this,	the	MoniPoli	also	relies	on	
a	distributed	database,	by	using	the	same	MongoDB	technology	(Figure	8).		
	
At	this	point,	when	a	new	SLA	is	submitted	or	current	filtering	rules	need	to	be	updated,	the	
instance	where	the	operation	call	is	made	will	update	the	filtering	rules	dataset.	The	distributed	
database	will	handle	the	synchronization	of	the	replicas	so	all	the	instances	should	have	the	
same	view	over	the	filtering	rules	dataset.		
One	problem	remains:	how	the	instances	are	forced	to	re-read	the	new	filtering	rules	from	the	
database?	The	 instances	are	 configured	 to	 read	 the	 filtering	 rules	 table	at	each	second.	The	
instance	that	receives	create	or	update	operation	call,	will	set	a	`dirty`	bit	into	the	filtering	rules	
dataset.	In	this	way,	at	the	next	iteration	(of	1	second),	all	the	instances	will	have	the	same	view	
and	use	the	same	filtering	rules	for	processing	the	monitoring	data.	
In	 case	of	 sending	out	 the	notifications	 to	 the	Diagnosis	 component	 (Enforcement	module),	
each	instance	will	use	the	same	naming	convention	(as	described	in	the	Event	Hub	paragraph	
above)	 to	 get	 the	 IP	 address	of	 the	Diagnosis	 component.	 In	 this	way,	 if	multiple	Diagnosis	
components	 are	deployed,	 there	 is	 a	 single	point	of	 access	 to	 all	 the	 instances	by	using	 the	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

24	

hostname	that	retains	all	the	IP	addresses	of	the	instances	(similar	approach	like	in	the	Event	
Hub	case).	
	

	
Figure	8.	MoniPoli	-	Distributed	Architecture	

	
The	Monitoring	Agents	
The	monitoring	agents	interact	only	with	the	Event	Hub	for	sending	out	the	monitoring	data	
collected	from	the	hosts.	Service	level	specific	data	is	translated	into	SPECS	monitoring	events	
by	the	Monitoring	Agents.	The	Monitoring	Agents	are	configured	to	use	the	Event	Hub	unique	
hostname	 (described	 in	 the	 Event	 Hub	 paragraph	 above)	 to	 access	 the	 router.	 One	
consideration:	if	the	Event	Hub	unique	hostname	retains	more	than	one	IP	address,	then	the	
monitoring	agents	need	to	be	able	to	connect	to	the	addresses	using	timeouts.	If	within	a	time	
frame	the	router	does	not	respond,	it	should	try	the	next	IP	address	as	some	instances	may	be	
not	reachable	or	faulty.			
	
The	scalability	implementation	
In	the	end,	we	present	the	scalable	architecture	of	the	monitoring	core	components.	Initially,	
the	SPECS	Platform	will	start	with	one	instance	of	each	monitoring	core	component.	In	case	that	
the	Monitoring	module	needs	to	scale,	to	handle	extra	workload,	minimum	two	new	instances	
of	the	core	components	will	be	added.	Minimum	two	new	instances	are	required	to	ensure	the	
minimum	optimal	number	of	members	that	are	needed	by	the	distributed	database	to	have	a	
quorum.	The	quorum	is	required	in	replica	mode	for	executing	specific	distributed	operations.	
The	scalable	architecture	is	presented	in	Figure	9.	
	 Each	new	monitoring	core	instance	will	have:	

• one	Event	Hub;	
• one	Event	Archiver	(with	the	archival	database	synchronised);	
• one	MoniPoli	(with	the	filtering	rules	synchronised);	
• distributed	 database	 added	 as	 a	 replica	 in	 the	 existent	 distributed	 database	

deployment.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

25	

This	 approach	minimizes	 the	 deployment	 and	management	 complexity	 of	 both	monitoring	
core	 components	 and	 distributed	 databases	 used	 in	 the	 scaling	 process.

	
Figure	9.	Monitoring	module	-	Distributed	architecture	

4.2. Monitoring	performance	
Following	the	performance	testing	methodology	described	in	D1.5.2,	Gatling	Load	Testing	Tool	
[11]	 was	 used	 to	 simulate	 heavy	 load	 on	 the	 Monitoring	 module.	 The	 Monitoring	 module	
assumed	to	have	all	the	components	started	and	configured	like	in	a	real	environment.	Due	to	
the	fact	that	Monitoring	module	deals	with	events	and	not	users,	the	testing	methodology	is	
different	as	follows:	(i)	instead	of	using	user	profiles,	we	are	simulating	monitoring	agents,	that	
are	configured	for	different	SLAs	and	will	feed	the	Event	Hub	with	events,	(ii)	we	added	also	
hardware	resources	consumption	reports	to	better	understand	where	is	the	bottleneck,	and	
(iii)	the	testing	profile	includes	all	the	Monitoring	module	components	so	that	we	test	the	entire	
module	 performance	 and	 not	 only	 the	 individual	 components.	 Gatling	 profile	 used	 for	
performance	testing	is	available	at:	

• https://bitbucket.org/specs-team/specs-performance-monitoring		
The	testing	environment	consisted	of	two	virtual	machines,	one	used	to	host	the	monitoring	
module	instance	and	the	second	one	used	to	generate	the	traffic	load	using	Gatling.		
In	the	testing	scenario,	we	considered	three	different	SLAs	to	be	monitored,	each	SLA	with	an	
increasing	number	of	monitoring	agents,	at	each	iteration.	Gatling	was	configured	to	feed	the	
Event	 Hub	 with	 monitoring	 events,	 with	 a	 linear	 ramp	 over	 120	 seconds.	 The	 number	 of	
monitoring	agents	increases	between	the	iterations,	from	1000	up	to	30000	instances	(Figure	
10).	 The	 virtual	 machine	 used	 as	 a	 hosting	 environment	 had	 the	 following	 hardware	
specifications:	

• CPU:	1	core	-	Intel	Xeon	E5504	2.00Ghz;	
• RAM:	1GB	DDR3;	
• Disk:	20GB	virtio2	over	SAS	physical	HDD.	

	 	

																																																								
2	Virtualized	I/O	-	http://wiki.libvirt.org/page/Virtio		

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

26	

	 The	results	show	that	the	Monitoring	module	is	able	to	support	up	to	30000	monitoring	
agents	that	can	produce	a	load	of	249	requests	per	second	as	outlined	on	Figure	11	(optimal	
and	measured	throughput	have	the	same	value)	using	only	one	instance.	The	throughput	rate	
is	sustained	by	a	good	response	time.	From	this	point	above	the	errors	start	to	occur	(hardware	
resources	 are	 over	 commited)	 and	 the	 Monitoring	 module	 should	 scale	 by	 adding	 extra	
instances,	to	balance	the	high	workload,	or	by	changing	the	virtual	machine	type	and	adding	
more	hardware	resources.	
	

	
Figure	10.	Performance	test	results	

	

	
Figure	11.	Performance	tests:	Response	vs	Throughput	vs	Errors	

	
The	bottleneck	identified	during	this	performance	tests	is	represented	by	the	CPU	utilization.	
As	outlined	in	Figure	12,	the	RAM	footprint	is	relatively	low	but	the	CPU	usage	starts	to	increase	
substantially.	 But	 the	 total	 CPU	 utilization	 is	 not	 entirely	 consumed	 by	 the	 components	
processes	 but	 also	 by	 operating	 system	 service	 that	 handles	 the	 logging	 output	 (standard	
output	and	error)	of	the	processes.	Also	the	I/O	operations	performance	of	the	virtual	machine	
draws	 back	 the	 performance	 of	 the	Monitoring	module.	 The	Monitoring	 components	 were	
configured	to	use	normal	logging	simulating	a	real	running	environment.		
	 Due	 to	all	 these	aspects,	 the	 components	performance	 is	 good,	 even	as	 running	on	a	
slower	 hardware,	 and	 it	 is	 in	 line	 with	 the	 requirements	 declared	 at	 the	 design	 time.	 The	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

27	

performance	 requirement	 states	 that	 the	 Monitoring	 Event	 Hub	 must	 handle	 a	 couple	 of	
hundreds	of	requests	per	second	and	the	entire	Monitoring	module	is	able	to	handle	the	required	
rate	of	requests.	
	

	
Figure	12.	Performance	tests:	Requests	vs	CPU	vs	RAM	

	
	 	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

28	

5. Monitoring systems
This	 section	presents	 the	 technical	details	 regarding	 the	Monitoring	Systems	used	 in	SPECS	
context	 to	 evaluate	 the	overall	 status	of	 the	 SLA	Platform	core	 components	 (NMAP)	 and	 to	
establish	a	digital	trust	between	a	CSC	and	a	CSP	(CTP).	The	last	subsection	briefly	talks	about	
ViPR	Monitoring	System	that	is	presented	in	D5.3.	

5.1. NMAP	Monitoring	System	and	Adapter	
	
The	Nmap	Monitoring	System	and	Adapter	(Nmap)	is	a	distributed	monitoring	system	able	

to	evaluate,	among	other	features,	the	availability	of	the	remote	services.	In	this	way,	Nmap	is	
used	to	monitor	SPECS	Platform	core	components	to	detect	anomalies	in	the	functionality	of	
these	components.	All	the	monitoring	results	are	pushed	in	the	Event	Hub.	
The	Nmap	Monitoring	System	is	composed	of	five	components:	FrontEnd,	Scheduler,	Scanner,	
Converter,	and	Presenter	that	can	be	deployed	individually.	FrontEnd	component	is	responsible	
for	receiving	the	monitoring	requests.	Scheduling	of	jobs	for	execution	is	done	by	the	Scheduler	
component.	Scanner	component	is	the	one	that	actually	executes	the	monitoring	scans	in	order	
to	 obtain	 information	 about	 the	 system	 under	 observation.	 Converter	 component	 applies	
transformations	 on	 the	 raw	 monitoring	 results	 while	 Presenter	 component	 sends	 the	
monitoring	 results	 to	 other	 systems.	 Communication	 between	 components	 is	 done	 via	 a	
message	queue	and	a	NoSQL	database.	Jobs	to	the	Nmap	Monitoring	System	can	be	submitted	
via	a	HTTP	POST	request	to	the	FrontEnd	component	containing	a	JSON	describing	the	job.	

5.1.1. Installation	and	configuration	
There	are	two	ways	of	installing	and	configuring	the	Nmap	Monitoring	System	and	Adapter:	

1. Using	the	Chef	recipes3	provided	for	each	component.	This	is	the	easiest	way,	because	
all	the	configurations	and	dependencies	are	resolved	automatically.	

2. Manual	installing	each	component	and	its	dependencies.	This	method	allows	for	a	better	
customization	of	all	the	configuration	parameters	and	the	version	of	the	dependencies.	

	
For	the	first	method,	the	only	requirement	is	to	have	a	virtual	or	a	physical	machine	with	Chef	
Client		installed	on	it.	The	Chef	recipes	can	be	manually	copied	on	the	machine	or	transferred	
via	 the	 Chef	 Server.	 A	 recipe	 is	 provided	 for	 each	 of	 the	 four	 components.	 Each	 recipe	
downloads	the	needed	artifacts	and	configures	them	in	order	to	assembly	the	Nmap	Monitoring	
System.	Once	all	the	recipes	are	executed,	the	system	should	be	up	and	running,	awaiting	for	
monitoring	requests.	
	
The	second	method	involves	manually	deploying	each	component	and	its	dependencies.	The	
following	dependencies	must	be	manually	installed:	

• RabbitMQ	server	–	v3.4.4	or	newer	
• MongoDB	–	v2.6.3	or	newer	
• Nmap	–	v6.40	or	newer	
• JDK	v1.8	or	newer	
• Maven	v3.3.3	or	newer	

	
The	components	of	the	Nmap	Monitoring	System	can	be	built	from	source	using	the	buildAll.sh	
script	 located	 in	 the	 deployment	 directory	 in	 the	 repository	 [8].	 Alternatively,	 the	 artifacts	
provided	in	the	repository	[13]	can	be	used.		
																																																								
3	Chef	Recipes,	https://docs.chef.io/recipes.html		

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

29	

	
Each	of	the	components	follows	the	directory	structure	from	Figure	13.	There	are	four	main	
directories:	bin,	etc,	lib,	and	var.	The	bin	directory	contains	the	script	for	starting	and	stopping	
the	 component.	 The	 configuration	 file	 is	 located	 in	 the	 etc	 folder	 and	 has	 the	 name	
conf.properties.	This	 file	 is	a	 standard	 java	properties	 file	and	examples	can	be	 found	 in	 the	
repository	[36]Error!	Reference	source	not	found.	The	conf.properties	 file	contains	details	
related	to	the	database	and	message	queue	that	will	be	used	by	the	component.	In	the	lib	folder	
we	can	find	the	JAR	artifacts	of	the	component.	A	file	containing	the	process	identifier	and	the	
log	files	of	the	component	can	be	found	in	the	var	directory.		

	
Figure	13.	The	structure	of	component	deployment	

5.1.2. Usage	
	 The	monitoring	system	accepts	a	scanning	request	in	the	form	of	an	HTTP	POST	request.	
The	structure	of	 the	request	and	examples	can	be	 found	at	 [36].	Four	 types	of	 requests	are	
supported	 at	 the	moment	 and	multiple	 filters	 that	 can	 be	 combined	 in	 order	 to	 obtain	 the	
results	in	the	desired	format.	Table	3	presents	the	commands,	filters	and	the	way	they	can	be	
combined.	
	

Commands	 Filters	
availability	<url>	 HttpStatusCodeFilter	|	HttpBodyFilter	|	

HttpStatusCodeAndBodyFilter	
security	tls	<url>	 XmlToJsonConverter	&	TlsCiphersuitesFilter	
security	ecrypt2lvl	<url>	 XmlToJsonConverter	&	TlsCiphersuitesFilter	&	TlsEcrypt2Level	
security	open_ports	<url>	 XmlToJsonConverter	

Table	3:	Commands	and	Filters	accepted	by	the	Nmap	Monitoring	System	
	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

30	

5.2. CloudTrust	Protocol	Monitoring	System	
The	Cloud	Trust	Protocol	(CTP)	is	designed	to	be	a	mechanism	by	which	CSCs	can	ask	for	and	
receive	 information	 related	 to	 the	 security	of	 the	 services	 they	use	 in	 the	 cloud,	promoting	
transparency	and	trust.	As	such,	it	is	designed	to	create	digital	trust	between	a	CSC	and	a	CSP,	
on	a	continuous	basis.	
	
The	CTP	API	is	designed	to	be	a	RESTful	protocol	that	CSCs	can	use	to	query	a	CSP	on	current	
security	attributes	related	to	a	cloud	service	and	specified	in	the	SLA	that	is	signed	by	the	CSP	
and	the	CSC,	such	as	the	current	level	of	availability	of	the	service	or	information	on	the	last	
vulnerability	assessment.	This	is	normally	done	through	a	classical	query-response	approach	
driven	by	the	customer.	CTP	has	access	control	mechanisms	in	order	to	assure	that	each	CSC	
has	only	access	to	information	related	to	its	assets	and	not	to	assets	of	other	customers.	
	
The	CTP	server	is	designed	with	some	useful	security	and	scalability	features:	

• The	CTP	server	uses	OAUTH	2	“bearer	tokens”	for	authentication.	
• The	 CTP	 server	 can	 be	 configured	 to	 use	 TLS	 with	 server-side	 certificates	 (all	 CTP	

compliant	servers	must	offer	this	possibility).	
• The	CTP	server	relies	on	MongoDB	as	a	backend	and	can	be	scaled	up	if	necessary	to	run	

on	multiple	servers.		
	
CTP	structures	information	provided	to	customers	according	to	the	following	hierarchy:	

• Customers	subscribe	to	a	set	of	services,	called	“service	views”	
• “service	views”	group	together	a	set	of	“assets”	(e.g.	virtual	machines,	databases,	etc.)	
• “assets”	have	a	set	of	“attributes”	(e.g.	uptime,	key	encryption	strength,	etc.)	
• “attributes”	are	associated	with	measurement	results	(e.g.	uptime=99.89834	%)	
• “attributes”	are	associated	with	objectives	(e.g.	uptime>99.5%)	through	JavaScript-like		

expressions.	
	
In	SPECS,	CTP	is	used	to	inform	customers	about	the	current	level	of	security	of	their	system,	
even	if	no	alerts	or	violations	have	occurred.	For	example,	a	customer	can	query	the	current	
level	of	availability	of	their	services	in	real-time	through	the	CTP.	The	information	presented	to	
the	customer	is	based	on	events	collected	by	the	SPECS	Monitoring	module	and	information	
about	customer’s	existing	SLAs.	To	enable	this	approach	to	work,	the	SPECS-CTP	integration	is	
structured	around	2	simple	principles:	

1. Each	 time	 a	 new	 SLA	 is	 created,	 the	 CTP	 server	 creates	 the	 relevant	 CTP	 customer,	
service	view,	assets,	attributes,	and	objectives	by	parsing	the	content	of	the	SPECS	SLA.	

2. Each	time	a	new	event	related	to	an	SLA	is	generated,	the	CTP	analyses	the	event	and	
uses	it	to	associate	measurement	results	to	a	specific	attribute.	

	
Since	 both	 CTP	 and	 SPECS	 use	 a	 slightly	 different	 approach	 to	 structure	 information,	 the	
integration	of	SPECS	and	CTP	makes	use	of	an	“adaptor”	which	acts	like	a	translator	between	
both	platforms.	
	
Hence,	the	CTP-SPECS	integration	involves	4	types	of	exchanges,	each	supported	by	a	distinct	
RESTful	API	call:	

1. SPECS	will	notify	the	appropriate	CTP	API	of	the	creation	of	a	new	SLA,	identified	by	an	
SLA	ID.	

2. CTP	will	query	the	appropriate	SPECS	API	about	the	content	of	the	SLA	notified	in	step	
1.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

31	

3. SPECS	will	push	relevant	events	to	the	appropriate	CTP	API.	
4. SPECS	will	notify	the	appropriate	CTP	API	of	the	termination	of	new	SLA,	identified	by	

an	SLA	ID.	
	
The	figure	below	summarizes	the	CTP	integration	architecture	in	SPECS.	
	

			 	
	

Figure	14:	CTP	integration	with	SPECS	Platform	
	
The	grey	components	in	the	figure	depict	the	ones	that	were	already	implemented,	while	the	
others	were	designed	and	developed	especially	for	the	integration	of	the	two	elements	(SPECS	
Platform	–	CTP).	
	
The	components	are	defined	as	follows:	

• CTP	 Server:	 The	 CTP	 Server	 implements	 the	 official	 CTP	 public	 API,	 as	 well	 as	 the	
unofficial	CTP	Back	Office	API4.		

• CTP	Translator:	The	CTP	Translator	translates	RESTful	API	requests	originating	from	
the	SPECS	CTP	adapter	into	one	or	more	RESTful	API	requests	to	the	CTP	Back	Office	
API.	

• SPECS-CTP	Adapter:	The	SPECS	CTP	Adapter	gathers	data	from	the	SPECS	Platform	and	
formulates	RESTful	API	requests	to	the	CTP	Translator.	The	SPECS	CTP	Adapter	includes	
an	event	aggregator,	which	is	registered	to	the	SPECS	Event	Hub.			

• CTP	Client:	The	CTP	client	offers	a	UI	 interface	to	present	data	to	the	customer.	The	
client	collects	the	necessary	data	from	the	CTP	Server	using	the	CTP	public	API.	

5.2.1. Installation	and	configuration	
	

Cloud	Trust	Protocol	Daemon	Prototype	
Cloud	Trust	Protocol	Daemon	(ctpd)	is	a	unix-style	server,	which	is	written	in	go5	language	and	
has	 MongoDB	 as	 a	 database	 backend.	 To	 compile	 ctpd	 a	 prerequisite	 is	 to	 install	 go	 and	
MongoDB.	ctpd	is	a	software	implementation	of	the	Cloud	Trust	Protocol	Server	(CTP	Server)	
described	above.	
It	has	been	tested	on	Ubuntu/Debian	Linux	and	Mac	OS	X.	Ctpd	for	SPECS	implements	a	'back	
office'	API	that	allows	the	update	of	the	database	managed	by	ctpd.	This	extra	API	is	not	part	of	
the	official	CTP	specification.	
	
After	installing	MongoDB,	the	simplest	way	to	install	ctpd6	is	to	execute	

	
go get github.com/cloudsecurityalliance/ctpd

																																																								
4	https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server	
5	http://golang.org/	
6	https://github.com/cloudsecurityalliance/ctpd/blob/master/INSTALL	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

32	

	
and	it	gets	installed	automatically.	
	
For	compiling	and	running	ctpd	directly,	one	can	type	‘go	run	ctpd.go’.	To	get	more	options,	the	
command	is	‘go	run	ctpd.go	–help’.	By	default,	ctpd	runs	on	port	8080,	and	can	be	tested	that	is	
working	with	a	simple	curl	command:	
	
curl -H "Authorization: Bearer 1234" http://localhost:8080/api/1.0/
	
Alternative	ways	to	run	ctpd,	more	details	on	its	use	in	SPECS	as	well	as	its	source	code	are	
hosted	in	the	SPECS	bitbucket	repository	which	is	public,	here:		

• https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server	
	
In	SPECS,	the	ctpd	is	preconfigured	in	the	RPM	package	that	is	used	by	the	chef-orchestrating	
platform.	
		
SPECS	-	CTP	Adaptor	
As	mentioned	above,	the	SPECS	-	CTP	Adaptor	is	the	interface	between	the	SPECS	platform	and	
the	CTP	Server.	
The	 code	 for	 the	Adaptor	 relies	on	part	of	 the	CTP	Server	 code,	which	must	be	present	 for	
compilation.	This	can	be	assured	with	the	same	command	as	above:	

	
go get github.com/cloudsecurityalliance/ctpd
	
Compilation	of	this	code	can	be	executed	with	the	command:	
	
go build specs-ctp-adaptor.go
	
While	running	the	code	for	the	Adaptor,	the	program	will	search	for	the	first	configuration	file	
it	finds	in	the	following	locations:	

	
the	file	specs-adaptor.conf	the	current	working	directory.	

																																		the	file	.specs-ctp-adaptor.conf	in	$HOME.	
																																		the	file	/etc/specs-ctp-adaptor.conf.	
	
The	file	must	be	set	to	be	readable	only	by	the	user	currently	running	the	process.	
This	configuration	file	should	be	customised	to	the	platform	characteristics	as	are	mentioned	
in	the	SPECS	Bitbucket	repository,	together	with	the	source	code:	

• https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-adaptor	

5.2.2. Usage	
	 The	CTP	Server	(ctpd)	listens	on	a	specific	port	(default	is	8080)	for	client	connections.	
Clients	are	expected	to	use	this	connection	to	query	the	CTP	server	for	about	the	current	level	
of	security	of	their	service.	The	CTP	server	contains	an	optional	javascript	client	that	can	be	
activated	in	the	CTPD	configuration	file.	This	javascript	client	presents	authenticated	customers	
with	a	dashboard.	This	way	the	customers	can	have	an	instant	overview	of	the	their	SPECS	SLAs	
by	making	use	of	the	CTP	API,	which	provides	a	description	of	the	level	of	security	of	the	cloud	
system	in	near	real-time	through	a	set	of	attributes.	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

33	

The	following	two	figures	give	a	general	idea	of	how	CTP	works	when	a	cloud	services	customer	
uses	its	API	to	query	about	the	security	attributes	of	services	offered.	
	
Figure	15,	depicts	how	the	CSC	uses	CTP	to	query	a	CSP	about	the	service	availability	level	that	
it	is	committed	to	provide.	In	CTP	the	result	of	this	query	is	called	an	“objective”	—	or	“service	
level	objective”	—	since	it	describes	what	the	provider	aims	to	achieve,	as	typically	described	
in	an	SLA.	
	

	
Figure	15.	CTP	-	Service	committed	to	provide	

	
Figure	16,	depicts	the	case	where	the	CSC	queries	the	CSP	about	the	service	availability	level	
that	was	actually	achieved	in	the	past	month	for	the	customers	assets.	The	result	of	this	query	
is	 called	 a	 “measurement	 result”	 in	 CTP,	 since	 it	 describes	 the	 result	 of	 a	 service	 level	
measurement	reported	by	the	cloud	provider.	Both	this	measurement	result	and	the	objective	
in	 the	previous	example	apply	 to	 the	same	security	attribute	 informally	 called	 “availability”	
here.	

	
	

Figure	16.	CTP	-	Service	reached	in	the	past	month	

5.3. ViPR	Monitoring	adapter	
	 ViPR	 Monitoring	 adapter	 is	 developed	 as	 part	 of	 the	 Next	 Generation	 Data	 Center	
application.	This	application	is	developed	by	EMC	partner	and	is	closed-source.	Due	to	this	fact,	
the	monitoring	adapter	and	any	other	monitoring	related	information	are	exclusively	described	
in	D5.3.	 	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

34	

6. Conclusions
This	 document	 presents	 final	 implementation	 of	 the	 Monitoring	 module,	 namely	 the	
monitoring	core	and	final	update	on	the	monitoring	systems	able	to	monitor	a	set	of	metrics	
associated	to	the	developed	SPECS	services,	applications	and	scenarios.		
	
The	problem	of	scalability	and	performance	was	also	tackled	by	describing	how	the	scalability	
can	be	achieved	both	at	the	component	and	the	module	level.	The	performance	tests	proved	
that	the	Monitoring	module	performance	requirement	is	respected.	The	analysis	also	revealed	
that,	although	the	overall	design	of	the	Monitoring	module	was	not	affected,	some	changes	were	
performed	at	the	module	level	in	order	to	address	the	scalability	problem	(for	example,	in	the	
MoniPoli	Filter	component).		
	
The	 state	of	 the	art	of	monitoring	 frameworks	was	comprehensively	 covered	 in	deliverable	
D3.1.	Moreover,	 in	 [15]	 this	analysis	was	updated	by	adding	new	identified	solutions	which	
have	 relevance	 in	 this	 field.	 By	 analysing	 the	 reports	 about	 the	 academic	 prototypes	 or	
commercial	 services	 that	 tackle	 the	 SLA	monitoring	 problem	 (or	 security	 monitoring)	 and	
correlate	them	with	the	challenges	of	security	monitoring	(in	Cloud	environments,	described	
in	 [16])	we	concluded	 that	 there	are	still	no	solutions	 identified	 to	be	available	 for	Sec-SLA	
based	Cloud	monitoring.	Most	of	 the	analysed	SLA	monitoring	 frameworks	are	covering	 the	
monitoring	of	a	SLA	lifecycle	but	not	from	the	particular	SLA	security	monitoring	point	of	view.	
	
With	 SPECS	 we	 managed	 to	 introduce	 a	 new	 concept,	 in	 terms	 of	 monitoring:	 the	 SLA	
monitoring	of	the	security	metrics.	With	SPECS	a	user	can	specify	a	list	of	desired	SLOs	(service	
level	 objectives)	 that	 he/she	 wants	 to	 enforce.	 The	 SLOs	 are	 defined	 in	 a	 security	 metric	
catalogue	 developed	 within	 the	 project.	 Further,	 SPECS	 platform	 is	 able	 create	 secure	
environment	that	matches	the	security	requirements	and	monitor	 if	 those	requirements	are	
fulfilled	during	the	SLA	life-cycle.	
	
The	 proposed	 implementation	 of	 the	 monitoring	 solution	 for	 SLA	 security	 metrics	 is	 a	
prototype	tested	in	a	private	environment	that	matches	TRL3	through	TRL4	compatible	levels,	
according	 to	 [12].	 This	 proof	 of	 concept	 solution	 demonstrates	 that	 the	monitoring	 of	 SLA	
security	metrics	is	possible	and	the	analysis	of	a	large	number	of	monitored	data	can	be	made	
in	real-time.	
	
Also,	we	summarized	the	status	of	implementation	and	integration	activities	and	reported	the	
current	coverage	of	the	requirements	that	were	located	during	the	requirement	analysis	and	
design	phases.	
	
In	the	table	below	we	present	the	list	of	objectives	associated	to	the	task	T3.4	and	report	the	
outcomes	which	verify	the	benefits	of	the	results	achieved	in	this	task	in	the	entire	duration	of	
the	project.	
	
Sub-objective	
	

Achievements	

SO3.1	-	Identify the requirements
for monitoring the fulfillment of
service level agreements in what
concerns the SPECS measures of

We	 developed	 a	 comprehensive	 list	 of	 monitoring	
requirements	 that	 are	 able	 to	 cover	 from	 simple	 to	
complex	 SLA	 security	 monitoring	 scenarios.	 Using	
these	 requirements,	 we	 managed	 to	 propose	 a	
monitoring	 framework	 that	 can	be	used	 to	monitor	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

35	

interest specific	SLA	agreements	metrics.	Moreover	it	can	be	
extended	to	support	even	different	SLA	metrics,	not	
only	security	oriented.	

SO3.2	-	Evaluate the appropriateness
of the state-of-the-art services for
SPECS monitoring

We	 evaluated	 the	 state-of-the-art	 solutions	 derived	
from	 research	 projects,	 standalone	 project	 and	
commercial	 solutions.	 Based	 on	 this	 analysis	 we	
identified	 the	 solutions	 that	 we	 can	 reuse	 and	
integrate	 into	 the	 SPECS	 solution.	 Based	 on	 this	
analyses	 we	 decided	 what	 components	 need	 to	 be	
designed	and	implemented	from	scratch	to	fulfill	the	
requirements	identified	in	SO3.1.	

SO3.3	-	Propose innovative
monitoring services

Based	on	SO3.1	and	SO3.2	outcomes	we	designed	an	
innovative	 monitoring	 architecture	 that	 is	 able	 to	
observe,	collect,	aggregate,	filter	information	about	
the	 targeted	 metrics.	 Moreover	 the	 monitoring	
solution	 is	 able	 to	 notify	 other	 specialized	
components	in	case	of	anomaly	detection.	

SO3.4	-	Provide proof-of-concept
open-source monitoring service	

In	the	end	we	managed	to	develop	all	of	the	proposed	
monitoring	services.	More	over	the	proof-of-concept	
is	 validated	 through	 a	 valid	 testing	 methodology	
(correctness	 and	 stress	 testing).	 In	 this	way	we	 can	
prove	 that	 the	 software	 code	 is	 stable	 enough	 to	be	
used	by	third	parties.	All	the	monitoring	services	are	
released	 as	 open-source	 software	 repositories	 that	
can	 be	 used	 and	 integrated	 in	 other	 projects	 or	
solutions.	

	
As	 illustrated,	all	Monitoring	module	components	are	completed	and	publicly	available.	The	
code	is	available	on-line	on	the	SPECS	repository	[14]	and	its	description	is	provided	with	all	
information	needed	to	install	and	correctly	use	it	within	the	SPECS	Platform.			

	 	

Secure	Provisioning	of	Cloud	Services	based	on	SLA	Management	

SPECS	Project	–	Deliverable	3.4.2	
	

36	

7. Bibliography
	
[1] MongoDB	NoSQL	Distributed	Database,	https://www.mongodb.org/,	last	accessed	

04.2016	
[2] Mercurial	Versioning	system,	https://www.mercurial-scm.org/,	last	accessed	04.2016	
[3] MongoDB	Query	Language,	https://docs.mongodb.org/manual/tutorial/query-

documents/,	last	accessed	04.2016	
[4] SPECS	Monitoring	Event	Format,	https://bitbucket.org/specs-team/specs-core-

monitoring-event-hub	-	markdown-header-specs-messages	
[5] https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server	
[6] GO	Programming	Language,	http://golang.org/,	last	accessed	04.2016	
[7] https://github.com/cloudsecurityalliance/ctpd/blob/master/INSTALL	
[8] https://bitbucket.org/specs-team/specs-monitoring-nmap/	
[9] Chef	technology,	https://www.chef.io/,	last	accessed	04.2016	
[10] MongoDB	Replication	Documentation,	https://docs.mongodb.org/manual/replication/,	

last	accessed	04.2016	
[11] Gatling	Load	Testing	Tool,	http://www.gatling.io/,	last	accessed	04.2016	
[12] EU	Technology	readiness	levels	(TRL)	Horizon	2020	-	WP	2014-2015	

(http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h
2020-wp1415-annex-g-trl_en.pdf)	

[13] https://bitbucket.org/specs-team/specs-core-monitoring-nmap/downloads	
[14] SPECS	Bitbucket	repository,	http://bitbucket.org/specs-team/	
[15] D.	Petcu,	S.	Panica,	B.	Irimie,	G.	Macarie,	On	Security	SLA-based	Monitoring	as	a	Service,	EAI	

International	Conference	on	Cloud,	Networking	for	IoT	systems,	Edition	Lecture	Notes	of	
ICST	(LNICST)	,	Springer-Verlag	,	In	Press	

[16] Mazhar,	A.,	Khan,	S.U.,	Vasilakos,	A.V.:	Security	in	Cloud	Computing:	Opportu-	nities	and	
Challenges.	Information	Sciences	305,	357-383	(2015)  

	

