Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 3.4.2

SPECS Monitoring Services
Final

Version no. 1.0
30 April 2016

e —

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.: D342

Deliverable title: Design of the SPECS Monitoring Services - Final

Deliverable nature: Prototype

Dissemination level: Public

Contractual delivery: 30 April 2016

Actual delivery date:

Author(s): Silviu Panica (IeAT)

Contributors: Marina Bregou (CSA), Valentina Casola (CeRICT), Alessandra De
Benedictis (CeRICT)

Reviewers: Madalina Erascu (IeAT), Jolanda Modic (XLAB)

Task contributing to the T34

deliverable:

Total number of pages: 36

SPECS Project - Deliverable 3.4.2 2

Secure Provisioning of Cloud Services based on SLA Management

Executive summary

This deliverable is associated with the prototype implementation of the Monitoring module
(Task 3.4).

The goal of this document is to:

* report the final status of implementation activities;

* discuss the updates done to the architecture of the Monitoring core (two components,
Event Aggregators and SLOM Exporter, were suppressed and their functionalities where
transferred to other monitoring components);

* discuss about the integration of all the monitoring components into the SPECS
framework with respect to M18 report;

¢ give instructions on how to install and use the code for the new components developed
in task T3.4;

* provide links to the SPECS public repository where the source code is available.

Moreover, this document tackles the scalability and performance aspect of the Monitoring
module. The analysis is focused on both component level, where each Monitoring module
component is discussed from this perspective, and at module level where the discussion
focuses over the entire Monitoring module architecture.

SPECS Project - Deliverable 3.4.2 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

Deliverable INFOIMATION. ... iiereeeececesesses s sss e s bbb s bbb 2
EXECULIVE SUIMIMATY w.tvuruirusissessisssssessssssssssssssssssssssssssssss s s s s s SRR 3
B 1o] (S 0] 0] 4 11<) 11 4
INAEX OFf FIZUIES vt RS 5
316 1o Qo) 1] TP 6
B 001 10T LD Tt 0 (o) U 7
2. Relationship with other deliverables........ e ————— 9
K T LY 0 00 a4V oo) 10
3.1. Status of development aCtIVILIES. ... ssnans 11
3.2, EVENT HUD o 14
3.2.1. TOSES ct s ———————————————— 14

3.3, EVENT ATCRIVET s 14
3.3.1. Installation and cONfiGUIation ... 15
3.3.2. USAZE ottt s 16
3.3.3. TOSES s ———————————————— 16

34, MONIPOL o 17
3.4.1. Installation and cONfiGUIAtION ... s 18
3.4.2. USAZE ottt s 18
3.4.3. TOSES ct s ———————————————— 20

4. Monitoring scalability and performance ... ————— 22
4.1. Monitoring SCAlabIlity ... ———— 22
TR\ (0) o U0 U0 Vea o 1= () 04 U Lol 3PN 25

T (03 0] 0 0o Ay)1 PP 28
5.1. NMAP Monitoring System and AdQpLer ... s 28
5.1.1. Installation and cONfigUIration ... ——— 28

T O € oL PP 29

5.2. CloudTrust Protocol Monitoring SYStem ... sssssssssssssssssssssssessssans 30
5.2.1. Installation and cONfigUIration ... ———— 31
T U - L PP 32

5.3, ViPR MONItOring @dapteroeeissssesssssssesssssssssssssssss s s sssssssssssssssssssssssssssans 33

LT 010} 4 e LT o) o 34
L 231 0) 10T o3 = o 2P 36

SPECS Project - Deliverable 3.4.2 4

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

Figure 1. Simplified MONItOring PrOCESS. ..o ssssssasens 7
Figure 2. Relationships with other deliverables ... 9
Figure 3. Monitoring module - Final architecture ... 10
Figure 4. Monitoring core - Event Archiver architeCture ... 15
Figure 5. Monitoring core - MoniPoli architeCture.........ssssssssssenns 18
Figure 6. Event Hub - Global Naming CONVENtiONceeermrssssssssssssssssssessssssssssssssssssssssesans 22
Figure 7. Event Archiver - Distributed ArchiteCture ... 23
Figure 8. MoniPoli - Distributed ArchiteCture......s s 24
Figure 9. Monitoring module - Distributed architecture.........— 25
Figure 10. Performance teSt TESUILS ... ssssesans 26
Figure 11. Performance tests: Response vs Throughput vs EITOTS ... 26
Figure 12. Performance tests: Requests vS CPU VS RAMcoosssssssssssssssssssssesans 27
Figure 13. The structure of component deployment ... s 29
Figure 14: CTP integration with SPECS Platform ... 31
Figure 15. CTP - Service committed t0 Provide ... ssssssssssssssssssssssans 33
Figure 16. CTP - Service reached in the past MONth....... . 33

SPECS Project - Deliverable 3.4.2 5

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1. SPECS Components related to the Monitoring module and related requirements
Table 2. Monitoring Module Implementation Status
Table 3: Commands and Filters accepted by the Nmap Monitoring System

SPECS Project - Deliverable 3.4.2

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

The SPECS Monitoring module collects information about the state of target services that is
relevant to the set of signed SLAs, and by forwarding notifications of possible alerts and
violations to the Enforcement module. Any changes in target services that may affect the
validity of any signed SLA are reported to the Enforcement module, which is in charge of the
main reasoning and analysis parts (cf. Diagnosis component presented in deliverable D4.3.3).

To summarize the Monitoring module components, we next briefly present the monitoring
process (detailed in D3.3). The monitoring process comprises a set of steps that transform and
filter the monitoring data collected from the target services. A simplified view over the
monitoring process is depicted in Figure 1. Observe and Collect is an activity covered by the
Monitoring Agents. The collected monitoring data is first filtered and aggregated by the
Monitoring Adapters (an extension to the Monitoring agents) and transformed into
monitoring events (the Events) by expressing the collecting information using the SPECS
Monitoring format (D3.3, Section 4.1). Next, the Events are sent to the SPECS platform for
further processing. The Events are published to the monitoring core router, the Event Hub.
From here, the Events are stored in the Event Archiver database (used for auditing or post
processing) and filtered by the Monitoring Policy Filter (Monipoli Filter) component, that
correlates the Events with the filtering rules defined by the Monitoring policy filter. If the
monitoring policy is broken, some of the filtered Events are possible alerts or violations, a
notification is sent, using the SLOM Exporter, to the Enforcement module.

a. Raw
itori 2. Collect 3.A t
1. Observe monitoring Loflect Aggregate c. Aggregated

- monitoring b. Events monitoring
services &{} — avente
data data

Y

o j 4. Archive
Monltoqng aggregated
policv g events
e. Alerted d. Notify
7. Metrics metrics monitoring 5. Filter
diagnosis for notification 6. Notify alerts events aggregated
SLA violations <:| <:| events

Figure 1. Simplified monitoring process.

Monitoring module components are configured by the Enforcement module in the SLA
implementation phase after each new SLA is signed. The Enforcement module extracts
negotiated security metrics from the SLA in order to properly configure monitoring systems for
associated target services (to determine what to observe), and to translate metric values (the
SLOs in the signed SLA) into alert and violation thresholds (to determine when to notify the
Enforcement module about a given monitoring event). See deliverable D3.3 for all design
details for the Monitoring module and deliverable D4.3.3 for the final prototypes of the
Enforcement module.

In this deliverable, we report the current status of development of the SPECS Monitoring
module and of associated monitoring systems. Compared to M18, where only the Event Hub
component and the adapters for the SVA, OpenVAS, OSSEC, and Nmap monitoring systems were

SPECS Project - Deliverable 3.4.2 7

Secure Provisioning of Cloud Services based on SLA Management

available, at current state all Monitoring core components have been completed and are
available. Actually, as discussed in detail in Section 3, the architecture of the Monitoring core
has been updated in order to better fulfil the requirements originally defined. In particular, two
of the Monitoring core components (i.e.,, SLOM Exporter and MoniPoli Filter) were substituted
by the new MoniPoli Filter component and the functionalities offered by the Event Aggregators
were integrated into the adapters. For what regards the monitoring systems, in this deliverable
we report on the implementation of two additional adapters: one adapter has been developed
for Nmap, used to monitor the SPECS Platform core components to detect anomalies in the
functionality of these components; another adapter has been developed for the CloudTrust
Protocol (CTP) from CSA. In addition to these two, we also developed a specific adapter for the
ViPR system from EMC. However, it is closed-source as the rest of the adapters, so no details
are given in this deliverable.

The document is structured as follows. In Section 2 we describe the relationships with other
deliverables. Section 3 is dedicated to the core Monitoring components developed and not
covered or updated with respect to the components described in D3.4.1. It reports the status of
development activities and provides installation and usage guides for the Event Archiver and
the MoniPoli Filter, which also integrates, in the final version, the functionalities of the SLOM
Exporter component. Section 4 describes the scalability potential of the Monitoring module and
the performance tests conducted. Section 5 describes the monitoring systems Nmap and CTP,
which are used for evaluating the overall status of the SLA Platform core components, and for
establishing digital trust between a Cloud Service Customer (CSC) and a Cloud Service Provider
(CSP), respectively.

SPECS Project - Deliverable 3.4.2 8

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables

The work presented in this document is related mainly to activities of other tasks in WP3. The
deliverable D3.1 provided an overview of existing monitoring tools and frameworks; D3.2
discussed the requirements that the integrated monitoring systems should respect, D3.3
presents the design of the entire Monitoring module and D3.4.1 described the initial set of
components that were already developed. Moreover, there are also indirect relations with
deliverable D4.3.3 (the Monipoli Filter configuration process, Enforcement components
interaction with Event Archiver and security mechanisms' monitoring adapters interaction
with the Event Hub component) and D1.5.2 where integration scenarios are described and they
rely on the Monitoring module components.

Figure 2 shows the relationships described above.

D3.1

D 4.3.3
D 3.2 D3.4.1
D3.3 D 1.5.2

Figure 2. Relationships with other deliverables

SPECS Project - Deliverable 3.4.2 9

Secure Provisioning of Cloud Services based on SLA Management

3. Monitoring core

The design of the architecture of the Monitoring module was covered by D3.3 The same
document also describes into detail the components of the Monitoring module. Briefly, the
Monitoring module consists of the following components (their role in the monitoring process
was explained in Section 1):

* the Event Hub (central monitoring event router),

* the Event Archiver (monitoring events database used for audit or post processing),

* the Monipoli Filter (filtering service that detect anomalies),

* the SLOM Exporter (the component used to notify the Enforcement module),

* the Monitoring Agents and Monitoring Adapters (used to observe and collect monitoring

data from target services),
* the Monitoring Aggregators (used to aggregate the monitoring data).

Due to the implementation process, some of the functionalities of two initially stand-alone
components, Event Aggregators and SLOM Exporter, were transferred to be supported by the
Monitoring Adapters (Adapters) and the Monipoli Filter.

In terms of artefacts, the list was updated as we have merged the two artefacts SLOM Exporter
and MoniPoli Filter in a new one, named Monipoli and we have covered all Event Aggregators
functionalities with the Adapters and deprecated the Event aggregator artefact. In conclusion,
three artefacts were deprecated and removed from the final design. With respect to this
changes we also updated the Monitoring module architecture, depicted in Figure 3.

I I
| o o - |
i [Monitoring Core Services AN |
I I
I I
1| _| <<component>> t<store>} <<component>> =] [
! Event Archiver Event Hub |
I I
I [4<store>> /A A !
| I 1 I
I I I I
I I 1 i [
1 1 <<notity>>
Enforcement Core B : | | K :
Services ! ! ! !
I I I I
I I 1 I
S =component==> $] <<konfigure>>, | \ \
Implementation S P 1 e e e e e e | i
1 I
I
<<component>> A\ I
Diagnosis D o ________ >| <<component>> g I
<<notification>> MoniPoli :
O <<pub|ish>>:
I
EvaluatioReport @ |
(alertedEyents) I________________________'
1 setEvent
<<component>> g External CSP | B
SLA Platform - '
Target Service \Vi

Events <<component>>

database ~compone E' <<component>> gl
Monitoring Adapters —| Monitoring Agent

Aggregators

Figure 3. Monitoring module - Final architecture

SPECS Project - Deliverable 3.4.2 10

Paowered By \ isual D:\r:rligm Community Edition &*

Secure Provisioning of Cloud Services based on SLA Management

The SLOM Exporter component was designed to translate the monitoring events messages,
described in a custom format, into notifications that are handled by the Enforcement
component, which uses a different format. While initially this was designed as a standalone
component, in the final version we integrate it into the MoniPoli Filter. The reason to do this,
was to simplify the overall architecture in order to address the scalability problem. The Event
Aggregators were also moved into the Adapters based on the same reason. Moreover, having
the aggregators tide with the Adapters also boosts the performance because it distributes the
aggregation operation instead of having it delivered by a central component.

In the same line, some monitoring components were slightly modified in terms of backend
support by adding a distributed database. The distributed database makes the scalability
process more simple and effective. More details about the performance and scalability analysis
are reported in Section 4.

3.1. Status of development activities

In Table 1 we report the list of Monitoring module components under development, as

discussed in D1.1.2, D3.2, D3.3, and D3.4.1, together with the requirements they respectively
cover.

Monitoring SPECS Software Components
module
Requirements MoniPoli (supersedes
Event Archiver | Event Hub SLOM Exporter and Adapters
MoniPoli Filter)

MON_STA _R1 X
MON_STA_R2 X
MON_STA_R3 X
MON_STA R4 X
MON_STA_R5 deprecated
MON_STA_R6 X
MON_STA_R7 X X
MON_DSH_R1 X
MON_DSH_R2 X
MON_DSH_R3 X
MON_DSH_R4 X
MON_DSH_R5 X
MON_DSH_R6 covered by the User Management component
MON_SWC_R1 X
MON_SWC_R2 X
MON_SWC_R3 X
MON_SWC_R4 superseded by MON_BSC_R5
MON_SWC_R5 | X | |
MON_SWC_R6 superseded by MON_BSC_R4
MON_SWC_R7 X | | |
MON_SWC_R8 deprecated
MON_SWC_R9 superseded by MON_BSC_R1
MON_SWC_R10 covered by the Enforcement module
MON_SWC_R11 superseded by MON_BSC_R1

SPECS Project - Deliverable 3.4.2 11

Secure Provisioning of Cloud Services based on SLA Management

MON_SWC_R12

superseded by MON_BSC_R2

MON_SWC_R13

superseded by MON_BSC_R3

MON_SWC_R14

superseded by MON_BSC_R4

MON_SWC_R15

superseded by MON_BSC_R5

MON_SWC_R16

superseded by MON_BSC_R6

MON_SWC_R17

superseded by MON_BSC_R7

MON_SWC_R18

superseded by MON_BSC_R8

MON_SWC_R19

MON_SWC_R20

MON_SWC_R21

MON_SWC_R22

deprecated

MON_SWC_R23

MON_SST_R1

MON_SST_R2

MON_SST_R3

superseded by MON_BSC_R6

MON_SST_R4

superseded by MON_BSC_R8

MON_SST_R5

superseded by MON_BSC_R12

MON_SST_R6

MON_SST_R7

MON_SST_RS8

superseded by MON_BSC_R6

MON_SST_R9

superseded by MON_BSC_R8

MON_SST_R10

superseded by MON_BSC_R12

MON_NEG_R1

X

MON_NEG_R2

X

MON_NEG_R3

X

MON_COS_R1

MON_COS_R2

MON_COS_R3

MON_COS_R4

MON_COS_R5

X [X | X [X | X

MON_COS_R6

covered by the Enforcement module

MON_COS_R7

covered by the Enforcement module

MON_COS_R8

MON_COS_R9

MON_COS_R10

MON_COS_R11

X | X [X | X

MON_COS_R12

superseded by MON_BSC_R9

MON_COS_R13

X

MON_BSC_R1

MON_BSC_R2

MON_BSC_R3

MON_BSC_R4

X | X [X [X | X

MON_BSC_R5

MON_BSC_R6

MON_BSC_R7

MON_BSC_R8

X [X | X | X

MON_BSC_R9

MON_BSC_R10

SPECS Project - Deliverable 3.4.2

12

Secure Provisioning of Cloud Services based on SLA Management

MON_BSC_R11 X X
MON_BSC_R12 X X
MON_BSC_R13 X X
MON_DRE_R1
MON_DRE_R2
MON_DRE_R3
MON_DRE_R4
MON_DRE_R5
MON_DRE_R6
MON_DRE_R7
MON_DFE_R1
MON_DFE_R2
MON_SSB_R1
MON_SSB_R2
MON_SSB_R3
MON_SSB_R4
MON_SSB_R5
MON_ENF_R1 covered by the Enforcement module
MON_ENF_R2 superseded by MON_BSC_R5
MON_ENF_R3 X | X | X |

Table 1. SPECS Components related to the Monitoring module and related requirements

X | X | X [X | X [X | X [X | X [X |X [X

x

x

x

There are 28 total requirements that are relevant to the final prototypes of the core Monitoring
components. 19 requirements have been superseded, 8 requirements are deprecated or
covered by other SPECS modules and 37 requirements are exclusively associated to Monitoring
Adapters that are part of security mechanisms (Enforcement module) and thus out of scope of
this deliverable (for design and implementation details of Monitoring Adapters see D4.3.2 and
D4.3.3).

With the final core prototypes, we have covered 100% of all core requirements with unit tests
reported in Section 3.2.1, 3.3.3 and 3.4.3.

As reported in Deliverable D3.3, we developed a set of Adapters to integrate already available
monitoring systems that monitor specific security metrics associated with the scenarios and
SPECS applications developed in WP5. Furthermore, with respect to the previous prototype
implementation, we have covered all Event Aggregator related requirements with the
Monitoring Adapter components and deprecated the Event Aggregator component. In Table 2,
we report the final development status of all SPECS artefacts associated with the Monitoring
module. In particular, as widely illustrated in design related deliverables (cf. D3.3 and D1.1.2),
these artefacts include both the components and models that had to be developed in the tasks
of WP3 before the end of the project.

Module Artefacts under development Status
Components: Event Hub Available
Components: Event Archiver Available

Monitoring module | Components: MoniPoli Available
Components: Adapters Available
Model:MoniPoli Available

Table 2. Monitoring Module Implementation Status

SPECS Project - Deliverable 3.4.2 13

Secure Provisioning of Cloud Services based on SLA Management

Note that the Adapters artefacts include all those components to connect different kind of
Monitoring Systems that can be enforced depending on the metrics included in the signed SLA.
Six different Adapters have been developed, four of these were already presented in D3.4.1 (cf.
Section 4), last two (Nmap and CTP) have been finalized and presented in the remainder of this
document.

All the artefacts related to monitoring core services are publicly available on the SPECS
Bitbucket repository [14] and integrated within the SPECS Framework (as presented in
deliverables D1.5.1 and D1.5.2).

3.2. Event Hub

The Event Hub is responsible for routing monitoring events between the other components of
the Monitoring module. The Event Hub was described in details in deliverable D3.4.1. In this
document we only present the functional tests conducted to prove the correctness of the
requirements coverage.

3.2.1. Tests

The following tables include a list of functional tests conducted in order to test if the event hub
requirements are properly covered. Two requirements, MON_BSC_R9 and MON_BSC_R10, are
not included in this functional tests as they are related to Event Hub performance and are
covered by the performance tests and analysis, in Section 4.2. The tests are performed using
Java JUnit library! and are available at:

* https://bitbucket.org/specs-team/specs-monitoring-unit-testing

Test ID test_eh_test_event_submit
Test if the Event Hub (EH) is able to receive monitoring events and
correctly routing them based on the ‘labels’ values.

Test objective

Verified MON_SWC_R5, MON_COS_R13, MON_BSC_R3, MON_BSC_RS,
requirements MON_ENF _R3

Inputs One of a list of monitoring events.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_eh_test_monitoring_event_format

Test if the EH is publishing a received monitoring event in the

Test objective correct SPECS Monitoring Event format.

Verified MON_BSC_R2

requirements

Inputs Intermittent monitoring events.
Expected results | All operations execute successfully.
Outputs None.

Comments All operations executed as expected.

3.3. Event Archiver

This component aims to store all the monitoring data and events for a defined period of time.
The information regarding a specific monitored SLA is stored by the archiver during the SLA

! http://junit.org/junit4/
SPECS Project - Deliverable 3.4.2 14

Secure Provisioning of Cloud Services based on SLA Management

lifecycle. The architecture of the Event Archiver is depicted in Figure 4 and the complete
design details are described in D3.3.

Monitoring Core Services - Event Archiver AN POST | SSComPonert>> E
Event Hub
PUT/GET| <<component>> E
<<component>>] <<component>>] /Oj Query client
Distributed Database REST Interface getEvent
\O DELETE | <<component>>
Database operations (INSERT, QUERY, DROP) deleteEvent Delete client

Figure 4. Monitoring core - Event Archiver architecture

3.3.1. Installation and configuration

The Event Archiver is publicly available on SPECS Bitbucket repository and all the details on
the installation and configuration procedures are described in the dedicated repository wiki
page:

* https://bitbucket.org/specs-team/specs-core-monitoring-event-archiver

The Event Archiver was designed to run on a Unix/Linux environment that has support for
the following requirements:

* MongoDB - Distributed NoSQL Database - version 3.2.x [1];

* Python Programming Language - version 2.7.x;

* Python libraries: Flask, Flask-PyMongo, PyMongo, Pip, Virtualenv;

* Mercurial for repository download [2];

Assuming that the running environment where the Event Archiver is intended to be installed
meets the above requirements, the following command lines will download, install and
configure the Event Archiver:

mkdir -p /opt/specs-monitoring-event-archiver

cd /opt/specs-monitoring-event-archiver

hg clone https://bitbucket.org/specs-team/specs-core-monitoring-
event-archiver

virtualenv pyenv

virtualenv pyenv --relocatable

source pyenv/bin/activate

pip install -r requirements.txt

sed -i 's/VIRTUAL ENV=\".*/VIRTUAL ENV=\"\/opt\/specs-monitoring-
event-archiver\/pyenv\"/g' pyenv/bin/activate

To start the Event Archiver:

(start MongoDB database)
/opt/specs-monitoring-event-archiver/bootstrap.sh start

If the start process was successful the Event Archiver should now be available at
http://localhost:10101/monitoring/events . The database backend is automatically configured
if the storage system is working and is accessible.

SPECS Project - Deliverable 3.4.2 15

Secure Provisioning of Cloud Services based on SLA Management

For the complete guide on how to install and configure the Event Archiver, we
recommend following the dedicated wiki page available on the Bitbucket repository.

3.3.2. Usage

The Event Archiver exposes a REST-based web interface that enables the following
operations for dealing with monitoring events data:

Register monitoring events

Resource | http://localhost:10101/monitoring/events
URL
POST Request body \ SPECS Monitoring Event format [4]

Query for monitoring events

Operation for simple queries (don't exceed 255 caracters in length):

Resource | http://localhost:10101/monitoring/events
URL
GET Request query /?filter={}&sort={}

Description filter and sort are strings expressed using MongoDB Query
Language [3]

Operation for complex queries:

Resource | http://localhost:10101/monitoring/events
URL

POST Request body {
"filter" : {},
"sort": {}
}
Description filter and sort are string expressed using MongoDB Query
Language [3]

Delete monitoring events

Resource | http://localhost:10101/monitoring/events
URL

DELETE | Request body {
"filter" : {},
"sort": {}
}
Description filter and sort are string expressed using MongoDB Query
Language [3]

For more detailed usage instructions please follow the recommendations available on the
dedicated repository wiki page.

3.3.3. Tests

In the following table we present a set of tests conducted in order to check the requirements
coverage. The tests are performed using Java JUnit library and are available at:

* https://bitbucket.org/specs-team/specs-monitoring-unit-testing
SPECS Project - Deliverable 3.4.2 16

Secure Provisioning of Cloud Services based on SLA Management

Test ID test_ea_write_event
Test objective Test if the Event Archiver (EA) is storing the events.
Verified MON_SWC_R7, MON_BSC_R8
requirements
Inputs One event or a list of events.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.
Test ID test_ea_delete_events
Test objective Test if the EA is able to delete one event or a list of events.
Verified MON _STA_R7
requirements
Inputs One or a list of event identifiers.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.
Test ID test_ea_test_search

o Test if the EA is able return a set of events based on a search
Test objective .

criteria.

Verified MON_STA_R6, MON_COS_R10, MON_BSC_R13, MON_ENF_R3
requirements
Inputs One or a list of event identifiers.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.

3.4. MoniPoli

MoniPoli Filter component is in charge of the filtering of the monitoring events. Based
on a set of predefined filtering rules, it triggers the Enforcement module with a notification of
a possible SLA alert or violation. In the latest version, MoniPoli component incorporates also
the functionality of the SLOM Exporter component. SLOM Exporter is used to notify the
Enforcement module using a specific message format (translated from the monitoring event
format). The MoniPoli was subject to some architectural changes by adding as a backend
support a distributed database, namely MongoDB. The new architecture is depicted in Figure
5. The overall architecture and functionality described in D3.3 didn't change substantially but
only the backend was changed from local file storing into a database backend.

The MoniPoli is publicly available on SPECS Bitbucket repository and all the details on the
installation and configuration procedures are described in the dedicated repository wiki page:
* https://bitbucket.org/specs-team/specs-core-monitoring-monipoli

SPECS Project - Deliverable 3.4.2 17

Secure Provisioning of Cloud Services based on SLA Management

Monitoring Core Services - MoniPoli AN

GET rules @ GET <<component>> g
2/

saveRules Query client

<<component>> g

<<component>> E
Distributed Database

__ | REST Interface
getRules POST SLA POST | <<component>> $:|
Add/Update Rules

<<component>> gl CONSUME events
RJ Filter <<component>> @
syncRules (>7 Event Hub
Trigger
<<component>> POST
Notifier / SLOM Exporter <<component>> E
Oi Enforcement
Notify

Figure 5. Monitoring core - MoniPoli architecture

3.4.1. Installation and configuration

The MoniPoli is entirely written in JavaScript and it has the following requirements:

* NodeJS 4.2.x or greater;

* Node]S packages: express, xml2js and xmlbuilder (for compatibility the MoniPoli comes
with these packages bundled);

* MongoDB - Distributed NoSQL Database - version 3.2.x;

* Mercurial for repository download;

Assuming that the running environment where the MoniPoli is intended to be installed meets
the above requirements, the following command lines will download, install, and configure the
MoniPoli:

mkdir -p /opt/specs-monitoring-monipoli

cd /opt/specs-monitoring-monipoli

hg clone https://bitbucket.org/specs-team/specs-core-monitoring-
monipoli

Next, the MoniPoli service can be controlled using:

/opt/specs-monitoring-monipoli/bootstrap.sh [start|stop]

The configuration parameters of the MoniPoli are defined in (explanatory comments are
provided for each configuration parameter):

/opt/specs-monitoring-monipoli/monipoli.sh

The database backend is automatically configured if the storage system is working and
accessible. The default configuration template assumes that the Diagnosis component
(Enforcement module) and the monitoring router (the Event Hub) are hosted locally.

3.4.2. Usage

Interaction with the MoniPoli is possible through the RESTful API exposed by the component.
The default HTTP port is 5000. MoniPoli exposes three functional operations:
* Create rules definition based on an agreed SLA (new or updated rules);

SPECS Project - Deliverable 3.4.2 18

Secure Provisioning of Cloud Services based on SLA Management

* List the filtering rules;
* Delete the filtering rules associated with a specific SLA;

Create monipoli filtering rules

Resource | http://localhost:5000/monipoli
URL
POST Request body SLA document

Description MoniPoli will generate the filtering rules based on the
content of the SLA document.

List the filtering rules

Resource | http://localhost:5000/monipoli
URL
GET Request query Empty

Description this operation will return the list of filtering form, in plain
text, having the following structure:

Rulel:
specs_webpool M1

level of redundancy_m1
3

geq
a3dfddg234fw

Rule2:
specs_webpool M2
level_of diversity_ m2
2

geq
a3dfddg234fw

Where:

* linel: represents the rule number;

* line 2: represents the metric name;

* line 3: represents the measurement identifier;

* line 4: represents the expected value of the
measurement identifier;

* line 5: represents the logical operator to be applied
on the value;

* line 6: represents the SLA identifier;

* line 7: empty line - delimiter.

Delete the filtering rules associated with a specific SLA

Resource | http://localhost:5000/monipoli
URL
DELETE | Request body {"sla_id" : "a3dfddg234fw" }
Description MoniPoli will delete rules assigned to a specific SLA.

SPECS Project - Deliverable 3.4.2

19

Secure Provisioning of Cloud Services based on SLA Management

3.4.3. Tests

In the following table we present a set of tests conducted in order to check the requirements
coverage. The tests are performed using Java JUnit library and are available at:
* https://bitbucket.org/specs-team/specs-monitoring-unit-testing

Test ID test_ mp_submit_SLA
Test if the Monipoli(MP) is able to parse and extract the required
filtering rules from an SLA document.

Test objective

Verified MON_STA_R2

requirements

Inputs One SLA document.

Expected results | All operations execute successfully.
Outputs None.

Comments All operations executed as expected.
Test ID test_ mp_test_delete_SLA

Test if the MP is able to delete the filtering rules associated with a

Test objective given SLA identifier.

Verified MON_STA_R2, MON_NEG_R1, MON_STA_R7
requirements

Inputs One SLA identifier

Expected results | All operations execute successfully.
Outputs None.

Comments All operations executed as expected.

Test ID test_mp_test_update_SLA

Test if the MP is able to update its filtering rules based on a new

Test objective SLA document.

Verified MON_BSC_R5

requirements

Inputs One SLA document

Expected results | All operations execute successfully.
Outputs None.

Comments All operations executed as expected.

Test ID test_mp_test_registered_fitering_rules_SLA

Test if the MP is correctly generating the filtering rules based on an

Test objective SLA document.

Verified MON_BSC_R6

requirements

Inputs One SLA document

Expected results | All operations execute successfully.
Outputs None.

Comments All operations executed as expected.
Test ID test_mp_test_alert_violation_behaviour

Test if the MP is correctly filtering the monitoring events that

Test objective . . ;
might be alerts or violations.

Verified MON_DSH_R4, MON_NEG_R2, MON_NEG_R3, MON_BSC R7,
requirements MON_DSH_R1, MON_BSC_R8, MON_ENF_R3, MON_DSH_R5
Inputs Monitoring events that simulate alerts or violations

Expected results | All operations execute successfully.

SPECS Project - Deliverable 3.4.2 20

Secure Provisioning of Cloud Services based on SLA Management

Outputs

None.

Comments

All operations executed as expected.

SPECS Project - Deliverable 3.4.2

21

Secure Provisioning of Cloud Services based on SLA Management

4. Monitoring scalability and performance

4.1. Monitoring scalability

The monitoring module is designed to handle a large amount of data in a short period of time.
This requirement was naturally raised because of the nature of the SPECS applications that are
offered to the End-users and (ii) the number of end-users that SPECS is supposed to handle.
These two aspects are translated into a large number of Adapters that are supposed to be
deployed. As more and more new End-users are using the SPECS Platform and deploy different
new applications, the Monitoring module may need to add extra resources in order to sustain
the new workload. This property is called scalability. Monitoring module needs to be able to
scale, with respect to the workload that it has to handle.

In order to establish whether the Monitoring module is scalable or not, we need to
analyse every component that is part of the module. Each component that might be affected by
the increased workload effect needs to be scalable as well. Therefore, in the remainder of this
section, each main component is described from the scalability point of view and then the entire
Monitoring module is discussed, pointing out how scalability can be implemented.

The main components of the monitoring module are:

¢ the Event Hub;

¢ the Event Archiver;

e the MoniPolj;

* the Monitoring Agents (which are important in the discussion but not part of the
monitoring core);

The Distributed Event Hub

The Event Hub acts like a router of messages among components and delivers the messages
based on a stream subscriber policy to the endpoints waiting for specific messages. The streams
are preconfigured and do not change during the lifecycle of the Platform nor SLA. Based on this
assumption, multiple instances of the Event Hub can be started without affecting the routing
process. As the Event Hub is the entry point of the messages collected by the Monitoring core,
all its' instances should have one entry point descriptor. At network level, SPECS uses unique
hostnames for each component. When the Enabling Platform (described in D1.6.1 and D1.6.2)
deploys the component it registers the component into the internal DNS service. In the case of
the Event Hub, each instance will register its unique IP address under the same hostname
(Figure 6). In this way all the clients will use one unique hostname to discover all the instances
of the Event Hub.

Monitoring Core Services - Event Hub Naming AN

<<component>> g <<component>> @ <<component>> @
Event Hub #1 Event Hub #2 Event Hub #n

<<component>> g
set IP1 set IP2 set IPn Query client

GET IP

<<component>>
event-hub.services.platform_ID.cloud.specs-project.eu

Figure 6. Event Hub - Global Naming Convention

SPECS Project - Deliverable 3.4.2 22

Secure Provisioning of Cloud Services based on SLA Management

The Distributed Event Archiver

All the monitoring data needs to be archived during the life cycle of an SLA. SPECS core services
are using the archiving service to extract information about the events. These core services
have to have a single view over the archived data. Having multiple instances of the Event
Archiver imposes the need of a synchronization mechanism over the stored data, across all the
instances. This property is known as eventual consistency in a distributed system. The Event
Archiver component uses as a backend a distributed database called MongoDB. Each Event
Archiver instance is deployed with its own database instance. In order to achieve the
consistency, the database is setup in replica mode [10].

Monitoring Core Services - Event Archiver distributed AN
<<component>> <<component>> E <<component>>
Event Archiver #1 Event Archiver #2 Event Archiver #n
<<component>> {] replica | <<component>> {l replica <<component>> g]
EA Database #1 EA Database #2 EA Database #n
| replica |

Figure 7. Event Archiver - Distributed Architecture

In this mode, multiple instances of the Event Archiver will write the monitoring data on its own
database instance. The distributed database will handle the write operations so that each
instance will be synchronized with the others to share the same view of the stored data. The
distributed architecture is depicted in Figure 7.

The Distributed MoniPoli

The monitoring data is filtered in order to detect deviations from the agreed SLAs. MoniPoli
Filter uses filtering rules that are generated based on the agreed SLA documents. In case of a
distributed MoniPoli Filter (multiple MoniPoli Filter instances that are filtering events within
the same SLA), the filtering rules should be the same across all the instances. In other words,
the filtering rules needs to be synchronised. In order to achieve this, the MoniPoli also relies on
a distributed database, by using the same MongoDB technology (Figure 8).

At this point, when a new SLA is submitted or current filtering rules need to be updated, the
instance where the operation call is made will update the filtering rules dataset. The distributed
database will handle the synchronization of the replicas so all the instances should have the
same view over the filtering rules dataset.

One problem remains: how the instances are forced to re-read the new filtering rules from the
database? The instances are configured to read the filtering rules table at each second. The
instance that receives create or update operation call, will set a "dirty" bit into the filtering rules
dataset. In this way, at the next iteration (of 1 second), all the instances will have the same view
and use the same filtering rules for processing the monitoring data.

In case of sending out the notifications to the Diagnosis component (Enforcement module),
each instance will use the same naming convention (as described in the Event Hub paragraph
above) to get the IP address of the Diagnosis component. In this way, if multiple Diagnosis
components are deployed, there is a single point of access to all the instances by using the

SPECS Project - Deliverable 3.4.2 23

Secure Provisioning of Cloud Services based on SLA Management

hostname that retains all the IP addresses of the instances (similar approach like in the Event
Hub case).

Monitoring Core Services - MoniPoli distributed AN
<<component>>
diagnosis.services.platform_ID.cloud.specs-project.eu
notify notify notify
<<component>> gl <<component>> El <<component>> g_l
MoniPoli (MF) #1 MoniPoli #2 MoniPoli #n

<<component>> E replica <<component>> E replica <<component>> E
MF Database #1 MF Database #2 MF Database #n

| replica |

Figure 8. MoniPoli - Distributed Architecture

The Monitoring Agents

The monitoring agents interact only with the Event Hub for sending out the monitoring data
collected from the hosts. Service level specific data is translated into SPECS monitoring events
by the Monitoring Agents. The Monitoring Agents are configured to use the Event Hub unique
hostname (described in the Event Hub paragraph above) to access the router. One
consideration: if the Event Hub unique hostname retains more than one IP address, then the
monitoring agents need to be able to connect to the addresses using timeouts. If within a time
frame the router does not respond, it should try the next IP address as some instances may be
not reachable or faulty.

The scalability implementation
In the end, we present the scalable architecture of the monitoring core components. Initially,
the SPECS Platform will start with one instance of each monitoring core component. In case that
the Monitoring module needs to scale, to handle extra workload, minimum two new instances
of the core components will be added. Minimum two new instances are required to ensure the
minimum optimal number of members that are needed by the distributed database to have a
quorum. The quorum is required in replica mode for executing specific distributed operations.
The scalable architecture is presented in Figure 9.
Each new monitoring core instance will have:
* one Event Hub;
* one Event Archiver (with the archival database synchronised);
* one MoniPoli (with the filtering rules synchronised);
* distributed database added as a replica in the existent distributed database
deployment.

SPECS Project - Deliverable 3.4.2 24

Secure Provisioning of Cloud Services based on SLA Management

This approach minimizes the deployment and management complexity of both monitoring

core components and distributed databases used in the scaling process.
Monitoring Core Services - Distributed Architecture AN
<<component>> @ <<component>> E <<component>> gl <<component>> a <<component>> El <<component>> {l
mon. agent #1_1 mon. agent #1_2 mon. agent #2_1 mon. agent #3_1 mon. agent #3_2 mon. agent #3_3
POST POST POST POST
POST POST
<<component>>
event-hub.services.platform_ID.cloud.specs-project.eu
POST POST
r'/ POST \‘
Instance #1 | B Instance #2 B Instance #3 | B

Event Hub #1

<<component>> E

filter\

| archive

<<component>> @
Event Hub #2

filter|

| archive

<<component>> El
Event Hub #3

filter |

<<component>> El

MoniPoli #1

<<component>> @
Event Archiver #1

<<component>> gl
MoniPoli #2

<<component>> El

Event Archiver #2

| archive

MoniPoli #3

<<component>> E

<<component>> El
Event Archiver #3

[| | | [|

<<component>> regli¢a <<component>>
Shared Distributed Database #1 gl Shared Distributed Database #2 El

<<component>>
Shared Distributed Database #3

g]

replica

notify
notify

notify <<component>>

diagnosis.services.platform_ID.cloud.specs-project.eu

Powered B isual Paradigm Community Edition

Figure 9. Monitoring module - Distributed architecture

4.2.

Following the performance testing methodology described in D1.5.2, Gatling Load Testing Tool
[11] was used to simulate heavy load on the Monitoring module. The Monitoring module
assumed to have all the components started and configured like in a real environment. Due to
the fact that Monitoring module deals with events and not users, the testing methodology is
different as follows: (i) instead of using user profiles, we are simulating monitoring agents, that
are configured for different SLAs and will feed the Event Hub with events, (ii) we added also
hardware resources consumption reports to better understand where is the bottleneck, and
(iii) the testing profile includes all the Monitoring module components so that we test the entire
module performance and not only the individual components. Gatling profile used for
performance testing is available at:

* https://bitbucket.org/specs-team/specs-performance-monitoring
The testing environment consisted of two virtual machines, one used to host the monitoring
module instance and the second one used to generate the traffic load using Gatling.
In the testing scenario, we considered three different SLAs to be monitored, each SLA with an
increasing number of monitoring agents, at each iteration. Gatling was configured to feed the
Event Hub with monitoring events, with a linear ramp over 120 seconds. The number of
monitoring agents increases between the iterations, from 1000 up to 30000 instances (Figure
10). The virtual machine used as a hosting environment had the following hardware
specifications:
CPU: 1 core - Intel Xeon E5504 2.00Ghz;
RAM: 1GB DDR3;
Disk: 20GB virtio? over SAS physical HDD.

Monitoring performance

2 Virtualized 1/0 - http://wiki.libvirt.org/page/Virtio
SPECS Project - Deliverable 3.4.2

25

Secure Provisioning of Cloud Services based on SLA Management

The results show that the Monitoring module is able to support up to 30000 monitoring
agents that can produce a load of 249 requests per second as outlined on Figure 11 (optimal
and measured throughput have the same value) using only one instance. The throughput rate
is sustained by a good response time. From this point above the errors start to occur (hardware
resources are over commited) and the Monitoring module should scale by adding extra
instances, to balance the high workload, or by changing the virtual machine type and adding
more hardware resources.

Number of Agents Response (ms) Throughput (req/s) Optimal Throughput CPU (%) RAM (MB) Errors (%)

1000 3 8,34 8,33 13 175 0
2000 3 16,6 16,67 17 181 0
3000 5 25,03 25,00 27 187 0
6000 5 50,12 50,00 50 192 0
9000 6 75,01 75,00 74 201 0
12000 212 93,97 100,00 83 238 0
15000 1420 123,85 125,00 97 251 0
30000 2574 249,18 250,00 100 259 1,01
Figure 10. Performance test results
Response time vs Throughput vs Errors
3000
2500
v
£ 2000
[
2 1500
o
& 1000
2
500
0 e-e-@ — - = !
0 5000 10000 15000 20000 25000 30000 35000
Monitoring agents
—&8— Response (ms) Throughput (req/s) Optimal Throughput —®—Errors (%)

Figure 11. Performance tests: Response vs Throughput vs Errors

The bottleneck identified during this performance tests is represented by the CPU utilization.
As outlined in Figure 12, the RAM footprint is relatively low but the CPU usage starts to increase
substantially. But the total CPU utilization is not entirely consumed by the components
processes but also by operating system service that handles the logging output (standard
output and error) of the processes. Also the /0 operations performance of the virtual machine
draws back the performance of the Monitoring module. The Monitoring components were
configured to use normal logging simulating a real running environment.

Due to all these aspects, the components performance is good, even as running on a
slower hardware, and it is in line with the requirements declared at the design time. The

SPECS Project - Deliverable 3.4.2 26

Secure Provisioning of Cloud Services based on SLA Management

performance requirement states that the Monitoring Event Hub must handle a couple of

hundreds of requests per second and the entire Monitoring module is able to handle the required
rate of requests.

Requests vs CPU and RAM utilization

Chart Area

Requests / sec
[y
w
o

0 5000 10000 15000 20000 25000 30000 35000

Monitoring agents

—8—Throughput (req/s) =—®—CPU (%) —*—RAM (MB)

Figure 12. Performance tests: Requests vs CPU vs RAM

SPECS Project - Deliverable 3.4.2 27

Secure Provisioning of Cloud Services based on SLA Management

5. Monitoring systems

This section presents the technical details regarding the Monitoring Systems used in SPECS
context to evaluate the overall status of the SLA Platform core components (NMAP) and to
establish a digital trust between a CSC and a CSP (CTP). The last subsection briefly talks about
ViPR Monitoring System that is presented in D5.3.

5.1. NMAP Monitoring System and Adapter

The Nmap Monitoring System and Adapter (Nmap) is a distributed monitoring system able

to evaluate, among other features, the availability of the remote services. In this way, Nmap is
used to monitor SPECS Platform core components to detect anomalies in the functionality of
these components. All the monitoring results are pushed in the Event Hub.
The Nmap Monitoring System is composed of five components: FrontEnd, Scheduler, Scanner,
Converter, and Presenter that can be deployed individually. FrontEnd component is responsible
for receiving the monitoring requests. Scheduling of jobs for execution is done by the Scheduler
component. Scanner component is the one that actually executes the monitoring scans in order
to obtain information about the system under observation. Converter component applies
transformations on the raw monitoring results while Presenter component sends the
monitoring results to other systems. Communication between components is done via a
message queue and a NoSQL database. Jobs to the Nmap Monitoring System can be submitted
via a HTTP POST request to the FrontEnd component containing a JSON describing the job.

5.1.1. Installation and configuration

There are two ways of installing and configuring the Nmap Monitoring System and Adapter:
1. Using the Chef recipes® provided for each component. This is the easiest way, because
all the configurations and dependencies are resolved automatically.
2. Manual installing each component and its dependencies. This method allows for a better
customization of all the configuration parameters and the version of the dependencies.

For the first method, the only requirement is to have a virtual or a physical machine with Chef
Client installed on it. The Chef recipes can be manually copied on the machine or transferred
via the Chef Server. A recipe is provided for each of the four components. Each recipe
downloads the needed artifacts and configures them in order to assembly the Nmap Monitoring
System. Once all the recipes are executed, the system should be up and running, awaiting for
monitoring requests.

The second method involves manually deploying each component and its dependencies. The
following dependencies must be manually installed:

* RabbitMQ server - v3.4.4 or newer

* MongoDB -v2.6.3 or newer

* Nmap - v6.40 or newer

* JDKv1.8 or newer

* Maven v3.3.3 or newer

The components of the Nmap Monitoring System can be built from source using the buildAll.sh
script located in the deployment directory in the repository [8]. Alternatively, the artifacts
provided in the repository [13] can be used.

3 Chef Recipes, https://docs.chef.io /recipes.html
SPECS Project - Deliverable 3.4.2 28

Secure Provisioning of Cloud Services based on SLA Management

Each of the components follows the directory structure from Figure 13. There are four main
directories: bin, etc, lib, and var. The bin directory contains the script for starting and stopping
the component. The configuration file is located in the etc folder and has the name
conf.properties. This file is a standard java properties file and examples can be found in the
repository [36]Error! Reference source not found. The conf.properties file contains details
related to the database and message queue that will be used by the component. In the /ib folder
we can find the JAR artifacts of the component. A file containing the process identifier and the
log files of the component can be found in the var directory.

start.sh
bin
stop.sh
etc conf.properties
specs_monitoring_nmap_<compName=>
lib <compName>.jar
specs_monitoring_nma
p_<compName=>.pid
var

specs_monitoring_nma
p_<compName>_<pid>
<date>.log

Figure 13. The structure of component deployment

5.1.2. Usage

The monitoring system accepts a scanning request in the form of an HTTP POST request.
The structure of the request and examples can be found at [36]. Four types of requests are
supported at the moment and multiple filters that can be combined in order to obtain the

results in the desired format. Table 3 presents the commands, filters and the way they can be
combined.

Commands Filters
availability <url> HttpStatusCodeFilter | HttpBodyFilter |
HttpStatusCodeAndBodyFilter
security tls <url> XmlToJsonConverter & TlsCiphersuitesFilter
security ecrypt2lvl <url> | XmlToJsonConverter & TlsCiphersuitesFilter & TlsEcrypt2Level
security open_ports <url> | XmlTo]JsonConverter

Table 3: Commands and Filters accepted by the Nmap Monitoring System

SPECS Project - Deliverable 3.4.2 29

Secure Provisioning of Cloud Services based on SLA Management

5.2. CloudTrust Protocol Monitoring System

The Cloud Trust Protocol (CTP) is designed to be a mechanism by which CSCs can ask for and
receive information related to the security of the services they use in the cloud, promoting
transparency and trust. As such, it is designed to create digital trust between a CSC and a CSP,
on a continuous basis.

The CTP API is designed to be a RESTful protocol that CSCs can use to query a CSP on current
security attributes related to a cloud service and specified in the SLA that is signed by the CSP
and the CSC, such as the current level of availability of the service or information on the last
vulnerability assessment. This is normally done through a classical query-response approach
driven by the customer. CTP has access control mechanisms in order to assure that each CSC
has only access to information related to its assets and not to assets of other customers.

The CTP server is designed with some useful security and scalability features:
¢ The CTP server uses OAUTH 2 “bearer tokens” for authentication.
* The CTP server can be configured to use TLS with server-side certificates (all CTP
compliant servers must offer this possibility).
¢ The CTP server relies on MongoDB as a backend and can be scaled up if necessary to run
on multiple servers.

CTP structures information provided to customers according to the following hierarchy:
¢ (Customers subscribe to a set of services, called “service views”
* ‘“service views” group together a set of “assets” (e.g. virtual machines, databases, etc.)
* ‘“assets” have a set of “attributes” (e.g. uptime, key encryption strength, etc.)
* ‘“attributes” are associated with measurement results (e.g. uptime=99.89834 %)
* ‘“attributes” are associated with objectives (e.g. uptime>99.5%) through JavaScript-like
expressions.

In SPECS, CTP is used to inform customers about the current level of security of their system,
even if no alerts or violations have occurred. For example, a customer can query the current
level of availability of their services in real-time through the CTP. The information presented to
the customer is based on events collected by the SPECS Monitoring module and information
about customer’s existing SLAs. To enable this approach to work, the SPECS-CTP integration is
structured around 2 simple principles:
1. Each time a new SLA is created, the CTP server creates the relevant CTP customer,
service view, assets, attributes, and objectives by parsing the content of the SPECS SLA.
2. Each time a new event related to an SLA is generated, the CTP analyses the event and
uses it to associate measurement results to a specific attribute.

Since both CTP and SPECS use a slightly different approach to structure information, the
integration of SPECS and CTP makes use of an “adaptor” which acts like a translator between
both platforms.

Hence, the CTP-SPECS integration involves 4 types of exchanges, each supported by a distinct
RESTful API call:
1. SPECS will notify the appropriate CTP API of the creation of a new SLA, identified by an
SLA ID.
2. CTP will query the appropriate SPECS API about the content of the SLA notified in step
1.

SPECS Project - Deliverable 3.4.2 30

Secure Provisioning of Cloud Services based on SLA Management

3. SPECS will push relevant events to the appropriate CTP API.
4. SPECS will notify the appropriate CTP API of the termination of new SLA, identified by
an SLAID.

The figure below summarizes the CTP integration architecture in SPECS.

SPECS)
SPECS-CTP Platform
CTP CTP CTP Adapter
M_’ Server - Translator ey
: vent
i aggregator |
)

Figure 14: CTP integration with SPECS Platform

The grey components in the figure depict the ones that were already implemented, while the
others were designed and developed especially for the integration of the two elements (SPECS
Platform - CTP).

The components are defined as follows:

¢ CTP Server: The CTP Server implements the official CTP public API, as well as the
unofficial CTP Back Office API*.

* CTP Translator: The CTP Translator translates RESTful API requests originating from
the SPECS CTP adapter into one or more RESTful API requests to the CTP Back Office
APL

* SPECS-CTP Adapter: The SPECS CTP Adapter gathers data from the SPECS Platform and
formulates RESTful API requests to the CTP Translator. The SPECS CTP Adapter includes
an event aggregator, which is registered to the SPECS Event Hub.

¢ CTP Client: The CTP client offers a Ul interface to present data to the customer. The
client collects the necessary data from the CTP Server using the CTP public API.

5.2.1. Installation and configuration

Cloud Trust Protocol Daemon Prototype

Cloud Trust Protocol Daemon (ctpd) is a unix-style server, which is written in go’ language and
has MongoDB as a database backend. To compile ctpd a prerequisite is to install go and
MongoDB. ctpd is a software implementation of the Cloud Trust Protocol Server (CTP Server)
described above.

It has been tested on Ubuntu/Debian Linux and Mac OS X. Ctpd for SPECS implements a 'back
office' API that allows the update of the database managed by ctpd. This extra API is not part of
the official CTP specification.

After installing MongoDB, the simplest way to install ctpd® is to execute

go get github.com/cloudsecurityalliance/ctpd

4 https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server
5 http://golang.org/
6 https://github.com/cloudsecurityalliance /ctpd /blob/master /INSTALL

SPECS Project - Deliverable 3.4.2 31

Secure Provisioning of Cloud Services based on SLA Management

and it gets installed automatically.

For compiling and running ctpd directly, one can type ‘go run ctpd.go’. To get more options, the
command is ‘go run ctpd.go -help’. By default, ctpd runs on port 8080, and can be tested that is
working with a simple curl command:

curl -H "Authorization: Bearer 1234" http://localhost:8080/api/1.0/

Alternative ways to run ctpd, more details on its use in SPECS as well as its source code are
hosted in the SPECS bitbucket repository which is public, here:
e https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server

In SPECS, the ctpd is preconfigured in the RPM package that is used by the chef-orchestrating
platform.

SPECS - CTP Adaptor

As mentioned above, the SPECS - CTP Adaptor is the interface between the SPECS platform and
the CTP Server.

The code for the Adaptor relies on part of the CTP Server code, which must be present for
compilation. This can be assured with the same command as above:

go get github.com/cloudsecurityalliance/ctpd

Compilation of this code can be executed with the command:

go build specs-ctp-adaptor.go

While running the code for the Adaptor, the program will search for the first configuration file
it finds in the following locations:

the file specs-adaptor.conf the current working directory.
the file .specs-ctp-adaptor.conf in SHOME.
the file /etc/specs-ctp-adaptor.conf.

The file must be set to be readable only by the user currently running the process.
This configuration file should be customised to the platform characteristics as are mentioned
in the SPECS Bitbucket repository, together with the source code:

* https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-adaptor

5.2.2. Usage

The CTP Server (ctpd) listens on a specific port (default is 8080) for client connections.
Clients are expected to use this connection to query the CTP server for about the current level
of security of their service. The CTP server contains an optional javascript client that can be
activated in the CTPD configuration file. This javascript client presents authenticated customers
with a dashboard. This way the customers can have an instant overview of the their SPECS SLAs
by making use of the CTP API, which provides a description of the level of security of the cloud
system in near real-time through a set of attributes.

SPECS Project - Deliverable 3.4.2 32

Secure Provisioning of Cloud Services based on SLA Management

The following two figures give a general idea of how CTP works when a cloud services customer
uses its API to query about the security attributes of services offered.

Figure 15, depicts how the CSC uses CTP to query a CSP about the service availability level that
it is committed to provide. In CTP the result of this query is called an “objective” — or “service
level objective” — since it describes what the provider aims to achieve, as typically described
in an SLA.

What service availability are you committed to achieve?

We are committed to at least 99% availability, calculated over
amonth.

<

Figure 15. CTP - Service committed to provide

Figure 16, depicts the case where the CSC queries the CSP about the service availability level
that was actually achieved in the past month for the customers assets. The result of this query
is called a “measurement result” in CTP, since it describes the result of a service level
measurement reported by the cloud provider. Both this measurement result and the objective
in the previous example apply to the same security attribute informally called “availability”
here.

What service availability level did you reach in the past month?

>

Our availability level was 99.2349% in the past month.

Figure 16. CTP - Service reached in the past month

5.3. ViPR Monitoring adapter

ViPR Monitoring adapter is developed as part of the Next Generation Data Center
application. This application is developed by EMC partner and is closed-source. Due to this fact,
the monitoring adapter and any other monitoring related information are exclusively described
in D5.3.

SPECS Project - Deliverable 3.4.2 33

Secure Provisioning of Cloud Services based on SLA Management

6. Conclusions

This document presents final implementation of the Monitoring module, namely the
monitoring core and final update on the monitoring systems able to monitor a set of metrics
associated to the developed SPECS services, applications and scenarios.

The problem of scalability and performance was also tackled by describing how the scalability
can be achieved both at the component and the module level. The performance tests proved
that the Monitoring module performance requirement is respected. The analysis also revealed
that, although the overall design of the Monitoring module was not affected, some changes were
performed at the module level in order to address the scalability problem (for example, in the
MoniPoli Filter component).

The state of the art of monitoring frameworks was comprehensively covered in deliverable
D3.1. Moreover, in [15] this analysis was updated by adding new identified solutions which
have relevance in this field. By analysing the reports about the academic prototypes or
commercial services that tackle the SLA monitoring problem (or security monitoring) and
correlate them with the challenges of security monitoring (in Cloud environments, described
in [16]) we concluded that there are still no solutions identified to be available for Sec-SLA
based Cloud monitoring. Most of the analysed SLA monitoring frameworks are covering the
monitoring of a SLA lifecycle but not from the particular SLA security monitoring point of view.

With SPECS we managed to introduce a new concept, in terms of monitoring: the SLA
monitoring of the security metrics. With SPECS a user can specify a list of desired SLOs (service
level objectives) that he/she wants to enforce. The SLOs are defined in a security metric
catalogue developed within the project. Further, SPECS platform is able create secure
environment that matches the security requirements and monitor if those requirements are
fulfilled during the SLA life-cycle.

The proposed implementation of the monitoring solution for SLA security metrics is a
prototype tested in a private environment that matches TRL3 through TRL4 compatible levels,
according to [12]. This proof of concept solution demonstrates that the monitoring of SLA
security metrics is possible and the analysis of a large number of monitored data can be made
in real-time.

Also, we summarized the status of implementation and integration activities and reported the
current coverage of the requirements that were located during the requirement analysis and
design phases.

In the table below we present the list of objectives associated to the task T3.4 and report the
outcomes which verify the benefits of the results achieved in this task in the entire duration of
the project.

Sub-objective Achievements

$03.1 - Identify the requirements We developed a comprehensive list of monitoring

for monitoring the fulfillment of requirements that are able to cover from simple to

service level agreements in what complex SLA security monitoring scenarios. Using

concerns the SPECS measures of these requirements, we managed to propose a
monitoring framework that can be used to monitor

SPECS Project - Deliverable 3.4.2 34

Secure Provisioning of Cloud Services based on SLA Management

interest

specific SLA agreements metrics. Moreover it can be
extended to support even different SLA metrics, not
only security oriented.

S03.2 - Evaluate the appropriateness
of the state-of-the-art services for
SPECS monitoring

We evaluated the state-of-the-art solutions derived
from research projects, standalone project and
commercial solutions. Based on this analysis we
identified the solutions that we can reuse and
integrate into the SPECS solution. Based on this
analyses we decided what components need to be
designed and implemented from scratch to fulfill the
requirements identified in SO3.1.

$03.3 - Propose innovative
monitoring services

Based on S03.1 and SO3.2 outcomes we designed an
innovative monitoring architecture that is able to
observe, collect, aggregate, filter information about
the targeted metrics. Moreover the monitoring
solution is able to notify other specialized
components in case of anomaly detection.

S03.4 - Provide proof-of-concept
open-source monitoring service

In the end we managed to develop all of the proposed
monitoring services. More over the proof-of-concept
is validated through a valid testing methodology
(correctness and stress testing). In this way we can
prove that the software code is stable enough to be
used by third parties. All the monitoring services are
released as open-source software repositories that
can be used and integrated in other projects or
solutions.

As illustrated, all Monitoring module components are completed and publicly available. The
code is available on-line on the SPECS repository [14] and its description is provided with all
information needed to install and correctly use it within the SPECS Platform.

SPECS Project - Deliverable 3.4.2

35

Secure Provisioning of Cloud Services based on SLA Management

7. Bibliography

[1] MongoDB NoSQL Distributed Database, https://www.mongodb.org/, last accessed
04.2016

[2] Mercurial Versioning system, https://www.mercurial-scm.org/, last accessed 04.2016

[3] MongoDB Query Language, https://docs.mongodb.org/manual/tutorial/query-
documents/, last accessed 04.2016

[4] SPECS Monitoring Event Format, https://bitbucket.org/specs-team/specs-core-
monitoring-event-hub - markdown-header-specs-messages

[5] https://bitbucket.org/specs-team/specs-monitoring-cloud-trust-protocol-server

[6] GO Programming Language, http://golang.org/, last accessed 04.2016

[7] https://github.com/cloudsecurityalliance/ctpd/blob/master/INSTALL

[8] https://bitbucket.org/specs-team/specs-monitoring-nmap/

[9] Chef technology, https://www.chef.io/, last accessed 04.2016

[10] MongoDB Replication Documentation, https://docs.mongodb.org/manual/replication/,

last accessed 04.2016
[11] Gatling Load Testing Tool, http://www.gatling.io/, last accessed 04.2016
[12] EU Technology readiness levels (TRL) Horizon 2020 - WP 2014-2015

(http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h

2020-wpl415-annex-g-trl_en.pdf)
[13] https://bitbucket.org/specs-team/specs-core-monitoring-nmap/downloads
[14] SPECS Bitbucket repository, http://bitbucket.org/specs-team/

[15] D. Petcu, S. Panica, B. Irimie, G. Macarie, On Security SLA-based Monitoring as a Service, EAI

International Conference on Cloud, Networking for IoT systems, Edition Lecture Notes of
ICST (LNICST), Springer-Verlag, In Press

[16] Mazhar, A., Khan, S.U., Vasilakos, A.V.: Security in Cloud Computing: Opportu- nities and

Challenges. Information Sciences 305, 357-383 (2015)

SPECS Project - Deliverable 3.4.2

36

