ﬁ Secure Provisioning of Cloud Services

based on SLA Management

SPECS Project - Deliverable 4.3.2

Implementation of the enforcement SLA
components - Intermediary

Version no. 1.1
18 February 2016

| —— —

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.:

D4.3.2

Deliverable title:

Implementation of the enforcement SLA components — Intermediary

Deliverable nature:

Prototype

Dissemination level:

Public

Contractual delivery:

18 February 2016

Actual delivery date:

18 February 2016

Author(s):

Jolanda Modic (XLAB), Miha Stopar (XLAB)

Contributors:

Damjan Murn (XLAB), Aljaz Kosir (XLAB), Massimiliano Rak
(CeRICT), Silviu Panica (IeAT), Giancarlo Capone (CeRICT)

Reviewers:

Dana Petcu (IeAT), Valentina Casola (CeRICT)

Task contributing to
deliverable:

the

T4.3

Total number of pages:

118

SPECS Project - Deliverable 4.3.2 2

Secure Provisioning of Cloud Services based on SLA Management

Executive summary

This document presents the intermediary implementation of the Enforcement module. The
demonstrated prototypes follow the implementation plan introduced in D4.3.1, and are based
on requirements and design presented in D4.1.2 and D4.2.2, respectively, user stories and
validation scenarios defined in T5.1, and even some new requirements from stakeholders.

With developed prototypes the entire refined enforcement flow is demonstrated in detail.
First prototypes of security mechanisms (presented in D4.3.1) are improved and additionally
prototypes of few other mechanisms are presented as well.

As described in deliverables of task T4.1 and T4.2, the Enforcement module comprises a set of
main components (Planning, Implementation integrated with the Broker and a Chef Server,
Diagnosis, Remediation Decision System) and a set of security mechanisms (WebPool, E2EE
with DBB, SVA, TLS, DoS, and AAA).

In this document, we present the status of development activities related to task T4.3, and
show how to install and use the prototype components and mechanisms developed under this
task. All main Enforcement components and the majority of security mechanisms are already
available, and links and descriptions of Bitbucket repositories are provided. All prototypes
cover a very large number of requirements. However, since in WP4 there is a dedicated task
for validation and testing of the Enforcement module, results are discussed in deliverable
D4.5.2. These include coverage of validation scenarios, coverage of requirements, and unit
tests.

SPECS Project - Deliverable 4.3.2 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

Deliverable INfOrMAtION ... 2
EXECULIVE SUIMNIMATY ..eucucuicueeresesessesssssesssesessssesessssessssssesssssssssssessssssessssssesssssssassssssssssessssssesssssssssssssssssnsssssssessssssesnsns 3
INAEX Of fIGUIES oottt bbb 6
INAEX Of TADIES ..ottt s R 7
B 00 0 T LU () o U PP 9
2. Relationship with other deliverables......... i ———— 11
3. Main Enforcement COMPONENTS.....coiieisssesssns 12
3.1. Status of development aCtIVILIES ... 14
3.2. Planning COMPONENT ... s 16
3.2.1. OVEIVIBW ..t bR 16
3.2.1. REPOSITOTY it s 22
3.2.2. Description and deSIZN......oereererreererrersersessessessessessesssssssssssesssns 22
3.2.3. 0TS 1 =) o PP 22
3.2.4. L0V 23

3.3. Implementation COMPONENT ... ssssssssses 23
3.3.1. OVEIVIBW ..ttt 24
3.3.2. REPOSITOTY .ttt s 26
3.3.3. Description and deSIZN......oeereereererreereererssesessessessessesssssssssssesssssesssssssssssssssssesssssssssssssssssssns 26
3.3.4. INSEAIATION cureereeeeeereeeeeeee e bbbt 27

S 70G 78 T U1 V= TP 28

S T D T E=T 4 s Lo TS R o100 041 010) 0 L) o L o 28
3.4.1. OVEIVIBW ..ttt bbb 28
3.4.2. =] T 1) o)/ PP 31
3.4.3. Description and deSiGN ... 31
3.4.4. TSy 1 =) o PP 32

S JE N T U1 V= - 32

3.5. Remediation Decision System COMPONENT......ccocvreerrirneressessessssssssesssssessessesssssssssesssssseens 33
3.5.1. OVETVIBW ..eoeeeeeesesresressese e sse e e s s 33

TR T U] 01013 1) o PSP 37
3.5.3. Description and deSiGN......ccmuemmerirneisrersessssessesssses s ssssens 37
3.5.4. TS 1 =) o PP 37

G TE TE TR € V=L PSP 38

3.6. Broker mechanism and Chef SEIVET ... sessessessenes 38
3.6.1. 2] 0 L0 1] U) oy 2T 40
3.6.2. Description and deSIGN......ccmremienerirneis s ssssens 40
3.6.3. TS 1 =) o PP 41
3.6.4. USAZE 1ot s 41

N Y- 1ol 0 Uy 10 40 4 0 L= o] 0 E= 413 44 PP 44
4.1. Status of development ACtIVITIESivcrerrinereriesss e sssens 46
4.2. Secure Web Server MeChaniSm ... sessssssssssssssssssssssssssns 47
4.2.1. 0T 2) o7 TN 47
4.2.1.1. ATCHILECEUTE oottt s s 47
4.2.1.2. Security metrics and CONEIOLS ..o ssssssens 48
/2% G TR 2= 44 T=T §E= o) o TP 49
N O N D T 7Y 10} 033 =) o PSP 50

N =Y o 1o 1) 10) oy 50
4.2.3. Description and eSIZN eenrereeeeeereeeeeeseeseesessessssessessssssssssssssssessssssssssssssssssssssssssssas 50
4.2.4. INSEAIIATION ettt st 51
4.2.4.1. How to install Apache with Memcached.........cumrvnnnsinnnnssesesesssnens 51

SPECS Project - Deliverable 4.3.2 4

Secure Provisioning of Cloud Services based on SLA Management

4.2.4.1. HOW t0 INStAll NGINX....oirererirreririrresisessesssessesssessesssessessssesssssssesssssssesssssssssssssssessssssssssesans 52
4.2.4.1. HoW t0 INStall HAPTOXY ..cvcivirrerirerrecinsrresisesisssesesssessessssessssssessssssesssssssessssssssssssssssssssans 52

O TR U 17 P 54

4.3. DBB and E2ZEE MeChaNISIMS ...coceeeeceeeceseeeeesensessessessssssssssssssessesas 54
4.3.1. 0T 2) o0 T T 54
4.3.1.1. ATCRITECEUTE oottt 55
4.3.1.2. Detectable attacks and system failures.......————. 59
4.3.1.3. Security metrics and CONLIOIS ... s 61
T30 T I S 055 0 T=T6)= o) o PP 64
4.3.1.5. DeVEIOPIMENT ...ttt 66

4.3.2. REPOSITOTY .ttt s 66
4.3.3. Description and AeSIGN eeereeereeeeeeeseesesseesesesessessessssssssssssssssesssssssssssssssssssssssssssens 67
4.3.4. INSEALIATION cureeeeeeeereeere et 67
G 70 TR U7V . PP 68

T V7N 4 U= 4 21 1 o PP 69
4.4.1. OVETIVIBW ..ttt s 70
0 AN o) 4N 1o D0 PP 70
4.4.1.2. Security metrics and CONLIOLS ... 71
G TR U= 4 =T) E= 1w o) o TP 74
4.4.1.4. DeVEIOPIMENL ...ttt 76

4.4.2. REPOSITOTY ot 77
4.4.3. DescCription and AeSIZN eeereeeeeceeeeeeessesseseessesesssessssssssssssssssesssssssssssssssssssssssssesas 77
4.4.4. TSy 1 =) o PP 77
R TR 117 PSP 79

4.5, TLS MECRANISITI.ccoeieecececececeeeceeeeee e 82
4.5.1. OVEIVIBW ..ttt 82
4.5.1.1. ATCHILECEUTE oottt 82
4.5.1.2. Security metrics and CONTIOIS ..o ssssens 83
T RS TR 2055 4 =T E= 1 (o) o TP 86
4.5.1.4. DeVEIOPIMENT ...t 87

T =3 o 10 1) 1) oy PP 87
4.5.3. Description and deSIZN ... sssssses 87
4.5.4. TS 1 =) o PP 88
A.5.5. USAZE civueuerreemerseessessessses s sessses s ssses s ss s R R RRRRER R RR e RRRpnRn 88

ST 00 Uod 103 o) o - PP 90
LT 2310 0T o3 ¢ 1 0 o0 92
Appendix 1. Solving the planning problem.......o s 94
Appendix 2. Example of the implementation plan and the associated SLA with alerts 101
Appendix 3. Example of the diagnosis process for an SVA alert ... 108
Appendix 4. Configuration details for the WebPool mechanism ... 110
Appendix 5. LiSt Of SECUTTLY MELTICS c.cueureereererreeresressessesressessessessessessessessessessessessessessesssssesssssesssssesssssessesnes 117

SPECS Project - Deliverable 4.3.2 5

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

FIgUIe 1. SLA PRASESovtiiiiiteiesi st 9
Figure 2. Relationship with other deliverables ... 11
Figure 3. Enforcement module's high level architecture (main Enforcement components).....12
Figure 4. SLA implementation phase (initial implementation of an SLA).......ccccomnernreneenerreennenn. 12
Figure 5. SLA implementation phase (after renegotiation or termination).........cceeeeseeneererseesnenn. 13
Figure 6. SLA remediation Phase ... s sssssssssssssssssasssns 13
Figure 7. Generation of SUPPLY ChaiNS.....cecereerereeeecsereesrs st ssssssssaseens 17
Figure 8. Building implementation Plan ... 19
Figure 9. Building reaction Plan ... sssssssssssssssssasssns 21
Figure 10. Executing implementation Planennnescececeeeseeseseessssessessesssssesssssesssssesssssssesns 24
Figure 11. Implementing remediation Plan........ s 25
Figure 12. DIa@nOSIS PIOCESS ... sessssssessssss s ssssss s s s s 29
Figure 13. ReMediation flOW........ e ss s sssss s ssssssens 35
Figure 14. RemMediation PrOCESS ... sesssesssssses s sessssssssssss s st s sssssssssssssssssasssns 36
Figure 15. Chef arChiteCtUTe. ... e 40
Figure 16. Enforcement module's high level architecture (security mechanisms)c.couuueen. 45
Figure 17. Remediation plans for monitoring events WP-E1 and WP-E2cccconnnnceniniennenn. 50
Figure 18. Architecture of the DBB and EZEE mechaniSmsc.coonnnencenseneensencenesneesesseeseeseeneens 56
Figure 19. Client’s get request aCtiONS. ... s 58
Figure 20. Client’s put reqUEST ACtIONS. ... sasssss 58
Figure 21. The infrastructure after a successful remediation of a put ignore attack/failure.....59
Figure 22. The infrastructure after a successful remediation of a fork attack..........e.. 59
Figure 23. The infrastructure after a successful remediation of a stale file attackc........ 60
Figure 24. The infrastructure after a successful remediation of a primary server failure............ 60
Figure 25. The infrastructure after a successful remediation of a primary database server

JAIIUTC oAb 60
Figure 26. The infrastructure after a successful remediation of a backup server failure............. 60
Figure 27. The infrastructure after a successful remediation of a backup database server

2L =TSP 61
Figure 28. The infrastructure after a successful remediation of an auditor failure....................... 61
Figure 29. Remediation plans for monitoring events E2ZEE-E1, and DBB-E1 to DBB-E5 65
Figure 30. Remediation plans for monitoring events DBB-E6 to DBB-E10ccounnncenirnienenn. 65
Figure 31. Login t0 DBB+EZEE SEIVET ... sssssssssssssens 69
Figure 32. Encrypting/decrypting and sharing files ... 69
Figure 33. Architecture of the SVA mechanism in case of Secure Web Server service................. 70
Figure 34. Remediation plans for monitoring events SVA-E1, SVA-E2, SVA-E3, and SVA-E9....75
Figure 35. Remediation plans for monitoring events SVA-E4 and SVA-E10ccovvenncenernsennenn. 76
Figure 36. Remediation plans for monitoring events SVA-E5, SVA-E6, SVA-E7, and SVA-ES8....76
Figure 37. Snapshot of the SVA Dashboard..........cssssessesssssssessssssssessssssssseens 81
Figure 38. SVA 1ePOrts fOr @ VIM ... sessesssss st s ssssssssssssssssssasesns 81
Figure 39. Architecture of the TLS MechaniSm ... 83
Figure 40. Remediation plans for monitoring events TLS-E1, TLS-E2, TLS-E3, and TLS-E4......87
Figure 41. Remediation plans for monitoring events TLS-E5, TLS-E6, TLS-E7, and TLS-E8......87
Figure 42. Implementation plan for the Enforcement module ... 91
Figure 43. Input and output of the allocation problem.......... s 95

SPECS Project - Deliverable 4.3.2 6

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1. Refinements of the enforcement ProCess ... 14
Table 2. SPECS Enforcement components and related requirements.......enemsseneenen: 15
Table 3. Enforcement module implementation Status ... 16
Table 4. API associated to generation of SUPPLY ChaAINS ..o sessesseseess 23
Table 5. API associated to generation of implementation plans........oneneneenseseesseseeseeneene. 23
Table 6. API associated to implementation Plans........ e ————- 28
Table 7. Risk and severity levels of alerts and violations. ... 30
Table 8. API associated to diagnosis of NOtIfiCatioNS ... 33
Table 9. Measurements defined for metrics SM1 and SM2Z.........onncnencensesesnesenessessessesssesesseens 34
Table 10. Monitoring events for metrics SM1 and SM2Zneneneneessesesesssssssessessess 34
Table 11. Remediation plan for alerts and violations related to metrics SM1 and SM2 34
Table 12. API associated to the SLA remediationoenneneencenesnernesnesnsssessessesssssessessessessssssssssseens 38
Table 13. Negotiable security mechanism offered by SPECS through different services............ 44
Table 14. New requirements for SPECS security mechanisms.........ccoomrnnennnesenenne. 45
Table 15. SPECS Security mechanisms and related requirements (already implemented)....... 46
Table 16. Enforcement module implementation Status.......unensesesssses e 46
Table 17. WebPool security metric LOR ... sessssssssssssssssssssssssssss 48
Table 18. WebPool security Metric LODonnisnesessesessssesssssesssssssessssssesssssssesssssssssssssssssssssans 48
Table 19. Measurements and MoniPoli rules associated to WebPool metric LOR........cccovniunnee 48
Table 20. Measurements and MoniPoli rules associated to WebPool metric LOD.......ccccovureene.. 49
Table 21. Mapping of WebPool metrics to NIST and CCM security controlseeneneeneen. 49
Table 22. Monitoring events related to WebP00l MEetriCs.....cooriinemenssesnessesssssssssessssssesssssens 49
Table 23. WebP0o0l remediation aCtiONSoecercereereereeneesessessessessessessessessesssssssssssssssssessssssssssssssssssssssssssssns 50
Table 24. DBB security Metric WS....... s ssssssss s sssssssssssssssssssssnss 61
Table 25. DBB security Metric RF ... ssessssssssssssssesssssssssssssssssssssans 62
Table 26. E2EE security MetriC ECcsssessssssssssssssesssessesssesssssssesssssssssssssssssssssssssssssssssssssans 62
Table 27. Measurements and MoniPoli rules associated to DBB metric WS.......ccccoconnenrenernnenns 63
Table 28. Measurements and MoniPoli rules associated to DBB metric RF.......cccoonnencnencnnnn. 63
Table 29. Measurements and MoniPoli rules associated to DBB metric EC........ccoouimineirerernnenns 63
Table 30. Mapping of DBB and E2EE metrics to NIST and CCM security controls ... 64
Table 31. Monitoring events related to EZEE and DBB MEetricsccovrererererereseseseseeeeeseessenenns 64
Table 32. E2ZEE and DBB remediation acCtiOnsrereereneenesesesessessesessesessessessessessssssssessessessesseans 65
Table 33. SVA security MetriC LUF ... ssss s s sssssssssssssssns 71
Table 34. SVA security MetriC BSFE ... sssssens 71
Table 35. SVA security MetriCS ESF ... sssssssssssssssssssssns 72
Table 36. SVA security MetriC URF ... ssssse s sssssssssssesns 72
Table 37. SVA security MetriC PTA ...t sesssssssssssssssssssssssssssnss 72
Table 38. Measurements and MoniPoli rules associated to SVA metric LUF......ccconnnerceneen. 73
Table 39. Measurements and MoniPoli rules associated to SVA metric BSF ... 73
Table 40. Measurements and MoniPoli rules associated to SVA metric ESF ... 73
Table 41. Measurements and MoniPoli rules associated to SVA metric URF ... 73
Table 42. Measurements and MoniPoli rules associated to SVA metric PTAccconnrreeneereeneens 73
Table 43. Mapping of SVA metrics to NIST and CCM security cOntrols ... 74
Table 44. Monitoring events related t0 SVA MELTiCS. ... ueerereenemneeneesersseseesessesssssesssssssssssssssssssssssssssens 75
Table 45. SVA remediation ACIONS ... ssns 75
Table 46. TLS SeCUTItY MELTIC TCS ... sessessessesse s sssssssses s s sss st sssssssssssssns 83
Table 47. TLS SECUTILY MELTIC FS...oeseeee et 83
Table 48. TLS security Metric HSTS ... sssssssssessssssssssssssssssssssssssssns 83

SPECS Project - Deliverable 4.3.2 7

Secure Provisioning of Cloud Services based on SLA Management

Table 49. TLS security MmetricsS HHSR ...t 84
Table 50. TLS SECUTItY MELIIC SC.uuiirirererrerirsireeissssessss s ssessess e ssssesssssssessssssssssssssssssssssssssssssssssnsans 84
Table 51. TLS security MetriCs CP ... sssssssssssssssssssssssssssssssnss 84
Table 52. Measurements and MoniPoli rules associated to TLS metric TCSccoovevirnrerrenernenne 84
Table 53. Measurements and MoniPoli rules associated to TLS metric FS ... 84
Table 54.Measurements and MoniPoli rules associated to TLS metrics HSTScoovoireirecrerenenn. 85
Table 55. Measurement and MoniPoli rules associated to TLS metrics HHSRocoovvernrrecnenne. 85
Table 56. Measurements and MoniPoli rules associated to TLS metric SCcconmreeneereeneerceneen. 85
Table 57. Measurements and MoniPoli rules associated to TLS metric CP......cccoovvernereneenereneenenne 85
Table 58. Mapping of TLS metrics to NIST and CCM security COntrols........eneneeneenseeseeneennes 86
Table 59. Monitoring events related to TLS MELTICS ... 86
Table 60. TLS remediation aCtiONS ...t ssesssesssssssesssssssessssssssssssssssssssssssssssans 86
Table 61. Mechanism-Specific CONSTIAINEScvrerenririisse s sssses 98
Table 62. WebP00l-Specific CONSIIAINTS ..viirinininiiissseses 100
Table 63. WebIDS-SpecifiC CONSITAINTSovvevvrrerererniissssesessssessssssesssssssss s sssssssssesssssssssssssssessssssssssens 100
Table 64. Mechanism-specific constraints for the full set of components to be deployed...... 100
Table 65. WP4 SECUTILY IMELIICS ..o sssssessssessesssens 118

SPECS Project - Deliverable 4.3.2 8

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

Developing tools for automatic and dynamic management of the security SLA life-cycle is a
challenging task. One has to consider not only which security features to offer so that the
resulting SLAs are implementable from the developer’s and also CSP’s perspective, but also
how to offer them so that the offers are understandable to all End-users (EUs). Furthermore,
one has to consider not only the aspects of negotiation, but also steps and details of
renegotiation if needed (after unsuccessful remediation of SLA violations) or requested (at
any point by an EU or a CSP). All negotiation and renegotiation steps have to be defined in
accordance to deployment possibilities and constraints. And the other way around, the SLA
implementation process has to be designed in a way to enable automatic acquisition of
resources and deployment of services as specified in a signed SLA. In SPECS, the Enforcement
module covers these SLA implementation aspects with two components, namely Planning and
Implementation. They take as an input a signed SLA, and prepare all configuration details so
that the SLA can be implemented, and actually acquire all resources and deploy all services
according to the implementation plan.

Another crucial functionality offered by the Enforcement module is the one focused on
detecting deviations from agreed upon security settings and remediating them in an
automatic and secure way. For each security metric chosen by the EU in the SLA negotiation
phase to be enforced by some security mechanism, in the SLA implementation phase the
Enforcement module has to identify measurements with which the monitoring system can
evaluate the validity of SLOs related to that metric. And for each deviation from what is
expected, in the SLA remediation phase the Enforcement module has to determine actions to
be taken in order to prevent or recover from the detected SLA violation. In the SLA
remediation phase, the Enforcement module has to not only predict and manage SLA
violations, but also determine which events to handle first to avoid causing more damage. In
SPECS, the Enforcement module orchestrates SLA remediation phase with two components,
namely Diagnosis and RDS. The first one analyses suspicious events detected by the
monitoring core, and the other one prepares a remediation plan according to the performed
analysis.

In Figure 1 the position and the role of the Enforcement module is presented. As mentioned
above, the implementation phase is conducted after a successful negotiation according to a
signed SLA, and remediation phase is activated after the monitoring core notifies about a
possible attack or a failure. Considering that not every detected suspicious event actually
presents an SLA violation (remediation = monitoring), that remediation plan is actually
executed by the Implementation component (remediation = implementation), and that
unsuccessful remediation can end with a renegotiation (remediation = renegotiation), this
brings us to the full SLA life-cycle in SPECS.
ementation L/

Figure 1. SLA phases
SPECS Project - Deliverable 4.3.2 9

i

Secure Provisioning of Cloud Services based on SLA Management

This document presents the second version of the Enforcement prototype. If the first
prototypes (described in D4.3.1) demonstrated the basic enforcement flow and the use of
three elementary security mechanisms (Broker, WebPool, and SVA), this next versions are
extended with all enforcement functionalities (actual refinements are detailed in Section 3),
including an innovative approach to SLA implementation and SLA remediation phases.
Additional prototypes presented in this deliverable have been developed according to the
refinement and enhancement of the Enforcement design. Moreover, security mechanisms
presented in first year are revamped according to the feedback from other tasks. Also,
additional security mechanisms are included (DBB, E2EE, and TLS), as anticipated in D4.3.1.

Improvements of the enforcement process were due to the feedback received from other
design, implementation, and testing activities. Additional input came from refinements within
tasks T5.2. If in the first year the requirement was only to implement a mechanism offering
end-2-end encryption, in the second year a set of requirements grew and resulted in the need
to also offer a mechanism implementing secure storage with backup and some additional
security features discussed later in this document (see Section 4).

The last version of the software prototype (which will be presented in D4.3.3) will implement
all designed security mechanisms presented in D4.2.2 to support the coverage of all user
stories defined in WP5 and almost all associated requirements gathered and discussed in
D4.1.2.

Note that all testing activities have been conducted in task T4.5 and reported in deliverable
D4.5.2.

The document is structured as follows. After presenting the inputs and outputs of the project
which are considered in this deliverable and its relation with other deliverables (Section 2),
the focus turns to the Enforcement core.

Section 3 presents a detailed flow orchestrated by each main Enforcement component, and
provides brief installation and usage guides for each of them. The status of development
activities is also presented, and the coverage of the associated requirements is discussed.

Section 4 aims at demonstrating security mechanisms included in the prototype. For each
security mechanism a set of security controls and security metrics enforced by the mechanism
is presented. Refinements of the design are described, and implementation and remediation
details are specified. As for the main Enforcement components, installation and usage guides
are also included for each security mechanism.

The document is concluded with a short synthesis of the current development status and a
brief preview of the last prototype described in D4.3.3 at the end of the project.

Note that all details about Credential Service and Security Tokens mechanisms are provided

in deliverables of dedicated task T4.4, and the Auditing component is discussed in
deliverables D1.4.1 and D1.4.2.

SPECS Project - Deliverable 4.3.2 10

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables

The Enforcement prototype developed in the second year of the project and described in this
document demonstrates the entire enforcement flow, from planning and implementation to
diagnosis and remediation.
The SLA implementation phase has been refined considering inputs from

e WP1 (final architecture of the Platform, design of interfaces),

e WP2 (negotiation and renegotiation flows, initial implementation), and

e WP3 (design and implementation of monitoring components).

The SLA remediation phase has been developed considering inputs from
e WP1 (Platform’s design, definition of interfaces) and
e WP3 (monitoring process).

Of course, the main input came from WP4 design and implementation activities carried out in
the first year of the project (initial prototype, Enforcement design) and from the validation
and testing task. Refinements of validation scenarios conducted in WP5 also provided
valuable feedback.

The current document served and will serve as an input for the activities conducted in parallel
and for the remaining implementation activities in WP2, WP3, and development, testing, and
integration activities in WP1, WP4, and WP5. The definition of security metrics might provide
an input for standardisation activities in WP6.

All mentioned relationships are detailed in Figure 2.

WP1 WP2 WP3 WP4 WP5
* D13 * D222 * D33 + D422 - D5.1.2
= D113 « D231 * D341 * D431
* D45.1
WP1 WP2 WP3 WP4 WP5 WP6
+ D113 + D222 + D342 * D433 * D512 *+ D623
*+ D151 = D232 D4.5.2 *+ D513
* D152 * D521
» D522
*+ D53

SPECS Project - Deliverable 4.3.2

Figure 2. Relationship with other deliverables

11

Secure Provisioning of Cloud Services based on SLA Management

3. Main Enforcement components

The Enforcement module is a system that oversees two phases of the SLA life cycle, namely
SLA implementation and SLA remediation. As described in deliverable D4.2.2, the
orchestration of all implementation and remediation activities is conducted by four main
Enforcement components (see Figure 3).

main Enforcement components

implement
<<component>> g] P <<component>> 2] react

Planning (QE RDS —9

<< >
<<oomponeni.>> <<component>> B]|| <<component>>] cl .compcinent g
Implementation Broker Chef Server Diagnosis
|
\,L/

Enforcement API

Figure 3. Enforcement module’s high level architecture (main Enforcement components)

The SLA implementation phase takes place after the initial SLA signature (see Figure 4) and
after renegotiation or termination of the SLA (see Figure 5). The process in all cases is driven
by two main Enforcement components. The Planning component

e generates supply chains for EU’s security requirements (in SLA negotiation phase),

¢ builds implementation plan for a signed SLA, and

e prepares a reaction plan for a renegotiated or terminated SLA.

Enforcement module ,J

B:implement plan

9: configure
| ’ tl
| |
| 10: configure |
| | >
| | |
| | |

Megotiation Planning Implementation Target Monitoring
module Service module
T T T T T
1 | | | |

1: negotiate SLA | | | |

:' | | | |
| | | |

2: build supply chains | | | |

| | |

3t build supply : : :

4: return valid supply chains chains | | |
I | | |
| | | |

:‘ 5: negatiate SLA I : I :
| | | |

&: implement signed SLA | | | |

7: build : : :

; implementation I | I

plan | | |

| | |

| | |

| |

|

|

|

—_———————————]

Figure 4. SLA implementation phase (initial implementation of an SLA)

SPECS Project - Deliverable 4.3.2 12

Secure Provisioning of Cloud Services based on SLA Management

Megotiation
module

I
L

1

|

1:renegotiate SLA |

:‘ |
|

|

2: build supply chains

ErrfDrDBmBntmndulB)

Planning

Implementation

Target
Service

Monitoring
maodule

. 4:retum valid supply chains _

5:renegotiate SLA

G: update implementation plan

.

B:implement plan

3t build supply
chains

7: build reaction
plan

9: reconfigure
or terminate

—.lj

10: reconfigure

Figure 5. SLA implementation phase (after renegotiation or termination)

The implementation component acquires resources and deploys and configures (or
reconfigures or terminates) security mechanisms and configures (or reconfigures) monitoring
components according to the implementation or reaction plan. As will be discussed in Section
3.6, in Y2 the Implementation component is integrated with the Broker and a Chef Server.

The SLA remediation phase (presented in Figure 6) is orchestrated by the Diagnosis
component which classifies and analyses detected monitoring events, and by the RDS
component which prepares remediation plans according to results of the diagnosis process.

The remediation plan is later executed by the Implementation component.

Enforcement module)

I
I
I
[
I
|
|
|
I
I
I
I
I
I
|
|
I
I
I
I
I
I
I

.

Implementation

3: notify

I
|
|
|
2: aggregate I
|
|
|

Target Monitoring Diagnosis
Service module
I
|
1: push events |

and filter events

monitoring events

Figure 6. SLA remediation phase

SPECS Project - Deliverable 4.3.2

4: classify and
:‘ analyze events

5: remediate
alertiviclation

6. prepare
remediation plan

7. implement

remeadiation plan

g

13

Secure Provisioning of Cloud Services based on SLA Management

Auditing component does not have a functional role in the enforcement flow, but is an
essential component for all logging activities. As mentioned at the beginning of this section,
further implementation details are available in D1.4.1 and D1.4.2.

The architecture of the module is roughly the same as it was reported in D4.2.2 (apart from
integrating Implementation component with the Broker and a Chef Server). What really
evolved from year one is the enforcement process. Refinements are outlined in Table 1 below.

Further details of the internal processes of the entire enforcement flow are described in
subsections dedicated to main Enforcement components. For details of interactions among
components/modules (from the interface perspective) see deliverable D1.3.

Component Year 1 Year 2
Planning e Validates supply chains. | e Builds valid supply chains. [Generation and
e Builds implementation validation of supply chains is merged into one
plan according to a step.]
signed SLA. e Builds implementation plan according to a

signed SLA and associated supply chain.

e Builds a reaction plan to reconfigure target
services after SLA renegotiation and SLA
termination. [Added after refinement of the
renegotiation process.|

e Updates the Monitoring Policy. [Moved from
the Implementation component due to
refinement of the SLA implementation phase.]

Implementation | ¢ Executes e Executes implementation plan.
implementation plan. e Executes remediation plan to reconfigure
e Updates the Monitoring target services during SLA remediation.
Policy. e Executes reaction plan to reconfigure target

services after SLA renegotiation or SLA
termination. [Added due to refinements of
remediation and renegotiation processes.]

Diagnosis e (lassifies, analyses,and | ¢ Classifies, analyses, and prioritizes
prioritizes monitoring monitoring events. [Root cause analysis has
events. been moved to the RDS component during the
e Determines root causes refinement of the remediation process.)
of monitoring events.
RDS e Searches for redressing | ® Determines root causes of monitoring events.
techniques. [Moved from the Diagnosis in the refinement of

the SLA remediation phase.]
e Searches for redressing techniques.
e Builds remediation plan. [Added during
refinements of the SLA remediation phase.]
Table 1. Refinements of the enforcement process

In the next subsection we provide the current status of development.

3.1. Status of development activities

In Table 2 we present coverage of requirements associated to Enforcement module by main
Enforcement components.

SPECS Project - Deliverable 4.3.2 14

Secure Provisioning of Cloud Services based on SLA Management

Requirements for main SPECS software components

Enforcement components Planning | Implementation Diagnosis RDS Broker
ENF_PLAN_R1-R12 X
ENF _PLAN_R8-R9! X X
ENF_IMPL_R1-R9 X
ENF_IMPL_R10? X
ENF_DIAG_R1-R18 X
ENF_REM_R1-R11 X
SLA_NEG_R30-R31 X
ENF_BROKER R1-R5 X
Table 2. SPECS Enforcement components and related requirements

There are 61 requirements for the Enforcement module, related to the main Enforcement
components (requirements associated to security mechanisms are discussed in Section 4).

The current implementation of the Planning component covers 11 out of 13 requirements
associated to the component. Remaining two, namely ENF_PLAN_R8 and ENF_PLAN_R9, will be
completely cover with the final prototype. Note that both requirements are related to building
a reaction and migration plan to recover from an alert or a violation. And this step is
performed by the current prototype. But since reaction plan is also needed after renegotiation
and after termination of an SLA (which will be implemented after M24), we will consider
ENF_PLAN_R8 and ENF_PLAN_R9 covered only at the end of the project.

The Implementation component already covers almost all associated requirements (8 out of
9). Remaining one, namely ENF_IMPL_R9, related to implementation of the reaction plan will
be completely cover at M30, since it also covers SLA implementation phase after SLA
renegotiation and termination.

Similarly, the development of the Diagnosis component at M24 covers almost all related
requirements (17 out of 18). The remaining one, namely ENF DIAG_R7 (related to expressing
violations in terms of KPI rules), will possibly be cover with the final version of the
component.

The current prototypes for the RDS component and the Broker cover all associated
requirements.

To summarize, with the current prototypes of the core Enforcement components 57 of all
elicited core Enforcement requirements are implemented. The current development status is
summarized in Table 3. Note that the details related to the Enforcement API are reported in
D1.3.

In the last 6 months of the project, remaining effort will mainly be spent on developing
planning and implementation activities related to the steps after SLA renegotiation and after
SLA termination. We also expect some improvements for the Diagnosis and RDS. The final
results will be reported in D4.3.3 at M30.

1 In Y1 these two requirements were covered only by the Planning component. In the refinement of the
enforcement process we split responsibilities between the Planning and the RDS component.

2 This requirement was initially covered by the Implementation component. During developement stage this task
was reassigned to the Planning component.

SPECS Project - Deliverable 4.3.2 15

Secure Provisioning of Cloud Services based on SLA Management

Module Artifacts under development Status
component:Planning Available
component:Implementation Available

Enforcement . ; 5

module component:Diagnosis Available
component:RDS Available
component:Broker Available

Table 3. Enforcement module implementation status

The first prototypes of all Enforcement core components are available on the project’s
Bitbucket repositories:

e The Planning component is available at [1].

e The Implementation component is available at [2].

e The Diagnosis component is available at [3].

e The RDS component is available at [4].

e The Broker is available at [30].

The following subsections provide all design, development, installation, and usage details for
core Enforcement components.

3.2 Planning component

As mentioned in the introduction of Section 3 and reported in D4.2.2, the Planning component
is involved in the SLA negotiation and SLA implementation phase. The initial planning process
is described in D4.2.2. In the following we provide with a detailed description of the final
version.

3.2.1. Overview

During negotiation?3, the Planning component generates valid supply chains according to EU’s
security requirements (see Figure 7, where fX[sY] refers to step Y in figure X). The Supply
Chain Manager invokes the Planning component to build supply chains f7[s1] by passing a list
of CSPs, list of SLOs, and a list of mechanisms able to implement SLOs. The Planning first
builds resource combinations f7[s2], which means extracting for each provider a list of zones,
virtual machine (VM) types, and maximum acquirable number of VMs per CSP per zone. Note
that in the supply chain generation process {CSP1, zone;, VMtype1}, {CSP1, zonei, VMtypez},
and {CSP1, zoney, VMtype1} are treated as three different providers.

For each reported security mechanism its metadata is retrieved f7[s3-4] from the SLA
Platform. Each security mechanism consists of a set of components that are able to enforce
and monitor metrics associated to it. Mechanism’s metadata includes information about its
components as well as all related configuration requirements and constraints (e.g., firewall
rules, resource consumption, dependencies and incompatibilities among components). For
example, WebPool mechanism, described in Section 4.2, comprises a load balancer (HAProxy)
and two web servers (Apache and Nginx). WebPool’s constraints report that for each
deployment of the mechanism we need exactly one balancer and at least one web server (the
actual number of needed web servers is determined by the level of redundancy requested by
the EU), that at most one web server can be deployed on each acquired VM, and that EU’s
required level of diversity (i.e, number of web server types) determines the number of
different deployed web servers. The metadata for the WebPool mechanism can be seen in

3 For details of negotiation process see D2.2.2.

SPECS Project - Deliverable 4.3.2 16

Secure Provisioning of Cloud Services based on SLA Management

Appendix 4.

The Planning component then selects all mechanisms’ components needed to implement the
SLA f7[s5]. In the WebPool case, if the EU requested level of redundancy (i.e., number of web
server replicas) to be 3, and level of diversity to be 1, we need one balancer and three web
servers of the same type, i.e., one instance of HAProxy and three instances of either Apache or
Nginx. When all components are chosen for all mechanisms to be implemented, the Planning
extracts constraints from mechanisms’ metadata f7[s6]. For the example at hand (where we
choose HAProxy and Apache) the constraints would include:

e HAProxy cannot be allocated to a VM together with Apache.

e The number of instances of component HAProxy must be equal to 1.

e The total number of instances of component Apache must be greater or equal to 3.

e The minimum number of VMs must be greater or equal to 4 (minimum number of VMs

is determined by the level of redundancy).

When the Planning prepares the list of constraints for all mechanisms and components to be
deployed, it has to find the optimal allocation of components over (a minimal possible number
of) acquired resources. This means determining the number of needed resources and
allocation of chosen components over all acquired resources, considering all implementation
and configuration constraints (as reported in metadata, e.g, load consumption). All
constraints can be expressed in terms or linear equations f7[s7]. Thus the described planning
problem can be modelled and solved f7[s8] in terms of an Integer Linear Program (ILP)% The
solution of the planning problem is then translated into a supply chain format f7[s9].

Negotiation module] Enforcement module) SLA Platform]
Supply Chain Planning Service Manager
Manager
[

[
| |
| b . . |

1: build valid supply chains

1 PRIy b'J‘

oop for each mechanism)

[

|

|

|

|

2: build resource combinations |
:‘ |
|

|

|

|

3: get mechanism's metadata

< 4: return mechanism's metadata t[]

:‘ 5: identify needed components
:‘ 6: build a list of constraints
:‘ 7: prepare solver input

:‘ B: solve planning problem

10 return list of buil 9: build supply chains {translate planning solution)
supply chains |IDs

{ ______________
! '

Figure 7. Generation of supply chains

4 For solving the planning problem we use an open-source Java library Joptimizer [18].

SPECS Project - Deliverable 4.3.2 17

Secure Provisioning of Cloud Services based on SLA Management

For the example above, the supply chain (which reports a provider, number of needed
resources, and allocation of components to deploy over those resources) is:

e Provider: {CSP, zone, VM type}, for example {aws-ec2, us-east-1, cl.medium}>.

e Number of needed VMs: 4

e Allocation: VM1: {HAProxy}, VM2: {Apache}, VM3s: {Apache}, VMa4: {Apache}

The precise and detailed formulation of the planning problem (steps f7[s6-9]) with examples
is described in Appendix 1.

The list of IDs of all generated supply chains for the EU’s security requirements is returned to
the Negotiation module f7[s10].

Note that since we consider all constraints related to deployment (dependabilities,
incompatibilities, limitations) and all constraints related to CSPs’ offers (VM type for each
provider/zone determines which and how many components can be deployed on which VM),
all generated supply chains are implementable. So no further validation process is needed. If
the Planning component cannot build a single valid supply chain, the EU is notified about the
unfeasible set of security requirements and is asked to start a new negotiation cycle.

When the EU signs an SLA, the next step for the Planning component is to prepare an
implementation plan according to the SLA and the associated supply chain. The following
description of the process of building the implementation plan follows the sequence diagram
on Figure 8 below.

The SPECS Application triggers the Planning component to prepare the implementation plan
f8[s1] by passing it the ID of the signed SLA. Since the SLA has been signed, we can track all
activities related to it, thus we log the start of the process by logging the activation of the
Planning component labelling it with the ID of the SLA f8[s2]. Logging details are provided in
description of the Auditing component in deliverables D1.4.1 and D1.4.2.

The Planning retrieves the signed SLA f8[s3-4] and parses it f8[s5] to extract SLOs, and then
retrieves the associated supply chain f8[s6]. Note that in the SLA negotiation phase each
supply chain built for the set of EU’s security requirements implied one SLA Offer. After the
SLA signature all rejected supply chains (linked to rejected SLA Offers) were deleted so that
each signed SLA is only accompanied with one supply chain.

The set of security mechanisms is extracted from the supply chain and for each mechanism all
of the associated implementation details are retrieved from the SLA Platform f8[s7-8]. An
example of configuration details for the WebPool mechanism is provided at the end of the
document (see Appendix 4).

Mechanism’s configuration details are prepared by the developer of a mechanism. For each
mechanism a list of enforceable and a list of monitorable metrics has to be provided. Note that
some mechanisms can enforce a metric by providing the infrastructure to assure a certain
level of security (e.g., providing web server replicas with WebPool) or by providing specific
configurations and functionalities on the existing resources (e.g., encrypting stored data with
E2EE mechanism). But some mechanisms are only able to monitor validity of SLOs (e.g,

5 For details about the CSP, zones, and instance types, see Error! Reference source not found..

SPECS Project - Deliverable 4.3.2 18

Secure Provisioning of Cloud Services based on SLA Management

Nmap® is only able to monitor certain TLS metrics) by observing the state of the system.

As will be later discussed in the description of the diagnosis process (in Section 3.4), each
metric is associated to a set of measurements with which we can detect alerts and violations.
And for each measurement a detectable monitoring event is defined. For the entire set of
monitoring events the developer also specifies a remediation flow which consists of a list of
remediation actions. And since all installations and configurations are performed
automatically with Chef” recipes, the developer also has to prepare a list of recipes associated
to each remediation action. Mechanism’s metadata part consists of a set of components that
implement the mechanism, enriched with all configuration details and implementation

constraints.

SPECS Planning

Enforcamant module J

Manitoring modukg)

SLA Platform)

Implameaniation

Chaf Sarvar ManiPali

Sarvica
Managar

1: implamant
signad SLA

—

[

2 log companant achvation

3 ratrieva SLA

<

4 ratum SLA

5: parsa SLA

&: rafrieve associated

supphy chain

|
|
|
|
|
|
|
;
L J: —————
|
|
|
|
|
|

loop for @ach machanism in supph.r-;:,hain,]

7 gal machanisms

<

9: build implamaniation

plan

10: stora implamantation plan

11 implamant plan

}F———1

13! retum results of
implamantation

14: build SLA with alarts

15 updata monipali

:
.

Figure 8. Building implementation plan

The Planning then builds the implementation plan f8[s9], which includes:
e [Ds of associated SLA and supply chain.
¢ Information about the CSP (provider ID, zone, VM type).
e [P address and the port number of the monitoring core.

6 For details see D3.4.1.

7 The use of Chef for automatic implementation and configuration of resources in SPECS has been discussed in

D4.2.2.

SPECS Project - Deliverable 4.3.2

. . S

19

Secure Provisioning of Cloud Services based on SLA Management

e Alist of pools and for each of them a list of VMs to acquire. For each VM a set of
components to be deployed is included with all configuration details (firewall rules,
Chef recipes with which the listed components are installed and configured, etc.).

e Alist of SLOs is added with which the Implementation component determines
configuration details in Chef recipes.

e Alist of measurements is included with which the validity of SLOs in the SLA is
evaluated. The list of measurements also includes information related to alert and
violation thresholds needed for step f8[s14], and a list of detectable monitoring events.

The built implementation plan is stored in the Chef server f8[s10] and Implementation
component is invoked to execute the plan f8[s11]. Deactivation of the Planning component
and thus finalization of the planning process is logged f8[s12].

After the plan has been successfully implemented and the Implementation component returns
the result of the acquisition and deployment process f8[s13], the Planning prepares a list of
violation and alert thresholds in the XML format f8[s14]. With such an “SLA with alerts”, the
Monitoring Policy (MoniPoli) is reconfigured f8[s15] to detect suspicious monitoring events
that could result in alerts or violations of the implemented SLA.

In the first year of the project two policies were anticipated. The MoniPoli was defined for
violation thresholds and the Enforcement Policy was assumed for alert thresholds. During
refinement and optimisation stages of the development activities in WP3 and WP4, the
MoniPoli was developed in such a way that it manages both, rules for violations and rules for
alerts. For details of the MoniPoli see D3.3 and associated prototype deliverables.

An example of the implementation plan and the associated SLA with alerts is presented in
Appendix 2.

The EU has the opportunity to renegotiate an SLA or request its termination before the
expiration date. As we will explain in Section 3.5, renegotiation or termination might be
necessary after an unsuccessful remediation of an alert or a violation. In either case, the
Planning component has to prepare the so called reaction plan.

The process of building a reaction plan is depicted in Figure 9 below. The following are details
of each step of the planning process after renegotiation.

As described in D2.2.2, during the renegotiation process the EU signs a new SLA which is
accompanied with a new supply chain. The SPECS Application invokes the Planning to prepare
areaction plan (and update the existing implementation plan for the initial SLA) with the ID of
the new SLA f9[s1]. The Planning first logs its activation f9[s2], and then retrieves the new
SLA f9[s3-4], the associated new supply chain f9[s5], and the initial implementation plan
f9[s6-7]. The Planning compares the initial deployment setting with the new SLA and the new
supply chain f9[s8]. According to needed reconfigurations a reaction plan is built f9[s9]. A
reaction plan is basically a list of fake violations that require immediate remediation actions.
For example, if the new supply chain reports more resources than are included in the initial
implementation plan, the Planning prepares a list of violations of type “VM is unresponsive”.
Such a violation requires an acquisition of a new VM. Similarly, if the EU renegotiated new
security capability that requires deployment of a new mechanism on existing resources, the
Planning prepares a violation of type “mechanism’s component is unavailable” which requires
installation of the missing component. Or if some SLO in the new SLA reports higher value of a

SPECS Project - Deliverable 4.3.2 20

Secure Provisioning of Cloud Services based on SLA Management

metric as was initially negotiated, the Planning has to prepare a violation of type
“configuration issue” which requires reconfiguration of installed components (reconfiguration
is executed with new metric values).

Enforcement module J Monitoring module] SLA platform]
SPECS Planning Implementation Chef Server Meoni Poli SLA Service Auditing
Application Manager Manager
|
| 1 update

| implementation

————{

plan
l—b 2 log component activation

3! retrieve SLA

| |

[[

| |

| |

| |

| |

[[

T T

| |

| |

4 b SLA I I

L return
= T H—— o ————————

|

|

|

|

5: retrieve associated
supply chain

6: retrieve implementation plan

T: return impleme ntation plan

B: compare new SLA and new
; supply chain with old

impleme ntation plan

9 build a reaction plan

loop for each action in reaction plan)

10: get mechanism

|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I I
| |
11: return mechanism | |

e —— T ———————— -‘lr ————————— e e

| |
| |
| |
| |
' |
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|

12: build SLA reme diation
:‘ plan

13: implement remediation plan

14: return remediation result

{ ________________

15 build SLA with alerts

16: update monipoli

17: update SLA state

18: log component deactivation

| |
Figure 9. Building reaction plan

For all mechanisms involved in the list of fake violations the Planning retrieves mechanisms’
deployment details from the SLA Platform f9[s10-11]. When remediation plans for all
prepared violations are extracted, the SLA remediation plan is built and implemented f9[s12-
14]. Implementation details will be provided in Section 3.3.

After the implementation of the SLA remediation plan (i.e., after the implementation of the
reaction plan), the MoniPoli is updated f9[s15-16], the state of the SLA is updated to Observed
f9[s17], and completion of the planning process is logged f9[s18].

More implementation details for the planning process after renegotiation will be provided at
M30 in D4.3.3.

In case where the EU wants to terminate the SLA, the process is the same as described in
Figure 9, except that we skip steps 3-5 and 8. For SLA termination the Planning component
only needs the implementation plan to determine which resources and which services and
components to terminate.

SPECS Project - Deliverable 4.3.2 21

Secure Provisioning of Cloud Services based on SLA Management

In the following subsections we provide with description of repository, and present
installation and usage guides for the current Planning prototype.

3.2.1. Repository

The Planning component is implemented as a Maven-based Java project with two modules:
planning-core and planning-api. It is designed using the Spring framework [40]. The source
code can be found on the project’s Bitbucket repository at [1].

3.2.2. Description and design

As mentioned in the previous section, the Planning component consists of two modules:
planning-core and planning-api. The planning-core module contains the implementation of all
the functionality supported by the Planning component with the corresponding Java AP],
while the planning-api module provides RESTful API wrapper around the Java API of the
planning-core. The planning-core module is packaged as a Java library (JAR file), the planning-
api module is packaged as a Java web archive (WAR file) which depends on the planning-core
library. The persistence layer is based on the Spring Data framework which is integrated with
the MongoDB database using the Spring Data MongoDB project.

3.2.3. Installation

The source code for the Enforcement Planning component can be found on project’s Bitbucket
repository at [1].

Prerequisites:
e Java web container
e MongoDB
e Java7
e SPECS dependencies: SPECS Utility Data Model (available at [37])

The project can be built from source code using Apache Maven 3 tool. First clone the project
from the Bitbucket repository using a Git client:

git clone git@bitbucket.org:specs-team/specs-core-enforcement-
planning.git

then go into the specs-core-enforcement-planning directory and run:

mvn package

The project is packaged as a web application archive file with the name planning-api.war
which has to be deployed to a Java web container. For example, to deploy the application to
Apache Tomcat, just copy the war file to the Tomcat webapps directory:

cp planning-api/target/planning-api.war /var/lib/tomcat7/webapps/

The application configuration is located in the file planning.properties in the Java properties
format. The file contains the following configuration properties:
sla-manager—-api.address=https://localhost/sla-manager-

api/sla manager rest api
service-manager—-api.address=https://localhost/service-manager-api/cloud-
sla

implementation-api.address=https://localhost/implementation-api
auditing-api.address=https://localhost/auditing
monipoli-api.address=https://localhost/monipoli

mongodb.host=localhost

mongodb.port=27017

mongodb.database=enforcement-planning

SPECS Project - Deliverable 4.3.2 22

Secure Provisioning of Cloud Services based on SLA Management

Make the necessary changes and restart the web container for changes to take effect. The
Planning API should now be available at https://<host>:<port>/planning-api.

3.2.4. Usage
The Planning component provides REST API which is fully described in the deliverable D1.3.

The following tables provide a brief summary of offered resources and methods involved in
the generation of supply chains and preparation of implementation plans orchestrated by the
Planning component.

Resources Supply Chain Activities: A collection of Supply Chain Activities maintained by the
Planning component.
Supply Chain Activity: An object representing a set of information needed to
build Supply Chains, and a list of identifiers of associated built Supply Chains.
Supply Chains: A collection of Supply Chain objects maintained by the Planning
component.
Supply Chain: An object representing a custom set of cloud resources and a set of
security mechanisms’ components to be deployed over the custom set of cloud
resources in order to implement an SLA.
Methods GET/sla-enforcement/sc-activities
POST/sla-enforcement/sc-activities
GET/sla-enforcement/sc-activities/{sca-1id}
GET/sla-enforcement/sc-activities/{sca-1id}/status
GET/sla-enforcement/sc-activities/{sca-id}/sc-1list
GET/sla-enforcement/supply-chains
GET/sla-enforcement/supply-chains/{sc-id}
DELETE/sla-enforcement/supply-chains/{sc-id}

Table 4. API associated to generation of supply chains

Resources Planning Activities: A collection of Planning Activities maintained by the
Planning component.
Planning Activity: An object representing all information about built
Implementation Plans associated to an SLA.
Reconfigurations: A collection of Reconfigurations maintained by the Planning
component.
Reconfiguration: An object representing required reconfiguration of an
Implementation Plan.
Methods GET/sla-enforcement/plan—-activities
POST/sla-enforcement/plan-activities
GET/sla-enforcement/plan-activities/{pa-id}
PUT/sla-enforcement/plan—-activities/{pa-id}
GET/sla-enforcement/plan-activities/{pa-id}/status
GET/sla-enforcement/plan-activities/{pa-id}/plansnum
GET/sla-enforcement/plan-activities/{pa-id}/planlist
GET/sla-enforcement/plan-activities/{pa-id}/active
GET/sla-enforcement/reconfigs
POST/sla-enforcement/reconfigs

Table 5. API associated to generation of implementation plans

3.3. Implementation component

As described in the previous Section 3.2, all implementation activities in SPECS are carried out
according to the implementation plan that is generated in the planning step of the SLA

SPECS Project - Deliverable 4.3.2 23

Secure Provisioning of Cloud Services based on SLA Management

implementation phase. The initial SLA implementation process is described in D4.2.2. In the
following we provide with a detailed description of the final version.

3.3.1. Overview

Implementation component (integrated with the Broker mechanism and a Chef Server,
discussed in Section 3.6) orchestrates acquisition of resources and deployment and
configuration of security mechanisms responsible for enforcing and monitoring security
features agreed in the SLA.

Sequence diagram in Figure 10 outlines all details of the implementation plan execution.

After the Planning component triggers implementation of the built plan f10[s1], the
Implementation component logs the start of the process f10[s2]. First the implementation
plan is retrieved f10[s3-4] and parsed f10[s5]. According to the implementation plan, all
cloud resources are acquired and configured with Chef recipes f10[s6]. After each recipe has
ran successfully (and the log from the Chef Server is returned f10[s7]), the implementation
plan is updated (e.g., with IP addresses) f10[s8] and activated services are logged f10[s9].
More details about acquisition and configuration of resources are provided in Section 3.6.

Enforcement module _) SLA Platform
Planning Implementation Chef Server SLA Auditing Target

1 T
| |
| 1: implement |
| |
r |

|

2:log component activation

1 1

| |

| |

plan l !
ey |
|

T

|

|

5: parse implementation plan

loopfor each cloud resource ,J

Manager Service
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|

6: configure with recipe

i
|
|
|
|
|
t
|

3: get implementation plan :
|

é 4: return implementation plan |

_______________ |
|
|
|
|
|
|
|
|
|
|
|

7oreturn log

<_ _______________

8: update implementation plan

R ISR R
I
|
|
|
|
|
|
4
I
|
|
|
|
|
|
g
|
|
|
|
|
| !

9: log activated services

. B relurnl 10: configure with a recipe
implementation

g _result
12: update SLA state

g

13: log component deactivation |
f
|
|

Figure 10. Executing implementation plan

After the cloud resources has been successfully configured, the internal SPECS components
(e.g., monitoring aggregators, Chef Server) have to be adapted to manage newly implemented

SPECS Project - Deliverable 4.3.2 24

Secure Provisioning of Cloud Services based on SLA Management

SLA f10[s10]. At the end of the implementation process, the result is reported to the Planning
component (which updates the MoniPoli as discussed in Section 3.2) f10[s11], the SLA state is
updated to Observed f10[s12] and the completion of the implementation process is logged
f10[s13].

Once the signed SLA (i.e., the associated implementation plan) is successfully implemented, it
enters the monitoring phase. And in case when monitoring adapters detect deviations from
the agreed configurations and the Diagnosis component confirms that the SLA has been
violated (or that the detected event implies a possible future SLA violation), the RDS
component prepares a remediation plan (for details see Section 3.5). Generated remediation
plan then has to be implemented in order to recover from the SLA violation or SLA alert. The
process of implementing a remediation plan is depicted in Figure 11 and described below.

The RDS component triggers implementation of remediation plan f11[s1] and the
Implementation component logs the start of the process f11[s2]. The implementation plan
associated to the alerted/violated SLA is retrieved f11[s3-4] and parsed f11[s5].

Enforcement module) Monitoring module J
RDS Implementation Chef Server Event Auditing Target
|

I |
: 1: implement :
| remediation plan b|_

2: log component activation

3: getimplementation plan

4: return implementation plan

5. parse implementation plan
6 update Chef Client
iteration timeout

loopfor each action in remediation plan)

Archiver Service
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

7:reconfigure with recipe

|
|
|
|
|
|
|
|
|
|
|
|
P Biretunlog 4

12: return

remediation result .
e 13: log remediation result

14: log component deactivation

Figure 11. Implementing remediation plan

Each action in remediation plan (for details see Section 3.5) requires a
e reconfiguration of the target service and/or
e invocation of a measurement related to the reconfiguration on the target service.

SPECS Project - Deliverable 4.3.2 25

Secure Provisioning of Cloud Services based on SLA Management

For example, if the reconfiguration is related to restarting an unresponsive web server, the
associated monitoring adapter is invoked to check availability of the restarted web server. But
since measurement results cannot be obtained directly from the target service (all
measurement results go from the monitoring adapter to the monitoring core and only then to
the Enforcement module), the Chef Client timeout has to be adapted f11[s6].

Reconfigurations of target services are performed similarly as in the execution of the initial
implementation plan. For each action in the remediation plan target service is reconfigured
with a Chef recipe f11[s7] and after the Chef Server returns the log reporting successful run of
the recipe f11[s8], the implementation plan is updated if needed (e.g., with new IP address)
f11[s9]. In order to determine whether the remediation action has eliminated the SLA
alert/violation, the Implementation component queries the Event Archiver for a
measurement result that has been invoked with the reconfiguration recipe f11[s10-11].

A sequence of remediation actions can either end with a successful elimination of the SLA
alert/violation or we run out of actions to automatically remediate the alert/violation. The
result of the remediation process is reported back to the RDS component f11[s12] which
either updates the SLA state to Observed or notifies the EU that the automatic remediation has
not been successful.

Implementation component logs the remediation result f11[s13] and the completion of the
implementation process f11[s14].

As anticipated in Section 3.2, focused on the Planning component, the Implementation
component is also in charge of implementing a remediation/reaction plan built after SLA
renegotiation or after SLA termination.

Implementation of the remediation plan built by the RDS is invoked by the RDS and the
invocation call is labelled with Reconfigure. After SLA renegotiation, the remediation/reaction
plan is built by the Planning component, but the implementation process stays the same. The
invocation call originating from the Planning component instead of RDS is labelled as
Reconfigure. In case of SLA Termination, the invocation call originating from the Planning
component is labelled as Terminate. In this case the implementation process is the same,
except that steps f11[s6] and f11[s10-11] are skipped.

More implementation details for the implementation of remediation/reaction plan after SLA
renegotiation or SLA termination will be provided at M30 in D4.3.3.

In the following subsections we provide with description of repository, and present
installation and usage guides for the current Implementation prototype.

3.3.2. Repository

The Implementation component is implemented as a Maven-based Java project with two
modules: implementation-core and implementation-api. It is designed using the Spring
framework [40]. The source code can be found on the project’s Bitbucket repository at [2].

3.3.3. Description and design

As mentioned in the previous section, the Implementation component consists of two
modules: implementation-core and implementation-api. The implementation-core module

SPECS Project - Deliverable 4.3.2 26

Secure Provisioning of Cloud Services based on SLA Management

contains the implementation of all the functionality supported by the Implementation
component with the corresponding Java API, while the implementation-api module provides
RESTful API wrapper around the Java API of the implementation-core. The implementation-
core module is packaged as a Java library (JAR file) and the implementation-api module is
packaged as a Java web archive (WAR file) which depends on the implementation-core
library. The persistence layer is based on the Spring Data framework which is integrated with
the MongoDB database using the Spring Data MongoDB project.

3.3.4. Installation

The source code of the Enforcement Implementation component can be found on project’s
Bitbucket repository at [2].

Prerequisites:
e Java web container
e MongoDB
e Java7
e Chef Server
e SPECS dependencies: SPECS Utility Data Model (available at [37])

The project can be built from source code using Apache Maven 3 tool. First clone the project
from the Bitbucket repository using a Git client:

git clone git@bitbucket.org:specs-team/specs-core-enforcement-
implementation.git

then go into the specs-core-enforcement-implementation directory and run:

mvn package

The project is packaged as a web application archive file with the name implementation-
api.war which has to be deployed to a Java web container. For example, to deploy the
application to Apache Tomcat, just copy the war file to the Tomcat webapps directory:

cp implementation-api/target/implementation-api.war
/var/lib/tomcat7/webapps/

The application configuration is located in the file implementation.properties in the Java
properties format. The file contains the following configuration properties:
sla-manager—-api.address=https://localhost/sla-manager-
api/sla manager rest api
planning-api.address=https://localhost/planning-api
event—-archiver.address=https://localhost/event-archiver
auditing-api.address=https://localhost/auditing
monitoring-api.address=https://localhost/monitoring
mongodb.host=1localhost

mongodb.port=27017
mongodb.database=enforcement-implementation
chef-server.organization

chef-server.organizationPK

chef-server.endpoint

chef-server.username

chef-server.password

Make the necessary changes and restart the web container for changes to take effect. The
Implementation API should now be available at https://<host>:<port>/implementation-api.

SPECS Project - Deliverable 4.3.2 27

Secure Provisioning of Cloud Services based on SLA Management

3.3.5. Usage

The Implementation component provides REST API which is fully described in the deliverable
D1.3.

The following table provides a brief summary of resources and methods related to the actual
SLA implementation and implementation plans.

Resources Implementation Activities: A collection of Implementation Activities maintained
by the Implementation component.
Implementation Activity: An object representing all information about the
process of implementing an SLA.
Implementation Plans: A collection of Implementation Plans maintained by the
Chef Server.
Implementation Plan: An object representing a detailed set of resources and
their configurations required to implement an SLA.
Methods GET/sla-enforcement/impl-activities
POST/sla-enforcement/impl-activities
GET/sla-enforcement/impl-activities/{ia-id}
GET/sla-enforcement/impl-activities/{ia-id}/status

Table 6. API associated to implementation plans

3.4. Diagnosis component

During the SLA implementation phase, we deploy not only security mechanisms that enforce
negotiated metrics but also components that are able to monitor them. Installed monitoring
adapters continuously report about the status of the acquired resources and services running
on top of them. Events are sent to the Monitoring module which aggregates, archives, and
filters them according to the MoniPoli. Events that break at least one of the Monipoli rules are
notified to the Diagnosis component.

The initial diagnosis process is described in D4.2.2. In the following we provide with a
detailed description of the final version.

3.4.1. Overview

When an EU chooses a specific metric and sets a value to it, he/she basically sets a violation
threshold for that metric which is then added to the MoniPoli in the form of a MoniPoli rule.
For example, if an EU signs an SLA with an SLO Vulnerability Scanning Frequency = 24h (and
for this metric we measure the age of the scanning report), the rule added to the MoniPoli is
report_age >24h. This means that the MoniPoli will notify the Diagnosis each time the age of
the scanning report is higher than 24h.

In order to prevent violations and introduce the so called alerts, we associate each metric with
additional measurements and thus additional MoniPoli rules (alert threshold). For example,
as seen in the example above, the metric Vulnerability Scanning Frequency is associated to the
report_age measurement and this is its basic measurement. This means that each time this
measurement deviates from what is expected, the associated SLA is violated. Each metric has
one basic measurement, but in order to detect violations even before they occur, we introduce
additional measurements. Additional measurements associated to the Vulnerability Scanning
Frequency metric are related to availability of the vulnerability list and responsiveness of the
vulnerability scanner (a list of published software vulnerabilities and a responsive
vulnerability scanner are needed in order to perform vulnerability scan). If any of the

SPECS Project - Deliverable 4.3.2 28

Secure Provisioning of Cloud Services based on SLA Management

MoniPoli rules associated to the additional measurements is broken, an SLA alert is raised.
This allows us to remediate the alert before an actual violation occurs.

In the SLA implementation phase all deployed monitoring adapters are configured so that all
basic and all additional measurements associated to the entire set of SLOs/metrics in the SLA
are continuously taken and sent to the monitoring core. For each security mechanism in
Section 4 we report a list of metric that implement the mechanism and a list of associated

basic and additional measurements.

The following are the details of the diagnosis process which is also presented with a sequence

diagram in Figure 12 below.

Monitoring module] Enforcement madule J SLA, Platform J
SLOM Event Diagnosis Chef Senver RDS SLA Auditing
Exporter Archiver Manager
I I I I I T
| | | | |
| 1: notify monitoring event | | | |
i Wi
|.,_| 2 log component activation I I I
T T m
3: retrieve SLA I I
|
4 return SLA |
< i

5: get implementation plan

loop for each affected SLO)

B! classify event

loop for each affected SLO]

10: analyze event

12: update SLA state

9. detemmine effect on SLA

11: detemine impact on SLA

{ &: return implementation plan

7 identify affected SLOs

13: put in prichty queue

14 log event information

-]

|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
op

loop for each event in the priority queue)

15: get top element from
the pricrty queue

16: get

T
|
|
|
loop for each affected SLO]
|
I measurement results

17 return
measurement results

18: verify SLA state

19 activate remediation

(20: return remediation result

SPECS Project - Deliverable 4.3.2

21: log component deactivation

L

' Figure 12. Diagnosis prdcess

29

Secure Provisioning of Cloud Services based on SLA Management

When the Diagnosis component is notified about a monitoring event f12[s1], the activation of
the process is logged f12[s2]. The notification includes the ID of the affected SLA, so the
Diagnosis can retrieve it from the SLA Manager f12[s3-4]. With the ID of the affected SLA the
Diagnosis also queries the Chef Server for the associated implementation plan f12[s5-6]. The
affected SLOs are identified based on the measurement reported in the notification f12[s7].

For each affected SLO the Diagnosis performs classification f12[s8]. This means that it has to
determine whether the notified event represents an alert, a violation, or a false positive. This
is done in two steps:

1. The value of the measurement reported in the notification is compared with the
associated threshold specified in the implementation plan. If the reported value is
below the threshold (or above the threshold, depends on the type of the
measurement), the notified event is a false positive.

2. Ifthe eventis not a false positive, the Diagnosis checks if the measurement reported in
the notification is a basic or an additional one. Deviations of basic measurements
indicate SLO violations, deviations of additional measurements indicate SLO alerts.

Next, the effect on the entire SLA is determined f12[s9]. If any of affected SLOs is labelled as
violated, the SLA is violated. If all affected SLOs are labelled as alerted, the SLA is alerted. As
already said, if none of the affected SLOs is either alerted or violated, the notified event
represents a false positive.

When false positives are discarded, the notified event has to be analysed with respect to each
affected SLO f12[s10]. To determine the impact that the monitoring event has on each SLO,
the Diagnosis has to numerically evaluate the risk level of an alert or the severity level of a
violation. At this stage of the development, we introduce an innovative technique to model the
risk/severity levels according to the event type and the importance levels assigned to the
affected SLOs as shown in Table 7.

Event type
Alert Violation
Risk level Severity level
I Low 1 4
lzr:,[;;)rtance Medium 2 5
High 3 6

Table 7. Risk and severity levels of alerts and violations

More meaningful evaluation method would depend on the type of the measurement (e.g.,
boolean, numerical) associated to the notified monitoring event, the deviation of the expected
value, and would take into account even dependencies among SLOs, costs and damages
associated to occurrence of the event, and historical data. Considering that such a
methodology for evaluating risk associated to an alert or a violation takes thorough
experiments and thoughtful research, we might further develop it in the last phase of the
project and formalize it at M30.

Considering that we maintain alerted/violated SLAs in a priority queue and we handle them
according to the risk/severity level (SLAs with higher impact level first), this setting assures
that all violations are handled before alerts, and that all SLOs with higher importance levels
are remediated first. It may occur that the Diagnosis receives different notifications affecting
one SLA at almost the same time. And to avoid performing different reconfigurations on a

SPECS Project - Deliverable 4.3.2 30

Secure Provisioning of Cloud Services based on SLA Management

target service at the same time, monitoring events have to be handled one by one and not in
parallel. Hence the need for the priority queue.

The final impact that the notified monitoring event has on the SLA, is calculated as the
maximum risk/severity level of all affected SLOs f12[s11].

When the event has been classified and analysed, and the SLA impact level has been
determined, the state of the SLA is updated to Alerted/Violated f12[s12], the SLA is put in the
priority queue (alerted/violated SLAs with the highest impact levels are put at the top and are
remediated first) f12[s13], and all information related to the notified event is logged f12[s14].

Note that all SLAs with the same risk/severity level are placed in the priority queue according
to the time of the event occurrence (SLAs for which the notified monitoring event occurred
first are put on top of the list).

Before each alerted/violated SLA is pushed to the RDS component to find the best suited
proactive/reactive solution, the Diagnosis component has to verify if the conditions of the
alert/violation still persist. It may happen, for example, that during the time the
alerted/violated SLA is in priority queue, the alert either escalates to a violation (in this case
the Diagnosis received a new notification) or diminishes (in this case the SLA is simply
removed from the priority queue and labelled as Observed). In case where a violation no
longer persists, the SLA’s state is changed to Observed, but the EU is still notified in order to
have an opportunity to claim penalties.

The Diagnosis takes the top element from the priority queue f12[s15]. In order to verify the
state of an alerted/violated SLA f12[s18], the Diagnosis queries monitoring results from the
Event Archiver for the measurements related to the affected SLOs f12[s16-17]. Each
alerted/violated SLA is sent to the RDS component to perform remediation f12[s19].
Afterwards, the RDS reports if the alert/violation has been successfully eliminated f12[s20] in
order to manage the next alerted/violated SLA. When the priority queue is emptied, the
deactivation of the Diagnosis component is logged f12[s21].

An example of the diagnosis process for a monitoring event related to the SVA mechanism is
provided in Appendix 3. Installation and usage guides for the current Diagnosis prototype are
provided in the next two subsections.

In the following subsections we provide with description of repository, and present
installation and usage guides for the current Diagnosis prototype.

3.4.2. Repository

The Diagnosis component is implemented as a Maven-based Java project with two modules:
diagnosis-core and diagnosis-api. It is designed using the Spring framework [40]. The source
code can be found on the project’s Bitbucket repository at [3].

3.4.3. Description and design

As mentioned in the previous section, the Diagnosis component consists of two modules:
diagnosis-core and diagnosis-api. The diagnosis-core module contains the implementation of
all the functionality supported by the Diagnosis component with the corresponding Java API,
while the diagnosis-api module provides RESTful API wrapper around the Java API of the

SPECS Project - Deliverable 4.3.2 31

Secure Provisioning of Cloud Services based on SLA Management

diagnosis-core. The diagnosis-core module is packaged as a Java library (JAR file), the
diagnosis-api module is packaged as a Java web archive (WAR file) which depends on the
diagnosis-core library. The persistence layer is based on the Spring Data framework which is
integrated with the MongoDB database using the Spring Data MongoDB project.

3.4.4. Installation

The source code for the Enforcement Diagnosis component can be found on project’s
Bitbucket repository at [3].

Prerequisites:
e Java web container
e MongoDB
e Java7

SPECS dependencies: SPECS Utility Data Model (available at [37])

The project can be built from source code using Apache Maven 3 tool. First clone the project
from the Bitbucket repository using a Git client:

git clone git@bitbucket.org:specs-team/specs-core-enforcement-
diagnosis.git

then go into the specs-core-enforcement-diagnosis directory and run:

mvn package

The project is packaged as a web application archive file with the name diagnosis-api.war
which has to be deployed to a Java web container. For example, to deploy the application to

Apache Tomcat, just copy the war file to the Tomcat webapps directory:
cp diagnosis-api/target/diagnosis-api.war /var/lib/tomcat7/webapps/

The application configuration is located in the file diagnosis.properties in the Java properties
format. The file contains the following configuration properties:
planning-api.address=https://localhost/planning-api
implementation-api.address=https://localhost/implementation-api
rds—api.address=https://localhost/rds-api
sla-manager—-api.address=https://localhost/sla-manager-

api/sla manager rest api
auditing-api.address=https://localhost/auditing
mongodb.host=1localhost

mongodb.port=27017

mongodb.database=enforcement-diagnosis

Make the necessary changes and restart the web container for changes to take effect. The
Diagnosis API should now be available at https://<host>:<port>/diagnosis-api.

3.4.5. Usage
The Diagnosis component provides REST API which is fully described in the deliverable D1.3.

The following table provides a brief summary of resources and methods related to the actual
SLA implementation and implementation plans.

SPECS Project - Deliverable 4.3.2 32

Secure Provisioning of Cloud Services based on SLA Management

Resources | Notifications: A collection of Notifications maintained by the Diagnosis.
Notification: A message related to a monitoring event.
Diagnosis Activities: A collection of Diagnosis Activities maintained by the
Diagnosis.
Diagnosis Activity: An object representing a set of information associated to a
Notification object. Information contains affected SLA ID and classification result.
Methods GET/sla-enforcement/notifications
POST/sla-enforcement/notifications
GET/sla-enforcement/notifications/{n-id}
GET/sla-enforcement/diag-activities
GET/sla-enforcement/diag-activities/{da-1id}
GET/sla-enforcement/diag-activities/{da-id}/status
GET/sla-enforcement/diag-activities/{da-id}/sla-id
GET/sla-enforcement/diag-activities/{da-id}/classification
Table 8. API associated to diagnosis of notifications

3.5. Remediation Decision System component

When a monitoring event has been analysed, the second step of the remediation phase is to
identify the proper proactive/corrective actions to mitigate the risk of having a violation or to
recover from one.

The initial remediation process is described in D4.2.2. In the following we provide with a
detailed description of the final version.

3.5.1. Overview

For each security mechanism, the developer is expected to provide not only implementation
and configuration details for the mechanism, but also actions needed to automatically manage
mitigation of or recovery from violations related to security metrics and controls guaranteed
by the mechanism.

Note that the details discussed below are completely new aspects of remediation process and
have not yet been presented in any of previous deliverables.

As already mentioned (see Sections 3.2 and 3.4), each security metric is mapped to one or
more basic and additional measurements. With each of these measurements alert and
violation thresholds are set. Thus for each measurement a monitoring event is defined (i.e., an
event where the alert/violation threshold is not respected) and a remediation plan has to be
set (a set of actions needed to recover from an alert/violation).

For example, let us take a security mechanism that is offered through two security metrics,
namely SM1 and SMZ. For each of these metrics we assign one basic measurement and some
additional measurements as shown in Table 9 (metrics are reported in columns and
associated measurements and their properties are presented in rows). For the validity of the
SLOs related to both metrics, the thresholds for mapped measurements are as shown in the
last column of the table, where SM1_value and SM2_value represent values for metrics SM1
and SMZ2 set by the EU during negotiation phase. For example, security metric SM1 is
associated with the basic measurement BasMSR1 which can have integer values representing
hours. When the EU selects a desired value SM1_value for metrics SM1, the threshold for the
associated basic measurement BasMSR1 is set to SM1_value (i.e., BasMSR1< SM1_value).
Furthermore, each measurement is associated with one detectable monitoring event as shown
in Table 10. For example, whenever the Monitoring module detects a deviation of
SPECS Project - Deliverable 4.3.2 33

Secure Provisioning of Cloud Services based on SLA Management

measurement BasMSR1 (i.e., whenever the Monitoring module detects BasMSR1> SM1_value),
this occurrence represents a violation of the SLO related to metric SM1.

Measurement Measurement Metrics
ID Type Unit kind SM1 | SM2 Threshold
BasMSR1 integer | hours basic v BasMSR1 < SM1_value
BasMSR2 | boolean n/a 4 BasMSR2 = SM2_value
AddMSR1 | boolean | n/a additional v v AddMSR1 = yes
AddMSR2 | integer | hours v AddMSR2 < SM1 _value/2

Table 9. Measurements defined for metrics SM1 and SM2.

Monitoring event Affected metrics
ID Condition SM1 SM2 Event type
E1l BasMSR1 > SM1_value v .
E2 | BasMSR2 I= SM2_value % violation
E3 | AddMSR1 = no v v
E4 | AddMSR2 > SM1_value/2 v alert

Table 10. Monitoring events for metrics SM1 and SM2

As described in previous section (Section 3.4, describing diagnosis process), remediation
phase starts when the Monitoring module detects a suspicious behaviour, i.e., whenever it
detects that some measurement value deviated from the defined threshold. To remediate such
occurrences, a detailed remediation plan has to be defined specifically for each measurement.
A remediation plan comprises a set of remediation actions and a clear sequence in which they
should be executed. A remediation action is composed of some monitoring activity (i.e., take
some measurement) or an enforcement activity followed by a monitoring action (i.e., change
some configuration and check if the reconfiguration was successful).

The next table outlines remediation plans defined for alerts and violations of SLOs related to
metrics SM1 and SM2 from the example above. Tables should be read from the top to bottom.
Notation Ax refers to remediation action x.

If any chain of remediation actions ends in state O (result row reports 0), that means that
alert/violation has been successfully remediated and alert/violation no longer persist. In this
case, the alerted/violated SLA can be put back into Observed state.

If the chain of remediation actions ends with action N that means that alert/violation could
not have been automatically resolved and the EU should be notified about the event and asked
for further assistance (whether the affected SLA should be renegotiated or terminated). The
EU is informed about the event itself and about the affected SLOs.

Event E1l E2 E3 E4

Al A4 A5 A6
yes no yes no yes | no yes no
A2 A3 A3 A5 0 A2

Step2
yes no yes | no | yes | no | yes | no yes No
o] A [0 h 0 h 0 h 0] a3

Step3
yes | no yes | no
Step4 0 h 0 h

Table 11. Remediation plan for alerts and violations related to metrics SM1 and SM2

Stepl

SPECS Project - Deliverable 4.3.2 34

Secure Provisioning of Cloud Services based on SLA Management

As already mention in the description of implementation of a remediation plan in Section 3.3,
each remediation action requires some reconfiguration and invocation of a measurement
related to the executed reconfiguration. Thus each action can either result in success (the
measurement value is as expected and indicates successful reconfiguration) which is in the
remediation plan denoted as a yes, or it can result in a failure (the measurement value
indicates that the executed reconfiguration has not succeeded) which in the table above is
denoted as a no.

Monitoring events, associated remediation plans, and remediation actions for each security
mechanism are provided in dedicated parts of Section 4. Chef recipes for each security

mechanism can be found on a dedicated Bitbucket site [33].

A simplified flow diagram for remediation process described above is presented in Figure 13.

I
[MONITOR)
A~ * =
YES
Nollfy\\.‘ Retrieve Retrieve Execute /’/I/ \m\
A 5 eve
detected :-—cvum—b remediation — plan—» remediation — action—» remediation — action—$<_ ld.d’ >
\ ~. fe [
_ event plan action action \:0 s
NO

.
- -~
o ~

" Isthere any ~~_

~ —
~._other action?
‘_ //

N

YES

NO
B

[RENEGOHAT;\.
LS 2

Figure 13. Remediation flow

The following description outlines the steps required to automatically mitigate from SLA
alerts and violations (as shown in sequence diagram in Figure 14 below).

The Diagnosis component triggers remediation process by passing an alerted/violated SLA
together with all information about the detected monitoring event to the RDS f14[s1]. The
RDS logs its activation f14[s2] and updates the state of the SLA to proactive redressing (in
case of alerts) or remediating (in case of violations) f14[s3]. The Diagnosis retrieves the
implementation plan for the affected SLA f14[s4-5], and identifies affected capabilities
f14[s6]. Note that each SLO is mapped to one capability and this mapping is provided in the
implementation plan.

For each affected capability a list of mechanisms able to implement it is retrieved from the
Service Manager f14[s7-8]. After the supply chain associated to the alerted/violated SLA is
retrieved f14[s9-10], the RDS identifies affected mechanisms f14[s11]. For each affected
mechanism the RDS gets all mechanism related information from the Service Manager
f14[s12-13], and extracts its remediation plan f14[s14]. Finally, an SLA remediation plan is
built f14[s15] which includes a sequence of actions required to mitigate the alert/violation.
Note that mechanism’s remediation plan combines actions for all possible monitoring events
associated to the metrics the mechanism enforces and/or monitors. But the SLA remediation

SPECS Project - Deliverable 4.3.2 35

Secure Provisioning of Cloud Services based on SLA Management

plan only consists of remediation actions relevant for the detected monitoring event.

The RDS passes the SLA remediation plan to the Implementation component f14[s16].
Execution of the remediation plan is discussed in Section 3.3.

Enforcement medule] SLA Platform]
Diagnosis RDS Planning Implementation | | Chef Server Service SLA SPECS Auditing
Manager Manager Application
|
1. activate |
remediation 2: log component |
] activation |

3: update SLA state

4: get implementation

plan
g
5 return :|

implementation plan

|

6. identify affected |
capabilities I

1

t

|

3
2
o
g
g
(3]
g
=
a
&
g
B
g
Z
]

11! identify affected
mechanisms

laop for each affected rr'echanisrr')

12: get mechanism

14: extract remediation
plan
15: buikd SLA
remediation plan

16: implement
remediation plan

|

|

|

|

I

t

|

|

|

I

13: return mechanism 1
{ _____________ I _______

|

|

|

|

|

|

|

|

|

|

17: return I

|

if result = observe /I

18: update SLA state

if result = notify]

19: log notification to EU

20: notify EU

21: loeg component
deactivation

e

| vy |

'Figure 14. Remediation process

After all remediation actions reported in the SLA remediation plan has been executed, the
Implementation component reports the result of the process f14[s17]. As described above,
the sequence of remediation actions can either end with a successfully mitigation of the SLA
alert/violation, or we run out of actions to automatically remediate the alert/violation. Thus

SPECS Project - Deliverable 4.3.2 36

Secure Provisioning of Cloud Services based on SLA Management

the Implementation component either reports that the SLA alert/violation has been resolved,
or it reports that remediation was unsuccessful which implies that the EU has to be involved
(to either renegotiate the SLA, terminate the SLA, or accept the risks that the occurred event
represents). If the alert/violation has been eliminated, the state of the SLA is updated to
Observed f14[s18]. Otherwise the EU is notified about the status of the SLA, the detected
event, and about failed remediation actions f14[s20]. Prior to that the notification sent to the
EU is logged f14[s19]. The remediation process ends with RDS logging its deactivation
f14[s21].

In the following subsections we provide with description of repository, and present
installation and usage guides for the current RDS prototype.

3.5.2. Repository

The Remediation component is implemented as a Maven-based Java project with two
modules: remediation-core and remediation-api. It is designed using the Spring framework
[40]. The source code can be found on the project’s Bitbucket repository at [4].

3.5.3. Description and design

As mentioned in the previous section, the Remediation component consists of two modules:
remediation-core and remediation-api. The remediation-core module contains the
implementation of all the functionality supported by the Remediation component with the
corresponding Java API, while the remediation-api module provides RESTful APl wrapper
around the Java API of the remediation-core. The remediation-core module is packaged as a
Java library (JAR file), the remediation-api module is packaged as a Java web archive (WAR
file) which depends on the remediation-core library. The persistence layer is based on the
Spring Data framework which is integrated with the MongoDB database using the Spring Data
MongoDB project.

3.5.4. Installation

The source code for the Enforcement Remediation Decision System component can be found
on project’s Bitbucket repository at [4].

Prerequisites:
e Java web container
e MongoDB
e Java7
e SPECS dependencies: SPECS Utility Data Model (available at [37])

The project can be built from source code using Apache Maven 3 tool. First clone the project

from the Bitbucket repository using a Git client:
git clone git@bitbucket.org:specs-team/specs-core-enforcement-rds.git

then go into the specs-core-enforcement-rds directory and run:
mvn package

The project is packaged as a web application archive file with the name rds-api.war which has
to be deployed to a Java web container. For example, to deploy the application to Apache

Tomcat, just copy the war file to the Tomcat webapps directory:
cp rds-api/target/rds-api.war /var/lib/tomcat7/webapps/

The application configuration is located in the file rds.properties in the Java properties format.
SPECS Project - Deliverable 4.3.2 37

Secure Provisioning of Cloud Services based on SLA Management

The file contains the following configuration properties:
planning-api.address=https://localhost/planning-api
implementation-api.address=https://localhost/implementation-api
sla-manager-api.address=https://localhost/sla-manager—

api/sla manager rest api
auditing-api.address=https://localhost/auditing
mongodb.host=1localhost

mongodb.port=27017

mongodb.database=enforcement-rds

Make the necessary changes and restart the web container for changes to take effect. The RDS
API should now be available at https://<host>:<port>/rds-api.

3.5.5. Usage

The RDS component provides REST API which is fully described in the deliverable D1.3.
The following table provides a brief summary of resources and methods related to the SLA
remediation orchestrated by the RDS component.

Resources Remediation Activities: A collection of Remediation Activities maintained by the
RDS component.
Remediation Activity: An object representing all information related to an SLA
remediation process.
Remediation Plans: A collection of Remediation Plans maintained by the RDS
component.
Remediation Plan: An object representing a chain of actions required for an SLA
remediation.
Methods GET/sla-enforcement/rem-plans
GET/sla-enforcement/rem-plans/{rp-id}
GET/sla-enforcement/rem-plans/{rp-id}/result
GET/sla-enforcement/rem-activities
POST/sla-enforcement/rem-activities
GET/sla-enforcement/rem-activities/{ra-id}
GET/sla-enforcement/rem-activities/{ra-id}/status

Table 12. API associated to the SLA remediation

3.6. Broker mechanism and Chef Server

The Broker component is used to handle the whole process of acquiring, deploying, and
configuring a new resource available on the CSP. In particular, this component allows to
acquire a new virtual machine on Amazon or on Eucalyptus each machine is configurable by
defining the location and the system requirements, i.e., the operating system to install, the
CPU type and the Ram size; once the virtual machines have been acquired, or more in general,
if one or more virtual machines are already available, it is possible to configure each of them
with any software using the Chef configuration management tool [31].

Initial architecture reported two components, namely Resource Broker (for acquiring and
configuring resources) and Broker Configuration Manager (to configure Resource Broker). In
Y2 both components are merged into one. Moreover, current Broker implementation also
integrates Chef Server. Thus the final architecture of the Broker mechanism is as follows:

¢ Resource Broker (Broker) acquires cloud resources.

e Chef Server configures cloud resources and services running on top of them.

SPECS Project - Deliverable 4.3.2 38

Secure Provisioning of Cloud Services based on SLA Management

As described in Section 3.2, the Planning component generates implementation plans that
include the characteristics of the CSP and required configurations of each virtual machine in
terms of both resources and security mechanisms that have to be installed on each of them.

As already described in D4.2.2, in SPECS the Chef is used for automatic configuration
management and orchestration. All deployment, management, and configuration details
reported in each implementation plan are handled in terms of Chef cookbooks and recipes. The
following is the summary of the Chef architecture (also depicted in Figure 15):

e Chef Server is the centralized store for configuration data in the infrastructure. It
stores and indexes cookbooks, environments, templates, metadata, files, and
distribution policies. Chef Server is aware of all machines it manages, and in this way,
Chef Server also acts as an inventory management system.

e Chef Workstation is the location from which cookbooks and recipes are authored,
policy data (i.e., recipes, cookbooks) are defined, data is synchronized with the chef-repo
(the location in which the cookbooks, recipes, etc., are stored) and data is uploaded to
the Chef Server. For example, the Enforcement Implementation component is running
on the workstation and uses a knife to assign recipes to the VMs. The initial set of
recipes is to be prepared by the SPECS developers, while others might be defined and
added individually by the SPECS owners.

e Chef Nodes contain a chef-client (i.e., an agent that runs locally on every node that is
under management by Chef) and perform various automation tasks. The nodes use the
chef-client to ask the Chef Server for configurations (recipes, templates), and the chef-
client then does the configuration work on the nodes. In SPECS, each of the machines
(physical or virtual machine) that are to be security-hardened will take a role of a Chef
node. Communicating with a chef-client, the machine will receive a configuration (from
Chef server) which is supposed to provide a desired security level.

A prerequisite is the presence of a machine that hosts a Chef Server: it can be either a custom
installation (On-Premise) or the Hosted solution provided by Chef itself: in both cases, each
Chef Server is identified by an IP address, a username and a password.

Once the Chef Server has been properly configured, it is necessary to create or update one or
more cookbooks each of one describe the security mechanism you want to install. When this
preliminary procedure has been completed, it is possible to use the broker component in all
its functionalities. Please note that the implementation plan provided by the Planning
component has to be stored into the Chef Server, so the Broker offers also this functionality.

Since the Broker component is used to acquire and configure resources from a CSP, it is been
developed as a library, so anyone can import and use it, but in SPECS project it is been
imported into the Implementation component, since this is the component that has to aim to
acquire and configure resources. As said before, in order to use the Broker, it is necessary to
first upload the cookbooks on the Chef Server, and then the implementation plan provided by
the Planning component; so the Broker is able also to store and retrieve an implementation
plan on the Chef Server.

SPECS Project - Deliverable 4.3.2 39

Secure Provisioning of Cloud Services based on SLA Management

chef server
nodes

ey
(4] & «—{ J—> % : N
environs roles data bags chef-cient ohal physical

chef-client ohai

nienage og p== ,t-j virtual
: |
p attributes run-list node ;!;jed e
e ‘g (N]
search o
chef-cliant ohai cloud

o [m —O— & | =5

versions recipes cookbooks chef-cient ohai container
N
workstations
chef-repo
id oo o
> environs roles data bags seftings

2

ot .\l Ij Qo Uﬂ source control

cookbooks recipes attributes versions

Figure 15. Chef architecture

In the following subsections we provide with description of repository, and present
installation and usage guides for the current Broker prototype.

3.6.1. Repository

The component is actually made up of two sub-components, the Broker Configuration
Manager and the Resource Broker: they are available on Bitbucket, in the same package, at
[30].

3.6.2. Description and design

The main functionalities provided by the Broker component are: (i) to enable the access and
usage of an external CSP, (ii) to acquire or delete a cluster of VMs on one of the enabled
external CSPs and (iii) to execute scripts on a cluster of VMs.

As already discussed in D4.2.2, at the state of the art, a great number of solutions for
brokering cloud resources exists. These solutions can be used in two different ways: as a
closed application can be installed, configured and used or as a library that enables to easily
develop a custom broker application.

SPECS Project - Deliverable 4.3.2 40

Secure Provisioning of Cloud Services based on SLA Management

In the context of SPECS, the Broker is used in many different scenarios and by other SPECS
internal components. Therefore it should be easily adapted to the request that will depend on
the different SPECS application that can be developed on top of the framework.

So, we have developed a new simple cloud application, based on jclouds. In order to provide
these functionalities, the following components were customized:
¢ Broker Configuration Manager: manages Broker configurations.

e Resource Broker: acquires and manages external CSPs’ resources.

3.6.3. Installation

The source code of the Broker mechanisms is available on the project’s Bitbucket site [30].

Prerequisites:
e (Gitclient
e Maven
e Java7

To install the Broker, here are the general steps:
¢ clone the git repository;
e convertitinto a Maven project;
e execute the ‘maven install’ command in order to execute tests and to generate the
artifact;

In particular, if you're using Eclipse as IDE, here there is a detailed explanation of the
necessary steps you have to use to install both projects:
e Import project from git as a “general project”;
e right click on the project, click on “configure”, then click on “Convert to Maven Project”;
¢ right click on the project, click on “Run as”, then click on “Maven install”.

The Broker generates an artifact (a jar file) that can be used by any project that want to use
the functionalities provided by the Broker itself: in order to use it, it is just necessary to add
this jar file as a dependency in the pom file of the project that wants to use it.

3.6.4. Usage

Once the Broker has been properly configured as a dependency of the project, you can use all
the functionalities it provides.

To better understand how to use the Broker, we can divide its functionalities into acquisition
and configuration phases.

The java class that allows handling the acquisition phase is called CloudServiceImpl and is
located into package eu.specs.project.enforcement.broker. The constructor of this
component, as shown here, takes as argument a string representing the provider, the default
username of the machine you want to acquire, and an instance of the ProviderCredential
class that stores the information about the credentials useful to acquire resources from the

provider:
public CloudServiceImpl (String provider, String defaultUser,

ProviderCredential providerCredential)

SPECS Project - Deliverable 4.3.2 41

Secure Provisioning of Cloud Services based on SLA Management

Once an instance of the CloudServiceImpl class has been created, you can call the method

createNodesInGroup, with the following method:

public NodesInfo createNodesInGroup (String groupName, int
numberOfInstances, InstanceDescriptor descriptor, NodeCredential
nodeCredential, int... inboudports) throws NoSuchElementException,
Exception)

The used parameters are:

e groupName: the “group” associated to the nodes you want to acquire;

¢ numberOfInstances: the number of machines you want to acquire;

e descriptor:aninstance of the InstanceDescriptor class that represents the
characteristics of each machine;

¢ nodeCredentia:an instance of the NodeCredential class that represents the
credential used to configure the machine (public and private key so you can access the
machine without user and password);

e inboudports: the ports that you want to enable on each machine (configured into the
firewall provided by the CSP itself).

Once the resources have been acquired, you can execute a script on a node, using the

following method:
public executelstructionsOnNode (String user, ClusterNode node, Stringl]
istructions, String privateKey, boolean sudo, CloudServiceImpl compute)

The parameters are explained here:
e user: username of the OS user that has to execute the script (i.e. root)
e node: represents the node on witch you want to execute the script;
e istructions:represents the script(s) you want to execute;
e privateKey: the private key useful to access the remote machine;
e sudo: state if the script has to be run in sudo mode;
e compute: an instance of the class CloudServiceImpl.

At this point, it is possible to configure the software you want to install on each node. As
stated before, it's necessary to upload the implementation plan on the Chef Server: in SPECS
this procedure is done by the Planning component, but it can be called directly with the
method uploadbDatabagItem provided by the class ChefServiceImpl. In order to use
this and all the methods provided by this class, you have to instantiate an object of this class

calling its constructor whose sign is shown here:
public ChefServiceImpl (String organization, String organizationPK,
String chefServerEndpoint, String username, String passwordPK) ;

The parameters are:
e organization:represents the organization registered on the Chef Server;
e organizationPK: the private key used to access the Chef Server;
e chefServerEndpoint: the IP address of the chef server;
e username: the username of the user registered on Chef Server;
e passwordPK: the private key of the user registered on Chef Server;

Once you got an instance of ChefServiceImpl class, it's possible to use its methods.

SPECS Project - Deliverable 4.3.2 42

Secure Provisioning of Cloud Services based on SLA Management

In order to upload an implementation plan on it, you can use the following method:
public void uploadDatabagltem (String databagName, String
databagItemId, String databagltemValue) ;

The parameters are:

databagName: the name of the databag you want to update;
databagItemId: the identifier of the databag;
databagItemValue: the databag itself, the implementation plan.

Once the databag has been properly uploaded on Chef Server, you can install the chef-client

on each virtual machine acquired, by calling the following method:
public ChefNodeInfo bootstrapChef (String group, NodesInfo
nodes,CloudServiceImpl cloudservice,String attribute) {

The parameters are:

group: the same group defined before;

nodes: the list of nodes previously acquired;

cloudservice: the instance of the CloudServiceImpl class;

attribute: represents the Json whose value can be read by each recipe; it's a way to
pass parameters to each recipe. Since our recipes needs the information located in the
implementation plan that has to be uploaded on the Chef Server (as shown before), you

can use the following structure:

“String attribute=

"{\"implementation plan id\":\""+databagId+"\"}";”

where databagId has to be the identifier of an exsisting Databag on the chef server.

Once the bootstrap phase has finished, it’s possible to execute recipes on each node, through
the method:

public void executeRecipesOnNode (ClusterNode node, List<String>

runlist, String group,CloudService compute,NodeCredential nodecred) ;

The parameters are:

node: an instance of the class ClusterNode that represents the node;

runList: is a list of strings; each element is the name of the recipe you want to execute
on that node;

group: the same group defined before;

compute: the instance of the CloudServiceImpl class;

nodecred: the instance of the NodeCredential class that contains the credential of
the node.

SPECS Project - Deliverable 4.3.2 43

Secure Provisioning of Cloud Services based on SLA Management

4. Security mechanisms

This section presents details on security mechanisms and their prototypes developed in year
two. These mechanisms can be negotiable by any SPECS application and, in order to give a
practical understanding of their usage, these mechanisms are here presented in the context of
two user stories refined in D5.1.2, namely Secure Storage (STO) and Secure Web Container
(WEB). Each of these user stories is implemented with a dedicated security service offered by
SPECS. And for each of these services SPECS offers one mandatory security capability
(implemented by negotiable security mechanisms) and a set of optional security capabilities
according to the SLA. Mapping is shown in Table 13.

Negotiable security mechanisms
Security service User story Mandatory Optional
Secure Web Server WEB WebPool SVA TLS
Secure Storage STO DBB E2EE SVA

Table 13. Negotiable security mechanism offered by SPECS through different services

The Secure Web Server service is implemented with the WebPool mechanism (also denoted
as Secure Web Server mechanism; see Section 4.2) which provides pools of web servers and
assures resilience to security incidents through redundancy and diversity. Further security
features can be guaranteed with Software Vulnerability Assessment tools (SVA) and TLS
security mechanism, discussed in Sections 4.4 and 4.5, respectively.

The Secure Storage service is implemented with the DBB mechanism (Database and Backup
mechanism; see Section 4.3) which provides storage and assures business continuity through
backup. Further enhancements of security are possible with deployment of E2ZEE mechanism
(End-2-end encryption mechanism; see Section 4.3) and SVA mechanism.

SVA mechanism offers evaluation of the security level of the system achieved through periodic
vulnerability scans and reports about available updates and upgrades of vulnerable libraries
on the system. TLS mechanism ensures communication privacy with a set of possible
configurations for the TLS protocol (such as cryptographic strength, certificate pinning, HTTP
to HTTPS redirection, etc.). E2ZEE mechanism offers end-2-end encryption to guarantee
security and integrity of the stored data within the secure storage service.

Figure 16 below presents component diagram for Enforcement module’s security
mechanisms. Available security mechanisms are presented in the following subsections. Note
that components of the Vertical Layer are discussed in deliverables of the task T1.4. In
particular, Security Tokens and Credential Service mechanisms are discussed in deliverables
D4.4.1 and D4.4.2, and the Auditing component and the User Manager component are
described in D1.4.1 and D1.4.2. Finally, details about AAA and DoS Mitigation mechanisms will
be reported in deliverable D4.3.3.

In the following dedicated subsections, each mechanism is described in detail. Considering the
requirements and design have already been provided and discussed in D4.1.2 and D4.2.2,
respectively, the focus in this document will be on one side on refinements of the architecture
and functionalities due to the feedback received from the developers of mechanisms and from
the developers of the SPECS flow (i.e, core processes, namely (re)negotiation,
implementation, monitoring, and remediation), and on current and future implementation
activities on the other side.

SPECS Project - Deliverable 4.3.2 44

Secure Provisioning of Cloud Services based on SLA Management

Vertical layer
<<component>> g] <<component==> =] <<component==> =] <<component==> =]
Auditing Security Tokens Credential Service User Manager
Log API Tokens API Credentials API User API

Security mechanisms

<<component=> =l <<component>>] <<component>> g]
WebPool E2EE DBB

<<component=>> g] <<component>> gl <<component>> =] <<component>> g]
SVA TLS AAA DoS Mitigation

Figure 16. Enforcement module's high level architecture (security mechanisms)

As mentioned in the introduction of this document, feedback from stakeholders involvement
activities conducted during the second year of the project has also been taken into
consideration. Along with the strong interest for end-2-end encryption came the need for a
mechanism offering secure storage equipped with the backup functionality. Table 14 presents
new requirements for such a mechanism arising from T5.1 and T5.2.

REQ_ID Requirement Description
ENF_DBB_R1 Offer secure storage The mechanism must be able to automatically offer
secure storage in the cloud.
ENF_DBB_R2 Assure business continuity | The mechanism must be able to guarantee business
with backup continuity with backup.

Table 14. New requirements for SPECS security mechanisms

For each security mechanism discussed in this document a list of associated security metrics,
measurements, and security controls (from NIST [24] and CSA’s CCM [25] frameworks) is
presented. For each measurement associated to a metric, a set of detectable monitoring
events, remediation actions, and remediation plans is defined. Brief installation and usage
guides are also provided.

A summary of all security metrics associated to security mechanisms discussed in this
deliverable is provided in Appendix 5.

Implementation of negotiable security mechanisms follows the initial implementation plan
introduced in D4.3.1, but EU’s requirements have also been taken into account (which is
shown in the refinement of the initial implementation plan presented in D4.5.2 and D5.1.2).
The majority of development efforts were focused on DBB, E2EE, and SVA mechanisms. In
parallel, some improvements of WebPool mechanism were performed, and the initial
prototype of the TLS mechanism has been developed.

The rest of negotiable mechanisms (AAA and DoS) designed in D4.2.2 will be introduced in the
final iteration of this document.

SPECS Project - Deliverable 4.3.2 45

Secure Provisioning of Cloud Services based on SLA Management

Note that secure interaction mechanisms (Credential Service and Security Tokens) are
discussed in the dedicated deliverable D4.4.2.

4.1. Status of development activities

In Table 15 we present coverage of requirements associated to security mechanisms
discussed in this deliverable.

SPECS Security mechanisms
Secure Web

Server DBB Encryption | SVA Security | TLS Security
Requirements for mechanism | mechanism | mechanism | mechanism | mechanism
security mechanisms| (WebPool) (DBB) (E2EE) (SVA) (TLS)
ENF_POOL_R1-R5 X
ENF_TLS_R1-R5 X
ENF_SVA_R1-R4 X
ENF_CRYPTO_R1-R4 X
ENF_DBB_R1-R2 X

Table 15. SPECS Security mechanisms and related requirements (already implemented)

There are 20 requirements related to security mechanisms discussed in this document, where
18 of them have already been covered with prototypes presented in this deliverable.

The prototypes of the E2EE, DBB, and TLS mechanisms cover all of the associated
requirements. Future improvements will be focused on performance and robustness.

Current prototype of the WebPool implements 4 out of 5 of all associated requirements. The
remaining one, ENF_POOL_R5, will possibly be covered with the final implementation of the
mechanism.

SVA mechanism implements 3 out of 4 associated requirements. The remaining one, namely
ENF SVA_R3 (related to automatic upgrades of vulnerable libraries and fixes of
misconfigurations) will most likely remain uncovered due to the complexity of the problem. In
the last six months of the project the goal is to integrate OpenVAS and Nikto scanners into the
existing design to support all defined metrics and activities.

The current status of development activities is summarized in Table 16. In the last 6 months
of the project remaining effort will mainly be spent on implementing the remaining
uncovered requirements as discussed above, increasing performance and robustness, and
developing the remaining two security mechanisms, namely AAA and DoS. The final results
will be reported in D4.3.3 at M30.

Module Artifacts under development Status
component:WebPool Available
component:DBB Available

Ilinrz)fgﬁzment component:E2EE Available
component:SVA Available
component:TLS Available

Table 16. Enforcement module implementation status

SPECS Project - Deliverable 4.3.2 46

Secure Provisioning of Cloud Services based on SLA Management

The first prototypes of all mechanisms demonstrated in this deliverable are available on the
project’s Bitbucket repositories:

e The WebPool mechanism is available at [32].

e The E2EE and DBB mechanisms are available at [15], [16], [17], and [41].

e The SVA mechanism is available at [5], [6], [7], and [8].

e The TLS mechanism is available at [29].

All Chef recipes needed for deployment and configuration of security mechanisms and all
configuration details for security mechanisms (mechanisms’ metadata) are available at [19].

4.2. Secure Web Server mechanism

In this section, we present a description and implementation details for the mechanisms
involved in the following validation scenarios defined and refined in T5.1 (see D5.1.2):

o SWC-02 Secure_Web_Container_Brokering

o SWC-03 Secure_Web_Container_TLS_Enhanced

o SWC-04 Secure_Web_Container_SVA_Enhanced_Alert

o SWC-05 Secure Web_Container_TLS_SVA_Enhanced_Violation

e SWC-06 Secure_Web_Container_TLS_Multitenancy

e SWC-07 Secure_Web_Container_Web_Pool_Replication_Enhanced_Alert

o SWC-08 Secure_Web_Container_Web_Pool_Replication_Enhanced_Violation

4.2.1. Overview

Secure Web Server is a security mechanism whose aim is to guarantee the level of diversity
and the level of redundancy defined into the SLA signed by the EU. The level of redundancy
states the number of VMs it’s necessary to acquire from the CSP, while the level of diversity
defines how many different web containers have to be installed. It's important to note that the
total number of VMs that have to be acquired is given by the level of diversity. Apart from that,
we need additional VM that is configured to act as a load balancer/proxy to properly forward
the HTTP traffic towards the different web container instances, depending on traffic features
and on-going alerts/violation detections.

The level of diversity and the level of redundancy are both defined by the EU in the SLA
negotiation phase, but the actual implementation details are settled by the Planning
component during generation of supply chains.

4.2.1.1. Architecture

The architecture of the WebPool mechanism is composed of two components already
introduced in D4.2.2:
e Web Container Pool Manager component cooperates with the Broker component in

order to acquire and configure web servers. Serves as a load balancer and a monitoring
component for all deployed web servers, and is implemented by HAProxy [34].

e Pool Agent is a web servers deployed on an acquired VM. Current implementation
supports two different web servers, namely Nginx [35] and Apache [36].

Note that all the http requests that any user can send, have the HAProxy machine as
destination: the load balancer, according to the balancing rules defined into its configuration
file, forwards each incoming request to one of the virtual machines that host the web

SPECS Project - Deliverable 4.3.2 47

Secure Provisioning of Cloud Services based on SLA Management

container.

Because of the presence of the HAProxy component, it has been necessary to make the
machines that hosts web containers able to store information about the session, since it is not
guaranteed that the requests starting from the same client are handled by the same web
container. The software used to handle the session is memcached.

4.2.1.2. Security metrics and controls

Security metrics associated to the WebPool mechanism are defined in the following two
tables. For each metric we provide a description, possible values with units, default values,
and actions that need to be taken in order to enforce the metric. These actions are periodically
performed by the load balancer deployed on EU’s target services. Note that setting a metric to
its default value ensures the maximum possible level of security associated to that metric.

Name Value Default value Unit
Level of redundancy (LOR) int>0 2 /
This metric sets the minimum number (with respect to EU’s
requirements and technological constraints) of web server
engines which are set-up and kept active throughout the service
operation to increase the protection from attacks and
vulnerabilities exploits. For example, level_of redundancy = 3,
ensures that there are at least three web servers running.
First, a required number web servers are installed and run.
Periodically:

1. Check if all the web servers installed are properly running.

Description

Actions taken to
enforce the

metric
Table 17. WebPool security metric LOR
Name Value Default value Unit
Level of diversity (LOD) int>0 2 /
This metric sets the number of different web server types
.. available on target VMs. For example, for level of diversity = 2,
Description & p f Y

SPECS ensures that there are at least two different types of web
servers deployed and available.
First, a required number of different types of web servers are
installed and run. Periodically:
1. Check if all different types of web servers installed are
properly running.

Table 18. WebPool security metric LOD

Actions taken to
enforce the
metric

As described in Section 3, we associate each WebPool metric with a basic measurement and
one or more additional measurements (with which the alert/violation thresholds are set and
MoniPoli rules are built). The following two tables present all measurements together with
MoniPoli rules associated to WebPool metrics.

Metric | Level of redundancy (LOR)
SLO level_of redundancy = N
Measurements MoniPoli rules

number_of servers number_of servers = N
Table 19. Measurements and MoniPoli rules associated to WebPool metric LOR

SPECS Project - Deliverable 4.3.2 48

Secure Provisioning of Cloud Services based on SLA Management

Metric | Level of diversity (LOD)
SLO level_of diversity =N
Measurements MoniPoli rules

diversity_level diversity_level 2 N
Table 20. Measurements and MoniPoli rules associated to WebPool metric LOD

The WebPool metrics defined above implement NIST and CCM security controls presented in
the following table.

Control Security metric
Family/Group Control Name Control ID LOR | LOD
NIST
Alternate Storage Site CP-6 v
CemitinzEnEy Alternate Processing Site CP-7 v
. Information System Backup CP-9 v
Planning .
Information System Recovery and
. CP-10 v
Reconstruction
Denial of Service Protection SC-5 v
System and Architecture and Provisioning for SC-22 v
Communications | Name/Address resolution Service
Protection Session Authenticity SC-23 v
Distributed Processing and Storage SC-36 v
System and
Services Allocation of Resources SA-2 v
Acquisition
System and
Information Predictable Failure Prevention SI-13 v
Integrity
CCM
Business
Continuity
Management & Business Continuity Planning BCR-01 v v
Operational
Resilience

Table 21. Mapping of WebPool metrics to NIST and CCM security controls

4.2.1.3. Remediation

As discussed in Section 3.5, each measurement defines one monitoring event. Table 22 lists all
possible monitoring events related to WebPool metrics that can be detected by the Monitoring
module.

ID Condition Affected metrics | Event type
WP-E1 number_of servers < LOR_value LOR violation
WP-E2 diversity_level < LOD_value LOD

Table 22. Monitoring events related to WebPool metrics

Table 23 presents actions needed to remediate WebPool alerts and violations.

SPECS Project - Deliverable 4.3.2 49

Secure Provisioning of Cloud Services based on SLA Management

ID Description

WP-A1 Check if the number of responsive web servers is = LOR _value.

WP-A2 Restart unresponsive web server and check if number of responsive web servers is
> LOR _value.

WP-A3 Replace unresponsive web server and check if number of responsive web servers is
= LOR _value.

WP-A4 Check if the number of responsive web server types is = LOD_value.

WP-A5 Restart unresponsive web server and check if the number of responsive web server
types is = LOD_value.

WP-A6 Replace unresponsive web server and check if the number of responsive web
server types is = LOD_value.

WP-A7 Check if the number of responsive web servers is = LOR _value.

Table 23. WebPool remediation actions

Figure 17 presents remediation plan for managing alerts and violations of WebPool metrics.
For details on the structure of a remediation plan see Section 3.5.

Event WP-E1 (V) WP-E2 (V)

WP-A1 WP-A4
Step 1

yes no yes no
0 WP-A2 O WP-A5
Step 2
yes no yes no
o WP-A3 0 WP-AG

Step3
yes | no yes [no
Stepd = =

Figure 17. Remediation plans for monitoring events WP-E1 and WP-E2

All mechanism’s implementation, configuration, and remediation details are available on
project’s Bitbucket site [19]. The source code for the mechanism is also available on a
dedicated Bitbucket repository [32].

4.2.1.4. Development

With respect to the initial design of the mechanism (presented in D4.3.1), the main changes
occurred with the refinements of remediation activities, and integration and performance
related improvements. If during the integration the need to apply some changes arises, they
will be applied by the end of the project and reported in D4.3.3.

As already mentioned earlier, the design of the mechanism integrates existing open-source
tools (HAProxy, Apache, Nginx), but they were adopted to fit the project’s and users’ needs.

The following sections provide brief description of repository, and installation and usage
guides.

4.2.2. Repository

The component is actually made up of two sub-components, the Web Container Pool Manager
and the Pool Agent: they are available on Bitbucket, in the same package, at [32].

4.2.3. Description and design

This mechanism enables the configuration and acquisition of a secure web server, through the
set-up of a pool of web container instances configured to ensure redundancy and diversity.

SPECS Project - Deliverable 4.3.2 50

Secure Provisioning of Cloud Services based on SLA Management

As already discussed in D4.2.2, the following components were proposed:
e Web Container Pool Manager: cooperates with the Broker component in order to

acquire and configure different web containers belonging to a pool.
e Pool Agent: acts as a balancer/proxy towards the web containers belonging to a pool.

It also enables the interaction with the Monitoring module and the Enforcement RDS
component in order to provide incident/vulnerabilities management capabilities.

This security mechanism adopts open source solutions to use the Broker and provide
redundancy and diversity security requirements. In particular, this mechanism reuses and
properly configures HAProxy (to implement forwarding capabilities) and a Memcached
service (to offer a distributed memory object caching system).

4.2.4. Installation

Before explaining how to configure the whole security mechanism, it's important to note that
once Apache and Nginx components have been installed on their virtual machines, the Ha-
Proxy has to be configured with the IP addresses of the machines that host the web
containers: this configuration in important since the HAProxy component has to forward all
the incoming http requests to one of the machine hosting the web container that have to
process the request itself.

Please note also that the target machines need the tcp ports 80 and 11211 to be opened.

In order to make the security mechanism easy to install, three tar.gz files have been developed
(one for Apache, one for Nginx, and one for HAProxy). Each of these files contains all the
necessary dependencies, so no other software needs to be installed or configured except the
mechanisms itself.

It's possible to install the whole mechanism using the command line, or using the chef recipes
available at the same link provided before.

As said before, the first components that have to be installed are those related to web
containers, such as Nginx and Apache (with Memcached).

4.2.4.1. How to install Apache with Memcached

In order to install Apache, you need to extract the apache2-php5-memcached.tar.gz file
(note that this file is located into the file folder at the same link provided before) in /opt

folder.
tar -zxvf /tmp/apache2-php5-memcached.tar.gz

Copy the file php.ini.erb (note that this file is located into the template folder at the same
link provided before) in the folder /opt/php5/etc and rename it as php.ini, edit it, setting
the value of session.save path propertyto tcp://<ip address>:11211.

Export the environment variable LD LIBRARY PATH to
/opt/dependencies/memcache/libevent/1ib64/.

Enable memcached with the following command:
/opt/memcached/bin/memcached -u root -1 0.0.0.0 -p 11211 -M -m 64 -d

SPECS Project - Deliverable 4.3.2 51

Secure Provisioning of Cloud Services based on SLA Management

Now it’s possible to make apache running, using the command:
/opt/apache2/bin/apachectl start

4.2.4.1. How to install Nginx

In order to install Nginx, you need to extract the nginx php.tar.gz file (note that this file is

located into the file folder at the same link provided before) in /opt folder.
tar -zxvf /tmp/nginx php.tar.gz

Copy the file php.ini.erb (note that this file is located into the template folder at the same
link provided before) in the folder /opt/php/1ib64 and rename it as php. ini.

Edit this file setting the value of session.save path property to
tcp://<ip address>:11211.

Extract the memcached.tar.gz file (note that this file is located into the £ile folder at the

same link provided before) in /opt folder.
tar -zxvf /tmp/memcached.tar.gz

Copy the file hosts.erb (note that this file is located into the template folder at the same link
provided before) into folder /etc, rename it as hosts and edit it adding the following as last

line of the file:
<ip_address of the current machine> <node identifier>

Copy the file index.php.nginx (note that this file is located into the file folder at the same
link provided before) into folder /opt/nginx/html/.

Export the environment variable LD LIBRARY PATH to
/opt/memcached libs/libevent/1ib64/.

Enable memcached with the following command:
/opt/memcached/bin/memcached -u root -1 0.0.0.0 -p 11211 -M -m 64 -d

Create user, group with the following commands:
groupadd nginx

useradd nginx

usermod -a -G nginx nginx

groupadd www-data

useradd www-data

usermod -a -G www-data www-data
touch /opt/nginx installed

Now it’s possible to make nginx running, using the command:
/opt/nginx/sbin/nginx

Run the following command to start the PHP-FPM module:
/opt/php/init.d.php-fpm start

4.2.4.1. How to install HaProxy

In order to install HAProxy, you need to extract the haproxy-hatop.tar.gz file (note that
this file is located into the £i1le folder at the same link provided before) in /opt folder.

SPECS Project - Deliverable 4.3.2 52

Secure Provisioning of Cloud Services based on SLA Management

tar -zxvf /tmp/haproxy-hatop.tar.gz

Copy the file haproxy config.erb (note that this file is located into the template folder at
the same link provided before) in the folder /opt/haproxy/configs/ and rename it as
haproxy.cfg.

Edit this file, adding the at the end of it, one line like the following for each machine hosting a

webcontainer:
<ip address_of machine hosting web container> <node identifier> :80 check

Copy the file hosts.erb (note that this file is located into the template folder at the same
link provided before) into folder /etc, rename it as hosts and edit it adding the following as
last line of the file:

<ip_ address_ of the current machine> <node identifier>

Execute HaProxy service running the following command:
/opt/haproxy-1.5.9/haproxy -f /opt/haproxy/configs/haproxy.cfg

Now it is necessary to download and to install Java 7; to download it, run the following
command:

cd /opt

wget http://www.java.net/download/jdk7u80/archive/b05/binaries/jdk-7u80-
ea-bin-b05-1inux-x64-20 jan 2015.tar.gz

Extract it running th following command:
tar xvzf /tmp/java.tar.gz

Export the environment variable JAVA running the following commands:
export JAVA HOME=/opt/jdkl.7.0 80/
export PATH=SPATH:$JAVA HOME/bin/

Copy the file webpool-adapter.jar (note that this file is located into the file folder at the
same link provided before) into folder /opt.

Run as root user:
java -jar webpool-adapter.jar <EventHubIP> <EventHubPort> <redundancy>
<diversity> <slalID> <node id> > webpool-adapter.log &

Let’s explain the arguments:
e <EventHubIP> isthe ilP address of the machine that hosts the Event Hub component;
e <EventHubPort> isthe port number on which machine that hosts the Event Hub
component is listening to;
e <redundancy> is the level of redundancy that has been measured;
e <diversity> isthe level of diversity that has been measured;
e <slaID> isthe identifier of the SLA that has been implemented;
e <node_ id>isan unique identifier that represents each node;

Till now, it has been defined how to install each component manually, but it is possible also to
install them using Chef recipes.

The first step is to build a Json file that represents the implementation plan (for an example of
an implementation plan see Appendix 2). Once this file has been prepared, in order to install
the recipes on each node, you need first to have a Chef Server installed and configured

SPECS Project - Deliverable 4.3.2 53

http://www.java.net/download/jdk7u80/archive/b05/binaries/jdk-7u80-ea-bin-b05-linux-x64-20_jan_2015.tar.gz
http://www.java.net/download/jdk7u80/archive/b05/binaries/jdk-7u80-ea-bin-b05-linux-x64-20_jan_2015.tar.gz

Secure Provisioning of Cloud Services based on SLA Management

properly, than you need Chef Workstation from which it is possible to execute the bootstrap
of each target node. Please note that you need a number of available machines defined by the
metric Level of Redundancy, plus one that is the machine hosting HAProxy component.

In order to install Apache component, you need to run the following command:

knife bootstrap <public ip address of the node that will hosts apache> -x
<chef user name> -P <chef user password> --node-name <node name> --run-
list 'recipe['WebPool:apache']' -3 '{

"implementation plan id":"<identifier of implementantio plan>"}'

In order to install Nginx component, you need to run the following command:

knife bootstrap <public ip address of the node that will hosts nginx> -x
<chef user name> -P <chef user password> --node-name <node name> --run-
list 'recipe['WebPool:nginx']"' -3 '"{ '{

"implementation plan id":"<identifier of implementantio plan>"}'}"'

In order to install HAProxy component, you need to run the following command:

knife bootstrap <public ip address of the node that will hosts haproxy >
-X <chef user name> -P <chef user password> --node-name <node name> --
run-list 'recipe['WebPool:haproxy']' -j '{ '{ "implementation plan id":"<
identifier of implementantio plan>"}'}'

Please note that the last recipe you have to execute is the HAProxy one.

4.2.5. Usage

In order to use this security mechanism, all we need to do is to open a browser and type the IP
address of the machine on which we have installed HAProxy component: we will see the first
page defined in Nginx web container and Apache web container, depending on the policy used
by HAProxy to forward the requests to the web containers defined in its property file.

4.3. DBB and E2EE mechanisms

In this section, we present a description and implementation details for the mechanisms
involved in the following validation scenarios defined in T5.1 (see D5.1.2):
e SST-02 Secure_Storage_brokering_with_Client_Crypto

e SST-03 Secure_Storage_with_Defined_CSP
o SST-04 Secure_Web_Container_Client_Encryption_Replication_Alert
e SST-05 Secure_Web_Container_Client_Encryption_Replication_Violation

4.3.1. Overview

Under the umbrella of Secure Storage service, SPECS offers two security capabilities
enhancing the security of cloud storage solutions, namely Database and Backup as-a-Service
and End-2-End Encryption, implemented with DBB and EZ2EE security mechanisms,
respectively.

Both mechanisms could be completely separated, but since in the current prototype the E2ZEE
is just an upgrade of the DBB mechanism, they are discussed in pair.

SPECS Project - Deliverable 4.3.2 54

Secure Provisioning of Cloud Services based on SLA Management

When storing data with CSPs, EUs usually have to accept the risk of security incidents and
failures related to modifications and loss of stored data. More than that, EUs can never be sure
that

e confidentiality (C) and integrity (I),

e write-serializability (WS), i.e., consistency among updates, and

e read-freshness (RF), i.e., requested data always being fresh as of the last update,
are always respected. And what is more important, even if EUs are aware of data
modifications or loss of data, they cannot prove to third parties when the cloud is to blame for
WS or RF violations. On the other hand, the cloud provider itself cannot disprove false
accusations.

In order to offer to EUs secure storage solution with end-2-end encryption, and allow them to
not only detect but also prove violations related to modification and loss of stored data,
Secure Storage service in SPECS is offered with the DBB and E2EE security mechanisms which
provide the following functionalities:
e E2EE:
o Client-side encryption enforcing confidentiality and integrity.
e DBB:
o Detection and proof of violations related to write-serializability (WS) and read-
freshness (RF).
o Backup of stored data.

Note that in order to acquire Secure Storage service through SPECS, the DBB mechanism is
mandatory whereas E2EE is just optional.

With the backup service we ensure that in case of detected WS/RF violations, the database
can either be restored from the backup or the REST API can be moved from the primary
storage site to the backup. In this case the backup can replace the role of the primary target
service. In this way we ensure that any corrupted or missing data (caused either by WS/RF
violations or failures on the main database) can be to some extent retrieved or replaced. And
by “to some extent” we mean that the database can be restored to the state of the last
completed backup. Any data lost or corrupted between two backups cannot be recovered.

As described in [9], WS and RF are monitored and proved with so called attestations, which
are signed messages that accompany each EU’s request and each CSP’s response. They bind
the clients to the requests they make and the cloud to a certain state of the data. With every
request (through the get or put interface), clients and cloud exchange attestations, i.e., every
get/put request is associated with an attestation.

4.3.1.1. Architecture

DBB and E2EE mechanisms are implemented with the following components (the
architecture is depicted in Figure 18):

e DBB Client and E2EE Client plug-in components operate directly on the EU’s
machine independently from the SPECS Platform (the EU downloads the tool from the
web store once the SLA is signed). DBB Client provides a web interface for uploading
and downloading files. If the E2EE functionality is requested, the E2EE Client plug-in
provides client side encryption/decryption of the files being sent/received to/from the
CSP through the DBB client component. An EU can use more than one Client
component to access the data.

SPECS Project - Deliverable 4.3.2 55

Secure Provisioning of Cloud Services based on SLA Management

e DBB Main Server and DBB Backup Server are the main components (application
server) deployed on primary storage site and backup, respectively. On the primary
storage site, DBB Server oversees all configurations, handles all put/get requests, and
orchestrates all associated operations (i.e., writes/reads the data, performs backups,
sends EU’s attestations to the Client). The DBB Server on the backup site is responsible
for backups and restorations.

e DBB Main DB and DBB Backup DB are the database servers deployed on primary
storage site and backup, respectively.

e DBB Auditor performs auditing, i.e., checks if sequences of put/get attestations form
correct write/read chains, and checks if WS/RF violations were detected in time.

e DBB Monitoring Adapter monitors databases on both storage sites (i.e., checks if
backups and restorations of backup are performed successfully, monitors availability
of both servers, availability of Auditor, and availability of both DBs) and monitors
certification status of the DBB Client version in web store.

o E2EE Monitoring Adapter monitors certification status of the Client code available at
the Web store.

_
A
events .

measurements backup

f

events |
measurements

events |

1

I

monitoring
events

' attestations

get/put requests

Figure 18. Architecture of the DBB and E2EE mechanisms

In the SLA implementation phase (discussed in Sections 3.2 and 3.3), Enforcement module
deploys and configures all DBB and E2EE components on five different virtual machines
(VMs) acquired with three different CSPs or at least in three different pools of VMs acquired
with the same CSP, and provides the EU with the link to the DBB/E2EE Client component.

In order to separate main and backup DB, and to separate Auditor from both servers, we can
use the so called pooling method, i.e., we make three different calls to a CSP with request for
different VMs. This way we assure that all acquired VM pools are independent resources:

e Pool; contains two VMs, one for Main Server, one for Main DB.

e Pool; contains two VMs, one for Backup Server, one for Backup DB.

e Pools contains one VM for Auditor and both monitoring adapters.

First VM (VM1 in Pooli) hosts the Main Server. The second VM (VM: in Pooli) is used as the
primary storage site and it hosts the Main DB. With every put/get request from an EU
(actually from the Client), the Main Server sends to the EU a Cloud’s attestation. The Client

SPECS Project - Deliverable 4.3.2 56

Secure Provisioning of Cloud Services based on SLA Management

forwards that attestation to the Auditor. The Auditor collects attestations and after each
epoch checks if the CSP maintains the correct data. Attestations not only show if the CSP
maintains the right data in the right way but also prevent the EU of falsely accusing the CSP of
any corruption or loss of the EU’s data.

Note, in order to guarantee integrity of the auditing process and ensure the highest possible
level of security, the Auditor is physically separated from both storage sites (the Auditor is
hosted on VMs in Pools).

If any WS/RF violations are detected by the Auditor, SPECS can automatically restore the
database from the backup, set up a new database, or move the Main Server.

Note, backups are not performed in real-time, thus some data saved in the time between two
backups cannot be restored in case of WS/RF violations or system failures. What SPECS can
guarantee is that the main database can be restored to the state of the last backup.

The third and the fourth VMs (VM3 and VM4 in Pool;) are used for data backup. One hosts the
server which orchestrates the backup and the restoration process (Backup Server), and the
other one hosts the backup database (Backup DB).

The last VM (VMs in Pools) hosts (besides the Auditor) a monitoring adapter (DBB Monitoring
Adapter) which not also monitors responsiveness of both servers and both DBs, but can also
check if backups and restorations are successful, and monitors the integrity of the backed up
data (using, e.g., Proofs of data storage approach [10], [11], [12], [13], [14]). In case of failures
or attacks, the occurrence is notified to the Monitoring module. The same VM also hosts the
E2EE Monitoring Adapter which observes the certification status of the E2EE Client (i.e.,
checks if the web store maintains the latest version of the Client code which is certified).

Configurations of DBB and E2EE components (all except DBB/E2EE Clients) depend on EU’s
choice of security controls and security metrics.

During the SLA monitoring phase, both monitoring adapters and Auditor continuously send
monitoring data to the Monitoring module which determines whether any of sent events
indicate a possible alert/violation and should therefore be further analysed by the
Enforcement module. Whenever the Enforcement module is notified about a possible
DBB/E2EE alert/violation, the notified event has to be classified, analysed, and remediated
(see Sections 3.4 and 3.5). All WS/RF violations are also notified to EUs.

Attestations are the core objects for the auditing process. As shown in Figure 19, each time the
Client performs a get (the request contains data block ID and Client’s get attestation),
the Main Server returns the requested data and attaches the Cloud’s cloud get
attestation. Cloud’s attestation is automatically forwarded to the Auditor by the Client.

As depicted in Figure 20, each time the Client performs a put (the request contains the data
and Client’s put attestation), the Main Server stores the data, returns the block ID, and
attaches the Cloud’s cloud put attestation. The Client automatically forwards a copy of
the attestation to the Auditor.

SPECS Project - Deliverable 4.3.2 57

Secure Provisioning of Cloud Services based on SLA Management

1. get (block ID, 2. block_contents +

client_get_attestation) cloud_get_attestation

3. cloud_get_attestation

Figure 19. Client’s get request actions

1. put (block_contents, 2. block ID,
client_put_attestation) cloud put_attestation

3. cloud_put_attestation

Figure 20. Client’s put request actions

Each attestation is composed of different elements which are hashed and signed. For details
on the structure and the contents of attestations, and on the way they are used to check for
and prove I, WS and RF violations, see [9]. Note that the structure of the attestation also
depends on the EU’s security requirements (the structure of the attestation differs for WS and
RF).

Auditor collects all attestations for an epoch (i.e., predefined fixed time period) and audits
them only after each epoch finishes. Note that only EU sends CSP’s attestations to the Auditor
which checks them to verify WS and RF. The CSP stores EU's attestations for potential cases
when the EU would trigger false accusations.

Main Server and Client save copies of all attestations for the current epoch. In case of failures
on the Auditor’s target service, SPECS can deploy a new resource with a new Auditor and
provides it with all attestations for the current epoch. In this way, we continuously monitor
Auditor’s database and ensure that any WS/RF violations will be detected during auditing.

SPECS Project - Deliverable 4.3.2 58

Secure Provisioning of Cloud Services based on SLA Management

Attestations are (at this moment) not audited in real-time. Instead, time is divided into
periods called epochs. During each epoch, attestations are collected, and after each epoch,
SPECS performs auditing and checks chains of attestations to detect possible cloud’s
misbehaviour.

4.3.1.2. Detectable attacks and system failures

In the current prototype of the DBB mechanism, we are able to detect the following attacks
and failures either related to I, WS, and RF, or to infrastructure outages.

Put ignore failure/attack. Write operations to the Main DB (hosted on VM2/Pool1) did not
succeed or they were cancelled by a delete operation. In this case we have to acquire new VM
inside the same pool (VMs/Pool1), set up a new Main DB on VMg by restoring the data from
the backup, and redirect the Main Server to the new main database. Infrastructure before and
after a successful remediation of a put ignore attack/failure is depicted in Figure 21 below.

restore

after successful
remediation

Figure 21. The infrastructure after a successful remediation of a put ignore attack/failure

Fork attack: the API (i.e., the Main Server) and the main database (Main DB) might have been
modified and they cause inconsistent views to different clients (e.g., maintaining two copies of
some data and placing some writes to one copy of the data and other writes on the other copy
of the same data). In this case, we have to acquire a new pool with two VMs. We acquire one
VM (VMe/Pool3) to set up a new main server. Because the main database (Main DB) might
have been modified, we acquire one VM (VM7/Pool3), set up another main DB for a new main
storage site, and perform a data restoration (of backup DB to the new DB). Note that moved
API (the new server) is directed to the new DB (Main DB hosted on VM7/Pool3). Infrastructure
before and after a successful remediation of a fork attack is depicted in Figure 22 below.

restore

Main Main

after successful
remediation

Figure 22. The infrastructure after a successful remediation of a fork attack

Stale file attack: an attacker caused that stale files have been returned to EUs. In this case we
need to add a new VM (VMs) to the Pooli, set up a new Main Server there and direct it to the
primary database (Main DB). Any missing or corrupted data in Main DB is restored from the
backup. The state of the infrastructure before the attack and after a successful remediation of
it is presented in Figure 23 below.

SPECS Project - Deliverable 4.3.2 59

Secure Provisioning of Cloud Services based on SLA Management

restore

after successful
remediation

Figure 23. The infrastructure after a successful remediation of a stale file attack

Primary server failure: due to internal issues, the primary server is unresponsive. In this
case we try to restart the server. If that fails, we acquire a new VM in the same pool
(VMs/Pool1) and set up a new main server. Note, after a successful remediation, the new main
server is directed to the Main DB (hosted on VM2/CSP1). Infrastructure before and after a
successful remediation of a primary server failure is depicted in Figure 24 below.

Figure 24. The infrastructure after a successful remediation of a primary server failure

after successful
remediation

Primary database server failure: due to internal issues, the main database server is
unresponsive. In this case we try to restart the server. If that fails, we acquire new VM (VMg in
Pooli), set up a new Main DB and perform a restoration (of backup to a new main database).
Infrastructure before and after a successful remediation of a primary database server failure is
depicted in Figure 25 below.

after successful
remediation

Figure 25. The infrastructure after a successful remediation of a primary database server failure

Backup server failure: due to internal issues, the backup server is unresponsive. In this case
we try to restart the server. If that fails, we acquire new VM (VMs in Pool;) and set up a new
Backup Server. We immediately invoke a new backup process. Infrastructure before and after
a successful remediation of a backup server failure is depicted in Figure 26 below.

Figure 26. The infrastructure after a successful remediation of a backup server failure

SPECS Project - Deliverable 4.3.2 60

after successful
remediation

Secure Provisioning of Cloud Services based on SLA Management

Backup database server failure: due to internal issues, the backup database server is
unresponsive. In this case we try to restart the server. If that fails, we acquire new VM (VM5 in
Pool;), set up a new Backup DB and perform a backup (of original backup to a new backup).
Infrastructure before and after a successful remediation of a backup database server failure is
depicted in Figure 27 below.

backup
Main Main Backup Backup Main Main Backup ackup,
Server DB Server DB Server DB Server - DB
after successful
remediation v
oolz

Figure 27. The infrastructure after a successful remediation of a backup database server failure

Auditor failure: due to internal issues, the Auditor (hosted on VMs/Poolz) may become
unresponsive. In this case we try to restart the Auditor. If that fails, we acquire new VM in the
same pool, deploy new Auditor, and copy all Client’'s and all Server’s attestation for the
current epoch from the Server and Client, respectively, and deploy a new DBB Monitoring
Adapter. Note, when the Client places a request to the main Server (either a put or a get
request), the server returns the new URL of the Auditor. Infrastructure before and after a
successful remediation of a backup database server failure is depicted in Figure 28 below.

after successful
remediation

Figure 28. The infrastructure after a successful remediation of an auditor failure

4.3.1.3. Security metrics and controls

Security metrics associated to the DBB and E2EE mechanisms are defined in the following
three tables. For each metric we provide a description, possible values with units, default
values, and actions that need to be taken in order to enforce the metric. Note that setting a
metric to its default value ensures the maximum possible level of security associated to that
metric.

Name Value Default value Unit
Write-serializability (WS) yes yes n/a
This metric ensures the EU that any WS violations to the stored
data will be detected in a defined period of time (detection
Description periods are less than 2*epoch). In case of WS violations, the EU
will be notified, and the system will be restored to the state of
the last finished epoch.

1. With every put request from the Client the data is stored in
the Server’s DB.

Actions taken to | 2. The Server sends cloud put attestation tothe Client
enforce the which automatically forwards it to the Auditor.

metric 3. After each epoch, the Auditor checks attestation chains.

4. If WS violation is detected, the EU is notified and the Server’s

DB is restored to the state of the last finished epoch.
Table 24. DBB security metric WS

SPECS Project - Deliverable 4.3.2 61

Secure Provisioning of Cloud Services based on SLA Management

Name Value Default value Unit
Read-freshness (RF) yes yes n/a
This metric ensures the EU that any RF violations to the stored
data will be detected in a defined period of time (detection
Description periods are less than 2*epoch). In case of RF violations, the EU
will be notified, and the system will be restored to the state of
the last finished epoch.

1. With every get request from the Client the data is retrieved
from the Server’s DB and sent to the Client.

Actions taken to | 2. The Server sends cloud get attestation to the Client
enforce the which automatically forwards it to the Auditor.

metric 3. After each epoch, the Auditor checks attestation chains.

4. If RF violation is detected, the EU is notified and the Server’s

DB is restored to the state of the last finished epoch.
Table 25. DBB security metric RF

Name Value Default value Unit

Client-side encryption certification (EC) yes yes n/a
This metric ensures that the E2EE Client component available at

Description the provided address is certified and thus grants the security of

the encryption.

Before providing the EU with the link to the E2EE Client
Actions taken to | component, check if the version of the component is certified
enforce the (i.e., check if the web store maintains the latest version of the
metric Client). Then periodically:

1. Check certification status of the Client component.
Table 26. E2EE security metric EC

Note that we cannot monitor components installed on the EU’s private infrastructure (i.e., we
cannot monitor the Client component) after they have been downloaded and installed. But in
order to guarantee client-side encryption, we check (prior to installation, and continuously
during the SLA monitoring phase) the version of the E2ZEE Client component available at the
web store. For this purpose we introduced Client-side Encryption certification metric with
which we can guarantee that the E2EE Client component available at the web store (if
downloaded and installed as advised, and configurations are not changed) is certified (and
thus ensures a defined level of cryptographic protection).

As described in Section 3, we associate each metric with a basic measurement and one or
more additional measurements. The following tables present all measurements together with
MoniPoli rules associated to DBB and E2EE metrics.

Metric | Write-serializability (WS)

SLO write_serializability = yes

Measurements MoniPoli rules
ws_time_since_detection ws_time_since_detection < 2*epoch
ws_put_ignore ws_put_ignore = no

ws_fork ws_fork = no
primary_server_availability primary_server_availability = yes
primary_db_server_availability primary_db_server_availability = yes

SPECS Project - Deliverable 4.3.2 62

Secure Provisioning of Cloud Services based on SLA Management

backup_server_availability backup_server_availability = yes
backup_db_server_availability backup_db_server_availability = yes
auditor_availability auditor_availability = yes

Table 27. Measurements and MoniPoli rules associated to DBB metric WS

Metric | Read-freshness (RF)
SLO read-freshness = yes

Measurements MoniPoli rules

rf time_since_detection rf_time_since_detection < 2*epoch

rf stale rf stale = no
primary_server_availability primary_server_availability = yes
primary_db_server_availability primary_db_server_availability = yes
backup_server_availability backup_server_availability = yes
backup_db_server_availability backup_db_server_availability = yes
auditor_availability auditor_availability = yes

Table 28. Measurements and MoniPoli rules associated to DBB metric RF

Metric | Client-side encryption certification (EC)

SLO encryption_certification = yes

Measurements MoniPoli rules
code_certification code_certification = yes

Table 29. Measurements and MoniPoli rules associated to DBB metric EC

Measurements ws_time_since_detection and rf time_since_detection are the basic
measurements for the associated metrics and report the delay from the moment the violation
occurred to the moment when it was detected.

As discussed above, the Auditor monitors occurrences of various attacks associated to write-
serializability and read-freshness. For this purpose measurements ws_put_ignore, ws_fork, and
rf stale were introduced.

In order to enable secure storage service and thus assure validity of SLOs related to WS and
RF, all servers and the Auditor have to be up and running. DBB Monitoring Adapter observes
their availability and report results through all * availability measurements.

Encryption certification metric is validated with basic measurement code_certification.

The defined DBB and E2EE metrics implement NIST and CCM security controls presented in
the following table.

Control Control Security metric

Family/Group Control Name ID WS | RF | EC
NIST

Contingency Plan | Resume all Missions /

Business Functions

Contingency Plan | Alternate Processing

cP-2(4) | v | v

cP2(6) | v | ¥

Contingency / Storage Site

Planning Al’Fernate Storage Site | Separation from CP-6 (1) v v
Primary Site
Information System Backup CP-9 v v

Information System Backup | Redundant | CP-9 (6) v v

SPECS Project - Deliverable 4.3.2 63

Secure Provisioning of Cloud Services based on SLA Management

Secondary System
System and Cryptographic Key Establishment and SC-12 v
Communications Management
Protection Cryptographic Protection SC-13 v
Softwa}re, Firmware, and Information SI7 v v
Integrity
Softwa.lre, Flrmwgre, and Information S1-7 (1) v v
Integrity | Integrity Checks
System and . ;
Information Software, Firmware, and Information
: Integrity | Automated Notifications of SI-7 (2) v v
Integrity . . ;
Integrity Violations
Software, Firmware, and Information
Integrity | Automated Response to SI-7 (5) v v
Integrity Violations
CCM
Infrastructure &
Virtualization Change Detection IVS-02 v
Security
ﬁﬁzlr‘f‘iz‘f;i‘m i | Datalntegrity AIS-03 v
Business
Continuity Business Continuity Planning BCR-01 v v
Management &
Operational Policy BCR-11 | v | ¥
Resilience
Encryption & Key | Entitlement EKM-01 v
Management Sensitive Data Protection EKM-03 v

Table 30. Mapping of DBB and E2EE metrics to NIST and CCM security controls

4.3.1.4. Remediation

As discussed in Section 3.5, each measurement defines one monitoring event. Table 31 below
lists all possible monitoring events related to EZEE and DBB metrics that can be detected by
the Monitoring module.

ID Condition Affected metrics | Event type
E2EE-E1 | code_certification = no EC

DBB-E1 | ws_time_since_detection = 2*epoch WS violation
DBB-E2 | rf time_since_detection = 2*epoch RF

DBB-E3 ws_put_ignore = yes WS

DBB-E4 | ws_fork =yes WS

DBB-E5 rf_stale = yes RF

DBB-E6 | primary_server_availability = no WS RF 1
DBB-E7 primary_db_server_availability = no WS RF alert
DBB-E8 | backup_server_availability = no WS RF

DBB-E9 | backup_db_server_availability = no WS RF

DBB-E10 | auditor_availability = no WS RF

Table 31. Monitoring events related to E2ZEE and DBB metrics

The next table reports remediation actions required to mitigate E2ZEE and DBB alerts and
recover from SLA violations related to DBB and E2EE mechanisms.

SPECS Project - Deliverable 4.3.2 64

Secure Provisioning of Cloud Services based on SLA Management

ID Description

E2EE-A1 | Upload the latest version of the E2EE Client to the web store and check its
availability.

DBB-A2 Acquire a new VM in the main server pool, set up a new main DB, connect it to main
server, and check if the main DB is responsive.

DBB-A3 Perform restoration (of backup DB to main DB) and check if it is complete
(availability of main DB).

DBB-A4 Acquire a new VM in a new pool, set up a new main server, and check if the main
server is responsive.

DBB-A5 Acquire a new VM in the main server pool, set up a new main server, connect it to
main DB, and check if the main server is responsive.

DBB-A6 Restart the primary server and check if it is available.

DBB-A7 Restart the primary DB server and check if the primary DB server is available.

DBB-A8 Restart the backup server and check if it the backup server available.

DBB-A9 Acquire a new VM in the backup server pool, set up a new backup server, connect it
to backup DB, and check if the backup server is responsive.

DBB-A10 | Perform backup (of original DB to backup DB) and check if it is complete (backup
DB availability).

DBB-A11 | Restart the backup DB server and check if the backup DB server is available.

DBB-A12 | Acquire a new VM in the backup server pool, set up a new backup DB, connect it to
backup server, and check if the backup DB is responsive.

DBB-A13 | Restart auditor and check if it is available.

Table 32. E2EE and DBB remediation actions
The next two figures report remediation plans related to alerts and violations of DBB and
E2EE metrics. For details on the structure of a remediation plan see Section 3.5.

DEB-E1
E2EE-E1 DBB-E3 DEB-E4 DBB-ES
Event DEB-E2
E2EE-Al DBB-A1 DBB-A3 DBEB-A4
Step 1
yes | no yes no yes no
0 DEB-A2 DEB-A2
Step 2
yes | no yes | no
O O
Step 3
Stepd |]]

Figure 29. Remediation plans for monitoring events E2EE-E1, and DBB-E1 to DBB-E5

Event DEEB-E6 DEEB-E7 DBE-E8 DBB-E9 DBEB-E10
DBB-A5 DBB-Ab DBB-A7 DBB-A10 DBB-A12
Step 1
yes no yes no yes no yes no yes no
Step 2 0 DBB-A4 0 DBB-A1 0 DBB-A8 0 DBB-A11 0 DBB-A13
e yes | no yes no yes no yes no yes | no
0 DBB-A2 DBB-A9 DBB-A9 0
Step 3
yes | no yes | no yes | no
Step 4 0 0 0

Figure 30. Remediation plans for monitoring events DBB-E6 to DBB-E10

All implementation and configuration details for both mechanisms are available on project’s
Bitbucket [19]. The code for all DBB and E2EE components is also available on mechanisms’
Bitbucket repositories [15], [16], and [17].

Let’s consider a simple example. An EU signs an SLA with a single SLO related to metric Write-
Serializability (WS). This metric has an additional measurement related to availability of the

SPECS Project - Deliverable 4.3.2 65

Secure Provisioning of Cloud Services based on SLA Management

backup server. At one moment the DBB Monitoring Adapter detects unavailability of the
backup server. Monitoring event is notified to the Diagnosis component. Diagnosis classifies
event (DBB-E8), identifies affected SLOs, calculates the risk/severity level associated to the
event, and forwards the alerted/violated SLA to the RDS component. According to the
remediation plan in Figure 30, the first action taken is action DBB-A7. This means RDS
invokes the Implementation component to restart the backup server. If the restarted server is
now responsive, the alert is resolved, and the SLA’s state is updated to Observed. If the server
is still unavailable (e.g.,, VM hosting the backup server crashed), the RDS component executes
action DBB-AS, i.e., invokes the Implementation component to acquire new VM in the backup
server pool, to set up a new backup server, to connect it to the backup database, and check if
the set up was successful. If the set up was successful, the RDS component invokes the
Implementation component to perform a backup of the main database to the backup (action
DBB-A9). If remediation of the described alert is successful, the state of the SLA is updated to
Observed. If automatic remediation failed, the EU is notified about the occurrence (backup
server is unavailable, set up of a new backup site was successful, backup process is failing)
and about the SLOs this alert affects (SLO related to the metric WS). Once the alert is notified,
the state of the SLA is updated to Observed.

4.3.1.5. Development

The development of DBB and E2EE mechanisms started in the second year of the project.
Implementation activities started according to the design presented in D4.2.2, but since new
requirements were identified, the design has evolved as presented above. Also, remediation
aspects of the initial EZEE mechanism have been further analysed and defined.

The current prototype offers all functionalities reported in elicited requirements. Some
improvements are still expected in the last year of the project, mainly focused on better
performance.

Both DBB and E2EE mechanisms have been developed according user stories (defined in
T5.1), requirements from EUs (elicited in T4.1), and internally developed design (performed
in T4.2). DBB has been developed based on ideas from [9], and E2EE integrates Crypton [20],
[21]. All other SPECS related functionalities (supporting detection of WS and RF violation,
enabling associated measurements, and backing remediation actions) have been implemented
from scratch.

The following sections report short overview of repositories, and provide with installation
and usage guides.

4.3.2. Repository

E2EE mechanism consists of four main components: E2ZEE Server, E2ZEE Client, EZEE Auditor
and E2EE Monitoring Adapter. The components can be found on project’s Bitbucket
repositories [15], [16], [17], and [41].

Chef recipes which SPECS Platform uses to start E2ZEE components are available in the specs-
core-enforcement-repository [38].

DBB mechanism relies on PostgreSQL [23] and thus mostly provides scripts (recipes) which
manage PostgreSQL. The recipes can be found in specs-core-enforcement-repository [39].

SPECS Project - Deliverable 4.3.2 66

Secure Provisioning of Cloud Services based on SLA Management

4.3.3. Description and design
E2EE server consists of two subprojects:
e C(lient: the code that gets compiled to the crypton.js which is then used in E2EE Client.
e Server: REST API which is used by crypton.js; functionality to store data into
PostgreSQL.
e Test: integration tests for communication client:server.

E2EE Client does not have subprojects - it currently works as a web page using crypton.js that
is compiled in E2EE Server for cryptographic operations. E2EE Client will be transformed into
Chrome extension once finalized, but this require only minor modifications and the structure
will not change.

E2EE Auditor consists of four packages:

e Attestations: the attestations format is defined here.

e Auditor: the core of Auditor - offering REST API which is receiving attestations; logic
for detection of violations.

e Simulation: contains a simplified client and cloud storage REST API; all attestations
received from cloud storage REST API are sent to the Auditor REST API.

e Tests: tests which send attestations (using simulation package) to the Auditor REST
API and then analyse whether the detection of violations properly work (violations are
simulated using simulation package).

E2EE Monitoring Adapter does not have any subpackages. It consist of three Python scripts:
e crypton.py: monitors the availability of E2ZEE servers and databases;

e auditor.py: monitors the availability of EZEE Auditor;
e component.py: parent class of cyrpton Auditor and Crypton;
¢ util.py: functionality for sending monitoring events to the Event Hub.

4.3.4. Installation

EZ2EE server is built on top of Crypton [20]. Crypton offers a REST API [21], uses Redis [22] for
a session store (to handle huge amounts of requests) and PostgreSQL as the main data store.
In SPECS we manage REST API + Redis and PostgreSQL as two separated components.
PostgreSQL is actually provided by DBB mechanism to be able to offer database and backup
functionality independently from encryption.

Prerequisites:
e Redis
e PostgreSQL
e C(Crypton
e Node.s

The Server can be installed on Ubuntu machine by following the steps below:

Installation of Node.js
curl -sL https://deb.nodesource.com/setup | bash -
sudo apt-get install nodejs

SPECS Project - Deliverable 4.3.2 67

Secure Provisioning of Cloud Services based on SLA Management

Installation of PostgreSQL
sudo apt-get install postgresqgl

Installation of Redis

wget http://download.redis.io/releases/redis-stable.tar.gz
tar xzf redis-stable.tar.gz

cd redis-stable

make && make install

Installation of DBB+E2EE Server

git clone https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server.git
cd specs-mechanism-enforcement-e2ee-server/server

npm link

Run DBB+E2EE Server
cd specs-mechanism-enforcement-e2ee-server/server/bin
./cli.js run

The Client will be provided as a Chrome extension once finalized (performance issues which
will be reported in T5.2 deliverable), however at the moment for the testing purposes it can
be run as a web page as described below.

Install and run DBB+E2EE Client

git clone https://bitbucket.org/specs-team/specs-mechanism-enforcement-eZ2ee-client
cd specs-mechanism-enforcement-e2ee-client/web

python web.py

The web page should be now available at http://localhost:8080.
The DBB+E2EE Auditor can be installed and run as described below.

Install and run DBB+E2EE Auditor

git clone https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-auditor
cd specs-mechanism-monitoring-e2ee-auditor/auditor

python auditorapi.py

Installation DBB+E2EE Monitoring Adapter
hg clone https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter

python monitor.py monitor ip port event hub url

4.3.5. Usage

Once the server and monitoring are running and the client is installed on the user’s machine,
we need to launch an application (E2EE Client) and connect it to the E2EE Server deployed by
SPECS. The user can then register/login to the server via the form depicted below in Figure
31. Apart from credentials, the EU also has to provide URL for the Server (DBB+E2EE server
URL) and Auditor (DBB+E2EE monitoring URL).

SPECS Project - Deliverable 4.3.2 68

https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server.git
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-client
http://localhost:8080/
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter

Secure Provisioning of Cloud Services based on SLA Management

Connect to
DBB + E2EE

Figure 31. Login to DBB+E2EE server

Once logged in, a user can encrypt/decrypt the files and share the files with other users. See
Figure 32.

Add members

reard only

Figure 32. Encrypting/decrypting and sharing files

4.4. SVA mechanism

In this section, we present a description and implementation details for the mechanisms
involved in the following validation scenarios defined in T5.1 (see D5.1.2):
o SWC-04 Secure_Web_Container_SVA_Enhanced_Alert

o SWC-05 Secure_Web_Container_TLS_SVA_Enhanced_Violation

SPECS Project - Deliverable 4.3.2 69

Secure Provisioning of Cloud Services based on SLA Management

4.4.1. Overview

Software Vulnerability Assessment mechanism (SVA) comprises a set of components that
enhance the security of cloud services with the following functionalities:
e Periodically check for and report about published software vulnerabilities (using
different repositories® to extract information about known vulnerabilities).
e Periodically scan target services (with a possibility of using different scanners), and
check for known software vulnerabilities.
e Periodically check and report about available updates and upgrades of vulnerable
libraries installed on target services.

4.4.1.1. Architecture

As introduced in D4.2.2 and initially developed in D4.3.1, the mechanism is implemented with
three components:

e SVA Enforcement enforces security metrics: manages (generates and updates)
vulnerability lists, orchestrates scans, checks for updates/upgrades of vulnerable
libraries installed on the EU’s target services, and build reports.

e SVA Monitoring monitors security metrics: monitors all parameters associated to
each metric (e.g., age of reports, availability of repository, and responsiveness of
scanners).

e SVA Dashboard presents vulnerability list and scanning results, and reports about
available updates/upgrades of vulnerable libraries.

Figure 33 presents the SVA mechanism’s architecture through an example where an EU
requested SVA mechanism with Secure Web Container service (three VMs were acquired; two
for web servers and one for balancer). The Dashboard component is deployed on the VM
where the WebPool’s balancer resides. The combination of SVA Enforcement, SVA Monitoring,
and scanners is deployed on each of the VMs hosting web servers.

web server

S E I Y
—

events

monitoring

EESINENT |

=n

events

notifications

Figure 33. Architecture of the SVA mechanism in case of Secure Web Server service

8 For example, http://ftp.suse.com/pub/projects/security/oval/ or https://support.novell.com/security/oval/.

SPECS Project - Deliverable 4.3.2 70

http://ftp.suse.com/pub/projects/security/oval/
https://support.novell.com/security/oval/

Secure Provisioning of Cloud Services based on SLA Management

In case of Secure Storage service, the SVA Dashboard is deployed on VMs, and a combination
of SVA Enforcement, SVA Monitoring, and scanners is deployed on each of the machines VM-
VM, (see Figure 18 in Section 4.3). More details will be provided in D4.3.3

In the SLA implementation phase (see Sections 3.2 and 3.3), the Enforcement module deploys
and configures SVA mechanism on EU’s target service. Configurations depend on EU’s choice
of security controls and security metrics. During the SLA monitoring phase®, SVA Monitoring
components continuously perform measurements to evaluate the state of EU’s SLOs.
Measurement results (events) are sent to the Monitoring module which determines whether
an event indicates possible alert/violation and should therefore be further analysed by the
Enforcement module. Whenever an event reaches the Enforcement module and it presents
and actual SLO alert or a violation, the root cause of the event has to be determined and an
appropriate remediation action has to be applied (see Sections 3.4 and 3.5).

4.4.1.2. Security metrics and controls

Security metrics associated to the SVA mechanism are defined in the following five tables. For
each metric we provide a description, possible values with units, default values, and actions
that need to be taken in order to enforce the metric. These actions are periodically performed
by the SVA Enforcement component deployed on EU’s target services. Note that setting a
metric to its default value ensures the maximum possible level of security associated to that
metric.

Name Value Default value Unit
List update frequency (LUF) int>0 24 hours
This metric sets the frequency of updates of the list of disclosed
vulnerabilities. For example, for list_update_frequency=12,
SPECS ensures that the list of published vulnerabilities will be
updated and presented at least once every 12 hours.

Description

Actions taken to

enforce the First, vulnerability list is generated. Then periodically:

1. Update and present the vulnerability list.

metric
Table 33. SVA security metric LUF

Name Value Default value Unit

Scanning frequency - basic scan (BSF) int>0 24 hours
This metric sets the frequency of a basic software vulnerability

Degeipfon scan. For example, for scanning_frequency=24, SPECS ensures
that software vulnerability scans will be performed at least once
every day.

[P SRR Bef(')re.the first scan, vulnerability list is generated. Then
periodically:

enforce the

. 1. Perform scan.
metric

2. Build and present scanning report.
Table 34. SVA security metric BSF

9 For details see D3.3.

SPECS Project - Deliverable 4.3.2 71

Secure Provisioning of Cloud Services based on SLA Management

Name Value Default value Unit
Scanning frequency - extended scan .
(ESF) int>0 24 hours

This metric sets the frequency of an extended software
vulnerability scan. For example, for scanning_frequency=48,
Description SPECS ensures that software vulnerability scans will be
performed at least once every two days. Scans are performed
with two scanners and both scanning reports are presented.
Before the first scan, vulnerability list is generated. Then
periodically:

1. Perform scan with both scanners.

Actions taken to
enforce the

metric 2. Build and present both scanning reports.

Table 35. SVA security metrics ESF
Name Value Default value Unit
Up report frequency (URF) int>0 24 hours

This metric sets the frequency of checks for updates and
upgrades of vulnerable installed libraries. SPECS first updates
vulnerability list, performs the vulnerability scan of the system,
Description and then checks for available updates and upgrades of libraries
on which vulnerabilities have been detected). For example, for
up_report_frequency=24, SPECS ensures that checks for updates
and upgrades are performed at least once every day.

Before the first check, vulnerability list is generated,

Actions taken to | vulnerability scan is performed, and scanning report is

enforce the generated. Then periodically:

metric 1. Check for updates/upgrades.

2. Build and present report.
Table 36. SVA security metric URF

Name Value Default value Unit
Penetration testing activated (PTA) yes / no yes n/a
This metric activates the penetration testing activity. The metric
can be chosen together with metrics related to vulnerability
scans. If chosen, scanner with penetration testing functionality
is deployed.

If the metric is chosen, scanners with penetration testing
functionality are installed. After installation of chosen scanners
is successful, we consider metric respected through the entire

SLA life-cycle.
Table 37. SVA security metric PTA

Description

Actions taken to
enforce the
metric

With metric Scanning frequency - extended scan an EU has an opportunity to install two
different vulnerability scanners (OpenSCAP [26], OpenVAS [27], and/or Nikto [28]) on the
target service. If two scanners are used and scans are performed for the same list of disclosed
vulnerabilities, comparison of both scanning reports can quickly outline possible false
positives or false negatives. In case the EU chooses the extended scan, SPECS provides two
scanning reports.

If an EU requires extended vulnerability scans, SPECS installs OpenSCAP and OpenVAS. If
SPECS Project - Deliverable 4.3.2 79

Secure Provisioning of Cloud Services based on SLA Management

penetration testing is also required (through security metric Penetration testing activated),
OpenVAS and Nikto are the installed scanners. When the EU requires basic scan, the primary
scanners are OpenSCAP and OpenVAS (the decision depends on the value of the metric
Penetration testing activated).

Note that by selecting metrics BSF, ESF, and URF, the SVA mechanism periodically generates
scanning and update/upgrade reports that are accessible to the EU via the SVA Dashboard.

Each SVA metric is associated with one basic and one or more additional measurements (with
which the alert/violation thresholds are set and MoniPoli rules are built). The following
tables present all measurements together with MoniPoli rules associated to SVA metrics.

Metric | List update frequency (LUF)

SLO list_update_frequency = N hours

Measurements

MoniPoli rules

list_age

list_age <N

repository_availability

repository_availability = yes

Table 38. Measurements and MoniPoli rules associated to SVA metric LUF

Metric | Scanning frequency - basic scan (BSF)

SLO scan_basic_frequency = N hours

Measurements

MoniPoli rules

report_basic_age

report_basic_age <N

list_availability

list_availability = yes

scanners_availability

scanners_availability = yes

Table 39. Measurements and MoniPoli rules associated to SVA metric BSF

Metric | Scanning frequency - extended scan (ESF)

SLO scan_extended_frequency = N hours

Measurements

MoniPoli rules

report_extended_age

report_extended_age < N

list_availability

list_availability = yes

scanners_availability

scanners_availability = yes

Table 40. Measurements and MoniPoli rules associated to SVA metric ESF

Metric | Up report frequency (URF)

SLO up_report_frequency = N hours

Measurements

MoniPoli rules

up_report_age

up_report_age < N

scan_report_availability

scan_report_availability = yes

up_report_availability

up_report_availability = yes

Table 41. Measurements and MoniPoli rules associated to SVA metric URF

Metric | Penetration testing activated (PTA)

SLO penetration_testing = yes/no

Measurements

MoniPoli rules

pen_testing_activated

pen_testing_activated = PTA_value

Table 42. Measurements and MoniPoli rules associated to SVA metric PTA

SPECS Project - Deliverable 4.3.2

73

Secure Provisioning of Cloud Services based on SLA Management

In order to generate list of published vulnerabilities, the repository from where the
information is extracted has to be available. Hence measurement repository_availability for
metric LUF (in Table 38). In order to ensure that the list has been generated in right time, the
age of the vulnerability list is monitored.

Since for vulnerability scans responsive scanners are needed and since vulnerability scanners
require a list of published vulnerabilities, metrics BSF and ESF are mapped to measurements
list_availability and scanners_availability. In order to ensure that scans have been performed
in time, the age of scanning reports are monitored (with measurements basic_report_age and
extended_report_age).

Update/upgrade report presents a list of libraries installed on the system that have been
labelled as vulnerable by the scanners and for which updates and/or upgrades are available.
So in order to check for available updates and upgrades, scanning report has to be available
(hence scan_report_availability measurement). Similarly as before, in order to evaluate if the
update/upgrade report has been generated in time, the measurement up_report_age has been
introduced and mapped to the URF metricc One additional measurement
(up_report_availability) is needed in the SLA remediation phase.

Metric PTA has only one associated measurement, namely pen_testing_activated. With this
measurement responsiveness of the scanner with penetration testing functionality is
observed.

Note that the current prototype does not yet support enforcement of metrics ESF and PTA
since OpenVas and Nikto have not been integrated. Integration will be made by the end of the
project and presented in D4.3.3.

The defined SVA metrics implement NIST and CCM security controls presented in the
following table.

Control Security metric
Family/Group | Control Name ControlID | LUF | BSF | ESF | URF | PTA
NIST
Security Continuous Monitoring CA-7 v v v
Assessment Continuous Monitoring | i v
and Trend Analyses CA-7(3)
Authorization | Penetration testing CA-8 v
Risk Vulnerability Scanning RA-5 v v v
Vulnerability Scanning |) v
Assessment Update Tool Capability RA-5 (1)
CCM
Threat and -
Vil Vulnerability/Patch TVM-02 v v v v v
Management
Management

Table 43. Mapping of SVA metrics to NIST and CCM security controls

4.4.1.3. Remediation
As discussed in Section 3.5, each measurement defines one monitoring event. Table 44 below
lists all possible monitoring events related to SVA metrics that can be detected by the
Monitoring module.
SPECS Project - Deliverable 4.3.2 74

Secure Provisioning of Cloud Services based on SLA Management

ID Condition Affected metrics | Event type
SVA-E1 list_age > LUF_value LUF

SVA-E2 report_basic_age > BSF_value BSF

SVA-E3 report_extended_age > ESF_value ESF violation
SVA-E4 up_report_age > URF _value URF

SVA-E5 pen_testing activated != PTA value PTA

SVA-E6 repository_availability = no LUF

SVA-E7 list_availability = no BSF ESF

SVA-E8 scanners_availability = no BSF ESF alert
SVA-E9 scan_report_availability = no URF

SVA-E10 | up_report_availability = no URF

Table 44. Monitoring events related to SVA metrics

The following table presents actions needed to remediate SVA alerts and violations.

ID Description

SVA-A1 Check if the configured repository is available.

SVA-A2 | Reconfigure repository and check if it is available.

SVA-A3 Check if vulnerability list is available.

SVA-A4 | Delete vulnerability list, generate ne vulnerability list and check if it is available.

SVA-A5 Check if installed scanners are available.

SVA-A6 Delete old scanning report, scan again, and check if the new scanning report is
available.

SVA-A7 Reinstall scanners and check if they are available.

SVA-A8 | Check if the scanning report is available.

SVA-A9 Delete old up report, check for updates/upgrades and check if the new up report is
available.

Table 45. SVA remediation actions

The next three figures report remediation plans related to alerts and violations of SVA
metrics. For details on the structure of a remediation plan see Section 3.5.

Event SVA-E1 SVA-E2 / SVA-E3 / SVA-E9
SVA-AL SVA-A3
Step 1
yes no yes no
SVA-A4 SVA-A2 SVA-AS SVA-A4
Step 2
Yyes no Yes no yes no Yes no
0 h SVA-AL SVA-AG SVA-A7 SVA-AS SVA-AL
Step3
\."ES no \."ES no yes no yes no
0 0 h SVA-AG SVA-AG SVA-A2
Stepd
yes | no yes | no yes
0 0 h SVA-AG
Step 5
yes yes
0 SVA-AG
Step &
yes
Step 7 0

Figure 34. Remediation plans for monitoring events SVA-E1, SVA-E2, SVA-E3, and SVA-E9

SPECS Project - Deliverable 4.3.2 75

Secure Provisioning of Cloud Services based on SLA Management

Event SVA-E4 / SVA-E10
SVA-AS
Step 1
yes no
SVA-A9 SVA-A3
Step 2
yes | no yes no
0 h SVA-AS SVA-A4
Step3
yes no yes no
SVA-AB SVA-AT SVA-A5 SVA-A1
Stepd
yes no yes no
SVA-AS SVA-AB SVA-A2
Step 5
yes | no yes no
0 SVA-A11
Step 6
yes | no
o]

Step 7

Step 8

Step 9

Figure 35. Remediation plans for monitoring events SVA-E4 and SVA-E10

Event SVA-E5 SVA-E6 SVA-E7 SVA-E8
SVA-AT SVA-A2 SVA-A1 SVA-A7
Step 1
yes | no | yes | no yes no yes | no
O R
Step 2
yes [no yes no
0 SVA-AL
Step3
yes | no
Stepd O

Figure 36. Remediation plans for monitoring events SVA-E5, SVA-E6, SVA-E7, and SVA-E8

All mechanism’s implementation, configuration, and remediation details are available on
project’s Bitbucket [19]. The code for all three components is also available on project’s
Bitbucket repository:

e SVA Core (containing all common files for SVA Enforcement and SVA Monitoring

components) is available on [5].

e SVA Dashboard component is available on [6].

e SVA Enforcement component (including OpenSCAP scanner) is available on [7].

e SVA Monitoring component is available on [8].

4.4.1.4. Development

With respect to the initial design of the mechanism (presented in D4.3.1), the main changes
occurred with the introduction of additional vulnerability scanners. Also, new security
metrics have been defined (initial prototype only supported metrics BSF and LUF) and
remediation actions for the entire set of SVA metrics have been defined and detailed.
Introduction of new metrics resulted in the need to adopt the initial prototype to support
them (e.g., the need to adjust the SVA Monitoring component to take measurements mapped
to new metrics, the need to adjust the SVA Dashboard to present the status of SLOs related to
new metrics, the need to adjust SVA Enforcement to be able to change repository to extract
known vulnerabilities). Some improvements of the initial functionalities have also been
conducted.

Due to the delicate nature of automatically applying patches and fixing software
vulnerabilities, this functionality has not been integrated. This aspect may be explored during
the last period of the mechanism’s development.

SPECS Project - Deliverable 4.3.2 76

Secure Provisioning of Cloud Services based on SLA Management

The design of the mechanism integrates existing open-source tools for vulnerability
assessment (OpenVAS, Nikto), but the majority of mechanism’s components (SVA
Enforcement, SVA Monitoring, SVA Dashboard) were developed in the context of the project
according to elicited requirements and the design of the core Enforcement components, SVA
Enforcement had to be developed to manage vulnerability lists, scans, and reports, SVA
Monitoring component had to be developed to support automatic remediation activities, and
SVA Dashboard had to be developed to provide to the EU all information related to SVA
activities.

The following subsections briefly describe repositories and provide installation and usage
guides.

4.4.2. Repository

Each SVA component has its own repository on Bitbucket; SVA Enforcement on [7], SVA
Monitoring on [8], and SVA Dashboard on [6].

4.4.3. Description and design

The repositories for SVA Enforcement and SVA Monitoring consist of two modules. One for
the source code and one for unit tests.

The repository for the SVA Dashboard comprises four modules. Dashboard and dashboard-
web are Django root folder and Django settings folder, respectively. Static module includes all
static files (javascript, less, css, etc.). The last module is for unit tests.

4.4.4. Installation

Prerequisites:
e Redis
e PostgreSQL
e Django

Core repository [5] contains core functionaility of both SVA Enforcement and SVA monitoring
component.

hg clone https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva core
specs_sva_core

Install postgresql

zypper install postgresgl-devel

zypper install postgresqgl

zypper install postgresgl-contrib

zypper install python-devel

service postgresqgl start

sudo -u postgres psgl -c "ALTER USER postgres PASSWORD 'sva';"
sudo -u postgres createdb sva

sudo -u postgres createuser -P sva

You will be prompted for password, the password should be sva.
sudo -u postgres psgl -c "GRANT ALL PRIVILEGES ON DATABASE sva TO sva;"“

Enforcement component installation guide:

Switch to root user:
su root

SPECS Project - Deliverable 4.3.2 77

https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_core

Secure Provisioning of Cloud Services based on SLA Management

Create a virtual enviroment with:

pip install virtualenv
virtualenv /path/to/env

source /path/to/env/bin/activate

Clone repository:
hg clone https://bitbucket.org/specs-team/specs-mechanism-enforcement-
sva vulnerability manager specs enforcement sva

Install requirements:
pip install -r /path/to/specs enforcement sva/requirements.txt

Monitoring component installation guide:
You can use same virtual enviroment as above since enforcement and monitroing share the
same package requirements.

Clone repository:

hg clone https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva
specs _monitorign sva

Dashboard component installation guide:

Switch to root user:
sSu root

Install required packages and configure postgresql:
zypper install postgresqgl-devel

zypper install postgresqgl

zypper install postgresgl-contrib

zypper install python-devel

zypper install redis

zypper install nodejs

zypper install mercurial

zypper install python-pip

service postgresgl start

sudo -u postgres psgl -c "ALTER USER postgres PASSWORD 'dashboard';"
sudo -u postgres createdb dashboard

sudo -u postgres createuser -P dashboard

You will be prompted for password, the password should be dashboard.
sudo -u postgres psgl -c "GRANT ALL PRIVILEGES ON DATABASE dashboard TO
dashboard; ™

Clone django repository:

hg clone https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva dsahboard
specs—-enforcement-sva-dashboard

Install project requirements using pip:

python -m pip install -r /path/to/specs-enforcement-sva-
dashboard/dashboard/requirements.txt

Install less:
npm install -g less

SPECS Project - Deliverable 4.3.2 78

https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager/overview
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager/overview
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager/overview
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_dsahboard

Secure Provisioning of Cloud Services based on SLA Management

Run redis server, which is used for asynchroneous execution of celery tasks:
redis-server -daemonize yes

Migrate django database:
python /path/to/specs-enforcement-sva-dashboard/dashboard/manage.py
migrate

Open port on firewall so server is accessible from others virtual machines:
SuSEfirewall2 open EXT TCP 8000

SuSEfirewall2 stop

SuSEfirewall2 start

service SuSEfirewall2 restart

Run celery worker:

cd /path/to/specs-enforcement-sva-dashboard/dashboard/

screen -S celeryWorkers -m -d celery -A dashboard web worker -B --
loglevel=INFO -concurrency=10

Run django server:
screen -S djangoServer -m -d python /path/to/specs-enforcement-sva-
dashboard/dashboard/manage.py runserver 0.0.0.0:8000

Django server is now accessible on http://localhost:8000 and ready to receive reports and
display them.

4.4.5. Usage
Once all SVA components are installed and running the following should serve as a guideline.

Enforcement component usage

Switch to root user:
su root

Activate virtual enviroment:
source /path/to/env/bin/activate

Run the SVA Enforcement component with three arguments (scanning frequency,
list_update_frequency, up_report_frequency) in seconds. Script will automatically run basic
scan, download oval files, and generate upgrade/update report:

python /path/to/specs enforcement sva/src/enforcement.py run enforcement
3600 3600 3600

Or you can run each metric separately as follows.

Will download oval vulnerability list:

python /path/to/specs enforcement sva/src/enforcement.py
vulnerability list

Will perform basic scan using OpenSCAP and send results to the SVA Dashbaord:

python /path/to/specs enforcement sva/src/enforcement.py
vulnerability scan

Will generate upgrade/update report and send results to SVA Dashbaord:

python /path/to/specs _enforcement sva/src/enforcement.py upgrade report

SPECS Project - Deliverable 4.3.2 79

http://localhost:8000/

Secure Provisioning of Cloud Services based on SLA Management

Will reconfigure repository for fetching oval files:
python /path/to/specs enforcement sva/src/enforcement.py
reconfigure repository

Monitoring component usage

Switch to root user:
su root

Activate virtual enviroment:
source /path/to/env/bin/activate

Run the SVA Monitoring component with three arguments (scanning frequency,
list_update_frequency, up_report_frequency) in seconds. Script will automatically run
availability checks and send event reports to the Event Hub (monitoring module) and the SVA
Dashbaord:

python /path/to/specs monitoring sva/src/monitoring.py run monitoring
3600 3600 3600

Or you can also run each measurements separately as follows.

Checks for availability of the current repository and sends report to the Event Hub:
python /path/to/specs monitoring sva/src/monitoring.py invoke msré6

Checks if vulnerability list is available and sends report to the Event Hub:
python /path/to/specs monitoring sva/src/monitoring.py invoke msr7

Checks availability of installed scanner (OpenSCAP) and sends report to the Event Hub:
python /path/to/specs monitoring sva/src/monitoring.py invoke msr8

Checks if the scanning report is available and sends report to the Event Hub:
python /path/to/specs monitoring sva/src/monitoring.py invoke msr9

Checks if the upgrade/update report is available and sends report to the Event Hub:
python /path/to/specs monitoring sva/src/monitoring.py invoke msrlO

Dashboard component usage
Open http://localhsot:8000 in browser. See Figure 37 for the snapshot of the SVA Dashboard.

SPECS Project - Deliverable 4.3.2 80

http://localhsot:8000/

Secure Provisioning of Cloud Services based on SLA Management

Virtual machines

IP Number of vulnerabilities Max CVSS
172.16.117.48 824 1nn
Upgrade report SLO
172.16.117.160 824
{

"capability": "software_wulnerability assessment™,
172.16.117.48 View reports | | 172.16.117.160 View reports "metric_id": "up_report_m23",
Basic scan frequency: 24h [f] Basic scan frequency: 24h [“eniiEreell SEEtE U
List update frequency: 24h [List update frequency: 24h ["ol e MareL el S
Upgrade report frequency: 168h [Upgrade report frequency: 168h &) R =S

"value": "168",

View plan View plan "valuel™: "",

"operator™: “equal”,

"importance_level™: "low",

"unit": "hours”,

"value2": ""

}
24h 24h
Dashboard
hitp:/172.16.117.56:8000/
Oval repository Dashboard displays information about
hitp:/fftp.suse.com/pub/projects/security/ovall vulnerability results, _..

Figure 37. Snapshot of the SVA Dashboard

Clicking on one of the virtual machines will redirect you to a new page, where you can see all
detected vulnerabilities and track age of reports (see Figure 38 for an excerpt).

Virtual machine: 172.16.117.48

List update frequency: 24h Baslic scan frequency. 24h

241

T g

Vuinerability list age: 23:37.43 Scanning report age: 23.37:38 3

1L

scanning Repon IPQrANE RE|
Vuinerability

CVE CVSS result Description

CVE-2015-2590 100 True Unspecified vulnerabllity in Oracle Java SE 6uS5, 7u80, and 8u4d5, and Jav>
Integnity, and availability via unknown vectors related to Libranies, a differs

CVE-2014-8357 100 False Docker 1.3.2 allows remote attackers to execute arbitrary code with root pr
related to the chroot for archive extraction.

CVE-2015-4731 100 True Unspecified vulnerability in Oracle Java SE 6u95, 7uB0, and 8u45; Java SE

confidentiality, integrity, and avalilability via vectors related to JMX.
Figure 38. SVA reports for a VM
SPECS Project - Deliverable 4.3.2 81

Secure Provisioning of Cloud Services based on SLA Management

4.5. TLS mechanism

In this section, we present a description and implementation details for the mechanisms
involved in the following validation scenarios defined in T5.1 (see D5.1.2):

SWC-03 Secure_Web_Container_TLS_Enhanced
SWC-05 Secure_Web_Container_TLS_SVA_Enhanced_Violation
SWC-06 Secure_Web_Container_TLS_Multitenancy

4.5.1. Overview

SPECS TLS represents a security mechanism that ensures data integrity and mutual
authentication between two or more communicating actors. SPECS TLS is a secure proxy that
allows services to securely communicate with clients although they are not designed to
deliver data over the secure communication channel. In this way any service can be easily
secured at communication level by using the SPECS TLS mechanism.

4.5.1.1. Architecture

SPECS TLS architecture consists of several components that ensure the entire functionality as
illustrated in Figure 39:

TLS terminator is the main component that acts as a proxy for secure communication
between clients and targeted services secured by SPECS. TLS Terminator is able to
support multiple targeted services using a single (common) or multiple security
credentials (TLS certificates) used for secure communication. Moreover it also
supports different HTTPs security features (explained below) to be enforced based on
the configuration generated from the SLA agreed between the clients and SPECS.

TLS terminator configurator acts as a configuration module able to create different
configuration templates for the TLS Terminator and TLS Prober. The configuration
templates enable different TLS features based on the metrics that are described in the
SLA to be enforced and monitored.

TLS terminator controller module is in charge with the management of the TLS
Terminator. It ensures the availability of the TLS Terminator and offers controls for
starting, stopping and reconfiguring the service.

TLS prober is a monitoring component that need to: monitor that the initial
configuration templates are not change during the lifecycle and in case of anomalies
(example: configuration changes) to generate monitoring events with the detected
change that affects a specific metric.

TLS reasoner is a module that decides what configuration rules must be added in a
configuration template based on a list of metrics needed to be enforced and monitored.
The reasoner will translate metrics into TLS security definitions in order to ensure the
final TLS functionality.

TLS endpoint (web server) represents a list of services where the HTTP request must
be sent. This endpoint is not maintained by TLS security mechanism. TLS will only
monitor the availability of the TLS endpoint.

SPECS Project - Deliverable 4.3.2 82

Secure Provisioning of Cloud Services based on SLA Management

configuration
constraints
asone o | TLS terminator
R | configurator
; forward
+ configuration requests
g{i TLS terminator 1 TLS terminator Web server
controlier :
monitoring
rules
observe
TLS prober
(mon, agent)

Figure 39. Architecture of the TLS mechanism

4.5.1.2. Security metrics and controls

SPECS TLS security mechanism is able to enforce and monitor specific security metrics related
to HTTP transport security. The supported security metrics are described in the following
tables.

Value Default value Unit
TLS cryptographic strength (TCS) 0<int<8 7 -
This metric sets the cryptographic strength to be used by the
TLS Terminator. TLS Terminator Configurator will choose the
appropriate cryptographic ciphers that meet the negotiated
level, and configure TLS Terminator accordingly.

Description

Actions taken to

Generate TLS Terminator configuration to support the chosen
enforce the

cryptographic strength level and periodically monitor the value.

metric
Table 46. TLS security metric TCS
Value Default value Unit
Forward secrecy (FS) yes/no no -
This metric ensures that the encrypted data sent through a
L session of the TLS secure channel cannot be decrypted even if
Description

the cryptographic data, used to generate the cryptographic
credentials for that session, are compromised.

Actions taken to

Generate TLS Terminator configuration to support forward
enforce the

secrecy periodically check the configuration.

metric
Table 47. TLS security metric FS
Value Default value Unit
HTTP strict transport security (HSTS) yes/no no -
L This metric is a feature of HTTP transport layer that declares
Description

the web content available only over a secure HTTP connection.

Actions taken to
enforce the
metric

Generate TLS Terminator configuration to support HTTP strict
transport security periodically check the configuration.

Table 48. TLS security metric HSTS
SPECS Project - Deliverable 4.3.2 83

Secure Provisioning of Cloud Services based on SLA Management

Value Default value Unit
HTTP to HTTPS redirects (HHSR) yes/no no -
This metric is a feature of HTTP delivery service that forces
clients to use only secure HTTP protocol.

Description

Acions taken to

enforce the Generate TLS Terminator configuration to support HTTP to

HTTPS redirects periodically check the configuration.

metric
Table 49. TLS security metrics HHSR
Value Default value Unit
Secure cookies (SC) yes/no no -
This metric is a feature of HTTP protocol to force the clients to
Description download session cookies, delivered by the HTTP services, only

through a secured HTTP communication

Actions taken to

Generate TLS Terminator configuration to support secure
enforce the

cookies periodically check the configuration.

metric
Table 50. TLS security metric SC
Value Default value Unit
Certificate pinning (CP) yes/no no -
This metric is a feature of HTTP protocol allowing the
. verification of the SSL certificates between the client and the
Description

HTTP service where the hash of the public certificate is pinned
into the HTTP response.

Actions taken to | Generate TLS Terminator configuration to support certificate
enforce the pinning, generate SSL certificate hash and periodically check the

metric configuration.
Table 51. TLS security metrics CP

Based on the above metrics a set of measurements are defined to ensure that the metrics are
enforced during the SLA life cycle. The list of defined measurements for each TLS metric is
represented in the following tables.

Metric | TLS cryptographic strength (TCS)

SLO tls_crypto_strength = N

Measurements MoniPoli rules
tls_crypto_strength tls_crypto_strength = N
tls_terminator_availability tls_terminator_availability = yes
tls_endpoint_availability tls_endpoint_availability = yes

Table 52. Measurements and MoniPoli rules associated to TLS metric TCS

Metric | Forward secrecy (FS)

SLO forward_secrecy = yes/no

Measurements MoniPoli rules

forward_secrecy forward_secrecy = FS_value
tls_terminator_availability tls_terminator_availability = yes
tls_endpoint_availability tls_endpoint_availability = yes

Table 53. Measurements and MoniPoli rules associated to TLS metric FS

SPECS Project - Deliverable 4.3.2 84

Secure Provisioning of Cloud Services based on SLA Management

Metric

HTTP strict transport security (HSTS)

SLO hsts = yes/no
Measurements MoniPoli rules
hsts hsts = HSTS value

tls_terminator_availability

tls_terminator_availability = yes

tls_endpoint_availability

tls_endpoint_availability = yes

Table 54.Measurements and MoniPoli rules associated to TLS metrics HSTS

Metric | HTTP to HTTPS redirect (HHSR)

SLO http_redirect = yes/no

Measurements

MoniPoli rules

http_redirect

http_redirect = HHSR _value

tls_terminator_availability

tls_terminator_availability = yes

tls_endpoint_availability

tls_endpoint_availability = yes

Table 55. Measurement and MoniPoli rules associated to TLS metrics HHSR

Metric | Secure cookies (SC)

SLO secure_cookies = yes/no

Measurements

MoniPoli rules

secure_cookies

secure_cookies = SC_value

tls_terminator_availability

tls_terminator_availability = yes

tls_endpoint_availability

tls_endpoint_availability = yes

Table 56. Measurements and MoniPoli rules associated to TLS metric SC

Metric | Certificate pinning (CP)

SLO certificate_pinning = yes/no

Measurements

MoniPoli rules

certificate_pinning

certificate_pinning = CP_value

tls_terminator_availability

tls_terminator_availability = yes

tls_endpoint_availability

tls_endpoint_availability = yes

Table 57. Measurements and MoniPoli rules associated to TLS metric CP

The above defined TLS security metrics implement NIST and CCM security controls presented

in the following table.

Control Control Security metric
Family/Group | Control Name ID TCS | TFS | THS | THR | TSC | TCP
| NIST

Cryptographic protection SC-13 v

Publllc_ Key Infrastructure SC-17 v

Certificates
oo Heterogene.ity SC-29 v
Communication Cryptqgraphlc iy
s Protection Establishment And SC-12 v

Management

Transmission

Confidentiality And SC-8 v

Integrity

Usage Restrictions SC-43 v

CCM

SPECS Project - Deliverable 4.3.2

85

Secure Provisioning of Cloud Services based on SLA Management

Encryption & Entitlement EKM-01 | v
Key Sensitive Data Protection | EKM-03 v v v
Management
[dentity & R
Access Credfer.)tlal Lifecycle / IAM-02 v
Provision Management
Management
User Access Authorization | 1AM-09 v

Table 58. Mapping of TLS metrics to NIST and CCM security controls

4.5.1.3. Remediation

Each measurement is defined by a value that needs to be checked periodically by the TLS

prober in order to ensure that the configuration values are compliant with the initial values.

The measurements are translated into events (Table 59) that can generate actions to be

followed by the remediation decision system described in Section 3.5.

ID Condition Affected metrics | Event type
TLS-E1 | tls_crypto_strength_level < TCS_value TCS
TLS-E2 | tls_forward_secrecy != TFS_value TFS
TLS-E3 | tls_hsts != THS_value THS o
TLS-E4 | tls_http_to_https_redirect != THR_value THR violation
TLS-E5 | tls_force_secure_cookies != TSC_value TSC
TLS-E6 | tls_certificate_pinning != TCP_value TCP
TLS-E7 | tls_terminator_availability = no All 1
TLS-E8 | tls_endpoint_availablity = no All alert
Table 59. Monitoring events related to TLS metrics
The following table presents actions needed to remediate TLS alerts and violations.
ID Description
TLS-A1 Reconfigure TLS cryptographic strength to TCS_value and check if
TLS_crypto_strength has the initial TCS_value.
TLS-A2 Restart TLS Terminator and check if it is available.
TLS-A3 Check if TLS_crypto_strength is >= TCS_value.
TLS-A4 Reconfigure TLS forward secrecy to TFS_value and check if TLS_forward_secrecy
has the initial TFS_value.
TLS-A5 Check if TLS_forward_secrecy has the initial TFS_value.
TLS-A6 Reconfigure TLS HSTS to THS_value and check if TLS_hsts has the initial THS_value.
TLS-A7 Check if TLS_hsts has the initial THS_value.
TLS-A8 Reconfigure TLS HTTP2HTTPS to THR_value and check if
TLS_https_to_https_redirect has the initial THR_value.
TLS-A9 Check if TLS_http_t_https_redirect has the initial THR_value.
TLS-A10 | Reconfigure TLS FSC to TSC_value and check if TLS_force_secure_cookies has the
initial TSC_value.
TLS-A11 | Checkif TLS_force_secure_cookies has the initial TSC_value.
TLS-A12 | Reconfigure TLS CP to TCP_value and check if TLS_certificate_pinning has the initial
TCP_value.
TLS-A13 | Check if TLS_certificate_pinning has the initial TCP_value.
TLS-A14 | Request, to an external service, TLS Endpoint restart and check if the TLS Endpoint
is available.

Table 60. TLS remediation actions

SPECS Project - Deliverable 4.3.2 86

Secure Provisioning of Cloud Services based on SLA Management

The next three figures report remediation plans related to alerts and violations of TLS metrics.

For details on the structure of a remediation plan see Section 3.5.

Event TLS-E1 TLS-E2 TLS-E3 TLS-E4
TLS-Al TLS-A4 TLS-AB TLS-AB
Step 1
yes no yes no yes no yes no
0] TLS-A2 0] TLS-A2 O TLS-A2 o] TLS-A2
Step 2
yes no yes no yes no yes no
TLS-A3 TLS-AS TLS-AT TL5-A9
Step3
yes | no yes | no yes | no yes | no
Stepd o] o] o] o]

Figure 40. Remediation plans for monitoring events TLS-E1, TLS-E2, TLS-E3, and TLS-E4

Event TLS-E5 TLS-E6 TLS-E7 TLS-E8
TLS-A10 TLS-A12 TLS-A2 TLS-A14
Step 1
yes nao yes nao yes | no | yes | no
o TLS-A2 o TLS-A2 0 h 0 h
Step 2
yes no yes no
TLS-A1l TLS-A13
Step3
yes | nao yes | nao
Stepd o o

Figure 41. Remediation plans for monitoring events TLS-E5, TLS-E6, TLS-E7, and TLS-E8

All mechanism’s implementation, configuration, and remediation details are available on
project’s Bitbucket [29].

4.5.1.4. Development

TLS security mechanism integrates open-source tools for HTTP proxy and SSL features
enforcement but most of the TLS components (Terminator, Terminator Configurator, and
Terminator Controller) were developed in the context of the project with respect to the
requirements and the design of the core Enforcement components.

TLS security mechanism design is finalised and there will be no modifications in the overall
architecture by the end of the project. However, the implementation of the mechanism is
partially finalised as some changes are expected in order to improve the overall performance
and for a better integration with the Service Manager (SLA Platform) used by the underlying
operating system.

The following subsections briefly describe repositories and provide installation and usage
guides.

4.5.2. Repository

TLS Mechanism source code is hosted as a Bitbucket repository available at [29].

4.5.3. Description and design

TLS Mechanism has two parts that are hosted under the same repository:
e HTTP Proxy component;

e TLS security component;

HTTP Proxy component is in charge with the management actions of the proxy technology
used for HTTP protocol communication (both secure and unsecure) intermediation. Under the

SPECS Project - Deliverable 4.3.2 87

Secure Provisioning of Cloud Services based on SLA Management

repository the files that start with “proxy-“ are related to this purpose.

TLS security component tackles the aspects of transport layer security that are strictly related
to SSL aspects of HTTP protocol communication (features used to enforce and monitor a
particular metric associated with TLS Mechanism).

4.5.4. Installation

Prerequisites:
e HAProxy, min. version 1.5.14
e OpenSSL, min. version 1.0.x

hg clone https://bitbucket.org/specs-team/specs-mechanism-enforcement-tls
/opt/specs-mechanism-enforcement-tls

zypper install haproxy

zypper install openssl

export PATH=S$PATH:/opt/specs-mechanism-enforcement-tls

If TLS security mechanism is not installed and configured through SPECS Chef service, then
the monitoring related information must be manually added in /opt/specs-mechanism-
enforcement-tls/etc/proxy-config.shfile:

e proxy prober monitoring url=
o monitoring event-hub endpoint in URI format;
e proxy prober monitoring username=
o (optional) monitoring event-hub username;
® proxy prober monitoring password=
o (optional) monitoring event-hub password
® proxy prober monitoring component=

o monitoring event-hub component related information;
® proxy prober monitoring object=
o monitoring event-hub object related information;
e proxy prober monitoring labels=
o monitoring event-hub labels related information;
¢ proxy prober monitoring type=
o monitoring event-hub type related information;
e proxy prober monitoring data=
o (optional) monitoring event-hub data related information;

4.5.5. Usage

Once TLS security mechanism is installed the following commands should run as starting
point:

TLS Enforcement

enforce cryptographic strength level < 7
tls-configurator --m3

define TLS endpoint details

tls-configurator --tls-backend BACKEND IP:BACKEND:PORT
start TLS Terminator

tls-controller start

SPECS Project - Deliverable 4.3.2 88

https://bitbucket.org/specs-team/specs-mechanism-enforcement-tls

Secure Provisioning of Cloud Services based on SLA Management

TLS Monitoring

check cryptographic strength level < 7
tls-prober --m3

check if the TLS Terminator is online
tls-prober —--tls-msr7

For more detailed information please check Bitbucket repository Wiki page or use the --help
switch:

tls-configurator --help

tls-controller --help

tls-prober --help

SPECS Project - Deliverable 4.3.2 89

Secure Provisioning of Cloud Services based on SLA Management

5. Conclusions

This document presents prototypes of the core part of the Enforcement module and
demonstrates all security mechanisms considered in year 2 of the SPECS project. The choice of
security mechanisms presented in this deliverable was based on implementation plans
reported at M12 which were based on EU’s requirements.

Note that two security mechanisms intended to secure interactions among SPECS
components, namely Credential Service and Security Tokens, although part of the
Enforcement module, are discussed in deliverables of the dedicated task T4.4 (see D4.4.2).
Similarly, one of the core Enforcement components, namely the Auditing, offering its
functionalities to all elements of the SPECS framework and thus considered as part of the
Vertical Layer, is presented in deliverables of task T1.4 (see D1.4.1 and D1.4.2). Moreover, all
testing activities are discussed in D4.5.2.

This document is an extension of two M12 deliverables, namely D4.2.2 presenting the
Enforcement architecture and D4.3.1 related to the initial prototypes. All design changes
which were needed due to updates in other tasks and due to the feedback received from
developers and integrators, and all refinements in the enforcement process which were
anticipated in D4.2.2, are presented in current deliverable:

e Refinements of the SLA implementation phase to support generation of valid supply
chains and to support improved generation of implementation plans and their
executions.

e Refinements of the SLA remediation phase to support diagnosis and remediation
activities improved in year two.

e Prototypes of all Enforcement core components.

e Integration of Broker with the Implementation component.

e Design and demonstration of newly developed mechanism providing storage and
backup as-a-Service (DBB).

¢ Demonstration of fully developed mechanism providing client side encryption (E2EE).

¢ Demonstration of upgraded software vulnerability assessment mechanism (SVA;
integration of improved SVA mechanism demonstrated at M12 with a monitoring
system OpenVAS).

¢ Demonstration of TLS mechanism.

The final iteration of this deliverable (namely D4.3.3) will focus on the following:

¢ Adding planning and implementation steps after renegotiation or a termination of an
SLA. These activities are related to the Planning and Implementation components.

e Possibly developing a more meaningful methodology to determine risk and severity
levels of SLA alerts and violations. This activity is related to the Diagnosis component.

e Applying any changes and improvements that would be needed due to integration
issues. These also include changes related to improving performance and refer to all
components and mechanisms.

e Possibly considering automatically applying patches and fixing software
vulnerabilities with SVA mechanism.

e Elaborating on detectable attacks and system failures for each security mechanism.

e Development of the remaining two security mechanisms, namely AAA and DoS.

For detailed implementation plan see Figure 42.

SPECS Project - Deliverable 4.3.2 90

Secure Provisioning of Cloud Services based on SLA Management

Y2 Y3
Component M13-M18|M19-M24| M25-M30
. Planning
main .
Implementation
Enforcement — :
components Diagnosis
RDS
Secure Provisioning (Broker)
Secure Web Server (WebPool)
security TLS
) SVA
mechanisms
E2EE
and controls
DEB
AAA
DoS

Figure 42. Implementation plan for the Enforcement module

SPECS Project - Deliverable 4.3.2

91

Secure Provisioning of Cloud Services based on SLA Management

6. Bibliography

[1]

[18]
[19]

SPECS, “SPECS Core Enforcement Planning”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-planning.

SPECS, “SPECS Core Enforcement Implementation”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-implementation.

SPECS, “SPECS Core Enforcement Diagnosis”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-diagnosis.

SPECS, “SPECS Core Enforcement RDS”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-rds.

SPECS, “SPECS Mechanism Enforcement SVA Core”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva core.

SPECS, “SPECS Mechanism Enforcement SVA Dashboard”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva dashboard.

SPECS, “SPECS Mechanism Enforcement SVA Vulnerability Manager”, 2015. [Online].
Available: https://bitbucket.org/specs-team/specs-mechanism-enforcement-
sva vulnerability manager.

SPECS, “SPECS Mechanism Monitoring SVA”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva.

R. A. Popa,]. R. Lorch, D. Molnar, H.]J. Wang, L. Zhuang, “Enabling Security in Cloud
Storage SLAs with CloudProof”, In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (USENIXATC'11).

A. Albeshri, C. Boyd,]. G. Nieto, “Enhanced GeoProof: improved geographic assurance for
data in the cloud”, International Journal of Information Security, 13(2):191-198, 2014.

D. Cash, A. Kiipgt, D. Wichs, “Dynamic Proofs of Retrievability via Oblivious RAM”,
Advances in Cryptology (EUROCYRPT 2013), Lecture Notes in Computer Science,
7881:279-295, 2013.

A. Juels, B. Kalinski, “PORs: Proofs of Retrievability for Large Files”, In CCS Proceedings of
the 14th ACM conference on Computer and communication security, 584-597, 2007.

H. Shacham, B. Waters, “Compact Proofs of Retrievability”, Advances in Cryptology
(ASIACRYPT 2008), Lecture Notes in computer Science, 5350:90-107, 2008.

E. Shi, E. Stefanov, C. Papamanthou, “Practical Dynamic Proofs of Retrievability”, In
Proceedings of the 2013 ACM SIGSAC Conference on Computer Communications
Security, 325-336, 2013.

SPECS, “SPECS Enforcement EZEE Server”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server.

SPECS, “SPECS Enforcement E2EE Client”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-client.

SPECS, “SPECS Enforcement E2EE Auditor”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-auditor.

JOptimizer, “JOptimizer”, 2015. [Online]. Available: http://www.joptimizer.com/.
SPECS, “SPECS Core Enforcement Repository”, 2015. [Online]. Available:

SPECS Project - Deliverable 4.3.2 92

https://bitbucket.org/specs-team/specs-core-enforcement-planning
https://bitbucket.org/specs-team/specs-core-enforcement-implementation
https://bitbucket.org/specs-team/specs-core-enforcement-diagnosis
https://bitbucket.org/specs-team/specs-core-enforcement-rds
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_core
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_dashboard
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-client
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-auditor
http://www.joptimizer.com/

Secure Provisioning of Cloud Services based on SLA Management

[24]

[25]

[26]

https://bitbucket.org/specs-team/specs-core-enforcement-repository/overview.

SpiderOak, “Crypton”, 2015. [Online]. Available: https://crypton.io/.

C. Pedersen, D. Dahl, “Crypton: Zero-knowledge Application Framework”. Whitepaper,
2013. [Online]. Available: https://crypton.io/crypton.pdf.

Redis Labs, “Redis”, 2015. [Online]. Available: http://redis.io/.

The PostgreSQL Global Development Group, “PostgreSQL”, 2015. [Online]. Available:
http://www.postgresgl.org/.

NIST National Institute of Standards and Technology, “Security and privacy controls for
federal information systems and organizations”, NIST 800-53v4, 2013. [Online].
Available: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf.

Cloud Security Alliance, “Cloud Controls Matrix Working Group”, 2015. [Online].
Available: https://cloudsecurityalliance.org/group/cloud-controls-matrix/.

Red Hat, “OpenSCAP”, 2015. [Online]. Available: http://www.open-
scap.org/page/Main Page.

OpenVAS, “OpenVAS”, 2015. [Online]. Available: http://www.openvas.org/.
C. Sullo, D. Lodge, “Nikto2”, 2015. [Online]. Available: https://cirt.net/Nikto2.

SPECS, “SPECS Mechanism Enforcement TLS”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-tls /overview.

SPECS, “SPECS Core Enforcement Broker”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-broker/overview.

Chef Software, “Chef”, 2015. [Online]. Available: https: //www.chef.io/chef/.

SPECS, “SPECS Mechanism Enforcement WebPool”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-webpool/overview.

SPECS, “SPECS Core Enforcement Repository”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-repository/src.

HAProxy, “HAProxy”, 2015. [Online]. Available: http://www.haproxy.org/.

Nginx, “Nginx”, 2015. [Online]. Available: http://nginx.or

The Apache Software Foundation, “Apache”, 2015. [Online]. Available:
http://www.apache.org/.

SPECS, “SPECS Utility Data Model”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-utility-data-model.

SPECS, “SPECS Core Enforcement Repository EZEE”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-
repository/src/master/E2EE/.

SPECS, “SPECS Core Enforcement Repository DBB”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-
repository/src/master/DBB/.

Pivotal Software, “Spring”, 2015. [Online]. Available: https://spring.io/.

SPECS, “SPECS Enforcement EZEE Monitoring Adapter”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter.

SPECS Project - Deliverable 4.3.2 93

https://bitbucket.org/specs-team/specs-core-enforcement-repository/overview
https://crypton.io/
https://crypton.io/crypton.pdf
http://redis.io/
http://www.postgresql.org/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://cloudsecurityalliance.org/group/cloud-controls-matrix/
http://www.open-scap.org/page/Main_Page
http://www.open-scap.org/page/Main_Page
http://www.openvas.org/
https://cirt.net/Nikto2
https://bitbucket.org/specs-team/specs-mechanism-enforcement-tls/overview
https://bitbucket.org/specs-team/specs-core-enforcement-broker/overview
https://www.chef.io/chef/
https://bitbucket.org/specs-team/specs-mechanism-enforcement-webpool/overview
https://bitbucket.org/specs-team/specs-core-enforcement-repository/src
http://www.haproxy.org/
http://nginx.org/en/
http://www.apache.org/
https://bitbucket.org/specs-team/specs-utility-data-model
https://bitbucket.org/specs-team/specs-core-enforcement-repository/src/master/E2EE/
https://bitbucket.org/specs-team/specs-core-enforcement-repository/src/master/E2EE/
https://bitbucket.org/specs-team/specs-core-enforcement-repository/src/master/DBB/
https://bitbucket.org/specs-team/specs-core-enforcement-repository/src/master/DBB/
https://spring.io/
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter

Secure Provisioning of Cloud Services based on SLA Management

Appendix 1. Solving the planning problem

The first phase of the process of automatic provisioning of cloud services is negotiation. SLA
negotiation phase consist of eliciting End-user’s (EU’s) desired security requirements,
mapping them to available security mechanisms, and building supply chains that implement
EU’s choice of security features. In what follows we focus on formalizing and solving the
planning problem, i.e.,, on modelling and determining the optimal deployment of security
mechanisms’ components for the implementation of an SLA.

In SPECS, the generation of valid supply chains is orchestrated by the Enforcement’s Planning
component according to the input provided by the Negotiation module. During the
negotiation phasel?, the EU specifies the desired security requirements. Negotiation module
formalizes the requirements in terms of an SLA and identifies security mechanisms able to
enforce and monitor all security parameters specified in the SLA. Once the Planning
component receives the list of supported CSPs, the list of SLOs included in the SLA, and a list
of security mechanisms able to implement it, the planning process begins.

The planning problem’s input consist of
e (SPrelated information (e.g., maximum acquirable number of VMs),

e security mechanism related information (i.e., mechanisms’ metadata), and
e EU’s security requirements (i.e., SLOs).

First, the set of CSPs is parsed. For each CSP a list of zones, VM types, and maximum
acquirable number of VMs per CSP per zone is extracted. Then all implementation details for
each security mechanism are retrieved. Metadata for each mechanism includes a list of
enforcement and monitoring components belonging to the mechanism, all configuration
related parameters, and also some other information, for example, resource consumption, and
dependencies and incompatibilities among components.

For each security mechanism, the Planning component has to identify the actual components
needed to implement the set of SLOs. This solves the first part of the planning problem.
According to the final set of components to be deployed, the Planning prepares a set of
associated constraints. According to the constraints, the Planning component has to solve the
second part of the planning problem (named as allocation problem), i.e., to determine

¢ the number of instances of each component to deploy,

e the number of resources needed to deploy all required components, and
e the distribution of components over acquired resources.

Note that the allocation problem has to be solved for each supported CSP separately, i.e.,
separately for each combination {CSP, zone, VM type}.

The described allocation problem (depicted in Figure 43) in practice becomes very
challenging, not only because we need to consider infrastructure limitation of resources (e.g.,
highest load on each VM, maximum acquirable number of VMs), but also because we need to
take into account constraints related to security mechanisms (e.g., dependencies and
incompatibilities among components). And since each SLA can imply a different set of security
mechanisms and a different set of available CSPs, both parts of the planning problem are

10 For details see D2.2.2.

SPECS Project - Deliverable 4.3.2 94

Secure Provisioning of Cloud Services based on SLA Management

modelled dynamically at runtime.

All considered constraints can be expressed in a linear way. And since the goal is to find the
minimum number of resources to acquire to implement an SLA, the allocation problem is
modelled in the form of an Integer Linear Programming problem (ILP). In SPECS, in order to
solve the allocation problem, the Planning component uses a Solver, a subcomponent able to
process a set of constraints and identify the optimal acquisition and allocation solution.

Se Se Se

curity curity curity
mechanism mechanism mechanism
component E component |: component
constraints | | constraints ‘ ‘ constraints ‘

VM \ VM

E component |: component

I'_—_f J \-.—.-/ /

Figure 43. Input and output of the allocation problem

Note that a set of security requirements is not always implementable with supported CSPs.
This results in Solver not always being able to find a solution of the allocation problem. In this
case, the EU might be asked to adjust the set of desired security features.

As mentioned above, the allocation model has three main inputs, namely
e asetof components C = ¢y, cy, ..., Cy to deploy,

e asetofavailable VMs V = vy, v,, ..., vy, where M is the maximum acquirable number
of VMs for the considered CSP, and

e alist of constraints related either to the set of components C or to some general
allocation principles.

Each component c; € C is assigned a computational load [;, i = 1,2, ..., N, based on resource
consumption features (e.g., required RAM or CPU) included in the metadata as mentioned
above. Similarly, all VMs are characterized by a maximum allowed load VMLmax. Note that
the allocation problem is modelled and solved for one CSP at a time and as a provider we
consider a combination of one CSP, one zone, and one VM type. Thus all VMs considered in
one allocation problem are of the same type.

The Planning component (i.e., the Solver) has to determine the minimum number of VMs to
acquire so that all components C are deployed on the set of acquired VMs according to the
constraints.

SPECS Project - Deliverable 4.3.2 95

Secure Provisioning of Cloud Services based on SLA Management

As mentioned above, the allocation problem is subject to various constraints. We have to
consider general constraints related to basic allocation rules, and mechanism-specific
constraints arising from the definition and design of mechanisms. In the following we present
both types of constraints. A mathematical formulation for each of them will be presented in
D4.3.3.

General constraints. We identified the following constraints arising from basic allocation
principles:

e GC1. Each component must be allocated to at least one VM.

e GC2. The maximum allowed load VM Lmax on each acquired VM cannot be exceeded.

e GC3. Acomponent can be allocated to a VM only if it is acquired.

Mechanism-specific constraints. As anticipated, some constraints may apply to components
due to the specific design of mechanisms. These constraints are prepared by mechanisms’
developers who may not be aware of the other mechanisms, their components, and their
characteristics. As a consequence, we consider either intra-mechanism constraints that
express rules of deployment among components of the same mechanism, or inter-mechanism
constraints, expressing general rules of deployment that only indirectly involve components
belonging to other mechanisms. These mechanism-specific constraints are divided into
classes by grouping together constraints of the same type:
e SC1 (incompatibility). Such constraints express incompatibilities among components
implying that involved components cannot be deployed on the same VM:

o SCla (simple incompatibility). Component ¢, cannot be allocated to a VM
together with a set € of other components, where c, and C belong to the same
mechanism.

o SC1b (full incompatibility/exclusive use). Component c, needs exclusive use
of a machine. Note that, if full incompatibility is only related to components of
the same mechanism, this is a particular case of SCla and can be written in the
same way as SC1a considering € = C — c,,.

e SC2 (number of instances). Such constraints refer to the number of instances of the
same component to deploy:

o SC2a (number of instances of a component). The number of instances of a
component ¢, must comply with an expression:

= SC2a-1: The number of instances of a component c, must be equal to n.

= SC2a-2: The number of instances of a component c, must be greater or
equal to n.

= SC2a-3: The number of instances of a component ¢, must be less or
equal to n.

= SC2a-4: The number of instances of a component ¢, must be in the range
between n; and n,.

o SC2b (number of instances of a set of components). The total amount of
instances of components ¢; € C must comply with an expression:

= SC2b-1: The total amount of instances of components ¢; € € must be
equal to n.

SPECS Project - Deliverable 4.3.2 96

Secure Provisioning of Cloud Services based on SLA Management

= SC2b-2: The total amount of instances of components ¢; € € must be
greater or equal to n.

= SC2b-3: The total amount of instances of components c¢; € € must be less
or equal to n.

= SC2b-4: The total amount of instances of components ¢; € € must beina
range between n; and n,.

o SC2c (full deployment of a component). Component ¢, must be deployed on
each acquired VM. Clearly, in order to make the problem solvable, such a
constraint must take into account possible incompatibilities with other
components. Therefore the developer of each mechanism must also indicate the
set of components ¢; € C that are incompatible with c,,.

¢ SC3 (minimum number of VMs). Such constraint expresses the need for a minimum
number n < M of VMs to acquire, and may be explicitly introduced by an SLO.

e SC4 (dependency). The number of instances of a component c, depends on the
number of instances of a component ¢z according to an expression:

o SC4-1: The number of instances of a component c, must be equal to the number
of instances of a component cg.

o SC4-2: The number of instances of a component c, must be greater than or
equal to the number of instances of a component cg.

o SC4-3: The number of instances of a component c, must be less than or equal to
the number of instances of a component cg.

o SC4-4: Fore very n instances of a component cg there must be one instance of a

component c,,.

Note that avoiding conflicts among constraints for one mechanism is the responsibility of the
mechanism’s developer. However, conflicts among constraints belonging to different
mechanisms may still appear. For example, combination of constraints SC1b (full
incompatibility) and SC2c (full deployment) assigned to two components ¢, and cg of two
different mechanisms may result in no feasible solution. Thus the Planning component has to
modify them to avoid this situation. If the Planning component recognizes that both
constraints have been specified for the set of mechanisms to deploy, it automatically rewrites
constraint SC2c¢ by including component ¢, in the set € of components that are incompatible
with cg.

Developers of security mechanisms have to be provided with a clear and simple syntax to
define mechanism’s constraints. Prepared constraints are included in mechanism’s metadata
along with other configuration details. Both constraints and metadata in general can be
specified in several formats. In SPECS, the JSON format has been adopted due to the fact that it
is language-independent and easy to read and write for humans, and easy to parse and
generate for machines. The JSON schema for mechanism-specific constraints is presented in
the listing below.

The JSON schema includes the ID of the constraint (ctype), two possible arguments (arg1 and
arg2) related to components (e.g., argl = c, and arg2 =), an operator (op), and two
possible integer values (vall and val2) related to constraints SC2a, SC2b, SC3, and SC4-4.

SPECS Project - Deliverable 4.3.2 97

Secure Provisioning of Cloud Services based on SLA Management

{

"type": "array",
"items": {
"type": "object",
"properties": {
"ctype": {"type": "string"},
"argl": {"type": "array", "items": {"type": "string"}},
"arg2": {"type": "array", "items": {"type": "string"}},
"op": {"type": "string"},
"vall": {"type": "string"},
"val2": {"type": "string"}
b
"required": ["ctype"]

}
}

The following table summarizes all considered constraints and illustrates to developers how
to prepare mechanism’s metadata (i.e., how to fill the JSON schema) in an easy way.

ctype argl arg?2 op vall val2
SCla Cq c;€C - - -
SC1b Cq - - - -
SC2a-1 Cy - = n -
SC2a-2 Cq - = n -
SC2a-3 Cq - < n -
SC2a-4 Cq - in n, n,
SC2b-1 c;€C - = n -
SC2b-2 c;€C - > n -
SC2b-3 c,€C - < n -
SC2b-4 c; €C - in ny N,
SC2c Ca c; €C - - -
SC3 - - - n -
SC4-1 Ca Cp = - -
SC4-2 Ca Cp = - -
SC4-3 Ca Cp > - -
SC4-4 Ca Cp * n -

Table 61. Mechanism-specific constraints

When the Planning component solves the first part of the planning problem (i.e., identifies all
components to be deployed), it creates a list of constraints and builds the allocation model.
The list of constraints in the ILP format is passed to an automatic solver running inside the
Planning component. The solution, if exists, is then translated from the ILP format into a
supply chain format as will be presented later with an example.

Several open-source libraries exist that allow building and solving ILP problems. For the
purpose of the following example we translated the model in the Moselll language and

11 http://www.fico.com/en/wp-content/secure upload/Xpress-Mosel-Libraries.pdf

SPECS Project - Deliverable 4.3.2 98

http://www.fico.com/en/wp-content/secure_upload/Xpress-Mosel-Libraries.pdf

Secure Provisioning of Cloud Services based on SLA Management

processed it with the Xpress Optimization Suitel?, a commercial product that provides an
educational release, adopted to conduct the experiments.

In order to illustrate the introduced approach to solving the planning/allocation problem, we
consider the case of provisioning a web container service provided by a CSP and enriched
with two SPECS mechanisms, namely WebPool and WebIDS.

The WebPool (as presented in Section 4.2) offers resilience to attacks and failures by means of
redundancy and diversity. The mechanism is offered through two security metrics, namely
Level of redundancy (LoR; number of replicas of web servers) and Level of diversity (LoD;
number of different web server types), and is implemented with a set of different web servers
(Nginx and Apache) and a load balancer (HAProxy). The following are the constraints given by
the developer of the mechanism:

e The balancer cannot be deployed on the same VM where any of web servers reside.

¢ Different web servers cannot be deployed together on the same VM.

e Exactly one balancer component has to be instantiated.

e The total amount of instances of web servers must be at least equal to LoR + 1.
e The number of different web server types must be equal to LoD.

e Atleast LoR+1 VMs must be acquired.

The WebIDS protects from unauthorized and potentially dangerous accesses by means of
intrusion detection tools. The mechanism is offered through one security metric Report
generation Frequency (RGF; the frequency of generation of the intrusion detection report in
hours), and is implemented with an agent (IDSagent) that protects a resource and a server
(IDSserver) which collects the data gathered by agents. The following are the constraints given
by the mechanism’s developer:

e Server needs an exclusive use of a VM.

e One agent must be allocated on every acquired VM except on the one with the server.
e There must be one server for every 10 instances of an agent.

Let us consider one CSP (offering one VM type with VMLmax = 10 in one zone where the
maximum number of acquirable VMs is M = 20) and the following set of SLOs:

e LoR=3

e LoD =2

e RGF =2

The Planning component first identifies the components needed to be deployed and the
minimum number of VMs to acquire. According to the value of the LoR metric, we need at
least 4 VMs. To assure the requested level of diversity, we have to deploy two different web
servers. And to deploy WebIDS, we need all its components. Thus the final set of components
to be deployed is {HAProxy, Apache, Nginx, IDSserver, IDSagent}.

Tables Table 62 and Table 63 present mechanism-specific constraints for the chosen set of
components (separately for each mechanism).

SPECS Project - Deliverable 4.3.2 99

http://www.fico.com/en/products/fico-xpress-optimization-suite

Secure Provisioning of Cloud Services based on SLA Management

ctype argl arg?2 op vall val2
SCla HAProxy {Apache, - - -
Nginx}
SCla Apache Nginx - - -
SC2a-1 HAProxy - = 1 -
SC2b-2 {Apache, - > 3 -
Nginx}
SC3 - - - 4 -
Table 62. WebPool-specific constraints
ctype argl arg?2 op vall val2
SC1b IDSserver - - - -
SC2c IDSagent IDSserver - - -
SC4-4 IDSserver IDSagent * 10 -

Table 63. WebIDS-specific constraints

If we denote HAProxy = ¢4, Apache = c¢,, Nginx = c3, IDSserver = c,, and IDSagent = cs,
and we merge all constraints, we get a full set of mechanism-specific constraints for the set of
EU’s requirements. The full set is presented in Table 64 below.

ctype argl arg?2 op vall val2
SCla Cy {c,, c3} - - -
SCla Cy C3 - - -
SC1b Cy - - - -
SC2a-1 1 - = 1 -
SC2b-2 {c,, c3} - = 3 -
SC2c Cs Cy - - -
SC3 - - - 4 -
SC4-4 Cy Cs * 10 -

Table 64. Mechanism-specific constraints for the full set of components to be deployed

In the next step, the Planning component prepares the allocation model (in the mathematical
form of an ILP problem) considering all general and all mechanism-specific constraints. The
model is fed to the Solver which finds the following solution, translated into the supply chain
format:

e Number of needed VMs: 5

e Allocation:
o VMi: {Apache, IDSagent}
o VMz: {Nginx, IDSagent}
o VMs: {IDSserver}
o VMgy: {HAProxy}
o VMs: {Apache, IDSagent}

SPECS Project - Deliverable 4.3.2 100

Secure Provisioning of Cloud Services based on SLA Management

Appendix 2. Example of the implementation plan and the
associated SLA with alerts

The following example presents the implementation plan generated for an SLA with the
following attributes:
e Provider: aws-ec2, us-east-1, t1.micro.

e Service: Secure Web Container
e (Capabilities:
o Web Resilience, SLOs:
= Level of redundancy = 2 with high importance
= Level of diversity = 2 with medium importance
o Software Vulnerability Assessment, SLOs:
= Basic Scan Frequency = 24h with high importance
= Vulnerability List Update Frequency = 24h with medium importance

For this set of requirements two security mechanisms need to be deployed, namely WebPool
(see Section 4.2) and SVA (see Section 4.4) to cover Web Resilience and Software
Vulnerability Assessment capabilities, respectively.
The chosen mechanisms are implemented with the following supply chain:
e Provider: {aws-ec2, us-east-1, t1.micro}.
e Number of needed VMs: 3
e Allocation:
o VMi: {HAProxy, SVA Dashboard}
o VMz: {Apache, SVA Enforcement, SVA Monitoring, OpenSCAP}
o VMs: {Nginx, SVA Enforcement, SVA Monitoring, OpenSCAP}

The following is the associated implementation plan built by the Planning component. Some
IDs and configuration details (e.g., IP addresses and firewall rules) have been left out for
readability sake. The complete JSON schema is described in D1.3.

{

.y

"iaas": {
"provider": "aws_ec2",
"zone": "us east 1",
"appliance": "ami ff0e0696",
"hardware": "cl medium"

}y

"pools"™: [
{

"pool name": "webpool",

"pool seq num": 1,

ey

"vms": [
{
"vm_seq num": 1,
"components": [
{

"component name": "wp haproxy",
"cookbook": "webpool",
"recipe": "wp_ r5",

SPECS Project - Deliverable 4.3.2 101

Secure Provisioning of Cloud Services based on SLA Management

}y
{

"component name": "sva dashboard",
"cookbook": "sva'",
"recipe": "sva ro",
}
]
by
{
"vm_ seq num": 2,
"components": [
{
"component name": "wp apache",
"cookbook": "webpool",
"recipe": "wp reé",
by
{
"component name": "sva enforcement",
"cookbook": "sva'",
"recipe": "sva r4",
}y
{
"component name": "sva monitoring",
"cookbook": "sva'",
"recipe": "sva_ r5",
}y
{
"component name": "sva openscap",
"cookbook": "sva'",
"recipe": "sva rl",
}
]
}y
{
"vm_seq num": 3,
"components": [
{
"component name": "wp nginx",
"cookbook": "webpool",
"recipe": "wp r7",
s
{
"component name": "sva enforcement",
"cookbook": "sva'",
"recipe": "sva r4",
}y
{
"component name": "sva monitoring",
"cookbook": "sva'",
"recipe": "sva_ r5",
}y
{
"component name": "sva openscap",
"cookbook": "sva'",

SPECS Project - Deliverable 4.3.2

102

Secure Provisioning of Cloud Services based on SLA Management

"recipe": "sva rl",
}
]
}
]
}
1,
"slos": [
{
"slo id": "wp slo 1",
"capability": "web resilience",
"metric_id": "level of redundancy ml",
"unit type": "integer",
"unit": "machines",
"value": "2",
"operator": "greater equal",
"importance level": "high"
}y
{
"slo id": "wp slo 2",
"capability": "web resilience",
"metric id": "level of diversity m2",
"unit type": "integer",
"unit": "machines",
"value": "2",
"operator": "equal",
"importance level": "medium"
}y
{
"slo id": "sva slo 1",
"capability": "software vulnerability assessment",
"metric_id": "basic_scan ml3",
"unit type": "integer",
"unit": "hours",
"value": "24",
"operator": "equal",
"importance level": "high"
}y
{
"slo id": "sva slo 2",
"capability": "software vulnerability assessment",
"metric id": "list update ml4",
"unit type": "integer",
"unit": "hours",
"value": "24",
"operator": "equal",
"importance level": "medium"
}
1,
"measurements": [
{
"msr_ id": "number of servers wp msrl",
"msr description": "Number of responsive web servers.
"frequency": "1h",
"metrics": [
"level of redundancy ml"
1,
"monitoring event": {
"event id": "redundancy too low wp el",
"event description": "The number of responsive web
"event type": "violation",

servers

is too

low.",

SPECS Project - Deliverable 4.3.2

103

Secure Provisioning of Cloud Services based on SLA Management

"condition": {
"operator": "less",
"threshold": "2"

"msr id": "diversity level wp msr2",

"msr description": "Number of web server types active.",
"frequency": "1lh",

"metrics": [

"level of diversity m2"

1,

"monitoring event": {
"event id": "diversity too low wp e2",
"event description": "The number of web server types is too low.",
"event type": "violation",
"condition": {
"operator": "less",
"threshold": "2"
}
}
1y
{
"msr id": "report basic_age sva msrl",
"msr description": "Age of the scanning report.",
"frequency": "24h",
"metrics": [

"basic scan ml3"
1,
"monitoring event": {
"event id": "basic report too old sva el",
"event description": "Scanning report (basic scan) is too old.",
"event type": "violation",
"condition": {
"operator": "greater",
"threshold": "24h"

"msr id": "list age sva msr2",
"msr description": "Age of the vulnerability list.",
"frequency": "24h",
"metrics": [
"list update ml4"
1,

"monitoring event": {
"event id": "list too_old sva e2",
"event description": "Vulnerability list is too old.",
"event type": "violation",
"condition": {
"operator": "greater",

"threshold": "24h"

"msr id": "repository availability sva msr6",

"msr description": "Availability of the OVAL/NVD repositories.",
"frequency": "6h",

"metrics": [

SPECS Project - Deliverable 4.3.2

104

Secure Provisioning of Cloud Services based on SLA Management

"list update ml4"
1y
"monitoring event": {
"event id": "repository unavailable sva e6",
"event description": "Repository for extracting published
vulnerabilities is unavailable.",
"event type": "alert",
"condition": {
"operator": "equal",
"threshold": "no"

"msr id": "list availability sva msr7",
"msr description": "Availability of vulnerability list.",
"frequency": "6h",
"metrics": [
"basic scan ml3"
1,
"monitoring event": {
"event id": "list unavailable sva e7",
"event description": "Vulnerability list is unavailable.",
"event type": "alert",
"condition": {
"operator": "equal",
"threshold": "no"

"msr id": "scanner_ availability sva msr8",
"msr description": "Availability of the installed scanner.",
"frequency": "6h",
"metrics": [
"basic scan ml3"

1,

"monitoring event": {
"event id": "scanner unavailable sva e8",
"event description": "Installed scanner is unavailable.",
"event type": "alert",
"condition": {
"operator": "equal",
"threshold": "no"

As described in Section 3.2, each metric is associated to a set of measurements with which we
can detect alerts and violations. These measurements are reported and mapped to metrics in
the “measurement” section of the implementation plan. With these measurements a list of
alert and violation thresholds is created in order to update the MoniPoli.

<specs:SLO name="specs webpool MI1" metric-name="Level of Redundancy">
<specs:description>

The number of replicas of the Web Container that are set-up and kept active
throughout the service operation to ensure redundancy.

SPECS Project - Deliverable 4.3.2 105

Secure Provisioning of Cloud Services based on SLA Management

</specs:description>

<specs:expression unit="machines" op="eq">2</specs:expression>
<specs:importance weight>HIGH</specs:importance weight>
</specs:SLO>

<specs:SLO name="specs webpool M2" metric-name="Level of Diversity">
<specs:description>

The number of different software and/or hardware versions of the Web Container
service that are set-up and kept active throughout the service operation to
increase the protection from attacks and vulnerabilities exploits.
</specs:description>

<specs:expression unit="machines" op="eq">2</specs:expression>
<specs:importance weight>MEDIUM</specs:importance weight>

</specs:SLO>

-<specs:objectivelist>

<specs:SLO name="specs openvas MI13" metric-name="Scanning Frequency - Basic
Scan">

<specs:description>

The frequency of report generation (e.g., a value of "7*24h" requires that
reports are generated at least once per week).

</specs:description>

<specs:expression unit="hours" op="eq">24</specs:expression>
<specs:importance weight>HIGH</specs:importance weight>

</specs:SLO>

<specs:SLO name="specs_openvas M14" metric-name="List Update Frequency">
<specs:description>

The frequency of vulnerability list updates (e.g., a value of "24h" requires
that the list of known vulnerabilities is updated at least once per day).
</specs:description>

<specs:expression unit="hours" op="eq">24</specs:expression>
<specs:importance weight>MEDIUM</specs:importance weight>

</specs:SLO>

<specs:SLO name="report basic age MSR1" metric-name="report basic age SVA"
type="alert">

<specs:description>Age of the scanning report (basic scan)</specs:description>
<specs:expression unit="hours" op="eqg">24</specs:expression>

<specs:importance weight>HIGH</specs:importance weight>

</specs:SLO>

<specs:SLO name="list age MSR2" metric-name="list age MSR2 SVA" type="alert">
<specs:description>Age of the vulnerability list.</specs:description>
<specs:expression unit="hours" op="eq">24</specs:expression>
<specs:importance weight>MEDIUM</specs:importance weight>

</specs:SLO>

<specs:SLO name="repository availability MSR6" metric-

name="repository availability MSR6 SVA" type="alert">
<specs:description>Availability of the OVAL/NVD repository.</specs:description>
<specs:expression unit="boolean" op="eq">yes</specs:expression>
<specs:importance weight>HIGH</specs:importance weight>

</specs:SLO>

<specs:SLO name="list availability MSR7" metric-

name="1list availability MSR7 SVA" type="alert">
<specs:description>Availability of the vulnerability list</specs:description>
<specs:expression unit="boolean" op="eq">yes</specs:expression>
<specs:importance weight>HIGH</specs:importance weight>

</specs:SLO>

SPECS Project - Deliverable 4.3.2 106

Secure Provisioning of Cloud Services based on SLA Management

<specs:SLO name="scanners_availability MSR8" metric-

name="scanners_ availability MSR8 SVA" type="alert">
<specs:description>Availability of the installed scanner.</specs:description>
<specs:expression unit="boolean" op="eq">yes</specs:expression>

HIGH

</specs:SLO>

SPECS Project - Deliverable 4.3.2 107

Secure Provisioning of Cloud Services based on SLA Management

Appendix 3. Example of the diagnosis process for an SVA alert

Let us take the SLA and implementation plan defined in Appendix 2, and let us consider the
following notification of a monitoring event, sent from the Monitoring module to the

Diagnosis component:

{

"component": "specs enforcement sva",
"object": "sva monitoring adapter",
"labels™: [

"sla id 9b0£f908e",

"security mechanism sva",

"measurement list availability sva msr7"
1,
"type": "boolean",
"data": "no",
"timestamp": 1438945443

Note that the notification is in the SPECS event format introduced in D3.3.

The Diagnosis logs the start of the process, and retrieves the SLA with ID 9b0£908e from the
SLA Manager and queries Chef Server for the associated implementation plan. Based on the
reported measurement (list availability sva msr7), the affected SLOs are identified.
From the “measurements” part of the implementation part it is clear that the considered
measurement is related to metric basic scan m13. According to the “slos” part of the
implementation plan this metric is mapped to one SLO with ID sva slo 1.

During the classification of the notified event, the Diagnosis checks in the implementation
plan the “monitoring_event” attribute of the reported measurement, presented below:

{

"msr id": "list availability sva msr7",

"msr description": "Availability of vulnerability list.",
"frequency": "6h",

"metrics": [

"basic scan ml3"

1,

"monitoring event": {
"event id": "list unavailable sva e7",
"event description": "Vulnerability list is unavailable.",
"event type": "alert",
"condition": {
"operator": "equal",
"threshold": "no"

By comparing the condition of the monitoring event and the data value in the event
notification, the Diagnosis concludes that the notified event actually represents an alert or a
violation (the false positive is discarded). Event type associated to the measurement reveals
that the event classifies as an alert for the affected SLO.

SPECS Project - Deliverable 4.3.2 108

Secure Provisioning of Cloud Services based on SLA Management

Considering there is only one SLO affected by the notified event, the entire SLA is labelled as
Alerted.

In the next steps the Diagnosis has to analyse the alert and determine its impact on the SLA.
Since the event represents an alert and the affected SLO is of high importance, the risk level
assigned to the affected SLO and thus to the entire SLA is 3 (see Table 7).

The state of the SLA is updated to Alerted and the SLA is put in the priority queue according to
the assigned risk level. All gathered information about the alert is logged.

When all SLAs with higher risk/severity level have been pushed to the RDS, the Diagnosis
takes the SLA considered in this example and verifies its state. This means that it queries
Event Archiver for all data related to the SLA (with ID 9v0f908e) and related to the
measurement reported in the event notification (1ist availability sva msr7) that refers to
the time after the initial event occurred (with timestamp higher than 1438945443).

If the Event Archiver has no such data or if the data that is retrieved reports the same
condition as it was initially reported (1ist availability sva msr7 = no), the SLA is pushed
to the RDS.

If the Event Archiver returns data that implies that the alert has escalated to a violation or
that the initial alert/violation still persists but the initial reported value for the same
measurement changed, the Diagnosis discards the event and handles the next SLA in the
priority queue, because this would actually mean that the Diagnosis has been in the meantime
notified about another monitoring event related to this same measurement of this same SLA.

SPECS Project - Deliverable 4.3.2 109

Secure Provisioning of Cloud Services based on SLA Management

Appendix 4. Configuration details for the WebPool mechanism

The following are configuration details for the WebPool mechanism prepared by its
developer. The complete JSON schema is described in D1.3.

"security mechanism id": "86dacd86-3ce5-11le5-al51-feff819cdc9f",
"security mechanism name": "webpool",
"sm description": "This security mechanisms aims at offering web servers and

the capabilities of surviving to security incidents involving a web server, by
implementing proper strategies aimed at preserving business continuity, achieved
through redundancy and/or diversity.",
"security capabilities": [
"web resilience"
1y
"enforceable metrics": [
"level of redundancy ml",
"level of diversity m2"
1,
"monitorable metrics": [
"level of redundancy ml",
"level of diversity m2"

1,

"measurements": [
{
"msr id": "number of servers wp msrl",
"msr description": "Number of responsive web servers.",
"frequency": "1h",
"metrics": |

"level of redundancy ml"

1,

"monitoring event": {
"event id": "number of servers too low wp el",
"event description": "The number of responsive web servers is too low.",
"event type": "violation",
"condition": {
"operator": "less",
"threshold": "level of redundancy ml"
}
}
}y
{
"msr id": "diversity level wp msr2",
"msr description": "Number of web server types active.",
"frequency": "1h",
"metrics": [

"level of diversity m2"

1,

"monitoring event": {
"event id": "diversity level too low wp e2",
"event description": "The number of web server types is too low.",
"event type": "violation",
"condition": {
"operator": "less",
"threshold": "level of diversity m2"
}
}
}
1,
"metadata": {
"components": [

SPECS Project - Deliverable 4.3.2 110

Secure Provisioning of Cloud Services based on SLA Management

"component name": "wp haproxy",
"component type": "balancer",
"recipe": "webpool",
"cookbook": "wp r5",
"implementation step": 1,
"pool seq num": 1,
"pool id": "webpool",
"vm_requirement": {
"hardware": "tl micro",
"usage": "100",
"acquire public ip": "true",
"private ips count": 1,
"firewall": {
"incoming": {
"source ips": [
"0.0.0.0/0"
1,
"source nodes": [
"string"
1y
"interface": "public",
"proto": [
"TCPp"
1y
"port list": [
"2,
"go",
"443"
]
}y
"outcoming": {
"destination ips": [
"0.0.0.0/0"
1,

"destination nodes": [],

"interface": "public,private:1",

"proto": [
"TCP"

1,

"port list": [

"Wk n

"component name": "wp apache",
"component type": "web server",
"recipe": "webpool",
"cookbook": "wp re",
"implementation step": 1,
"pool seq num": 1,
"pool id": "webpool",
"vm_requirement": {

"hardware": "tl micro",

"usage": "50",

"acquire public ip": "false",

"private ips count": 1,

"firewall": {

"incoming": {

SPECS Project - Deliverable 4.3.2

111

Secure Provisioning of Cloud Services based on SLA Management

"source ips": [],
"source nodes": [
"wp_ haproxy"
1,
"interface": "private:1l",
"proto": [
"TCP"
1,
"port list": [
"22",
"g8o",
"443"
]
by
"outcoming": {
"destination ips": [],
"destination nodes": [
"wp_ haproxy"
1,
"interface": "private:1l",
"proto": [
"TCp"
1,
"port list": [

"Wk n

"component name": "wp nginx",
"component type": "web server",
"recipe": "webpool",
"cookbook": "wp r7",
"implementation step": 1,
"pool seq num": 1,

"pool id": "webpool",

"vm_ requirement": {
"hardware": "tl micro",
"usage": "50",

"acquire public ip": "false",
"private ips count": 1,
"firewall™: {
"incoming": {
"source ips": [],
"source nodes": [
"wp haproxy"
1,
"interface": "private:1l",
"proto": [
"TCP"
1,
"port list": [
"22",
"80",
"443"
]
}y
"outcoming": {
"destination ips": [],
"destination nodes": [

SPECS Project - Deliverable 4.3.2 112

Secure Provisioning of Cloud Services based on SLA Management

"wp_ haproxy"
1,
"interface": "private:1",
"proto": [
"TCP"
1,
"port list": [
wkn
]
}
}
}
}
1,
"constraints": [
{
"ctype": "SCla",
"argl": [
"wp haproxy"
1y
"arg2": [

"wp_ apache",
"wp_nginx"

]

"ctype": "SCla",
"argl": [
"wp_ apache"
1y
"arg2": [
"wp_nginx"

]

"ctype": "sCz2a 1",
"argl": [
"wp haproxy"
1,
"op": "=",
"nl™: "1"
}y
{
"ctype": "SC2b 2",
"argl": [

"wp_ apache",
"wp_nginx"
1,
"op": ">=",
"nl": "level of redundancy ml"

"Ctype": "SCB",
"nl": "level of redundancy ml+1"

]
by
"remediation": {
"remediation actions": [
{

"name": "wp al",

"action description": "Check if the number

SPECS Project - Deliverable 4.3.2

of

responsive web servers is

113

Secure Provisioning of Cloud Services based on SLA Management

greater than or equal to level of redundancy ml value.",
"recipes": [
llwp_rl "
]
b
{

"name": "wp a2",

"action description”: "Restart unresponsive web server and check if
number of responsive web servers is greater than or equal to
level of redundancy ml value.",

"recipes": [

"wp_r2",
"wp rl"
]
1y
{

"name": "wp a3",

"action description”: "Replace unresponsive web server and check if
number of responsive web servers is greater than or equal to
level of redundancy ml value.",

"recipes": [

"wp_r3",
"wp rl"
]
}y
{

"name": "wp a4d",
"action description”: "Check 1if the number of responsive web server
types is greater than or equal to level of diversity m2 value.",
"recipes": [
"wp rd"
]
}y
{

"name": "wp_ abd",

"action description": "Restart unresponsive web server and check if the
number of responsive web server types is greater than or equal to
level of diversity m2 value.",

"recipes": [

pr_rZ " ,
pr_r4 "

]

by
{

"name": "wp a6",

"action description": "Replace unresponsive web server and check if the
number of responsive web server @ types is greater than or equal to
level of diversity m2 value.",

"recipes": [

pr_r3 " ,
pr_r4 "

}
1,
"remediation flow": [
{
"name": "redundancy too low wp el",
"action id": "wp_al",
"yes action": "observe",
"no action": {
"action id": "wp a2",
"yes action": "observe",

SPECS Project - Deliverable 4.3.2 114

Secure Provisioning of Cloud Services based on SLA Management

"no_action": {
"action id": "wp_ a3",
"yes action": "observe",
"no action": "notify"
}
}
by
{
"name": "diversity too low wp e2",
"action id": "wp_ a4",
"yes action": "observe",
"no action": {
"action id": "wp_ab5",
"yes action": "observe",
"no action": {
"action id": "wp_ ab6",
"yes action": "observe",
"no action": "notify"

}

]
1y
"chef recipes": [
{
"name": "wp rl",
"recipe description": "Take measurement wp-msrl and
remediation-event.",
"associated metrics": [],
"associated measurements": [],
"dependent components": [
"wp haproxy"
]

"name": "wp r2",
"recipe description": "Restart unresponsive servers.",
"associated metrics": [],
"associated measurements": [],
"dependent components": [
"wp_ haproxy",
"wp_ apache",
"wp_nginx"

]

"name": "wp r3",
"recipe description": "Replace unresponsive servers.",
"associated metrics": [
"specs:level of redundancy:M1",
"specs:level of diversity:M2"
1,
"associated measurements": [],
"dependent components": [
"wp_ haproxy",
"wp_ apache",
"wp_nginx"

]

"name": "wp r4d",
"recipe description": "Take measurement wp-msr2 and

SPECS Project - Deliverable 4.3.2

label

label

the event as

the event as

115

Secure Provisioning of Cloud Services based on SLA Management

remediation-event.",

"associated metrics": [],
"associated measurements": [],
"dependent components": [

"wp_ haproxy"
]

"name": "wp r5",

"recipe description": "Install HAProxy.",

"associated metrics": [],

"associated measurements": [
"specs:level of redundancy:M1",
"specs:level of diversity:M2"

1,

"dependent components": [

"wp apache",
"wp_nginx"

]

"name": "wp re",
"recipe description": "Install Apache.",
"associated metrics": [],
"associated measurements": [],
"dependent components": [

"wp haproxy"
]

"name": "wp r7",
"recipe description": "Install Nginx.",
"associated metrics": [],
"associated measurements": [],
"dependent components": [

"wp haproxy"
]

SPECS Project - Deliverable 4.3.2

116

Secure Provisioning of Cloud Services based on SLA Management

Appendix 5.

List of security metrics

In the following table a list of all metrics offered and implemented by security mechanisms
demonstrated in this document is provided.

The entire list of security metrics (the ones presented in this document, the ones that will be
presented in the final iteration of this document, and the ones focused on ngDC and developed
in WP5) together with all the details is available online in the SPECS metrics catalogue!3.

Name

Description

Level of redundancy
(LOR)

This metric sets the minimum number (with respect to EU’s
requirements and technological constraints) of web server engines
which are set-up and kept active throughout the service operation
to increase the protection from attacks and vulnerabilities exploits.
For example, level of redundancy = 3, ensures that there are at
least three web servers running.

Level of diversity
(LOD)

This metric sets the number of different web server types available
on target VMs. For example, for level of diversity = 2, SPECS ensures
that there are at least two different types of web servers deployed
and available.

Write-serializability
(WSs)

This metric ensures the EU that any WS violations to the stored
data will be detected in a defined period of time (detection periods
are less than 2*epoch). In case of WS violations, the EU will be
notified, and the system will be restored to the state of the last
finished epoch.

Read-Freshness (RF)

This metric ensures the EU that any RF violations to the stored
data will be detected in a defined period of time (detection periods
are less than 2*epoch). In case of RF violations, the EU will be
notified, and the system will be restored to the state of the last
finished epoch.

Client-side encryption
certification (EC)

This metric ensures that the E2ZEE Client component available at
the provided address is certified and thus grants the security of the
encryption.

basic scan (BSF)

List update frequency | This metric sets the frequency of updates of the list of disclosed

(LUF) vulnerabilities. For example, for list_update_frequency=12, SPECS
ensures that the list of published vulnerabilities will be updated
and presented at least once every 12 hours.

Scanning frequency — | This metric sets the frequency of a basic software vulnerability

scan. For example, for scanning_frequency=24, SPECS ensures that
software vulnerability scans will be performed at least once every
day.

Scanning frequency -
extended scan (ESF)

This metric sets the frequency of an extended software
vulnerability scan. For example, for scanning_frequency=48, SPECS
ensures that software vulnerability scans will be performed at
least once every two days. Scans are performed with two scanners
and both scanning reports are presented.

Up report frequency

This metric sets the frequency of checks for updates and upgrades

13 http://apps.specs-project.eu/specs-app-security metric catalogue/

SPECS Project - Deliverable 4.3.2

117

http://apps.specs-project.eu/specs-app-security_metric_catalogue/

Secure Provisioning of Cloud Services based on SLA Management

(URF)

of vulnerable installed libraries. SPECS first updates vulnerability
list, performs the vulnerability scan of the system, and then checks
for available updates and upgrades of libraries on which
vulnerabilities have been detected). For example, for
up_report_frequency=24, SPECS ensures that checks for updates
and upgrades are performed at least once every day.

Penetration testing
activated (PTA)

This metric activates the penetration testing activity. The metric
can be chosen together with metrics related to vulnerability scans.
If chosen, scanner with penetration testing functionality is
deployed.

TLS cryptographic
strength (TCS)

This metric sets the cryptographic strength to be used by the TLS
Terminator. TLS Terminator Configurator will choose the
appropriate cryptographic ciphers that meet the negotiated level,
and configure TLS Terminator accordingly.

Forward Secrecy (FS)

This metric ensures that the encrypted data sent through a session
of the TLS secure channel cannot be decrypted even if the
cryptographic data, used to generate the cryptographic credentials
for that session, are compromised.

HTTP strict transport
security (HSTS)

This metric is a feature of HTTP transport layer that declares the
web content available only over a secure HTTP connection.

HTTP to HTTPS
redirects (HHSR)

This metric is a feature of HTTP delivery service that forces clients
to use only secure HTTP protocol.

Secure cookies (SC)

This metric is a feature of HTTP protocol to force the clients to
download session cookies, delivered by the HTTP services, only
through a secured HTTP communication

Certificate pinning
(CP)

This metric is a feature of HTTP protocol allowing the verification
of the SSL certificates between the client and the HTTP service
where the hash of the public certificate is pinned into the HTTP
response.

SPECS Project - Deliverable 4.3.2

Table 65. WP4 security metrics

118

