ﬁ Secure Provisioning of Cloud Services

based on SLA Management

SPECS Project - Deliverable 4.3.3

Implementation of the enforcement SLA
components - Finalized

Version no. 1.1
19 July 2016

L ———

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.:

D4.3.3

Deliverable title:

Implementation of the enforcement SLA components — Finalized

Deliverable nature: Prototype

Dissemination level: Public

Contractual delivery: 19 July 2016

Actual delivery date: 19 July 2016

Author(s): Jolanda Modic (XLAB), Miha Stopar (XLAB)

Contributors: Alessandra de Benedictis (CeRICT), Massimiliano Rak (CeRICT)
Reviewers: Dana Petcu (IeAT), Stefano Marrone (CeRICT)

Task contributing to the T4.3

deliverable:

Total number of pages: 70

SPECS Project - Deliverable 1.5.1

Secure Provisioning of Cloud Services based on SLA Management

Executive summary
The main focus of this deliverable is a presentation of the final implementation of the Enforcement
module. The demonstrated prototypes are based on the following:

e The requirements and design reported in D4.1.2 and D4.2.2, respectively.

e Prototypes presented at previous milestones and described in D4.3.1 and D4.3.2.

e The final SPECS flow and SPECS integration activities discussed in D1.1.3 and deliverables
of the task T1.5 (D1.5.1 and D1.5.2), respectively.

In particular, this document presents:

e Demonstration of the main Enforcement components: We report improvements with respect
to M24 (D4.3.2) and present implementation details related to the main Enforcement
components that have been finalized at M30.

e Demonstration of the SPECS security mechanisms: We demonstrate prototypes of security
mechanisms that have been improved with respect to M24 (D4.3.2) and finalized at M30.

e Analysis of the developed software: We report results of the performance, scalability, and
security reviews of the designed and developed software.

SPECS Project - Deliverable 1.5.1 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

DEliVerable INTOTTNALION ...eueueuceuceseesceseeseeseeseseeeesesess s s sssseses s s s bbb bbb 2
EXCCULIVE SUMITIATY 1uuvvureeeessssessessssessessssesssssssesssssssesssesssssssessssssssssssssssssssssssssssssnssssssssssssasans 3
2 o) (S0 o) 1173 L PP 4
INAEX OF FIGUIES..c.uivueurirerserreses s s bR 6
0T [0 i 710 (PP 7
3R 00 0 Yo L U (0) o OO OO oo OO OO OO OTP OO 8
2. Relationship with other deliverables......... 9
3. Main Enforcement COMPONENTS......ciiiiniiini s sssanes 10
3.1. SLAimplementation Phase ... 10
3.1.1. Generation of SUPPIY ChAINS .. snsens 11
3.1.2. Generation of implementation Plans ... ——————— 13
3.1.3. Execution of implementation plans.......ssssssssseens 14

3.2, SLA remediation PRaSE ...t ssssssssssssssssssssssssssssssnen 15
3.2.1. DIQ@NOSIS PIOCESS ...t 16
3.2.2. Identification of remediation Plans ... ————— 17
3.2.3. Execution of remediation Plans ... 19

3.3. Status of implementation aCtIiVItIES ... 20
3.4. Updated Planning and Implementation COMPONENLSc.oceeereereereereereeseereesemsessessessessessessees 21
3.4.1. After SLA renegotiation. ... saseens 21
3.4.2. After SLA termMiNatiON .coooeecereeseeserssessessisesssssessssss s ssssssssssss s sssssssssssssssssssssssssssssssssssnsans 25

N Y10l 0 Uy 10 40 4 0 Lol 0 E= 413 44 PP 27
4.1. Status of implementation aCtiVIIES ... sessnss 28
4.2. DBB and EZEE MeChANISIMS ..o ssenns 29
4.2.1. Updated archit@CTUIE ... ssssssnsans 29
4.2.2. Updated security metrics and MeaSUIrEMENTScoreererernsesessessesssessssssessessessesssnsnes 31
4.2.1. Updated monitoring events and remediation planserreneneneeneeneeneeseeneenes 34

4.3, SVA MECRANISIT .ottt bbb 36
4.3.1. Updated archit@CUTIEcovvereererrersiieesserssssss s ses s sssssssssssnsnes 38

4.4. DoS Detection and Mitigation MeChaniSM ... esesseesesseesenns 38
4.4.1. L0224 T TP 39
4.4.1.1. ATCHITECTUTE .ottt 40
4.4.1.2. Security metrics and CONLIOLScorreererrereerseeseeresseeses s ssessessnans 41
4.4.1.3. ReMEAIAtION ..ottt 42
0 T D T =] 10 0413 1 TP 43

4.4.2. REPOSITOTY ..ottt 43
4.4.3. g TS 1 =) o PP 43
444, LT Y TP 43

4.5, AAA MECNANISIN .ottt bbb bbb 43
4.5.1. OVETVIBW ..o e st s 44
4.5.1.1. ATCHILECEUTE .ottt 45
4.5.1.2. Security metrics and CONLIOLScocrrererrerneerriesee s sesenans 48
4.5.1.3. ReMEAIAION ..ottt 49
4.5.1.4. DeVEIOPIMENT ...ttt 50

4.5.2. REPOSILEOTY et 50
4.5.3. INSEALIATION cuveeeeeeeeeee et 50
4.5.3.1. Manual INStallation ... ssssees 50

SPECS Project - Deliverable 1.5.1 4

Secure Provisioning of Cloud Services based on SLA Management

4.5.3.2. Chef Recipe Installation.......conrnrsssssssss s 52

R S U7V . PP 52
4.5.4.1. OAuth Client and User registration........essisssssssssssssssssssssssssssss 52
4.5.4.2. Authentication and AUthOTIZAtiON ... eeeees 52
4.5.4.3. Access to Protected RESOUICE ... ssssssssessssees 53
4.5.4.4. Add a new Protected RESOUICE. ... 53

ST 00 Uod 103 o) o - TP 54
6. BIDlIOGIaphy .o 58
Appendix 1. Developing and adding a security mechaniSm.........o 62

SPECS Project - Deliverable 1.5.1 5

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

FIgUIE 1. SLA PRASESovtieieiterit s 8
Figure 2. Relationship with other deliverables ... 9
Figure 3. Architecture of the Enforcement module (main Enforcement components)............... 10
Figure 4. SLA implementation Phase.......sisssssss s ssssssssssassens 11
Figure 5. Building SUPPLY ChainsS ... ssssens 12
Figure 6. Building implementation plans and SLAS with alerts.........n. 14
Figure 7. Executing implementation plans........ s 15
Figure 8. SLA remediation Phase ... ssssssssssssssssssssssssssssssssssssenns 16
Figure 9. DIagnOSIS PIOCESS ... s s s 17
Figure 10. Identification of remediation Plans ... ssessessssseens 18
Figure 11. Execution of remediation Plamnsoeeenensesessensensenseeeseessessssssssssssssssesssssesssssesssssssssssesseens 19
Figure 12. Planning and implementation after SLA renegotiationuenernenisnesnesssssenns 22
Figure 13. Planning and implementation after SLA terminationcorenereeneeneeneeneenesseenesseeneens 26
Figure 14. Architecture of E2ZEE and DBB mechaniSms.........cuessssssssssesssseens 30
Figure 15. Auditing process and MeASUTEMENLScccuerreeereeseeeeeeessesssssessesesssssssssssesssssssssssssssssssseens 34
Figure 16. Remediation plans for monitoring events EZEE-E1, and DBB-E1 to DBB-E9 35
Figure 17. Remediation plans for monitoring events DBB-E10 to DBB-E12........cccooonenniniennenn. 35
Figure 18. Architecture of the initial SVA ProtofyPe ... enencereerceneeseeseeseeseeseeseesesssssesssssessessssseens 37
Figure 19. Architecture of the final SVA Prototype.....sssses s 38
Figure 20. OSSEC eXeCULION flOW ...vuieuiuiiirircesiisessesss s s sssssssssssssssssasesns 39
Figure 21. DoS Detection and Mitigation mechanism’ architecture.........cornncenenenerneeneeseeneens 40
Figure 22. OSSEC Configuration PTOCESS ... sssssesssssssssssssssssasesns 41
Figure 23. AAA mechaniSm arChit@CtUTE ... ssenns 45
Figure 24. AAA package behaviour in the presence of an access requUest........ccouveereereererreererseeneens 46
Figure 25. AAA package behaviour in presence of an authorization request managed by the

AULhOTIZATION SEIVICE .ottt bbb 47
Figure 26. SPECS security mechanism development and integration process.........een. 62
Figure 27. Defining offered SEIVICES ...t ssaseens 63
Figure 28. Defining the arChit@CTUTE ... sseens 64
Figure 29. Defining implementation details ... 67
Figure 30. Defining remediation detailS.......c.oeerrenrensencereeseeseesseseesseseessssessesssssessesssssesssssessessssssssssseens 67
Figure 31. Remediation plan for one of SVA @lerts ... sessssssssesssessssseens 69

SPECS Project - Deliverable 1.5.1 6

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1. SPECS main Enforcement components and related requirementscoocovnenreneensennns 20
Table 2. SPECS security mechanisms offered with different SPECS Services ... 27
Table 3. SPECS security mechanisms and related reqQUIr€mMentsccureeeeneerensessesessesessessssessssssnenns 28
Table 4. DBB security Metrics WS ... sssssssssssssssssssssssssssssssass 31
Table 5. DBB Security MetriCs RE ... ssss s ssesssssssesssssssssssssssssssssssssssssans 31
Table 6. DBB security Metrics IN ... ssssssssssssssssssssssssssssssas 31
Table 7. EZEE security MetriC CO ... sssssssssssssesssssssssssssssssssssssssssssssssssssssnss 32
Table 8. Measurements and MoniPoli rules associated to DBB metric WS........ccoonnenncenercenenn. 32
Table 9. Measurements and MoniPoli rules associated to DBB metric RF ... 33
Table 10. Measurements and MoniPoli rules associated to DBB metric INccocnnenercenercenenn. 33
Table 11. Measurements and MoniPoli rules associated to E2ZEE metric COc.ccoouvenereereerceneen. 33
Table 12. Monitoring events related to E2ZEE and DBB Metrics ... 34
Table 13. EZEE and DBB remediation aCtiONSoceereeneeneeneeneensssessessesssssssssssssssssessssssssssssssssssssssssssesns 35
Table 14. DoS security metric dDOSSF ... sssss 41
Table 15. Measurements and MoniPoli rules associated to DoS metric dDoSSFcoonveeneen. 41
Table 16. Mapping of the DoS metric to NIST and CCM security cONtrolscmreeneereeneerceneens 42
Table 17. Monitoring events related t0 DOS MEriCS ... 42
Table 18. D0S remediation ACtIONS. ..o eeeereereererseesersessersessessessesssssssssssesssssesssssssssssssssssessssssssssssssssssssssssssssas 42
Table 19. Remediation plan for alerts and violations related to DoS metrics........cumereeneereeneen. 42
Table 20. AAA security metric Secure Delegated ACCESS ... 48
Table 21. AAA security metric Access Report Generation FreqUency.......eereneeneesesseeneeseeneens 48
Table 22. AAA security metric AAA LOg COMPIELENESS......ccrerierereemieseessesssssssessssssssssssessssssesssssssss 48
Table 23. Measurements and MoniPoli rules associated to AAA metric SDA.......cconerenerreenenn. 48
Table 24. Measurements and MoniPoli rules associated to AAA metric ARGF ... 49
Table 25. Measurements and MoniPoli rules associated to AAA metric ALC.....ccoveemerneenrerrernsennes 49
Table 26. Mapping of AAA metrics to NIST and CCM security CONtrols........ceneneereeneeseeneeseeneens 49
Table 27. Monitoring events related t0 AAA MELIICS ...cverirnerenereersee s 50
Table 28. AAA remediation ACHIONS ..ot s s 50
Table 29. Remediation plan for alerts and violations related to AAA MEetrics....cumnressesienenns 50
Table 30. Objectives and results of the task T4.3 ... 56
Table 31. Measurements associated to the Scanning Frequency metric.......coureenereenerseeneereeneens 68
Table 32. Monitoring events associated to the measurements of the LUF metricccocureenn. 68
Table 33. Chef recipes for remediation of one of the SVA alerts ... 70
Table 34. Remediation plan in the form of Chef reCipes.... s 70

SPECS Project - Deliverable 1.5.1 7

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

In SPECS, the SLA life cycle is defined as follows (and depicted in Figure 1). The End-user
accesses the SPECS application and starts the negotiation process. During this phase, the End-
user defines the required cloud service and the security features that she/he wishes to have
enforced and monitored on top of it. After the negotiation process is completed (and an SLA is
signed), the implementation phase starts, which comprises (i) the step of analysing the signed
SLA to determine the number of cloud resources to acquire, (ii) the step of extracting the
security features required by End-user to determine security mechanisms (and their
configurations) to deploy on top of the acquired resources, and (iii) the actual acquisition and
deployment. After the SLA is implemented the SLA monitoring phase starts. If at any given
point the Monitoring module detects a suspicious behaviour, the Enforcement module is
notified and the remediation process is activated. During this phase, each potential or actual
SLA violation has to be analysed, the root cause has to be identified, and actions to be taken to
prevent or recover from the violation have to be determined. The remediation process can
then either end with a success (the potential violation is mitigated and the SLA re-enters the
monitoring phase), with a reconfiguration (the actual violation can be recovered from with a
reconfiguration of the cloud service) or renegotiation (we are unable to automatically handle

the violation).
N
Negotiation Implementation l /

Figure 1. SLA phases

The Enforcement module in SPECS orchestrates two main steps of the SLA life-cycle, namely
SLA implementation and SLA remediation. During the SLA negotiation phase, the Enforcement
module also supports the generation of valid supply chains according to End-user’s security
requirements, Cloud Service Providers’ (CSPs’) capabilities, and possible SPECS security
enhancements.

To this end, the Enforcement module comprises a set of main components (supporting the
SLA life cycle) and a set of security mechanisms which can enhance security level of the
acquired cloud service. In this document, we present the final prototypes of the Enforcement
module. With respect to previous iterations, we report changes and improvements, and
present mechanisms not yet developed at previous milestones. Note that all testing aspects
are reported in deliverable D4.5.3.

The document is structured as follows. In Section 2 we report about deliverables of other
tasks that either served as an input or took this document as the input for its activities. Then
we focus on presenting prototypes of main Enforcement components (Section 3) and SPECS
security mechanisms (Section 4). The document is concluded with a short summary of results
compared with the current state-of-the-art in Section 5.

SPECS Project - Deliverable 1.5.1 8

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables

The final Enforcement prototypes presented in this deliverable comprise a set of core
components, which orchestrate the enforcement process (SLA implementation, SLA
remediation), and a set of security mechanisms that enforce and monitor negotiated SLAs.
Due to the highly modular architecture of the SPECS framework, the input for the task T4.3
came from almost all workpackages:

WP1: Final architecture of the SPECS framework (D1.1.3), designed interfaces (D1.3),
and integration (D1.5.1).

WP2: Final implementation of the negotiation process (D2.3.2, D2.3.3).

WP3: Final implementation of the monitoring process (D3.4.2) and the OpenVAS
prototype (D3.4.1).

WP4: The design (D4.2.2) and intermediate prototype of the Enforcement module
(D4.3.2).

WP5: Validation scenarios (D5.1.2) and Secure Storage application, which integrates
two (in task T5.2 improved) security mechanisms (D5.2.1, D5.2.2).

The results of the task T4.3 also served as an input to other workpackages. Namely:

WP1: Integration activities (D1.5.1, D1.5.2).

WP2: Final implementation of the negotiation module (D2.3.2, D2.3.3).

WP3: Final implementation of the monitoring module (D3.4.2).

WP4: Testing of the Enforcement module (D4.5.3).

WP5: The Secure Storage application (D5.2.1, D5.2.2), the ngDC application (D5.3), the
AAAaaS application (D5.4), which integrate components and security mechanisms
presented in this deliverable.

WP6: The defined security metrics as an input for standardisation activities (D6.2.3).

All mentioned relationships are detailed in Figure 2.

SPECS Project - Deliverable 1.5.1

WP1 WP5
+ D13 WP2 WP3 WP4 * D5.1.2
+ D113 = D232 « D341 + D422 « D5.2.1
« D151 « D233 + D342 + D432 « D522
WP1 WP2 WP3 WP4 WP5 WPo6
« D1.5.1 « D232 « D342 = D453 « D521 De6.23
« D15.2 + D233 « D522
* D53
* D54

Figure 2. Relationship with other deliverables

Secure Provisioning of Cloud Services based on SLA Management

3. Main Enforcement components

The Enforcement module in SPECS is a system that orchestrates two phases of the SLA life
cycle, namely the SLA implementation and the SLA remediation phase. Moreover, the
Enforcement module supports the SLA negotiation phase by verifying the feasibility of SLA
offers. To this end, the Enforcement module comprises the following main components:
¢ Planning: Supports the SLA negotiation phase by generating supply chains for End-
user’s security requirements, and builds implementation and reaction plans for signed
and renegotiated/terminated SLAs, respectively.
¢ Implementation integrated with the Broker and the Chef Server: Acquires resources
and deploys and configures (or reconfigures or terminates) security mechanisms and
configures (or reconfigures) monitoring components according to the implementation
or reaction plan. The Broker manages acquisition of resources and the Chef Server
oversees automated management of their configurations.
e Diagnosis: Classifies and analyses detected monitoring events (potential and actual
SLA violations).
e Remediation Decision System component (RDS): Prepares remediation plans
according to results of the diagnosis process.
The high level architecture of the Enforcement module is presented in Figure 3.

main Enforcement components

implement
<<component>>] p/\ <<component>> 8] react
Planning % RDS —)
<<oomponent.>> <<component>>]| | <<component>>] d <'.<oompolnent>> 1
Implementation Broker Chef Server Diagnosis
|
Vi‘//

Enforcement API

Figure 3. Architecture of the Enforcement module (main Enforcement components)

Before we present the final status of implementation activities and report changes with
respect to deliverable D4.3.2, we briefly summarize the processes orchestrated by the main
Enforcement components presented in deliverable D4.3.2.

3.1. SLA implementation phase

During the SLA negotiation phase, the End-user expresses her/his security requirements. The
Enforcement module is responsible for (i) verifying that the set of security requirements is
feasible in order to build valid SLA Offers and (ii) acquiring and configuring cloud resources
according to the signed SLA.

To this end, the Enforcement module comprises two components which implement a set of
functionalities enabling the SLA implementation phase (see Figure 4). When the Negotiation
module gathers all security requirements from the End-user, it invokes the Planning

SPECS Project - Deliverable 1.5.1 10

Secure Provisioning of Cloud Services based on SLA Management

component to generate valid supply chains which form a base for creating SLA Offers (Step 1).
If the End-user later selects one of the offered SLAs and signs it, the Negotiation module
triggers the Enforcement module to implement it (Step 2). The Planning component prepares
the implementation plan and passes it to the Implementation component (Step 3), and
configures the Monitoring module (Step 4). Finally, the Implementation component acquires
resources specified in the implementation plan and deploys and configures all mechanisms
needed to enforce and monitor the security features selected by the End-user and specified in
the SLA (Step 5).

Target service

| VM ~ | VM | 7
VM | VM | VM |

Negotiation

module |

Security mechanism

1. Build supply
chains

T ~
2. Implement i /_

SLA | 5. Acquire, deploy, conflgure

!

[Enforcement oomponents] [Monitoring components]

3. Implement Implementation Enforcement
Planning [plan component module
component

Monitoring
| 4. Configure i) module

Figure 4. SLA implementation phase

Generation of supply chains and preparation and execution of implementation plans is further
elaborated in the next subsections.

3.1.1. Generation of supply chains

A supply chain in SPECS is a combination of cloud resources (CSP, zone, instance type, etc.)
and components of security mechanisms needed to enforce and monitor an SLA. According to
security preferences of the End-user specified in her/his SLA, the Planning component has to
determine (i) the set of mechanisms required for implementation of an SLA, (ii) the set of
components of each of the required mechanisms, and (iii) the number of instances of each
required component. Moreover, the Planning component has to determine the number of
resources on which the components of security mechanisms have to be deployed and
determine the distribution of the required components over all acquired resources.

To solve this so-called planning problem and build valid supply chains, the Planning
component uses input from three sources:

e End-user: The SLA specifies what needs to be enforced and monitored.

e SPECS: The mechanisms’ metadata specifies which features are enforced and/or
monitored by which mechanism and how (with which components and how these
components need to be deployed).

e CSP: Resource information for each CSP specifies zones, VM types, maximum number
of acquirable VMs per zone, etc.

SPECS Project - Deliverable 1.5.1 11

Secure Provisioning of Cloud Services based on SLA Management

The Planning component thus has to deal with three different sets of constraints to determine
the right mechanisms to implement an SLA and to find an optimal allocation for them. To this
end, the Planning component uses an innovative algorithm developed in this project [6], to
model and solve the planning problem. The solution is a set of supply chains, each specifying
the resource information (CSP, zone, VM type) and allocation of components (number of VMs
to acquire, allocation of components over them).

The process of generating supply chains is depicted in Figure 5 and presented with an
example below.

e ™
Security /’ Security
mechanism mechanism
reguirements
companent || companent
constraints constraints
- >/

CSPs™ data

constraints

Planning
component

VM V[VM

E component |: component

Figure 5. Building supply chains

Let us assume that an End-user aims at acquiring a secure web container. The End-user
requires a redundant web server (Level of Redundancy (LoR) = 2) implemented with two
different softwares (Level of Diversity (LoD) = 2). Additionally, the End-user negotiates
software vulnerability assessment in the form of periodic vulnerability scans (Scanning
Frequency (SF) = 24h). The Planning component parses the SLA Template which specifies End-
user’s requirements (Step 1) and identifies two security mechanisms to enforce and monitor
these features, namely the WebPool (for LoR and LoD) and the SVA (for SF). From the Service
Manager component (element of the SLA Platform; see deliverable D1.4.1) it retrieves the
metadata for these two mechanisms to get information about the components that have to be
deployed and constraints associated to them (Step 2). For example, to cover requirements
associated to redundancy and diversity, SPECS needs to deploy two different web servers
(Apache and Nginx) and a load balancer (HAProxy) on three different VMs. To enable the
vulnerability assessment, a Scanner needs to be deployed on each VM hosting a web server
and the Dashboard to collect and present scanning reports needs to be deployed on the VM
hosting the load balancer. According to these constraints and the constraints coming from the
resource information specified in the SLA Template (Step 3), the Planning component models

SPECS Project - Deliverable 1.5.1 12

Secure Provisioning of Cloud Services based on SLA Management

and solves the planning problem (Step 4). Assuming that there are two CSPs with different VM
types available, the Planning component builds the following two supply chains (Step 5):
e Supply Chain 1:
o Resources: 3 VMs with Amazon (zone: eu-west-1, VM type: t2.medium)
o Allocation: {HAProxy, Dashboard} + {Apache, Scanner} + {Nginx, Scanner};
e Supply Chain 2:
o Resources: 4 VMs with Gcloud (zone: europe-west1-b, VM type: nl-standard-1)
o Allocation: {HAProxy} + {Dashboard} + {Apache, Scanner} + {Nginx, Scanner}.

The generated supply chains are later transformed into a set of SLA Offers (for details see
deliverable D2.3.3). If the End-user accepts and signs one of the SLA Offers, the Enforcement
module is triggered again to implement it. The process of generating the implementation plan
for a signed SLA is discussed in the next section.

3.1.2. Generation of implementation plans

When the negotiation process is complete and the End-user signs an SLA, the Enforcement
module is triggered to implement it. To this end, the Planning component has to build an
implementation plan which automates the acquisition of resources and deployment and
configuration of security mechanisms.

The implementation plan specifies the following:
e Resources:

o CSPs: The ID of the CSP and the zone in which the VMs should be acquired.

o VMs: What VM type and how many of them should be acquired.

o Allocation: Which SPECS components need to be deployed and on which VMs.

e Configuration details:

o Enforcement actions: What and how to enforce (which metrics/SLOs should be
enforced and how, for example, in order to enforce the required level of
redundancy metric/SLO, enough web servers need to be deployed).

o Monitoring actions: What and how to monitor (which metrics/SLOs should be
monitored and how, for example, in order to monitor the level of redundancy,
monitoring adapters have to continuously evaluate the measurements
associated to responsiveness of deployed web servers). As discussed in
deliverable D4.3.2, each metric in SPECS is associated to one or more
measurements which are continuously evaluated to verify the fulfilment of the
commitments in the SLA.

o Frequencies: When to enforce and monitor (for example, how often to execute
vulnerability scans or how often to check responsiveness of web servers).

o Remediation actions: Which events are considered as potential/actual SLA
violations and how to react in case of their detection (for example,
unresponsiveness of a vulnerability scanner is considered as an SLA alert which
we resolve by restarting/reinstalling the scanner, and the age of the scanning
report, which is higher than the required frequency of vulnerability scans, is
considered as an SLA violation which is resolved by immediately activating a
new scan and possibly reinstalling the scanner).

SPECS Project - Deliverable 1.5.1 13

Secure Provisioning of Cloud Services based on SLA Management

The Planning component is also responsible for the configuration of the Monitoring module
which analyses all measurements taken during runtime and filters out all potential and actual
SLA violations (for the details about the monitoring process see deliverable D3.4.2). The so
called SLA with alerts is simply the signed SLA enriched with SLOs that are defined according
to the measurements associated to each existing metric/SLO in the SLA.

The detailed process of generating implementation plans and SLAs with alerts is depicted in
Figure 6 and presented below with an example.

> A —] “attons
Platform
‘ measurements | VM type + number
(i mechanisms
‘ SLA }_ frequencies
_ Manager | oniori Planning |
allocation
" Service }‘ remediation component)

mechanism plans
\(_Manager | metadata /—/\

. . 5
|mplemlentat|ﬂn SLA
plan with
alerts

Figure 6. Building implementation plans and SLAs with alerts

Let us take a simple example where the End-user requires a web server with periodic
vulnerability scans executed every 24h. When the End-user signs an SLA with these
specifications, the Planning component retrieves the SLA, the associated supply chain, and the
metadata information for all mechanisms that need to be deployed in order to implement the
SLA. The SLA specifies one single SLO Scanning Frequency (SF) = 24h, which requires
deployment of the SVA security mechanism. In particular, the generated supply chain assumes
deployment of 2 VMs where one VM hosts the web server, the Scanner component which
performs scans, the SVA Enforcement component which manages lists of published
vulnerabilities, and the SVA Monitoring component which monitors all measurements
associated to the SF metric, and the other VM hosts the SVA Dashboard which presents
scanning results to the End-user. According to the metadata for the SVA mechanism, the
Planning component identifies all enforcement, monitoring, and remediation actions defined
for these components and the SF metric, and generates the implementation plan and the SLA
with alerts.

The execution of the implementation plans, which is orchestrated by the Implementation
component, is discussed in the next section, whereas the configuration of the Monitoring
module with the SLA with alerts is presented in deliverable D3.4.2.

3.1.3. Execution of implementation plans

The SLA implementation in SPECS is automated with the Implementation component. More
precisely, the SLA implementation is orchestrated by the Implementation component which

SPECS Project - Deliverable 1.5.1 14

Secure Provisioning of Cloud Services based on SLA Management

integrates the Broker component to acquire external cloud resources and the Chef Server
which stores implementation plans and automates deployment and configurations.

As introduced in deliverable D4.2.2, all deployment and configuration actions are managed
with Chef [7], which is the leading configuration and management tool. Chef uses so-called
recipes to automate infrastructure tasks. The implementation plan specifies which
components need to be deployed on acquired VMs (in terms of which recipes need to be run
on each VM) and recipes specify how components need to be deployed and how they are to be
configured and managed.

Recipes for all mechanisms used in SPECS are organized in cookbooks and available on the
Bitbucket [5].

The process of executing implementation plans is defined as follows (see Figure 7). The
Implementation component upon the invocation of the Planning component retrieves the
implementation plan generated by the Planning component for an SLA from the Chef Server
(Step 1). According to the resources specified in the implementation plan, the Implementation
component triggers the Broker to acquire cloud resources (Step 2). Then the list of recipes
that need to be run on the acquired resources is extracted from the implementation plan and
the Chef Server is triggered to run them in order to deploy and configure security mechanisms
(Step 3). When all services are set and running, the Implementation component updates the
implementation plan (e.g., adding IPs of the acquired resources) and stores it in the Chef
Server (Step 4). When this process is complete, the SLA is implemented and the monitoring
phase starts.

Implementationcomponent ‘

deploy and m :
configure acquire

implement

updated
plan to store

mechanisms resources

Chef Server | [Broker |
\ deploy and /
configure acquire
mechanisms \/ resources

Target service

Figure 7. Executing implementation plans

If the Monitoring module at any given point detects a potential or an actual SLA violation, the
remediation process starts. The details of the remediation phase are discussed in the next
section.

3.2. SLA remediation phase

During the SLA remediation phase, the Enforcement module is responsible for (i) analysis of
the notified monitoring events, (ii) identification of remediation actions to be applied in order
to prevent or recover from an SLA violation, and (iii) execute the identified remediation plan.

SPECS Project - Deliverable 1.5.1 15

Secure Provisioning of Cloud Services based on SLA Management

To this end, the Diagnosis, the Remediation Decision System (RDS), and the Implementation
components of the Enforcement module implement a set of functionalities which enable the
SLA remediation phase (see Figure 8). The Monitoring module continuously collects the
monitoring data from the adaptors deployed on cloud resources (Step 1). When an SLA alert
or an SLA violation is detected, the Monitoring module immediately notifies the Enforcement
module (Step 2). The Diagnosis component first analyses the notification to determine
whether the event is an alert or a violation and to determine the causing factors (Step 3), and
afterwards the RDS component identifies the set of remediation actions to apply in order to
mitigate the risk of having an SLA violation or to recover from it (Step 4). Finally, the
identified remediation plan, which mainly comprises reconfigurations of the target service, is
executed by the Implementation component (Step 5).

Target service

(o ‘ e |’ M

Security mechanism
Enforcement Monitoring . Monitoring
1. Monitoring data
components components module
; 2. Notification

5. Reconfigurations
i !
Implementation 4. Remediation RDS 3 Analvsi Diagnosis
component plan component - Analysts component

Enforcement module

Figure 8. SLA remediation phase

Analysis of monitoring events and identification and execution of remediation plans is further
elaborated in the next subsections.

3.2.1. Diagnosis process

During the SLA implementation phase, the metrics in SLOs define the measurements that need
to be continuously taken, and the metric values in SLOs define the thresholds that need to be
respected at all times. Whenever the Monitoring module detects a deviation of some
measurement (some measurement value is above or below the defined threshold), the
Diagnosis component is notified and is responsible for analysis of the event.

The Diagnosis component performs the following steps:
e C(lassification: This step comprises the identification of affected SLOs in order to
determine whether the event represents an alert or a violation.
e Analysis: The Diagnosis component checks the importance levels of SLOs affected by
the alert/violation in order to determine the risk/severity level of the notified event.
e Prioritization: The analysed alert/violation I out in the priority que according to the
determined risk/severity level.

SPECS Project - Deliverable 1.5.1 16

Secure Provisioning of Cloud Services based on SLA Management

In particular (see Figure 9), the Diagnosis component uses the information reported with the
notification (SLA ID, ID of the deviated measurement, and the measurement result) to identify
the affected SLOs. This mapping is done according to the implementation plan for the
alerted/violated SLA. When the event type is determined, the Diagnosis component retrieves
the affected SLA to extract the importance levels of the affected SLOs. The risk/severity level
is determined for each affected SLO separately according to the event type and the
importance weight (as shown with the Event type/importance level table in Figure 9). The
determined risk/severity levels defined the impact of the event on the entire SLA (we take the
maximum risk/severity level of the affected SLOs) and according to that score the SLA is
prioritized.

)) 1. Notification Implementation
Notification

component

—

implementation plan

3. input for analysis \/
|| SLOS | importance | Diagnosis ‘

"~ sLoM |
L Exporter)

measurement
D

Monitoring
module

measurement
result

2. Input for
classification

SLA

. Manager levels | component
SLA \
Platform Event type - ..
Alert Violation SLA impact Priority
Risk level Severity level (risk/severity level)| dueue
Importa Low 1 4 L
123«210 1€ "Medium 2 5 4. Oulput of prioritization
High 3 6

Figure 9. Diagnosis process

Since an attack or a system failure may cause more than one alert/violation of an SLA, the
remediation process cannot be executed for more than one alert/violation per SLA at the time
(performing several reconfigurations at one time on an infrastructure may cause even more
damage). Therefore the Diagnosis component triggers the RDS component for one SLA at the
time according to the priority queue. The activities carried out by the RDS component are
further elaborated in the next section.

3.2.2. Identification of remediation plans

As introduced in deliverable D4.3.2 and outlined in Section 3.1.2, the metrics and metric
values, which define SLOs in an SLA, define the so-called monitoring rules (i.e., measurements
that need to be continuously taken and the thresholds that need to be respected). If the
conditions of a monitoring rule are not met, this represents a monitoring event. In SPECS,
each measurement is associated to one monitoring event and for each monitoring event there
exists one remediation plan.

SPECS Project - Deliverable 1.5.1 17

Secure Provisioning of Cloud Services based on SLA Management

A remediation plan is a sequence of remediation action. A remediation action either comprises
¢ asingle monitoring action (i.e., taking a measurement) or
e a sequence of one or more enforcement actions (i.e., reconfigurations) followed by a
monitoring action.

For example, if at one point one of the deployed web servers is unresponsive, the remediation
plan would include restarting the server or deploying a new one if restarting it fails. In terms
of remediation actions this would mean:
e Remediation action 1:
o Enforcement action: Restart the web server.
o Monitoring action: Check if the web server is responsive.
¢ Remediation action 2:
o Enforcement action 1: Acquire a new VM.
o Enforcement action 2: Install a new web server.
o Monitoring action: Check if the web server is responsive.

As shown in Figure 10, in order to identify the remediation plan for an alert/violation, the
RDS component uses the information provided by the Diagnosis component in Step 1 (IDs of
the deviated measurement and the affected SLA), the implementation plan associated to the
alerted/violated SLA in Step 2 (to identify the compromised/failed security mechanism) and
the metadata of the involved security mechanism in Step 3 (to extract the remediation plan for
the deviated measurement). When the remediation plan is extracted, it is passed to the
Implementation component to execute it (Step 4). After all performed reconfigurations, the
implementation plan associated to the remediated SLA has to be updated and the SLA either
re-enters the monitoring phase (if the remediation is successful) or it undergoes the
renegotiation process (if we failed to automatically resolve the issue).

Diagnosis . [
component | mechanism ' Manager
! SLAID metadata ‘7’

‘ measurement 1D | SLA

remediation Platform
plan
. " RDS
rnechamsm D 9 ‘ component ’"GD»\

implementation remediation
plan plan

" Implementation |
component

Figure 10. Identification of remediation plans

The details about the execution of remediation plans are provided in the next section.

SPECS Project - Deliverable 1.5.1 18

Secure Provisioning of Cloud Services based on SLA Management

3.2.3. Execution of remediation plans

When the Diagnosis component analyses an SLA alert/violation and the RDS component
identifies the remediation plan that needs to be applied to prevent/recover from it, it is the
responsibility of the Implementation component to execute it.

As discussed in Section 3.2.2, a remediation plan consists of a sequence of remediation actions
which further comprise a list of enforcement (reconfigurations) and/or monitoring
(measurements) actions. Each enforcement and monitoring action is associated to one Chef
recipe so that during the execution of the remediation plan the process can be automatized.
The process itself, depicted in Figure 11, is simple. The Implementation component takes the
first remediation action defined in the remediation plan, and runs the associated list of
recipes (which automatize the reconfigurations and invocation of measurements defined with
the remediation action). When all the recipes are applied, the Implementation component
checks whether the event has been resolved or not. If the event has been resolved, the
remediation process is completed and the SLA re-enters the monitoring phase. If the
alert/violation persists, the Implementation component proceeds to the next remediation
action specified in the plan. The process continues until the event is resolved or until there is
no further action to execute. In the latter case, the End-user is offered to renegotiate the
conditions of the SLA.

Implementation ‘

A
4 N

MONITOR
RDS
l YES

Analyze Retrieve Retrieve Execute | .
L - .) .) s even
monitoring — event® remediation — plan—» remediation — action—» remediation — action resolved?
. . W H
event plan action action

NO

Is there any

YES .
other action?

NO

RENEGOTIATE

Figure 11. Execution of remediation plans

Since some reconfiguration actions may have required acquisition of new VMs, deployment of
new software, etc., the implementation plan for the remediated SLA has to be updated with
the relevant new information (IPs, new software, etc.). The Implementation component
updates the existing implementation plan and stores it in the Chef Server component.

SPECS Project - Deliverable 1.5.1 19

Secure Provisioning of Cloud Services based on SLA Management

3.3. Status of implementation activities

In deliverable D4.3.2 we reported the status of implementation activities at M24. Since some
requirements have not been implemented at that point, in this section we report about how
the remaining requirements associated to the main Enforcement component have been
implemented and why/if any are left uncovered.

In Table 1 we present coverage of requirements associated to Enforcement module by main
Enforcement components. For the sake of completeness, we report all requirements including
the ones already implemented at M24 (highlighted in green).

Requirements for main SPECS software components

Enforcement components Planning | Implementation Diagnosis RDS Broker
ENF_PLAN_R1-R7 X
ENF_PLAN_R8-R9 X X
ENF_PLAN_R10-R12 X
ENF_IMPL R1-R8 X
ENF_IMPL_R9 X
ENF_IMPL R10 X
ENF_DIAG_R1-R6 X
ENF_DIAG_R7
ENF _DIAG_R8-R18 X
ENF_REM_R1-R9 X
SLA_NEG_R30-R31 X
ENF_BROKER_R1-R5 X
Table 1. SPECS main Enforcement components and related requirements

»

There are 56 requirements associated to the core components of the Enforcement module
(requirements associated to security mechanisms are discussed in Section 4.1) and all of them
are implemented with prototypes presented in this document. The requirements that were
not implemented with prototypes presented at M24 are mostly related to planning and
implementation activities after renegotiation and termination of an SLA.

Requirements ENF_PLAN_R8 and ENF_IMPL_R9 are directly associated to building and
implementing a reaction plan, which defines actions to be taken after an SLA is renegotiated
or terminated. These functionalities are considered covered by the final Enforcement
prototypes (see Section 3.4). Requirement ENF PLAN_R9, which is associated to building
migration plans, has not been implemented. The last requirement, namely the ENF_DIAG_R?7,
which is associated to the expression of SLA violations in terms of KPIs, is covered by the
Diagnosis component since it expresses the effects of a violation in terms of affected SLOs. No
improvements or enhancements were required to cover this requirement.

The final prototypes of the Enforcement module are available on Bitbucket:
Planning: [8]
Implementation: [9]
Broker: [10]
Diagnosis: [11]
e RDS:[12]
SPECS Project - Deliverable 1.5.1 20

Secure Provisioning of Cloud Services based on SLA Management

In the following section we discuss functionalities of the Enforcement components associated
to activities after SLA renegotiation and SLA termination.

3.4. Updated Planning and Implementation components

In deliverable D4.3.2 we presented functionalities of the Planning and the Implementation
components associated to the generation of supply chains and the generation and execution of
implementation plans associated to a signed SLA. We also presented an initial version of the
planning and implementation activities for a renegotiated SLA (generation and execution of
so-called reaction plans). In this section, we report the final version of the enforcement steps
after the renegotiation/termination and present the updates to the prototype of the Planning
and Implementation components.

The updates presented in this section are only associated to functionalities that have been
considered as not yet implemented with the previous version of the Enforcement prototypes.
Therefore the interested reader is directed to deliverable D4.3.2 for the installation and usage
guides, that remain the same, and to deliverable D4.5.3 for the unit tests.

3.4.1. After SLA renegotiation

During the renegotiation phase, the End-user can do the following:

e Change the negotiated metric value for one or more metric already negotiated in the
initial SLA (i.e., the End-user can change the threshold in one or more existing SLOs).

e Add or remove one or more security metrics inside a security capability already
negotiated in the initial SLA (i.e., the End-user can add or remove one or more SLOs
inside an existing security capability).

¢ Add one or more security metrics under a new capability (i.e., the End-user can add
one or more new capabilities previously not included in the SLA).

e Perform a combination of all of the above.

These options can imply the change in the number of VMs, the change in the set of the
deployed mechanisms, the change in the allocation of mechanisms’ components on the
resources, or even reconfigurations of the deployed components. Therefore, the newly signed
SLA is accompanied with a new supply chain.

In deliverable D4.3.2 we defined that the Planning component would compare the old and the
new SLA and generate a set of “fake violations” (the so-called reaction plan) in order to
immediately remediate them and thus align the infrastructure deployed for the initial SLA
with the new supply chain. The fake violations would imply a remediation plan that would
later be pushed to the Implementation component to execute it.

Every SLA has a validity period. For every renegotiated SLA this period is set to 24h after the
signature. This enables us to simplify the implementation of a renegotiation SLA as follows.
The Planning component upon receiving the renegotiated SLA simply considers it as a new
SLA and repeats the steps defined for a negotiated SLA. Instead of comparing the new supply
chain with the old one and generating a list of fake violation, the Planning component
retrieves the old implementation plan and updates it with new information implied by the
renegotiated SLA (e.g., adds components that need to be newly deployed). In this case, the
reaction plan is simply an updated implementation plan. The new implementation plan is

SPECS Project - Deliverable 1.5.1 21

Secure Provisioning of Cloud Services based on SLA Management

stored with the Chef Server and the Broker component verifies that the infrastructure is
compliant to the updated implementation plan (checks whether the list of recipes in the Chef
run-list is aligned to the list of recipes specified in the update implementation plan; if
anything is missing in the run-list, the Broker adds it). Afterwards the Planning prepares the
SLA with alerts and updates the MoniPoli.

The process is depicted in Figure 12. After the End-user signs a renegotiated SLA, the SPECS
Application triggers its implementation (it sends a reconfiguration.json [38] to the Planning
component with an Update label in Step 1). Afterwards the Planning component stores the
reconfiguration file (Step 2), logs component’s activation (Step 3), and identifies and updates
the associated planning activity with the reconfiguration ID (Steps 4-5). In order to prepare a
reaction plan, the Planning component retrieves the new SLA (Steps 6-7), the associated new
supply chain (Step 8), and the old implementation plan (Steps 9-10). It builds a reaction plan
by making a copy of the old implementation plan and adding information implied by the new
supply chain (Step 11), stores it in the Chef Server (Step 12), and triggers the Implementation
component to verify correctness of implementation (Step 13). The Broker component then
checks if the list of recipes specified in the reaction plan is aligned to the Chef run-list. If
anything is missing, it adds it (Step 14). Finally, the Planning builds the new SLA with alerts
that include the renegotiated rules (Step 15), reconfigures the MoniPoli (Step 16), updates the
SLA state to Monitoring (Step 17) and logs its deactivation (Step 18).

SPECS Planning Implementation SLA MeniPaoli Auditing
Application Manager
I - I I I I I
| lupdale | I I I
implementation plan | | | |
, | | | |
I 2: store reconfiguration I I I I
: 3: log component activation : : : l
| | | | I [-J.]
I 4: identify planning activity I I I I
| | | | |
| 5: update planning activity with | | | |
I reconfiguration id I I I I
: 6: retrieve SLA I l : :
: PR rewnsa o T : :
8: retrieve associated supply chain with SLAID			
: 9: retrieve implementation plan with SLA ID : : : :			
L t0umimplementaton plan____ ’,ﬂ			
))			
11: build a reaction plan			
I 12: store reaction plan I			
P >			
13: implement reaction plan			
: bH 14: verify correciness : : :			
I 15: build SLA with alerts ; ofimplementation I I I			
s i			
16: update monipoli			
		:	
17: update SLA state			
	;		
. T—			
18: log component deactivation I I I			
			:

T
Figure 12. Planning and implementation after SLA renegotiation

SPECS Project - Deliverable 1.5.1 22

Secure Provisioning of Cloud Services based on SLA Management

In this way, reconfigurations associated to the deployment of new mechanisms on the existing
resources are automatically applied by aligning recipes in the Chef run-list. When
renegotiated SLA does not require a deployment of a new mechanism but requires
reconfigurations of existing ones (in this case Chef recipes are already aligned), we let the
infrastructure to adapt itself automatically through the remediation process. In particular, the
monitoring adapters deployed on the cloud resources continue to collect the monitoring data
and report it to the Monitoring module. Since the MoniPoli holds new rules that are adjusted
to the renegotiated SLA, it will create SLA violations which will be automatically remediated.
Since these reconfigurations happen during the period where the renegotiated SLA is not yet
valid, violations are not notified to the End-user and no remedies have to be applied (no
penalties have to be payed and no compensations are due). This process simply allows for the
infrastructure to adapt itself to the renegotiated SLA.

With this slight change, the Planning component already covered the majority of these steps
after the renegotiation with the prototype presented at month 24 in deliverable D4.3.2
(generation and execution of the implementation plans were implemented at M24).

Let us now consider a few examples.

Example 1 (The change of a metric value requires acquisition of new VMs). Let us
assume that an End-user negotiated an SLA for the secure web container service which
includes SLOs Level of Redundancy (LoR) = 3 and Level of Diversity (LoD) = 2. SPECS acquires 4
VMs, namely 3 for web servers (to fulfil LoR) which are deployed with 2 different software
instances (to fulfil LoD) and 1 VM for a load balancer. Note that both metrics are enforced and
monitored with the SPECS WebPool security mechanism (for further details see deliverable
D4.3.2).

After some time, the End-user wants to increase the level of redundancy, therefore she/he
renegotiates the SLA and sets LoR = 4. After the new SLA is signed, the Planning component
prepares a reaction plan and stores it in the Chef Server. The reaction plan is the old
implementation plan updated with information about a new VM that is required and the
components that have to be deployed on top of it. When the Broker checks the list of recipes
in the Chef run-list, it detects that one VM is missing. It acquires a new VM and deploys and
configures a new web server on top of it to ensure the required level of redundancy.

To update the MoniPoli component, which filters the monitoring data to detect potential or
actual SLA violations, the Planning component generates the SLA with alerts, which is based
on the new metric values, and reconfigures the MoniPoli.

The renegotiated SLA is now implemented and valid.

Example 2 (The change of a metric value requires reconfiguration of components). An
End-user signed an SLA with SLOs Level of Redundancy (LoR) = 2 and Scaning Frequency (SF) =
96h. The first SLO requires an acquisition of 3 VMs for 2 web servers and a load balancer, and
is enforced with the SPECS WebPool security mechanism. The second SLO requires periodic
vulnerability scans of the deployed web servers, and is enforced with the SPECS SVA security
mechanism (for further details about mechanisms see deliverable D4.3.2 and Section 4.3).

SPECS Project - Deliverable 1.5.1 23

Secure Provisioning of Cloud Services based on SLA Management

After a while, the End-user expresses the need to have more frequent vulnerability scans,
therefore she/he renegotiates the SLA and sets SF = 24h. After the new SLA is signed, the
Planning component prepares a reaction plan (updates the old implementation plan with a
new threshold associated to the scanning frequency SLO) and stores it in the Chef Server, and
generates a new SLA with alerts to update the MoniPoli.

Since the Chef run-list already includes all recipes (indicating that all components that need to
be deployed on the resources in order to fulfil the SLA commitments are already deployed),
thus the verification of the correctness of implementation conducted by the Broker
component is successful.

In the initial SLA implementation phase, during the deployment of the security mechanisms
on acquired resources, the Implementation component sends another set of recipes to the
Chef Server (one for each mechanism) that continuously verify that configurations of
components installed on the VMs are aligned to the implementation plans. In our example this
means that during the initial deployment of the SVA mechanism on the acquired VMs, the
Implementation component also uploads the recipe to the Chef Server with which the Chef
Server continuously verifies if the SVA components are configured so that the scans are
executed every 96h. So, when the Chef Server gets the new implementation plan, it will
automatically reconfigure the SVA components and change the frequency of scans to 24h.

Before the reconfiguration takes place (the recipe run list is executed periodically), the SVA
monitoring adapter continues to collect the monitoring data (observing the age of the
scanning report) and report the measurements to the Monitoring module. Since SPECS
initially set up vulnerability scans to be executed every 96h and the updated MoniPoli rule
states that the age of the scanning report should not be higher than 24h, the Monitoring
module notifies the Enforcement about an SLA violation (the monitoring adaptors at one
point reported SF > 24h). The Diagnosis component analyses the event and determines that
the violation is associated to a failed/missed vulnerability scan. The RDS component
afterwards prepares the remediation plan and triggers the Implementation component to
execute it. The Implementation component (according to the remediation plan for the SF
metric; see D4.3.2) manually triggers a new vulnerability scan to ensure the committed
vulnerability scanning frequency.

When the reconfiguration of the scanning frequency is complete, the renegotiated SLA is
implemented and valid. Before that time all detected violations fall in the period of the
renegotiated SLA not yet being valid, thus they are not notified to the End-user and no
remedies are required.

Example 3 (Adding a metric requires replacement of components). Let us assume that an
End-user negotiated an SLA with Level of Redundancy (LoR) = 3. SPECS implements the SLA by
enforcing the WebPool mechanism (acquires 4 VMs, 3 for web servers and 1 for a load
balancer).

Further we assume that the End-user later decides to add another security feature to the
negotiated service. She/he renegotiates the SLA adding the Level of Diversity (LoD) = 2 SLO.

SPECS Project - Deliverable 1.5.1 24

Secure Provisioning of Cloud Services based on SLA Management

This addition requires SPECS to use two different softwares for the deployed web servers
instead of one.

After the new SLA is signed, the Planning component prepares a reaction plan (the old
implementation plan updated with recipes for the new web server) and a new SLA alerts, and
send it to the Chef Server and the MoniPolj, respectively.

When the Broker checks the list of recipes in the Chef run-list, it detects that the recipe for the
new web server is missing. It deploys and configures a new web server on top of one of the
existing VMs to ensure the required level of diversity. Consequently, the SLA is automatically
implemented and valid.

Example 4 (Adding a capability requires installation of new components). In the last
example we take an End-user that signs an SLA with SLO Level of Redundancy (LoR) = 2. SPECS
implements the SLA by enforcing the WebPool mechanism, i.e., by acquiring 3 VMs for 2 web
servers and 1 load balancer.

After a while, the End-user expresses the need to security harden the negotiated web servers
by adding the Software Vulnerability Assessment capability. The End-user renegotiates the
SLA adding the SVA capability and the Scanning Frequency (SF) = 24h SLO. This addition
requires a set of SVA components to be deployed on the existing VMs hosting the web servers.

The Planning component creates a reaction plan (updates the old implementation plan with
information about which SVA components should be deployed on which VMs) and sends it to
the Chef Server. When the Broker tries to verify correctness of implementation, it detects that
the recipes for the SVA mechanism are missing in the Chef run-list. It adds them and the
components are automatically deployed when recipes are run.

Additionally, the Planning generates a new SLA with alerts, which includes rules for the new
SVA SLOs and reconfigures the MoniPoli.

After the Broker sets up the SVA mechanism on the initially acquired VMs, the renegotiated
SLA is implemented and valid.

3.4.2. After SLA termination

The End-user can decide to terminate the SLA at any given point. Similarly, the End-user can
decide to terminate the SLA if at some point some SLA violation occurred and SPECS was not
able to remediate it automatically. To this end, the Planning and the Implementation
components implement a functionality to terminate an SLA as depicted in Figure 13.

In particular, when the End-user decides to terminate her/his SLA, the SPECS Application
triggers the Planning component by sending to it the reconfiguration.json [38] with a
Terminate label (Step 1). Afterwards the Planning component stores the reconfiguration file
(Step 2) and logs component’s activation (Step 3). Then it triggers the Implementation
component to terminate the SLA (Step 4) which is orchestrated by the Broker (Step 5). Finally,
the Planning component triggers the MoniPoli to remove all rules associated to the

SPECS Project - Deliverable 1.5.1 25

Secure Provisioning of Cloud Services based on SLA Management

terminated SLA (Step 6), updates the SLA state to Terminating (Step 7) and logs its
deactivation (Step 8).

SPECS
Application

Flanning

1: update

1
|
| implementation plan |

i 2: stare reconfiguration

3: log component activation

Implementation

SLA
Manager

MaoniPoli

Auditing

4: terminate SLA

&: update monipali

’D‘—_| 5:terminate SLA

7: update SLA state

8: log component deactivation

"

L

Figure 13. Planning and implementation after SLA termination

SPECS Project - Deliverable 1.5.1

.

TS AU S

26

Secure Provisioning of Cloud Services based on SLA Management

4. Security mechanisms

As discussed in deliverable D1.5.1, we have developed a set of SPECS applications with which
the End-users can negotiate the preferred or required level of security for a set of cloud
services. To enforce and monitor the negotiated security features, we have developed a set of
security mechanisms following the user stories and validation scenarios defined in task T5.1.

Each cloud service offered by SPECS is implemented with one mandatory and a set of optional
security mechanisms as reported in Table 2.

Security service/ Negotiable security mechanisms
SPECS application Mandatory Optional

Secure Web Server WebPool SVA TLS DoS
Secure Storage DBB E2EE

ngDC DBB E2EE

AAAaaS AAA DBB E2EE

Table 2. SPECS security mechanisms offered with different SPECS services

The Secure Web Server service provides pools of web servers and assures resilience to
security incidents through redundancy and diversity. Further security features can be
enforced and monitored with the Software Vulnerability Assessment (SVA) mechanism, the
TLS protocol, and the Denial of Service Mitigation and Detection (DoS) mechanism. The
WebPool and the TLS mechanisms have been finalized at M24 and presented in deliverable
D4.3.2. The initial prototype of the SVA mechanism has been presented in deliverable D4.3.2
at M24; however, in this document (in Section 4.3) we present its final version. In this
document (in Section 4.4) we also present the final prototype of the DoS mechanism.

The Database and Backup (DBB) and the End-2-End Encryption (E2EE) mechanisms, which
provide storage with backup and client-side encryption, respectively, have been
comprehensively discussed in deliverable D4.3.2. Further development of these two
mechanisms has been conducted under the task T5.2 (see deliverables D5.2.1 and D5.2.2),
which is focused on the development of the Secure Storage application and management of
security incidents in the cloud storage domain. The mechanisms are also used with the Next-
Generation Data Centers (ngDC) application (presented in deliverable D5.3) and the AAA-as-
a-Service application (described in deliverable D5.4). In Section 4.2 we report about the
changes/improvements with respect to the initial prototype.

The Authentication, Authorization, and Auditing (AAA) mechanism, which is the base for the
AAAaaS application, is fully described in Section 4.5.

Each security mechanism enforces and/or monitors a set of security metrics that End-users
can negotiate in an SLA. For this purpose, each security mechanism has a particular
architecture that (i) enables enforcement and monitoring of these security metrics and (ii)
allows for an automated management. In this document (in Appendix 1) we provide with a
comprehensive guide to develop a new security mechanism and add it to the SPECS platform.

SPECS Project - Deliverable 1.5.1 27

Secure Provisioning of Cloud Services based on SLA Management

4.1. Status of implementation activities

In this section we report about the final status of implementation activities related to SPECS
security mechanisms. Although development of some mechanisms was finalized at M24, for
the sake of completeness, we discuss the status of implementation for all SPECS mechanisms.

In Table 3 we present the coverage of requirements associated to SPECS security mechanisms.
All together we have 32 requirements and the ones highlighted in green have already been
covered by prototypes presented in deliverable D4.3.2. The coverage of the remaining 14
requirements we discuss in the following.

Requirements for SPECS security mechanisms
security mechanisms WebPool | DBB | E2EE | SVA TLS DoS AAA
ENF_POOL_R1-R4 X
ENF_POOL_R5 X
ENFE_TLS_R1-R5 X
ENF SVA_R1-R2, R4 X
ENF SVA_R3
ENF_CRYPTO_R1-R4 X
ENF AAA_R1-R9 X
ENF DOS_R1-R3 X
ENF DBB_R1-R2 X
Table 3. SPECS security mechanisms and related requirements

The ENF POOL_R5 requires the WebPool mechanism provide incident management
functionalities. In particular, the requirement assumes that in the case of security incidents
the WebPool mechanism is able to isolate the affected/targeted Virtual Machines (VMs) to
ensure business continuity to the End-user. At current state, the requirement has been
covered by devising proper remediation actions (see D4.3.2 for a detailed explanation).

As already anticipated in deliverable D4.3.2, the ENF SVA_R3, associated to automated
vulnerability patching, remains uncovered due to complexity of the problem. However, in
Section 4.3 we present integration of the existing SVA mechanism with the OpenVAS
vulnerability scanner, which improves the coverage of requirements ENF SVA_R1 and
ENF_SVA_R2.

We have nine requirements for the AAA mechanisms. Of these, six are covered by the current
prototype (ENF_AAA_R4-R9), one is deprecated (ENF_AAA_R1), and two are not covered
(ENF_AAA_R2-R3). In particular, ENF AAA R1 involves the use of different external
authentication sources. It no longer applies to the AAA mechanism (requirement deprecated)
since, as clarified in Section 4.5, the current version of the AAA mechanism includes an OAuth
Server and, according to OAuth, the choice of the authentication source is delegated to the
client, which is not part of the AAA package that implements the AAA mechanism. As will be
discussed later, we do provide an example of OAuth Client along with the AAA package, but it
does not include support for external authentication sources. For what concerns the other
two requirements, ENF_AAA_R2 and ENF AAA _R3 remain uncovered, even if the OAuth
standard includes the support for the management of different accounts.

SPECS Project - Deliverable 1.5.1 28

Secure Provisioning of Cloud Services based on SLA Management

For what regards the DoS mechanism, its current prototype covers all related requirements.
Further details about the mechanism’s behaviour and features are given in Section 4.4.

Note that the validation of the Enforcement module is the focus of the task T4.5. Thus further
elaboration on how each requirement has been covered is reported in deliverable D4.5.3.

The prototypes of the developed security mechanisms are available on the project’ Bitbucket
account:
e WebPool: [13], [14]
e TLS:[15]
SVA: [16],[17],[18], [19], [20]
E2EE and DBB: [1], [2], [3], [4]
AAA: [21], [22]
DoS: [23], [45]

4.2, DBB and E2EE mechanisms

In this section, we present updates with respect to M24 associated to the Database and
Backup (DBB) and the End-2-End Encryption (E2EE) security mechanisms.

As introduced in deliverables D4.1.2 (requirements) and D4.2.2 (design), and demonstrated
as an initial prototype in deliverable D4.3.2, the DBB and E2EE mechanisms enhance security
level of the cloud storage service. They enforce and monitor confidentiality, integrity, write-
serializability (i.e., consistency among updates), and read-freshness (i.e., requested data always
being fresh as of the last update). Moreover, with these two mechanisms, the End-user is
provided with proofs of any violations associated to these security features.

The mechanisms were initially developed under the task T4.3 but further improvements were
made under the task T5.2, where the focus was on monitoring and automated management of
security incidents associated to the cloud storage domain.

In deliverable D4.3.2 we presented the architecture of both mechanisms, introduced security
metrics they enforce and monitor, and elaborated on how their violations are automatically
remediated. We also provided with the installation and usage guides for the initial prototypes.

In deliverables D5.2.1 and D5.2.2 we provide theoretical and practical, respectively,
improvements of the functionalities of these two mechanisms. Namely, we refined the list of
associated security metrics, improved the monitoring capability, and increased the
performance. Since the focus of this task is automated enforcement and remediation, in the
following subsections we only report the relevant changes (namely, the architecture, the
refined metrics and associated measurements, and monitoring events and associated
remediation plans) and invite the interested reader to see deliverables D5.2.1 and D5.2.2 for
any further information.

4.2.1. Updated architecture

The mechanisms comprise a set of components that enforce and monitor security metrics
associated to the secure storage service. The Client component locally encrypts and decrypts

SPECS Project - Deliverable 1.5.1 29

Secure Provisioning of Cloud Services based on SLA Management

data and communicates with the storage servers to upload and download data. The Main DB,
Backup DB, Main Server, and Backup Server handle all reads and writes of the End-user’s data
and orchestrate backups. The Auditor and the Monitoring Adapter component continuously
monitor the status of security metrics that both mechanisms enforce.

Apart from the Client component, which performs the encryption/decryption of the data, and
the servers and databases which manage the data, the biggest responsibility lies with the
Auditor, since it verifies whether the enforced security properties WS, RF, and IN are
respected. To this end, we use the so called attestations which are signed messages exchanged
between the Client and the Main Server components with every put or get request. Each time
the Client performs a get (the request contains data block ID and Client's get attestation)
the Main Server returns the requested data and attaches the Cloud’s cloud get
attestation with which it certifies that the returned data is the right one. Each time the
Client performs a put (the request contains the data and Client’'s put attestation with
which the Client authorizes the overwriting of a certain existing data with a new content), the
Main Server stores the data, returns the block ID, and attaches the Cloud’s cloud put
attestation which affirms that the received data is unchanged and successfully stored. The
Client automatically forwards a copy of each attestation to the Auditor. After each epoch (i.e,,
a predefined period of time) or after the Client component triggers it, the Auditor analyses the
set of attestations which have to form a correct chain. If any error is detected, this implies a
violation of one or more commitments associated to WS, RF and/or IN, therefore the Auditor
notifies the Enforcement module about an SLA violation.

monitoring
Monitoring events Monitoring | = data Backup
module Adapter | Server
. . A
monitoring VM3 VM4
events
Auditor data
events
Enforcement X v
SR
module VM5 . -
Main data Main
- monitoring Server DB
notifications attestations data -
VM1 VM2
write/read
notifications requests
» Client au
User

Figure 14. Architecture of E2ZEE and DBB mechanisms

With respect to M24, the architecture of the mechanisms has been slightly simplified but
remains the same functionalities. Instead of two monitoring adapters, the final version of the
mechanisms comprises one monitoring adapter taking all measurements previously
associated to two adapters. The Client component previously split into two elements (DBB
Client and E2EE Client plug-in) is now one and is simply configured according to the security

SPECS Project - Deliverable 1.5.1 30

Secure Provisioning of Cloud Services based on SLA Management

features selected by the End-user acquiring the secure storage service through SPECS. The
updated design is depicted in Figure 14 above.

4.2.2. Updated security metrics and measurements

As already mentioned in the introduction of this section, the E2ZEE and DBB mechanisms
enforce and monitor confidentiality, integrity, write-serializability, and read-freshness of the
data stored in the cloud by the End-user. In the following four tables we present the updated
security metrics defined for both mechanisms.

Name Value Default value Unit
Write-serializability (WS) yes yes n/a
This metric ensures the End-user consistency among updates of
the stored data. In case of WS violations, the End-user will be
notified and the system will be restored to the state of the last
completed backup.

1. With every put request from the Client the data is stored in
the Server’s DB.

Actions taken to | 2. The Server sends cloud put attestation to the Client
enforce the which automatically forwards it to the Auditor.

metric 3. After each epoch, the Auditor checks attestation chains.

4. If WS violation is detected, the End-user is notified and the

Server’s DB is restored to the state of the last finished epoch.
Table 4. DBB security metrics WS

Description

Name Value Default value Unit
Read-freshness (RF) yes yes n/a
This metric ensures the End-user that the requested data will
always be fresh as of the last update. In case of RF violations,
the End-user will be notified and the system will be restored to
the state of the last completed backup.

1. With every get request from the Client the data is retrieved
from the Server’s DB and sent to the Client.

Actions taken to | 2. The Server sends cloud get attestation to the Client
enforce the which automatically forwards it to the Auditor.

metric 3. After each epoch, the Auditor checks attestation chains.

4. If RF violation is detected, the End-user is notified and the

Server’s DB is restored to the state of the last finished epoch.
Table 5. DBB security metrics RF

Description

Name Value Default value Unit
Integrity (IN) yes yes n/a
Description This metric ensures the End-user integrity of the stored data.

Actions taken to
enforce the
metric

The Auditor continuously (after end of each epoch or when
Client triggers it) verifies integrity of the stored data.

Table 6. DBB security metrics IN

SPECS Project - Deliverable 1.5.1 31

Secure Provisioning of Cloud Services based on SLA Management

Name Value Default value Unit

Confidentiality (CO) yes yes n/a
This metric ensures the End-user confidentiality of the stored
data. Confidentiality is enforced with end-2-end encryption

Description provided by the Client component. We guarantee that the Client

component is audited and thus (used as is) grants the security
of encryption.
Before providing the End-user with the link to the E2EE Client
component, check if the version of the component is certified
(i.e., check if the web store! maintains the latest version of the
Client).

Table 7. E2EE security metric CO

Actions taken to
enforce the
metric

With respect to the definitions presented in deliverable D4.3.2, we refined the definitions of
metrics WS and RF, now providing stronger security assurance (previous definitions
guaranteed that the End-user will be notified about violations of WS and RF, but with updated
metrics we ensure that the WS and RF are respected). Furthermore, we added a new security
metric IN to the DBB mechanism and renamed and refined the definition of the security
metric associated to the E2ZEE mechanism (the updated metric guarantees confidentiality
achieved through the client-side encryption, whereas with the previous version of the metric
we assured only that the Client component providing the client-side encryption is
certified/audited).

As discussed in Section 3, in order to automate the SLA monitoring phase, each security
metric is associated to one or more measurements. Due to the updates made to the set of
security metrics, in the following four tables we present the updated measurements
associated to them. For each measurement we also report a condition under which the
MoniPoli notifies the Enforcement module about a potential SLA alert/violation.

Metric | Write-serializability (WS)
SLO write_serializability = yes

Measurements

MoniPoli rules

ws_violation

ws_violation = yes

fork_attack

fork_attack = yes

ws_int_violation

ws_int_violation = yes

rollback _attack

rollback_attack = yes

system_error

system_error = yes

primary_server_availability

primary_server_availability = no

primary_db_availability

primary_db_availability = no

backup_server_availability

backup_server_availability = no

backup_db_availability

backup_db_availability = no

backup_restore_completeness

backup_restore_completeness = no

Table 8. Measurements and MoniPoli rules associated to DBB metric WS

L https://chrome.google.com /webstore/search/e2ee

SPECS Project - Deliverable 1.5.1

32

https://chrome.google.com/webstore/search/e2ee

Secure Provisioning of Cloud Services based on SLA Management

Metric | Read-freshness (RF)

SLO read-freshness = yes

Measurements

MoniPoli rules

fork attack

fork_attack = yes

different_block_int

different_block_int = yes

different_block

different_block = yes

primary_server_availability

primary_server_availability = no

primary_db_availability

primary_db_availability = no

backup_server_availability

backup_server_availability = no

backup_db_availability

backup_db_availability = no

backup_restore_completeness

backup_restore_completeness = no

Table 9. Measurements and MoniPoli rules associated to DBB metric RF

Metric | Integrity (IN)

SLO integrity = yes

Measurements

MoniPoli rules

in_violation

in_violation = yes

different_block_int

different_block_int = yes

ws_int_violation

ws_int_violation = yes

primary_server_availability

primary_server._availability = no

primary_db_availability

primary_db_availability = no

backup_server_availability

backup_server_availability = no

backup_db_availability

backup_db_availability = no

backup_restore_completeness

backup_restore_completeness = no

Table 10. Measurements and MoniPoli rules associated to DBB metric IN

Metric | Confidentiality (CO)

SLO confidentiality = yes

Measurements

MoniPoli rules

client_code

client_code = no

Table 11. Measurements and MoniPoli rules associated to E2EE metric CO

Some measurements are continuously taken by the Monitoring Adapter (the ones associated
to the availability of components and completeness of backups/restorations) and some are
continuously (after each epoch or after the auditing process is triggered by the Client
component) evaluated by the Auditor. In deliverable D5.2.1 we present the auditing process
and we refer the interested reader to see the full explanation of the process there, here in
Figure 15 we simply outline in blue how the Auditor determines the values of the
measurements according to the correctness of the chain of (get and put) attestations

(denoted as CA) collected from the Client component.

SPECS Project - Deliverable 1.5.1

Secure Provisioning of Cloud Services based on SLA Management

(Start auditing process)

yes @ no
no - yes [WS,RF]
M [OJt .Cllentd? Put CA correct? New Server
onitor triggered? i new DB
yes [RF,IN]

yes no New Server
and new DB
[IN] nei Auditing after Two get ¥)
New Server ; IN violated?
get request? different block?
and new DB
[RF]
yes fi6 New Server
no and new DB
s ne Auditing after Client detected i (W]
hlew Serien ut request? IN violation? Mew Serven
and new DB, P a 5 : and new DB
yes no
[0] yes [Ws]
N:tada;: New Server
glanesc: and new DB
no
[ws]
Move DB

Figure 15. Auditing process and measurements

4.2.1. Updated monitoring events and remediation plans

Each deviation of a measurement is associated to one predefined monitoring event
(representing an SLA alert or an SLA violation). In Table 12 we report all monitoring events
defined for the updated set of measurements for the E2ZEE and DBB mechanisms.

ID Condition Affected metrics | Event type
E2EE-E1 | client_code = no (6{0)

DBB-E1 in_violation =yes IN

DBB-E2 | ws_violation = yes WS

DBB-E3 fork_attack = yes WS RF

DBB-E4 | different_block_int = yes RF IN violation
DBB-E5 different_block = yes RF

DBB-E6 ws_int_violation = yes WS IN

DBB-E7 | rollback attack = yes WS

DBB-E8 system_error = yes WS

DBB-E9 primary_server_availability = no WS RF

DBB-E10 | primary_db_availability = no WS RF 1
DBB-E11 | backup_server_availability = no WS RF alert
DBB-E12 | backup_db_availability = no WS RF

Table 12. Monitoring events related to E2ZEE and DBB metrics

SPECS Project - Deliverable 1.5.1 34

Secure Provisioning of Cloud Services based on SLA Management

In the next table we report the updated and final set of remediation actions required to
mitigate E2EE and DBB alerts and recover from the SLA violations related to E2ZEE and DBB

mechanisms.

ID Description

E2EE-A1 | Upload the latest version of the Client to the web store and check its availability.

DBB-A1 Acquire a new VM in a new pool, set up a new Main Server, connect it to the Main
DB, and check if the Main Server is responsive.

DBB-A2 Acquire a new VM in the Main Server pool, set up a new Main DB, and check if the
Main DB is responsive.

DBB-A3 Perform restoration (Backup DB to Main DB) and check if it is complete.

DBB-A4 Connect the Main Server to the Backup DB, acquire a new VM in a new pool, setup a
new Backup DB, and check if the Backup DB is responsive.

DBB-A5 Restart the Main Server and check if it is responsive.

DBB-A6 Acquire a new VM in the Main Server pool, set up a new Main Server, and check if it
is responsive.

DBB-A7 Restart the Main DB and check if it is responsive.

DBB-A8 Restart the Backup Server and check if it is responsive.

DBB-A9 Acquire a new VM in the Backup Server pool, set up a new Backup Server, and
check if the Backup Server is responsive.

DBB-A10 | Perform backup (Main DB to Backup DB) and check if it is complete.

DBB-A11 | Restart the Backup DB and check if it is responsive.

DBB-A12 | Acquire a new VM in the Backup Server pool, set up a new Backup DB, and check if
the Backup DB is responsive.

Table 13. E2EE and DBB remediation actions

The next two figures present the updated remediation plans associated to alerts and

violations of the DBB and E2EE metrics.

Event E2EE-E1 DBE-E1-E7 DBE-E8 DEB-E9
E2EE-Al DBB-Al DBB-A4 DBEB-AS
Step 1
yes | no yes yes no | yes no
0] DEB-A2 DBB-A3 Q DBEB-Ab
Step 2
yes yes | no yes | no
DBB-A3 0 0 h
Step 3
yes
Step 4 O

Figure 16. Remediation plans for monitoring events E2EE-E1, and DBB-E1 to DBB-E9

Event DBB-E10 DBE-E11 DEB-E12
DBB-A7 DBEB-AB DBEB-A11
Step 1
yes no yes no yes no
0 DBB-A2 8] DBB-AS (0] DBB-A12
Step 2
yes no yes no yes no
DBB-A3 DBB-A10 DBB-A10
Step 3
yes | no yes | no yes | no
Step 4 0 0 O

Figure 17. Remediation plans for monitoring events DBB-E10 to DBB-E12

SPECS Project - Deliverable 1.5.1

35

Secure Provisioning of Cloud Services based on SLA Management

All further implementation and configuration details for both mechanisms are available in
deliverables D4.3.2, D5.2.1, D5.2.2 and on project’s Bitbucket [5] (in the mechanism metadata
format). The code for all DBB and E2EE components is also available on mechanisms’
Bitbucket repositories [1], [2], [3], and [4].

4.3. SVA mechanism

The prototype for the SVA security mechanism, which implements the Software Vulnerability
Assessment capability, was initially presented in deliverable D4.3.2 (submitted at M24). In
this section we focus on functionalities that were defined in the design, but not yet
implemented/integrated at M24.

The SVA mechanism comprises a set of components that enhance the security of cloud
services with the following functionalities:
e Periodic generation of the list of published software vulnerabilities extracted from
different public repositories.
e Periodic vulnerability scans of acquired cloud resources (with a possibility of using
more than one scanner).
e Periodic generation of the report outlining available updates and upgrades of
vulnerable libraries installed on target services.

These functionalities are offered to the End-user through a set of security metrics:

e List Update Frequency (LUF): With this metric the End-user sets the frequency of
updates of the list of published software vulnerabilities. For example, for LUF = 24h,
SPECS ensures that the list of published software vulnerabilities will be updated and
presented to the End-user at least once every 24h.

¢ Scanning Frequency - Basic Scan (BSF): With this metric the End-user sets the
frequency of basic software vulnerability scans (scans that are executed with a single
vulnerability scanner). For example, for BSF = 24h, SPECS ensures that software
vulnerability scans will be performed at least once every 24h.

¢ Scanning Frequency - Extended Scan (ESF): With this metric the End-user sets the
frequency of extended software vulnerability scans (scans that are executed with two
different vulnerability scanners). For example, for ESF = 48h, SPECS ensures that
software vulnerability scans will be performed with two different vulnerability
scanners at least once every two days.

e Up Report Frequency (URF): With this metric the End-user sets the frequency of
checks for updates and upgrades of vulnerable installed libraries. At the SLA
implementation phase, SPECS generates a vulnerability list, performs a vulnerability
scan of the cloud resources, and then periodically checks for available updates and
upgrades of vulnerable libraries. For example, for URF = 24h, SPECS ensures that
checks for updates and upgrades are performed at least once every day.

e Penetration Testing Activated (PTA): With this metric the End-user expresses the
need for the penetration testing activity. If chosen, a scanner with penetration testing
functionality is deployed.

SPECS Project - Deliverable 1.5.1 36

Secure Provisioning of Cloud Services based on SLA Management

In deliverable D4.3.2 we described the architecture of the mechanism that enforces and
monitors three defined security metrics, namely LUF, BSF, and URF. The architecture
(depicted in Figure 18) comprised the following components:

e SVA Enforcement: This component enforces SVA security metrics; it manages
(generates and updates) vulnerability lists, orchestrates scans, checks for
updates/upgrades of vulnerable libraries installed on the End-user’s target services,
and builds reports. For the secure web container cloud service, the SVA Enforcement
component is deployed on every VM hosting a web server.

e SVA Monitoring: This component monitors security metrics; it monitors all
parameters associated to each metric (e.g., age of reports, availability of repositories,
and responsiveness of scanners). For the secure web container cloud service, the SVA
Monitoring component is deployed on every VM hosting a web server.

e SVA Scanner: Executes vulnerability scans. For the secure web container cloud
service, the SVA Scanner component is deployed on every VM hosting a web server.

e SVA Dashboard: This component presents to the End-user the vulnerability list and
scanning results, and reports about available updates/upgrades of vulnerable libraries.
For the secure web container cloud service, the SVA Dashboard component is deployed
on the VM hosting the load balancer.

VM3
Web Server
4 SVA Enforcement
itori events ata
gestiitoring SVA Monitoring |« —
module SVA Scanner
monitoring
events VM2
Web Server
Enforcement - SVA Enforcement
ata
module SVA Monitoring [« —
SVA Scanner
notifications
VM1
Load Balancer
notifications reports
SVA Dashboard [«

Figure 18. Architecture of the initial SVA prototype

The remaining two security metrics, namely ESF and PTA, require an additional scanner with
the penetration testing functionality. In the next subsection we present the integration of such
a scanner, namely the OpenVAS introduced in deliverable D3.4.1. We present updates on the
SVA architecture, whereas the installation and the usage guides for new components are
provided in deliverable D3.4.1.

SPECS Project - Deliverable 1.5.1 37

Secure Provisioning of Cloud Services based on SLA Management

4.3.1. Updated architecture

In order to enforce extended software vulnerability scans which even provide penetration
testing functionality, during the SLA implementation phase SPECS has to deploy an additional
scanner on the acquired resources, namely the OpenVAS. As introduced in deliverables D3.3
and D3.4.1, OpenVAS comprises the following components:
e OpenVAS Scanner: Executes vulnerability scans.
e OpenVAS Manager: Controls the OpenVAS vulnerability scanner and generates
scanning reports.
e OpenVAS Client: Drives the OpenVAS Manager component by configuring
vulnerability scans.

If the End-user negotiates extended vulnerability scans or expresses the need for the
penetration testing functionality in the software vulnerability assessment capability, SPECS
deploys OpenVAS as depicted in Figure 19.

VM3 SVA Enforcement

SVA Scanner

Web Server

OpenVas Manager

Monitoring events
module

| SVA Monitoring

OpenVAS Scanner

events

monitoring
events

VM2

SVA Enforcement

Web Server SVA Scanner
Enforcement
module
OpenVas Manager
SVA Monitoring@&——— [~ | mr————-—
notifications OpenVAS Scanner

VM1
Load Balancer

notifications reports
SVA Dashboard [« OpenVas Client ¢~ ——————

x reports

Figure 19. Architecture of the final SVA prototype

For further details about the OpenVAS see deliverables D3.3 and D3.4.1, and for details about
the SVA mechanism see deliverable D4.3.2.

4.4. DoS Detection and Mitigation mechanism

In this section, we present the description and the implementation details for the DoS
Detection and Mitigation mechanism, designed to offer a solution to identify possible Denial of
Service attacks and to automatically mitigate them. The SPECS DoS Detection and Mitigation
mechanism’s preliminary design was presented in deliverable D4.2.2. In the following, we

SPECS Project - Deliverable 1.5.1 38

Secure Provisioning of Cloud Services based on SLA Management

provide a comprehensive overview of the architecture, the security metrics associated and the
related remediation actions, in addition to the installation and usage guide.

4.4.1. Overview

The DoS Detection and Mitigation mechanism is a negotiable security mechanism offered to
End-users. The mechanism has been devised to provide a feature for enriching the Secure
Web provision mechanism, discussed in deliverable D4.3.2, in order to protect the delivered
web servers against common security attacks. More in general, the mechanism provides a
solution to protect a generic web application, even unsecure, deployed on top of a web pool,
against DoS attacks.

It is worth noticing that the activation of the mechanism does not grant to the End-user that
any DoS attack are identified and mitigated, but that all the correct countermeasures are
being correctly applied.

The DoS Detection and Mitigation mechanism relies upon OSSEC [46], which has been already
analysed in the context of WP3 (see D3.3), for what regards the monitoring functionalities.
OSSEC works on a Log Analysis basis: it continuously parses and analyses the log files
produced by the web servers, identifying the events that may reveal a possible security alert
or violation.

Figure 20 briefly summarizes how the attack detection process works: the IDS decodes each
event (row in the log files) and compares it with a set of fixed rules. When the rules match the
event (or the sequence of events) it generates an alert, stored in a DB and/or starting an
active response, like the banning of an IP address or closing a specific TCP connection.

Pre-
decoding

Decoding

!

Rule
Matching

i __--"'-___- _---_"---_ .
7~ Active

\

I\\F_!esponse /'

Figure 20. OSSEC execution flow

) ~ ~.
|/’DB Storage | I,/ Email)
N S S _

In order to implement our DoS Detection and Mitigation mechanisms, we customized the
open source software, in order to enable its execution inside specs, through ad-hoc Chef

SPECS Project - Deliverable 1.5.1 39

Secure Provisioning of Cloud Services based on SLA Management

recipes. Moreover, we defined a set of additional rules to protect web application against a set
of known threats.

4.4.1.1. Architecture

The DoS Detection and Mitigation mechanism is implemented through the architecture
depicted in Figure 21. The main components are:

e OSSEC Server: The core of the DoS Detection and Mitigation mechanism, which
collects data from the agents and generates alerts and OSSEC actions, in order to
reconfigure the web applications.

e OSSEC Agent: Resides on the same machine of the monitored web server (in our case a
component belonging to the WebPool mechanism), builds the log files and shares the
events with the server.

e OSSEC Adapter: Collects alerts from the OSSEC Server, generates the reports, and
sends the event, in SPECS Event format, to the SPECS Monitoring core (through the
Monitoring Core Interface).

Monitored Nodes
Server Node
<<component>>
<<component>> N\ ossec agent
Ossec Server gl O
Ossec Interface
~ <<component>> =]
= Ossec Adapter
<<component>>
Monitoring web pool Component
Core Interface

Figure 21. DoS Detection and Mitigation mechanism’ architecture

In order to prepare the proper OSSEC configuration to protect the web servers, we adopted a
simple continuous process based on the execution of automated penetration tests and on the
generation of corresponding protection rules.

In particular, in order to verify the security level of the web containers (and the deployed
application on top of it), we adopted a tool offered by OWASP (Zed Attack Proxy Project - ZAP)
[47], which performs web-specific penetration tests. In particular, ZAP is an active open
source project that continuously updates the set of penetration tests according to known web
attacks.

We made a set of tests on different local environments, searching for optimal web-server
configuration (modifying accordingly the web-pool servers). Moreover, we enriched the
default set of OSSEC rules with additional rules from literature analysis, out of purpose in this
deliverable, and through ad-hoc development.

SPECS Project - Deliverable 1.5.1 40

Secure Provisioning of Cloud Services based on SLA Management

As shown in Figure 22, the tests were made before on local environment (independently from
the SPECS deployment), and subsequently by deploying the web containers through SPECS
and by testing them accordingly.

Satisfactory result
. Selection of Prepare Penetration on local 1 >
Tool configuration configuration J

Unsatisfactory result

Unsatisfactory result

. Satisfactory result -
.\ Penetration on real automate server
w0/ configuration configuration
N————r

Figure 22. OSSEC Configuration Process

4.4.1.2. Security metrics and controls

One security metric has been associated to the DoS Detection and Mitigation mechanism, and
it is defined in the following table, where we provide a description, possible values with units,
default values, and actions that need to be taken in order to enforce the metric.

Name Value Default value Unit
dDoS Attack Detection Scan Frequency (dDoSSF) int>0 24 hours
Sesaiisten The frequency of the dDoS attack report generation (for example, "2h

requires that the dDoS attack report is generated every two hours).
Before the first check, a dDoS scanning report is generated. Then
periodically:
1. Check for updates/upgrades.
2. Build and present report

Table 14. DoS security metric dDoSSF

Actions taken
to enforce the
metric

The metric has been associated with a basic measurement, reported in the following table
along with the MoniPoli rules associated.

Metric | dDoS Attack Detection Scan Frequency (dDoSSF)
SLO dDos_scan_frequency = N hours

Measurements MoniPoli rules
dDoS_report_age dDoS_report_age < N
dDoS_report_availability dDoS_report_availability = yes

Table 15. Measurements and MoniPoli rules associated to DoS metric dDoSSF

SPECS Project - Deliverable 1.5.1 41

Secure Provisioning of Cloud Services based on SLA Management

The DoS metric defined above can be associated with the NIST and CCM security controls
presented in the following table.

Security
Control metric
Family/Group Control Name Control ID | dDoSSF
NIST
DENIAL OF SERVICE PROTECTION SC-5 v
DENIAL OF SERVICE PROTECTION - SC-5(3) v
Access Control DETECTION / MONITORING
CONTINUOUS MONITORING CA-7 v
INFORMATION SYSTEM SI-4 v
MONITORING
CCM
Infrastructure and
Virtualization Network Architecture IVS-13 v
Security

Table 16. Mapping of the DoS metric to NIST and CCM security controls

4.4.1.3. Remediation

As introduced in deliverable D4.3.2 and summarized in Section 3.2, each measurement related
to a security metric defines one monitoring event. The following table lists all possible
monitoring events related to the DoS metric that can be detected by the Monitoring module.

s Affected
D Condition S Event type
DoS-E1 dDoS_report_age > dDoSSF_value dDoSSF violation
DoS-E2 dDoS_report_availability = no dDoSSF alert

Table 17. Monitoring events related to DoS metrics

Table 18 presents actions needed to remediate DoS alerts and violations.

ID Description
DoS-A1l Delete old scanning report, scan again, and check if the new scanning
report is available.

Table 18. DoS remediation actions

The following table presents remediation plan for managing alerts and violations of DoS
metrics. For details on the structure of a remediation plan and the remediation process see
deliverable D4.3.2 or Section 3.2.

Event DoS-E1 (V) / DoS-E2 (A)
Step 1 DoS-Al

yes no
Step 2 0

Table 19. Remediation plan for alerts and violations related to DoS metrics

SPECS Project - Deliverable 1.5.1 42

Secure Provisioning of Cloud Services based on SLA Management

4.4.1.4. Development

The development of the DoS mechanism started in the context of WP3 activities, whose result
was a preliminary architecture illustrated in deliverable D3.3. Although the associated
requirements were already covered, the updated version includes advanced mitigation
features. Moreover, in this deliverable we addressed the remediation aspects, not analysed
before.

4.4.2. Repository

The previous version of the mechanism is available at [48]. It has been substituted by the two
repositories [45] and [23], which respectively include the recipes for the installation of the
monitoring adapter and of the enforcement-related components, namely the server and the
agents.

4.4.3. Installation

As said, the DoS Detection and Mitigation mechanism is based on OSSEC, which must be
properly installed and configured through Chef recipes. As usual, this process requires to
have a Chef Server installed and properly configured, and a Chef Workstation from which it is
possible to execute the bootstrap of each target node.

The cookbook used for the installation of the OSSEC Server and the OSSEC Agents is available
at [23], which also contain the configuration files for OSSEC.

The commands to run on the workstation to install respectively the OSSEC Server and the
OSSEC Agent are the following:

knife bootstrap <public ip address_of the node that will hosts aaa> -X
<chef user name> -P <chef user password> --node-name <node name> --run-list
'recipe|[‘specs-enforcement-ossec: :server’]’

knife bootstrap <public ip address of the node that will hosts aaa> -x
<chef user name> -P <chef user password> --node-name <node name> --run-list
'recipe| ‘specs-enforcement-ossec::agent’]"'

As shown in Section 4.4.1, the server node must include also an adapter for the Monitoring
module. The recipe for the installation of the OSSEC Adapter is available at [45].

4.4.4. Usage

The OSSEC mechanism does not have a web interface enabled at current state, but it is
possible to access the information on the alerts that have been generated during its operation
by accessing the log file at the path:

<public ip address of the node that will hosts OSSEC_Server>/opt/ossec/logs/aler
ts/alerts.log

4.5, AAA mechanism

In this section, we present the description and the implementation details for the AAA
mechanism, designed to offer identity management and access control functionalities as-a-

SPECS Project - Deliverable 1.5.1 43

Secure Provisioning of Cloud Services based on SLA Management

service. The AAA mechanism is offered by the SPECS AAA package, involved in the following
cross-cutting validation scenarios (reported in deliverable D5.1.2):

e (CRO.5 - User_Direct_Registration

e (CRO.6 - User_Registration_External_Account

e (CRO.7 - User_Authentication_External_Account

The AAA package is also involved in the validation scenarios defined in D5.4 for the AAA-as-a-
Service (AAAaaS) validation application:

o AAA.1 - Identity Management_Set-up

o AAA.2 - User_Registration

e AAA.3 - User_Access_Internal Account

o AAA.4 - User_Access_External Account

The SPECS AAA component’s preliminary design was presented in deliverable D4.2.2. In the
initial design, the AAA mechanism was intended to be used both to manage the identity of
the users of the SPECS Platform, and to provide Identity-as-a-service (IDaaS) to generic
customers. At current state, the AAA mechanism is devoted to providing access control and
identity management features over existing cloud services in an as-a-service fashion, while
the management (authentication and authorization) of the SPECS Platform users is provided
by the User Manager component, belonging to the SPECS Vertical Layer (see deliverables
D1.4.1 and D1.4.2 for related design and implementation details). From the implementation
point of view, however, the AAA mechanism uses the same code base with different
customizations, minimizing in any case the development effort.

In the following, the behaviour and design of the AAA mechanism is illustrated.

4.5.1. Overview

As anticipated, the AAA mechanism is a negotiable security mechanism offered to the End-
users. It enables who acquires them to easily set-up a system for the management of user
profile information and for the enforcement of access control policies, requiring only limited
skills with authentication and authorization.

In particular, the SPECS AAA mechanism relies upon a well-known open standard for
authorization, namely the OAuth authorization framework [39]. OAuth provides a “secure
delegated access” to protected resources on behalf of the resources’ owner, by enabling third-
party clients to obtain an access token used in place of the resources’ owner’s credentials.

Nowadays, OAuth is widely used as a way for Internet users to log into third-party websites
using their existing accounts at, for example, Microsoft, Google, Facebook or Twitter, without
exposing their password. In this case, Microsoft, Google, Facebook and Twitter act as
authorization servers that issue access tokens to (registered) third-party applications, with
which these applications can access private resources, i.e., the user profile information. In the
case of Twitter, for example, a third-party application registered with the Twitter
authorization server may ask for an access token in order to access, for example, the last 5
tweets of a certain user.

SPECS Project - Deliverable 1.5.1 44

Secure Provisioning of Cloud Services based on SLA Management

The SPECS AAA mechanism provides the End-user with the tools for the management of the
users of his/her own applications, including authentication and authorization features
enabled through the integration of the OAuth framework. In particular, the AAA mechanism
provides a means to allow registered web clients to access information on user profile with
the authorization of the profile owners, by means of an access token issued by the OAuth
Server. In our implementation, user profile information is stored in an LDAP [40] directory
service.

Moreover, the AAA mechanism provides the tools to support a fine-grained role-based
authorization thanks to the integration of an XACML-based [41] web authorization system.

4.5.1.1. Architecture

The AAA mechanism is implemented by the AAA package (as shown in Figure 23) and
consisting of the following main components:

e The OAuth Server, which is the core of the AAA mechanism and includes an
Authorization Server, used to authorize access requests from external OAuth clients,
and the Resource Server, representing the entity that manages the resources to
protect. The OAuth Server interacts with the OAuth Client, which must be included in
the web client that intends to use the protected resources (Section 4.5.4 illustrates
how to integrate the OAuth Client within a generic target application).

e The App DB, where the information of registered OAuth Clients are stored (e.g., the
client type, the redirection UR], etc.).

e The Authentication Backend, which is used by the OAuth Server to perform client
authentication. It includes an LDAP Authentication Provider that is connected to an
LDAP Client, communicating with the LDAP Server.

e The Authorization Service, which is used by the OAuth Server to perform
authorization based on existing XACML policies, and which includes a Policy
Enforcement Point (PEP), a Policy Decision Point (PDP), and a Policy Repo to store
the policies.

<<component>> =]
AAA package
<<component>> E (O <<component>> E
Qauth Client
Oauth Authentication Backend <<component>> =]
LDAP Server
Interface <<component>> @
LDAP LDAP Directory
Authentication —|<<component>> 3] Inform ation Tree
Provider LDAP Client
<<component=>> g][—
Oauth Server
O <<component>> 3]
Web Ul Authorization
Server <<component>> =]
Authorization Service
<<component>> 3]
Resource Server <<component>> 5] <<component>> 2]
PEP Policy Repo
‘ | @ XACML
<<component>>
<<component>> E PFE)P Policies
App DB (JDBC)
Oauth Client
Schema MySQL

Figure 23. AAA mechanism architecture

SPECS Project - Deliverable 1.5.1 45

Secure Provisioning of Cloud Services based on SLA Management

The OAuth Server provides an OAuth Interface for the communication with the OAuth Client
and a Web Interface to register new users in the LDAP Server and new applications in the App
DB.

In a typical interaction scenario between the OAuth Client and the AAA package, a client
application requests the access to a resource of a target application. The OAuth Client
forwards the request to the AAA package in order to obtain an access token, which enables the
Client to access the protected resources on behalf of the resource owner.

The sequence diagram in Figure 24 shows the main interaction among the AAA package
components in the presence of an access request from a user.

User Qauth Oauth Server App DB Authentication LDAP
Client Backend senver
I I

| | .
1- t 2: access request ’)
| ACCess reques >J.| 3: authenticate client

|
|
(client_id,client_secretredirect_uri) .I_ (

T
|
I
client_id,client_secret) I
|
4: ok [
5: redirect to login form I
. ' I
6: login {username,password) 7: authenticate user l I _)
(user,pwd) | 8: validate login
7 (username,password)
9: ok
e 10: ok
11: redirect to authorization page
12: Permit
i 13: generate
14: Authorization Grant Authorization Grant
3
I 15: Token request (Authorization Grant)
16: generate Token
17: Token
i
18: access user profile (Token) I
0
19: validate Token
) 20: Authorization
22: redirect to 21: user profile Check
redirect_uri page
- 1 I I

I ! ! I I
Figure 24. AAA package behaviour in the presence of an access request

By assuming that both the user requesting the access and the used OAuth Client have been
previously registered by the OAuth Server of the AAA package, the steps carried out when an
access request is issued can be summarized as follows:

1. The OAuth Client, on behalf of the user, submits an access request to the OAuth Server
of the AAA package, by providing its id and a redirect URI (Steps 1-2).

2. The OAuth Server accesses the App DB looking for the application id; since the
application client is registered, the id is found and a login form is presented to the user
behind the Client (Steps 3-5).

3. The user submits his username and password (Step 6).

SPECS Project - Deliverable 1.5.1 46

Secure Provisioning of Cloud Services based on SLA Management

The OAuth Server invokes the Authentication Backend to perform LDAP-based
authentication. The user is authenticated and her/his role is retrieved (Steps 7-9).

The OAuth Server requests to the user the consent to give to the Client the access to
protected resources. The user accepts (Steps 11-12).

The OAuth server generates an authorization grant and sends it to Client, which is now
allowed to access the protected resources on behalf of the user (note that the actual
role-based authorization has not yet taken place) (Steps 13-14).

The OAuth Client issues a new request to the OAuth Server to obtain a token. The
request carries the authorization grant and a new Redirect URL. The OAuth Server
checks the correspondence between the authorization grant and existing requests and
generates an access token, including an expiration time, returned to the Client (Steps
15-17).

The OAuth Client issues an access request to the Resource Server in the OAuth Server,
by using the token. The token includes information on the application and on the role
of the user. If a rule is present in the Resource Server for the resources, roles and scope
of the request, the Resource Server will grant the access (Steps 18-22).

Note that, by default, the Resource Server included in the AAA package manages two basic
user roles, namely “user” and “admin”, with built-in authorization rules. If the request cannot
be evaluated by the Resource Server because the role is different from these two or because
the requested resource/scope are not directly managed, the access request is forwarded to
the Authorization Service, which makes a decision based on the stored XACML policies. Note
that the writing of the policy is under the control of the End-user. Once the authorization is

given,
25.

the user is redirected to the requested resource. The related flow is depicted in Figure

User

Oauth Oauth Server Authorization Policy

Client Server Repo
1: access request I

1

I
|
(resource path, role, scope) ’| 2: access request (Token, i

resource path, role, scope)

3: validate Token

4: Authorization Check

5: authorization service request
(username, path_resource)

B: get policy

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T: policy T:|

8: evaluate request

9: Permit (policy, role, resource
10: Permit S — path, scope)
11: redirect to T ,

path_resource page

2

.
|
T |
|
Figure 25. AAA package behaviour in presence of an authorization request managed by the

Authorization Service

SPECS Project - Deliverable 1.5.1 47

Secure Provisioning of Cloud Services based on SLA Management

4.5.1.2. Security metrics and controls

Security metrics associated to the AAA mechanism are defined in the following tables. For
each metric, we provide a description, possible values with units, default values, and actions
that need to be taken in order to enforce the metric.

Name

Value

Default value

Unit

Secure delegated access (SDA)

yes

yes

n/a

Description

This metric ensures that an OAuth Server is configured to
ensure authentication and authorization of users and secure
delegated access to the users’ resources to registered clients.

Actions taken to
enforce the

An OAuth server is installed on the End-user’s resources to
provide secure delegated access to protected resources.

metric
Table 20. AAA security metric Secure Delegated Access
Name Value Default value Unit
Access report generation frequenc :
ports 4 y int>0 24 hours
(ARGF)
This metric sets the frequency of access reports generation. For
Description example, for access_report_gen_frequency=12, SPECS ensures

that a report is generated at least once every 12 hours.

Actions taken to
enforce the

The AAA package is configured so to periodically generate an
access report with the requested frequency

metric

Table 21. AAA security metric Access Report Generation Frequency
Name Value Default value Unit
AAA Log Completeness (ALC) | Low/Medium/High | Medium (M) n/a
Description This metric represents how detailed the access reports must be.

Actions taken to
enforce the
metric

The AAA package is configured so to generate an access report
with the requested level of detail.

Table 22. AAA security metric AAA Log Completeness

As described in deliverable D4.3.2, we associate each metric with a basic measurement and
one or more additional measurements (with which the alert/violation thresholds are set and
MoniPoli rules are built). The following tables present these measurements together with

MoniPoli rules associated to AAA metrics.

Metric | Secure Delegated Access (SDA)

SLO secure_delegated_access = yes

Measurements

MoniPoli rules

oauth_server_availability

oauth_server_availability = yes

ldap_server_availability

Idap_server_availability = yes

Table 23. Measurements and MoniPoli rules associated to AAA metric SDA

SPECS Project - Deliverable 1.5.1

48

Secure Provisioning of Cloud Services based on SLA Management

Metric | Access Report Generation Frequency (ARGF)
SLO access_report_gen_frequency = N hours
Measurements MoniPoli rules
access_report_age access_report_age <= N
Table 24. Measurements and MoniPoli rules associated to AAA metric ARGF

Metric | AAA Log Completeness (ALC)

SLO aaa_log_completeness = L/M/H

Measurements MoniPoli rules
log_detail log_detail = ALC_value

Table 25. Measurements and MoniPoli rules associated to AAA metric ALC

The AAA metrics defined above implement NIST and CCM security controls presented in the
following table.

Control Security metric
Family/Group Control Name Control ID | SDA | ARGF ALC
NIST
ACCESS CONTROL POLICY AND AC-1 v
PROCEDURES
ACCOUNT MANAGEMENT | DYNAMIC AC-2(6) v
PRIVILEGE MANAGEMENT
ACCOUNT MANAGEMENT | ROLE- AC-2(7) v
BASED SCHEMES
ACCOUNT MANAGEMENT | DYNAMIC
- v
Access Control ACCOUNT CREATION AC-2(8)
ACCOUNT MANAGEMENT | ACCOUNT AC-2(12) v
MONITORING / ATYPICAL USAGE
ACCESS ENFORCEMENT AC-3 v
ACCESS ENFORCEMENT | ROLE- AC-3(7) v
BASED ACCESS CONTROL
UNSUCCESSFUL LOGON ATTEMPTS AC-7 v
AUDIT AND ACCOUNTABILITY AU-1 v
POLICY AND PROCEDURES
AUDIT EVENTS AU-2 v
AUDIT EVENTS | REVIEWS AND
- v
UPDATES AU-2(3)
CONTENT OF AUDIT RECORDS AU-3 v
CCM
Identity & Access Credential Lifecycle / Provision IAM-02 v
Management Management
Policies and Procedures IAM-04 v v v

Table 26. Mapping of AAA metrics to NIST and CCM security controls

4.5.1.3. Remediation

As introduced in deliverable D4.3.2 and summarized in Section 3.2, each measurement related
to a security metric defines one monitoring event. The following table lists all possible
monitoring events related to AAA metrics that can be detected by the Monitoring module.

SPECS Project - Deliverable 1.5.1 49

Secure Provisioning of Cloud Services based on SLA Management

D Condition ﬁiﬁig Event type
AAA-E1 oauth_server_availability = no SDA

AAA-E2 ldap_server_availability = no SDA L
AAA-E3 access_report_age > ARGF_value ARGF KeLter
AAA-E4 | log level = ALC value ALC

Table 27. Monitoring events related to AAA metrics

Table 28 presents actions needed to remediate AAA alerts and violations.

ID Description

AAA-A1 | Restart OAuth Server.

AAA-A2 Restart LDAP Server.

AAA-A3 | Force generation of access report and check if the report is available.
Table 28. AAA remediation actions

The following table presents remediation plan for managing alerts and violations of AAA
metrics. For details on the structure of a remediation plan and the remediation process see
deliverable D4.3.2 or Section 3.2.

Event AAA-E1 (V) | AAA-E2 (V) | AAA-E3/AAA-E4 (V)
Step 1 AAA-A1 AAA-A2 AAA-A3
yes no es no |yes no
Step 2 0 0 AAA-A1
yes no
Step 3 0

Table 29. Remediation plan for alerts and violations related to AAA metrics

4.5.1.4. Development

The development of the AAA mechanism started in Task 4.2, whose result was a preliminary
architecture of the AAA package, illustrated in deliverable D4.2.2. Although the associated
requirements were already covered, we updated the design to offer a more flexible solution
based on the popular technologies currently adopted. Moreover, in this deliverable we
addressed the remediation aspects, not analysed before.

4.5.2. Repository

As said, the AAA mechanism is implemented by the AAA package, available on Bitbucket at
[21]. Moreover, the repository contains also an example of OAuth client at the link [22].

4.5.3. Installation

In this section, we illustrate how to install the AAA mechanism both by manually configuring
all needed software components and by using Chef recipes.

4.5.3.1. Manual Installation

The manual installation requires the following prerequisites:
e Gitclient
e Maven

SPECS Project - Deliverable 1.5.1 50

Secure Provisioning of Cloud Services based on SLA Management

Java 7

Java web container (e.g., Apache Tomcat [42])
OpenLDAP Server [43]
MySQL [44]

In order to install the AAA package, the following steps must be accomplished:
e C(lone the git repository at [21].
e (Convertitinto a Maven project.
e Execute the ‘maven install’ command in order to execute tests and to generate the
artifact.

In case of usage of the Eclipse IDE, these steps are detailed as:
e Import project from git as an “existing eclipse project”.
e Right-click on the project, click on “Run as”, then click on “Maven install”.

The specs-mechanism-enforcement-aaa project generates a “war” file. By executing the maven
goal “install” on it, the artifact is stored automatically in the “/target” folder. In order to use
this component, the “war” file must be installed in a web container. If Apache Tomcat is used,
the “war” file must be copied into the “webapps” folder that is inside the installation directory
of Apache Tomcat.

As said, the

AAA mechanism relies upon an LDAP directory service for storing user

information. Therefore, an OpenLDAP server must be configured. To do this, the following
steps must be carried out:
e Change permission of server configuration file:

o

@)
©)
@)

chmod 777 usr/local/etc/openldap/slapd.conf

Include schemas into LDAP Server:

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema
include /usr/local/etc/openldap/schema/java.schema

e Enable debug:

o

loglevel -1

e Define the database:

©)

©)
©)
©)
©)

db 1dif

suffix “dc=specs,dc=eu”

rootdn “cn=Manager,dc=specs,dc=eu”
rootpw pass

directory /usr/local/var/openldap-data

e Add the DIT (Directory Information Tree):

o

Move the folder “dc=specs,dc=eu” under the path /usr/local/var/openldap-data

e Launch the OpenLDAP server:

o

/usr/local/libexec/slapd -d 1 -f usr/local/etc/openldap/slapd.conf -h
ldap://localhost:389

After configuring OpenLDAP, it is necessary to install and configure the database used by the
DB App component. The database can be created by running the script schema.sql:

SPECS Project - Deliverable 1.5.1 51

Secure Provisioning of Cloud Services based on SLA Management

e mysql -u username -p database_name < schema.sql

Finally, the XACML policy called “PolicySpecsApp.xml” has to be moved under the folder
/opt/xacml_policy.

4.5.3.2. Chef Recipe Installation

In addition to illustrating the steps to manually install the AAA mechanisms, we also provide
in this section a brief guide to install the mechanisms by means of a Chef recipe (available at

[51)-

This process requires to have a Chef Server installed and properly configured, and a Chef
Workstation from which it is possible to execute the bootstrap of each target node.

The command to run on the workstation is the following:

knife Dbootstrap <public ip address of the node that will hosts aaa> -x
<chef user name> -P <chef user password> --node-name <node name> --run-
list 'recipe['AAA:server']'

4.5.4. Usage

As discussed in the overview section (Section 4.5.1), an OAuth Client must be included in the
client application in order to communicate with the OAuth Server. In the following
subsections, we illustrate all the operations that must be carried out by the OAuth Client to
enable the flow described in Section 4.5.1, including the initial registration of the user and of
the client, the authentication, and authorization, the submission of an access request and the
support for new resources.

4.5.4.1. OAuth Client and User registration

In order to register a new OAuth Client on the OAuth Server, it is necessary to access the web
interface provided by the OAuth Server at /specs-oauth2-server/ with the role of “Admin” and
open the registration page under the path: /specs-oauth2-server/regapp. The client
information will be stored in the database managed by the App DB component and the client
will be assigned a clientld and a clientSecret.

User registration can be done on the same URL. The user profile information will be stored in
the LDAP server and the user will be assigned a set of credentials (a username and a
password).

4.5.4.2. Authentication and Authorization

In order to obtain authentication and authorization for an access request, the OAuth Client
has to call the Authorization end-point (/specs-oauth2-server/oauth/authorize) of the OAuth
Server. The parameters to send into the GET request are:

1. client_id

2. redirect_uri

3. response_type

4. state

SPECS Project - Deliverable 1.5.1 52

Secure Provisioning of Cloud Services based on SLA Management

After the login phase (authentication), an authorization page is displayed to the user, who
must give consent to access the protected resources. After the authorization, an authorization
code is sent to the redirect_uri.

At this point, the OAuth client invokes the Token end-point (/specs-oauth2-
server/oauth/token) to exchange the authorization code and receive the authorization token.
To do this, a POST request at the token end-point is needed, with the parameters:

1. Authorization Header (contains the clientld and clientSecret Base64 encoded)

2. grant_type
3. redirect_uri
4. code

If the code exchange ends successfully, the redirect_uri is called and the OAuth token is sent
by the OAuth Server to the client.

4.5.4.3. Access to Protected Resource

Once the OAuth token has been received, the Client Application can access the user profile or
validate the token to verify the successful user authentication.

In particular, to validate the token, the Validate_Token end-point (/specs-oauth2-
server/oauth/check_token) has to be called with the OAuth token as parameter.

To access the user profile (protected resource), the User Profile end-point (/specs-oauthZ2-
server/me) must be called, with the OAuth token as Authorization Header.

4.5.4.4. Add a new Protected Resource

As said, the Resource Server is configured to manage a limited set of resources, namely the
user profile information, with two built-in roles (admin and user). In order to extend the
management to more resources and roles, the AAA mechanisms use the Authorization
Service, which implements an XACML-based authorization.

As said before, during the mechanisms’ installation, the default XACML policy file
(PolicySpecsApp.xml) has to be moved under the folder /opt/xacml_policy. This file can be
updated to update the authorization policy evaluated by the PDP.

For example, if the resource “home_reserved.jsp” needs to be supported, the following lines
must be added to the file:

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-
string-match">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
http://localhost:8080/specs-application-test/home reserved.jsp </AttributeValue>
<ResourceAttributeDesignator
DataType=http://www.w3.0rg/2001/XMLSchema#string
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
</ResourceMatch>
</Resource>

SPECS Project - Deliverable 1.5.1 53

http://www.w3.org/2001/XMLSchema#string

Secure Provisioning of Cloud Services based on SLA Management

5. Conclusions

Automatically enforcing SLAs in the cloud is a challenging task. The SLA enforcement tools
have to (i) determine which features that are required from an End-user are implementable
(if at all) with which CSPs, and (ii) how to automatically acquire cloud resources and deploy
and configure additional mechanisms (if needed) that fulfil commitments in the signed SLA.
Furthermore, the SLA enforcement tools have to support reconfigurations that (i) might be
needed due to the changes in the SLA required either by the End-user (if the End-user wants
to renegotiate her/his SLA) or by the CSP (due to the changes in the provided service), or (ii)
are needed due to an unsuccessful remediation of an SLA violation. Although the cloud
community is working on specifying security parameters in SLAs (see [24], [25], [26], [27]),
and despite the fact that at the state of the art there were/are researchers actively working on
enforcing security and adopting SLAs in the cloud [28], there is still a lack of tools that would
enable their automated enforcement and monitoring (to the best of our knowledge, there are
no solutions available that would automatically enhance the security level of cloud services
through security SLAs). To this end, we have advanced the current state-of-the-art by
developing a security-driven planning process adopted to determine the optimum
deployment of security related software components [6]. Our innovative solution is able to
automatically acquire and configure cloud resources to (optimally) deploy security-related
software components for the enforcement of the security SLOs included in a signed SLA. The
proposed approach founds on (i) matching customers’ security requirements reported in the
SLA with a set of security mechanisms offered as a service (Security-as-a-Service) and on (ii)
automatically generating and implementing an allocation plan for the actual deployment of
software components providing the desired security mechanisms. We have developed a set of
components in SPECS that offer these exact functionalities. The Enforcement Planning and
Implementation components first take as an input a set of End-user’s security requirements
(elicited during the SLA negotiation phase) and verify their feasibility according to CSP’s
capabilities and offers. Then, the Enforcement components prepare configuration details (the
so-called implementation plan), and finally acquire cloud resources and deploy services
according to the implementation plan in an automated way.

The automated enforcement of SLAs in the cloud only partially serves the needs of End-users
and CSPs. There is a need for tools and mechanisms that are able to automatically react to
eventualities that may threaten the fulfilment of the SLA commitments (e.g. cyber-attacks,
system failures, changes in regulations). The detection, analysis, and reaction to potentially
harmful security related events are thus essential activities to be carried out by CSPs in order
to provide End-users with a trustworthy service and also fulfil the agreed upon assurance
levels. In the Quality of Service context, SLAs usually include parameters (e.g., availability)
that can be the subject of a progressive degradation of the acquired cloud service that imply
an SLA violation (e.g., a system failure may anticipate degradation of the performance
indicators and can thus result in a violation of the committed availability). Moreover, the CSPs
are able to monitor such parameters and are able to automatically remediate
incidents/failures that affect them (e.g., set up new resources). However, in the security
context, the detection of such events (and even more so their automated remediation) is
mostly unexplored. This is due to the fact that security parameters usually lack the
aforementioned progressive degradation of the service (for example, if an attacker breaks an
encryption key, there is no apparent indicator that would announce a security breach and the
protected information is exposed). There are some works available, that tackle the problem of
SPECS Project - Deliverable 1.5.1 54

Secure Provisioning of Cloud Services based on SLA Management

the automated SLA remediation (for example, [29], [30], [31], [32]), but none of them is
focused on security aspects. To this end, SPECS introduces an innovative approach to
automatically react to events that might or do entail a violation of security commitments
specified in the security SLA [35]. The designed methodology advances the current state-of-
the-art by analysing detected events and selecting remediation actions to be executed in order
to avoid or recover from an invalidation of any clause of the SLA. We have developed a set of
components that enables the proposed automated SLA remediation. The Enforcement
Diagnosis component can analyse any detected event that may present a potential or an actual
SLA violation, and the RDS component can determine an optimal remediation plan to prevent
or recover from it. The Implementation component executes the remediation plan in an
automated fashion, similarly as in the SLA enforcement phase.

In particular, in the last six months of the project, we have added functionalities related to
implementing renegotiated SLAs to the Planning and the Implementation component. We
have been working on improving the quality of the code in terms of security, scalability, and
mostly performance, and addressing issues that were arising from the integration activities.
Additionally, we have improved three security mechanisms already presented in deliverable
D4.3.2 (namely the E2EE, DBB, and SVA), and developed two new security mechanisms
(namely AAA and DoS).

In the table below we present the list of objectives associated to the task T4.3 and report the
outcomes which verify the benefits of the results achieved in this task in the entire duration of
the project.

Objective Result
S04.1: Design and e We have improved the current state of the art by designing an
implement services to innovative (security) SLA-based approach to the generation of
check the effective valid supply chains (i.e.,, automated verification of
availability of security implementability of an SLA) [6].
features and provide this | ¢ The developed Planning component [8] enforces the verification
information to the of effective availability of security features thus supporting the
Negotiation mechanism, SLA negotiation phase by implementing the designed process of
determining the possibility generating valid supply chains.
of the SLA fulfilment with | ¢ We have designed the mechanism data model [33] that
respect to security supports the process of verifying feasibility of an SLA.
S$04.2: Design and e We have designed the SLA-based approach to generating
implementation of Cloud implementation plans to enable automated implementation of
services able to check the SLAs (presented in deliverable D4.3.2).
running software stackand | ¢ The designed implementation plan data model [34] and the
activate the opportune mechanism data model [33] support the process of automated
actions in order to SLA implementation.
respect an agreed cloud | ¢ The developed Planning component [8] enforces the designed
SLA process of generating implementation plans thus supporting the
SLA implementation phase.
e We have designed the automated SLA implementation process
(i.e., the process of executing implementation plans) in terms of
automatically acquiring cloud resources and automatically
managing deployment of mechanisms on top of them and their

SPECS Project - Deliverable 1.5.1 55

Secure Provisioning of Cloud Services based on SLA Management

configuration (elaborated in deliverable D4.3.2).

e The developed Implementation component [9] (integrated with
the Broker component [10]) enforces the activation of
opportune actions in order to respect an agreed cloud SLA by
implementing the designed SLA implementation process.

$04.3: Provide a e We have designed the automated SLA remediation process that
sustained QoSec during comprises the analysis of detected security incidents/system

the life cycle of the failures and identification and execution of associated
application/service, as remediation plans (elaborated in deliverable D4.3.2 and

agreed on the Cloud SLA presented in [35].

(cf, negotiation stage) e The designed remediation plan data model [36] and the

mechanism data model [33] support the process of automated
SLA remediation phase.

e The developed Diagnosis component [8], the RDS component
[12], and the Implementation component [9] (integrated with
the Broker component [10]) provide a sustained QoSec during
the SLA life cycle by implementing the designed SLA remediation

phase.
S$04.4: Offer additional e We have developed (or adjusted and integrated) a set of
security services to end negotiable security mechanisms that offer additional security
users in order to sustain a services to end users:
minimum required QoSec o WebPool [13], [14] (see deliverable D4.3.1 for initial and

D4.3.2 for final prototype)

o TLS[15] (see D4.3.2)

o SVA[16],[17],[18],[19], [20] (see deliverable D4.3.1 for
initial, D4.3.2 for intermediate, and Section 4.3 for final
prototype)

o AAA|[21],[22] (see Section 4.5 for the prototype and
deliverable D5.4 for the AAA-as-a-Service application)

o DoS [23] (see Section 4.4 for the prototype)

o DBB & E2EE [1], [2], [3], [4] (see deliverables D4.3.2 for
initial prototype, D5.2.1 for improved functionalities,
D5.2.2 for final prototype, and Section 4.2 for elaboration
on how final prototypes are automatically managed
during the SLA life cycle)

e The designed mechanism data model [33] enables automated
management of developed/integrated mechanisms.

o The developed security mechanisms are part of the SPECS
solution portfolio [37].

Table 30. Objectives and results of the task T4.3

The developed approach to verifying feasibility of an SLA (presented in deliverable D4.3.2 and
in [6]) currently deals with SLAs sequentially, i.e. separately for each End-user. Since dealing
concurrently with the service request from various End-users could allow for a better
resource planning, in future (as part of our exploitation activities) we intend to improve the
algorithm to better exploit the multitenancy features.

The crucial part of the SLA remediation process (in security or any other domain) is a
thorough analysis of the detected event that causes or anticipates an SLA violation. In SPECS,

SPECS Project - Deliverable 1.5.1 56

Secure Provisioning of Cloud Services based on SLA Management

the developed diagnosis process relies only on the information provided by the monitoring
adapters deployed on the acquired cloud resources for each End-user/SLA separately. A more
meaningful analysis of SLA violations and a better detection of SLA alerts (i.e., potential SLA
violations) would be possible if some additional information would be considered as well
(e.g., historic data, monitoring data gathered on other parts of the infrastructure acquired for
other End-users/SLAs). In future (as part of our exploitation activities), our goal is to develop
an improved version of the process of analysing detected SLA alerts and violations.

SPECS currently deals with provisioning of cloud services only with one cloud provider per
End-user/SLA. Moreover, the goal of SPECS is to develop a framework for an automated
management of the SLA life cycle without taking into account the business side of the service
provisioning. SPECS offers a complete platform for the SLA management and for the
enhancement of the security level of the provisioned cloud service, thus after the end of the
project a good research direction would be to work towards enforcing SLAs in the multi-cloud
environment taking into account even the costs associated to the provisioned services and the
trade-offs among the cost, the performance, and the security of the provisioned service. Note
that (i) different CSPs implement different security controls and (ii) not all security
mechanisms, which can enhance the security level of the services offered by CSPs, can be
implemented on every cloud resource. Therefore, supporting enforcement of SLAs with more
than one CSP at the same time, additionally associating provisioning of such services not only
with some sort of a security level score (as currently done for each CSP by the Security
Reasoner component of the SLA Platform - see deliverable D2.3.2) but also a concrete service
cost, and analysing cost-performance-security trade-offs, would give the End-user an
opportunity to better identify an optimal service for her/his security requirements.

SPECS Project - Deliverable 1.5.1 57

Secure Provisioning of Cloud Services based on SLA Management

6. Bibliography

[1]

[2]

[10]

[11]

[12]

[13]

SPECS, “SPECS Enforcement E2EE Server”, 2015. Available online,

https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server, last
accessed in April 2016.
SPECS, “SPECS Enforcement EZEE Client”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-client, last
accessed in April 2016.
SPECS, “SPECS Enforcement E2EE Auditor”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-auditor, last
accessed in April 2016.
SPECS, “SPECS Enforcement EZEE Monitoring Adapter”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter, last
accessed in April 2016.

SPECS, “SPECS C(Core Enforcement Repository”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-repository/overview, last
accessed in April 2016.

V. Casola, A. De Benedictis, M. Erascu, J. Modic, M. Rak, “Automatically Enforcing Scurity
SLAs in the Cloud”, 2016. IEEE Transactions on Services Computing - Special Issue on
Security and Dependability of Cloud Systems and Services, 2016. Available online,
http://doi.ieeecomputersociety.org/10.1109/TSC.2016.2540630, last accessed in June
2016.

Chef Software Inc., “Chef”, 2008. Available online, https://www.chef.io/, last accessed in
March 2016.

SPECS, “SPECS Core Enforcement Planning”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-planning, last accessed in
April 2016.

SPECS, “SPECS C(Core Enforcement Implementation”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-implementation, last
accessed in April 2016.

SPECS, “SPECS Core Enforcement Broker”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-broker, last accessed in
April 2016.

SPECS, “SPECS Core Enforcement Diagnosis”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-diagnosis, last accessed in
April 2016.

SPECS, “SPECS Core Enforcement RDS”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-rds, last accessed in April
2016.

SPECS, “SPECS Mechanism Enforcement WebPool”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-enforcement-webpool, last
accessed in April 2016.

SPECS Project - Deliverable 1.5.1 58

https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-server
https://bitbucket.org/specs-team/specs-mechanism-enforcement-e2ee-client
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-auditor
https://bitbucket.org/specs-team/specs-mechanism-monitoring-e2ee-adapter
https://bitbucket.org/specs-team/specs-core-enforcement-repository/overview
http://doi.ieeecomputersociety.org/10.1109/TSC.2016.2540630
https://www.chef.io/
https://bitbucket.org/specs-team/specs-core-enforcement-planning
https://bitbucket.org/specs-team/specs-core-enforcement-implementation
https://bitbucket.org/specs-team/specs-core-enforcement-broker
https://bitbucket.org/specs-team/specs-core-enforcement-diagnosis
https://bitbucket.org/specs-team/specs-core-enforcement-rds
https://bitbucket.org/specs-team/specs-mechanism-enforcement-webpool

Secure Provisioning of Cloud Services based on SLA Management

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

SPECS, “SPECS Mechanism Monitoring WebPool Adapter”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-monitoring-webpool-adapter, last
accessed in April 2016.

SPECS, “SPECS Core Enforcement TLS”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-tls/, last accessed in April
2016.

SPECS, “SPECS Mechanism Enforcement SVA Core”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva core, last
accessed in April 2016.

SPECS, “SPECS Mechanism Enforcement SVA Dashboard”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva dashboard, last
accessed in April 2016.

SPECS, “SPECS Mechanism Monitoring SVA”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva, last accessed in
April 2016.

SPECS, “SPECS Mechanism Enforcement SVA Vulnerability Manager”, 2015. Available
online, https://bitbucket.org/specs-team/specs-mechanism-enforcement-
sva vulnerability manager, last accessed in April 2016.

SPECS, “SPECS Mechanism Monitoring OpenVAS”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-monitoring-openvas, last accessed
in April 2016.

SPECS, “SPECS Mechanism Enforcement AAA”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa, last accessed in
April 2016.

SPECS, “SPECS Mechanism Enforcement AAA Client”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa-client, last
accessed in April 2016.

SPECS, “SPECS Mechanism Enforcement DoS Detection and Mitigation”, 2015. Available
online, https://bitbucket.org/specs-team/specs-mechanism-enforcement-dos, last
accessed in April 2016.

European Network and Information Security Agency, “Survey and Analysis of Security
Parameters in Cloud SLAs across the European Public Sector”, 2011. Available online,
https://www.enisa.europa.eu/activities /Resilience-and-CIIP/cloud-computing/survey-
and-analysis-of-security-parameters-in-cloud-slas-across-the-european-public-sector,
last accessed in March 2016.

International Organization for Standardization, “Information Technology - Cloud
Computing - Service Level Agreement (SLA) Framework and Terminology (Draft), ISO/IEC
19086”, 2014.

National Institute of Standards and Technology (NIST), “Security and Privacy Controls for
federal Information Systems and Organizations, NIST 800-53v4”, 2014. Available online,
http://csrc.nist.gov/publications/drafts/800-53-rev4/sp800-53-rev4-ipd.pdf, last
accessed in March 2016.

SPECS Project - Deliverable 1.5.1 59

https://bitbucket.org/specs-team/specs-mechanism-monitoring-webpool-adapter
https://bitbucket.org/specs-team/specs-core-enforcement-tls/
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_core
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_dashboard
https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-monitoring-openvas
https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa
https://bitbucket.org/specs-team/specs-mechanism-enforcement-aaa-client
https://bitbucket.org/specs-team/specs-mechanism-enforcement-dos
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/survey-and-analysis-of-security-parameters-in-cloud-slas-across-the-european-public-sector
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/survey-and-analysis-of-security-parameters-in-cloud-slas-across-the-european-public-sector
http://csrc.nist.gov/publications/drafts/800-53-rev4/sp800-53-rev4-ipd.pdf

Secure Provisioning of Cloud Services based on SLA Management

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

European Commission, “Cloud Service Level Agrement Standardization Guidelines, C-SIG
SLA 2014”, 2014. Available online, https://ec.europa.eu/digital-single-
market/en/news/cloud-service-level-agreement-standardisation-guidelines, last
accessed in March 2016.

DPSP Cluster, “Data Protection, Secrity and privacy in Cloud”, 2016. Available online,
https://eucloudclusters.wordpress.com/data-protection-security-and-privacy-in-the-
cloud/, last accessed in March 2016.

I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A. Kertesz, G. Kecskemeti,
“LAYSI: A Layered Approach for SLA-Violation Propagation in Self-Manageable Cloud
Infrastructures”, 2010. In proceedings of the COMPSACW’10, the 34th Annual IEEE
Computer Software and Applications Conference Workshops, pp. 365-370. Available
online,
http://www.infosys.tuwien.ac.at/staff/sd/papers/Compsac%202010%201.%20Brandic
.pdf, last accessed in March 2016.

O. F. Rana, M. WarnierT. B. Quillinan, F. Brazier, D. Cojocarasu, “Managing violations in
service level agreements”, 2008. In Grid Middleware and Services, Springer, US, pp. 349 -
358.

Z. Zhang, L. Liao, H. liu, G. Li, “Policy-Based Adaptive Service Level Agreement
Management for Cloud Services”, 2014. In proceedings of the ICSESS’14, the 5t IEEE
International Conference on Software Engineering and Service Science, pp. 496-499.

SLA@SOI Project (FP7-216556, Empowering the Service Economy with SLA-aware
Infrastructures), 2011. Available online, http://sla-at-soi.eu/, last accessed in March
2016.

SPECS, “Mechanism Data Model’, 2015. Available online, http://www.specs-
project.eu/resources/schemas/json/mechanism.json, last accessed in March 2016.

SPECS, “Implementation Plan Data Model”, 2015. Available online, http://www.specs-
project.eu/resources/schemas/json/plan.json, last accessed in March 2016.

R. Trapero, J. Modic, M. Stopar, A. Taha, N. Suri, “A Novel Approach to Manage Cloud
Security SLA Incidents”. Submitted to the Future Generation Computer Systems - Special

Issue on Cloud Incident Management and Disaster Recovery, 2016. Available online,
http://dx.doi.org/10.1016/j.future.2016.06.004, last accessed in June 2016.

SPECS, “Remediation Plan Data Model”, 2015. Available online, http://www.specs-
project.eu/resources/schemas/json/remplan.json, last accessed in March 2016.

SPECS, “SPECS Solutions Portfolio”, 2015. Available online, http://www.specs-
project.eu/solutions-portofolio/, last accessed in March 2016.

SPECS, “Reconfiguration Data Model”, 2015. Available online, http://www.specs-
project.eu/resources/schemas/json/reconfiguration.json, last accessed in March 2016.

Internet Engineering Task Force (IETF), D. Hardt, “The OAuth 2.0 Authorization
Framework”, 2012. Internet Request for Comments, RFC 6749. Available online,
http://tools.ietf.org/html/rfc6749, last accessed in March 2016.

Internet Engineering Task Force (IETF), K. Zeilenga, “Lightweight Directory Access

SPECS Project - Deliverable 1.5.1 60

https://ec.europa.eu/digital-single-market/en/news/cloud-service-level-agreement-standardisation-guidelines
https://ec.europa.eu/digital-single-market/en/news/cloud-service-level-agreement-standardisation-guidelines
https://eucloudclusters.wordpress.com/data-protection-security-and-privacy-in-the-cloud/
https://eucloudclusters.wordpress.com/data-protection-security-and-privacy-in-the-cloud/
http://www.infosys.tuwien.ac.at/staff/sd/papers/Compsac%202010%20I.%20Brandic.pdf
http://www.infosys.tuwien.ac.at/staff/sd/papers/Compsac%202010%20I.%20Brandic.pdf
http://sla-at-soi.eu/
http://www.specs-project.eu/resources/schemas/json/mechanism.json
http://www.specs-project.eu/resources/schemas/json/mechanism.json
http://www.specs-project.eu/resources/schemas/json/plan.json
http://www.specs-project.eu/resources/schemas/json/plan.json
http://dx.doi.org/10.1016/j.future.2016.06.004
http://www.specs-project.eu/resources/schemas/json/remplan.json
http://www.specs-project.eu/resources/schemas/json/remplan.json
http://www.specs-project.eu/solutions-portofolio/
http://www.specs-project.eu/solutions-portofolio/
http://www.specs-project.eu/resources/schemas/json/reconfiguration.json
http://www.specs-project.eu/resources/schemas/json/reconfiguration.json
http://tools.ietf.org/html/rfc6749

Secure Provisioning of Cloud Services based on SLA Management

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Protocol”, 2006. Internet Request for Comments, RFC 4510. Available online,
http://tools.ietf.org/html/rfc4510, last accessed in March 2016.

OASIS, “OASIS eXtensible Access Control Markup Language (XACML) TC”, 2011. Available
online, https://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml, last
accessed in March 2016.

The Apache Software Foundation, “Apache Tomcat”, 2016. Available online,
http://tomcat.apache.org/, last accessed in March 2016.

OpenLDAP Foundation, “OpenLDAP”, 2014. Available online, http://www.openldap.org/,
last accessed in March 2016.

Oracle, “Download MySQL Community Server”, 2016. Available online,
https://dev.mysql.com/downloads/mysql/, last accessed in March 2016.

SPECS, “SPECS Mechanism Monitoring DoS Detection and Mitigation”, 2015. Available
online, https://bitbucket.org/specs-team/specs-mechanism-monitoring-dos, last
accessed in April 2016.

OSSEC Project Team, “OSSEC”, 2016. Available online, http://ossec.github.io/, last
accessed in April 2016.

OWASP Project, “OWASP Zed Attack Proxy Project”, 2016. Available online,
https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project, last accessed in
April 2016.

SPECS, “SPECS Mechanism Monitoring OSSEC”, 2015. Available online,
https://bitbucket.org/specs-team/specs-mechanism-monitoring-ossec, last accessed in
April 2016.

SPECS Project - Deliverable 1.5.1 61

http://tools.ietf.org/html/rfc4510
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://tomcat.apache.org/
http://www.openldap.org/
https://dev.mysql.com/downloads/mysql/
https://bitbucket.org/specs-team/specs-mechanism-monitoring-dos
http://ossec.github.io/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://bitbucket.org/specs-team/specs-mechanism-monitoring-ossec

Secure Provisioning of Cloud Services based on SLA Management

Appendix 1. Developing and adding a security mechanism

This guide aims at illustrating how a developer can develop a new security mechanism and
integrate it into the SPECS framework. Security mechanisms can be developed using already
existing commercial of-the-shelf components and/or from scratch: this guide outlines how to
do both; we present (i) how each mechanisms should be prepared (either how to adjust
existing solution or how to develop a new one) and (ii) how it should be integrated.

The development and integration process is depicted in Figure 26. First (Step 1), the
developer has to define the cloud service to be security hardened with the developed
mechanism (e.g., secure storage, secure web container) and then it has to define specific
security features that the mechanism can enforce and/or monitor (e.g., enforce redundancy,
monitor availability of servers). Afterwards (Step 2), the developer has to define the
mechanism’s architecture. As we will discuss later, each mechanism should comprise at least
one monitoring component that continuously evaluates the parameters associated to the
features that the mechanism enforces/monitors. The developer has to specify all details that
are associated to the process of automated deployment of the mechanism (Step 3) and all
details that are associated to the process of automated remediation of alerts and violations of
commitments related to the security features enforced/monitored by the developed
mechanism (Step 4). Since the automated management in SPECS is orchestrated with Chef, the
developer has to create recipes for all enforcement and remediation actions (and organize
them in a Chef cookbook), and register them in the SPECS Chef repository (Step 5). Finally, the
developer has to provide the above defined mechanism’s properties in a metadata file and
register it in the SLA Platform (in the Service Manager component; see deliverable D1.4.1).
Further details are elaborated in the following subsections.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
define define define define create and create and
offered architecture implementation remediation register Chef register
services details details cookbook metadata

Figure 26. SPECS security mechanism development and integration process

Step 1: Define offered services

In this step, the developer has to define the service that can be security hardened with the
developed mechanism. As depicted in Figure 27, this comprises the definition of the following
attributes:

¢ Service: First, the developer has to identify the cloud service for which the developed
mechanism provides security enhancements. In SPECS there are currently two cloud
services that can be acquired and security hardened with SPECS security mechanisms,
namely the secure web container (for acquisition of virtual machines and deployment
of web servers) and the secure storage service (for acquisition of cloud storage).

e Capabilities: Each mechanism has a specific set of functionalities. For example, some
mechanism may enforce client-side encryption, some mechanism may enforce
redundancy of web servers, some mechanism may offer software vulnerability
assessment of cloud resources, and some mechanism may monitor configurations of
the TLS protocol. In SPECS, these functionalities are grouped into different capabilities.
The developer has to define a capability that is enforced and/or monitored with the

SPECS Project - Deliverable 1.5.1 62

Secure Provisioning of Cloud Services based on SLA Management

developed mechanism. In the SLA negotiation phase, capabilities are the first attributes
to be chosen by the End-user for the preferred cloud service.

e Security controls: The developer has to specify how the developed security
mechanism implements the defined capability. To this end, the developer has to
identify the set of security controls that the mechanism can implement. In SPECS, we
use two different security control frameworks, namely the NIST’s SP 800-53v42 and
the CSA’s CCMv3s. In the SLA negotiation phase, the End-user selects the preferred
security controls for the chosen capabilities.

e Security metrics: Each mechanism can enforce and monitor security related features
(e.g., provides and monitors client-side encryption to guarantee data confidentiality)
or it can only monitor them (e.g., monitors checksums to guarantee data integrity). In
any case, each mechanism’s enforcement or monitoring functionality can be offered to
the End-user through security metrics. The developer has to identify existing metrics
in the SPECS Metric Catalogue application (which stores information about all metrics
used in SPECS) or define the set of new security metrics that the mechanism can
enforce/monitor (with all associated details like units, possible values, operators, etc.)
and map them to the identified security controls. In the SLA negotiation phase, the
End-user specifies SLOs, which means that she/he selects the set of preferred security
metrics for the chosen security capabilities and sets their preferred thresholds.

e Measurements: In order to enable continuous evaluation of negotiated security
features (to enable continuous verification that the negotiated thresholds for the
negotiated security metrics are respected), the developer has to specify a set of
measurements for each security metric. In other words, the developer has to specify
how each security metric is to be evaluated. We have two types of measurements,
namely basic and additional ones. Basic measurements are used to directly evaluate
whether an SLO is respected or not, whereas the additional measurements for a metric
enable detection of potential violations. The requirement is that each metric should
have defined at least one basic measurement. In the SLA implementation phase, SPECS
configures monitoring components to continuously evaluate measurements associated
to the negotiated security metrics.

/ offered services service

b. Define
capabilities

> c. ldentify security >

\ Step 1:Define > a. Define >

controls (NIST, CSA)

d. Map to existing metrics or define
metrics to enforce and/or monitor

e. Define basic and additional measurements to
automated detection of violations and alerts

Figure 27. Defining offered services

2 http://nvlpubs.nist.gov/nistpubs/SpecialPublications /NIST.SP.800-53r4.pdf

3 https://cloudsecurityalliance.org/group/cloud-controls-matrix/
SPECS Project - Deliverable 1.5.1 63

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://cloudsecurityalliance.org/group/cloud-controls-matrix/

Secure Provisioning of Cloud Services based on SLA Management

Let us consider a simple example. Let us assume that the developer wants to develop and
integrate a security mechanism named Software Vulnerability Assessment (SVA) mechanism
that would offer software vulnerability scans. The mechanism would download a list of
disclosed vulnerabilities from a public repository, generate a list of vulnerabilities, perform a
vulnerability scan on a VM, and generate a scanning report.

First, the developer identifies the Secure Web Container service because the developed
mechanism offers vulnerability scans of VMs. In the next step, the developer defines the
Software Vulnerability Assessment capability and identifies three security controls that the
mechanism implements: CA-7 (Security Assessment and Authorization - Continuous
Monitoring) and RA-5 (Risk Assessment — Vulnerability Scanning) from the NIST, and control
TVM-02 (Threat and Vulnerability Management - Vulnerability/Patch Management) from the
CSA. Next, the developer defines a security metric for the developed mechanism, namely the
Scanning Frequency, with which the End-user specifies how often SPECS should perform
vulnerability scans on the acquired VMs. Finally, the developer defines a set of measurements
with which SPECS can continuously evaluate fulfilment of commitments associated to this
metric. In particular, the developer defines the basic measurement Age of the Scanning Report,
which directly shows whether the negotiated scanning frequency is respected or not, and the
additional measurements Scanner Availability, Vulnerability List Availability, and Repository
Availability, which can indicate that a violation of the SLO, which defines the scanning
frequency, might be violated (for example, if at one point the scanner installed on the VM for
the purpose of executing vulnerability scans is unresponsive, or the list of published
vulnerabilities is unavailable, or the repository from which the published vulnerabilities are
extracted is unavailable, this may mean that at the scheduled time the vulnerability scan will
not be executed - this may cause an SLA violation).

Note that the capability, controls, and metrics are crucial parts for the SLA negotiation phase,
whereas the measurements are the base for the SLA implementation and SLA monitoring
phase.

Step 2: Define architecture

In this step (depicted in Figure 28), which is crucial for the SLA implementation step, the
developer has to define and develop all components that are needed to enforce and/or
monitor the defined security metrics. In particular, each mechanism has to comprise a set of
components with which guaranteed security assurances can be enforced (at least one
component is needed to enforce the defined security metrics) and monitored (at least one
component is needed to take measurements associated to the defined security metrics).

Step 2:Define a. Define and develop enforcement
/ architecture /[/ and monitoring components

b. Define component
dependencies and constraints

Figure 28. Defining the architecture

In order to automate SLA monitoring and SLA remediation phase, the monitoring components
of the security mechanism have to be able to continuously collect the monitoring data and

SPECS Project - Deliverable 1.5.1 64

Secure Provisioning of Cloud Services based on SLA Management

report results in a specific format (the monitoring data should be reported in the format of the
eventhubresult.json introduced in deliverable D1.3) to the Event Hub (component of the
Monitoring module; see deliverable D3.4.1).

Apart from these requirements, there are no real limitations to what the architecture of the
security mechanism should look like. When defining and developing a mechanism, the
developer can reuse existing solutions or can develop all components from scratch.

In order to enable the SLA implementation phase, the developer has to consider and specify
all dependencies among components (i.e., what are the dependencies among different
components, which components need to be deployed together, which components are
incompatible) and constraints associated to their deployment (e.g., which components need
to be deployed for the enforcement/monitoring of each security metric, how many instances
of each component are needed for the enforcement/monitoring of each security metric).

For the example considered in the previous step (for the SVA mechanism) the developer
would have to define and develop the following components:
e SVA Scanner: This component is needed to execute vulnerability scans on a VM.
e SVA Enforcement: In order to perform vulnerability scans, the SVA Scanner needs a list
of published vulnerabilities. They are maintained (continuously downloaded from a
public repository of disclosed software vulnerabilities) by the SVA Enforcement
component and fed to the SVA Scanner.
e SVA Monitoring: This component continuously evaluates the measurements specified
for the security metrics of the SVA mechanism.
e SVA Dashboard: In order to present scanning reports to the End-user, the SVA
mechanism comprises a dashboard component.
For the defined components, the developer would specify the following dependencies and
constraints:
e One instance of the SVA Scanner, the SVA Enforcement, and the SVA Monitoring
component should be installed on each VM hosting a web server.
e One instance of the SVA Dashboard component should be installed for each acquisition
of the SVA mechanism.
e The SVA Dashboard component is incompatible with the rest of the SVA components
and should thus be deployed on a separate VM.

Step 3: Define implementation details

To enable the automated SLA implementation, the developer should specify all configuration
details (as shown in Figure 29) for each component defined and developed for the security
mechanism (these details should later be specified in the mechanism metadata file in the
format of the mechanism.json introduced in deliverable D1.3):

e Component type: Each component is either an enforcement component (i.e., enforces
security metrics), a monitoring adapter (i.e., takes measurements and thus monitors
security metrics), a dashboard (i.e., serves as an interface for the End-user that
presents different reports related to the security services provided by the mechanism),
etc. The developer has to specify the type for each defined and developed component.

e Implementation step: In some cases it is important to specify whether some
component should be deployed before or after another one. The developer has to

SPECS Project - Deliverable 1.5.1 65

Secure Provisioning of Cloud Services based on SLA Management

define the order in which all mechanism’s components should be deployed (whether
they can all be deployed in parallel or whether some set of components needs to be
deployed in a certain sequence).

e Pool sequence number/pool ID: Some components should be (for security reasons)
physically separated. For example, for data storage, the main database should be
physically separated from the backup. For this purpose, we introduce the concept of
pools of VMs, on which all the components are deployed. If two components should be
separated, they should have different pool numbers/IDs assigned to them. The
developer has to specify the pool number/ID for each defined and developed
component.

e Recipes/cookbook: In SPECS, all deployment is orchestrated by Chef* (see deliverable
D4.2.2). So the developer should prepare a list of Chef recipes (organized in a Chef
cookbook) that are needed for an automated deployment and management of the
mechanism (recipes for the automated installation and configuration of each
mechanism’s component).

e VM requirement: For each component of the mechanism, the developer should report
all hardware requirements (e.g., minimal RAM/CPU in terms of minimal instance type
as defined by Amazon, firewall rules).

e Constraints: The developer should consider any requirements and constraints in terms
of incompatibilities and dependencies among components. For example, the WebPool
mechanism in SPECS offers web servers (see deliverables D4.2.2 and D4.3.2). And since
there are two different types of web servers available (Apaches and Nginx¢), it is a
natural constraint that the two web servers should not be installed on the same VM. All
constraints should be prepared in a formal way, as described in Appendix 1 of
deliverable D4.3.2 and specified in the mechanism.json format introduced in
deliverable D1.3.

For the SVA mechanism considered above, the developer would denote the SVA Scanner and
the SVA Enforcement mechanism as enforcement components, the SVA Monitoring as the
monitoring component, and the SVA Dashboard as the component of the type dashboard.
Since there are no deployment constraints in terms of the sequence of installation, they can all
be deployed in parallel (all components have implementation step set to 1). Moreover, there
are no limitations in terms of physical separation of VMs hosting the SVA components,
therefore the pool numbers for all components are set to 1. Since the SVA mechanism, which
aims to security harden a pool of web servers, can only be deployed on VMs hosting the web
servers (which are enforced by the WebPool mechanism; see deliverables D4.2.2 and D4.3.2
for further details), the Pool ID is set to WebPool (indicating that the SVA mechanism is to be
deployed in the same pool of VMs acquired for the WebPool mechanism). As for the rest of the
properties, the developer has to prepare the set of recipes with which each component is
automatically installed and configured (e.g., Install SVA Scanner, Install SVA Monitoring),
specify VM requirements for each SVA component, and formalize the constraints defined

4 https://www.chefio/
5 https://httpd.apache.org/
6 https://www.nginx.com/

SPECS Project - Deliverable 1.5.1 66

https://www.chef.io/
https://httpd.apache.org/
https://www.nginx.com/

Secure Provisioning of Cloud Services based on SLA Management

above (dependencies among SVA Scanner, SVA Enforcement, SVA Monitoring, and
incompatibilities with the SVA Dashboard).

\ Step 3:Define a. Define
/ implementation details / / components types

b. Define implementation
step for each somponent

c. Define pool number and
pool ID for each component

cookbook to automatize the deployment of the mechanism

> d. Define and prepare a set of Chef recipes organizedin a Chef >

e. Define VM requirements in terms of
load consumption, firewall rules, etc.

f. Define constraints in terms of dependencies and
incompatibilities among mechanism‘s components

Figure 29. Defining implementation details

Step 4: Define remediation details

In this phase (illustrated in Figure 30), the developer has to define alerts and violations for
each security metric that the mechanism can enforce and/or monitor. For each of the defined
alerts and violations, the developer has to specify a list of actions with which the alert or
violation can be automatically resolved. These actions have to be formalized and prepared in
terms of Chef recipes.

Step 4:Define a. Define alerts and violations
/ remediation details // foreach security metric

b. Define a remediation plan
for each alert and violation

c. Define and prepare a set of Chef recipes to
automatize execution of defined remediation plans

Figure 30. Defining remediation details

As mentioned in Step 1, each security metric is associated to one or more measurements. In
the SLA implementation phase each metric and its value (negotiated by the End-user) are
transformed into a set of measurements and corresponding thresholds (as defined by the
mechanism’s developer). For example, the metric Scanning Frequency defined in Step 1, is
associated to one basic and three additional measurements as presented in Table 31.

The mechanism’s monitoring components (in our case, the SVA Monitoring component)
continuously evaluate the defined measurements and report their results to the SPECS
Monitoring module. The Monitoring module (in particular, the Monitoring policy filter
component; see deliverable D3.4.2) compares the measurement results with the thresholds
specified during the SLA implementation phase. Whenever a measurement deviates from the

SPECS Project - Deliverable 1.5.1 67

Secure Provisioning of Cloud Services based on SLA Management

defined threshold, this occurrence indicates an SLA alert (if the deviated measurement is the
additional one) or an SLA violation (if the deviated measurement is the basic measurement
for the affected security metric). Thus for each measurement defined for the set of security
metrics that the mechanism can enforce/monitor the developer should specify one
monitoring event and determine its type (alert vs. violation).

Metric Scanning Frequency (SF)

SLO scanning_frequency = N hours

Measurement Type Threshold

scanning report_age basic scanning_report_age < N
scanner_availability repository_availability = yes
vulnerability_list_availability | additonal | vulnerability_list availability = yes
repository_availability repository_availability = yes

Table 31. Measurements associated to the Scanning Frequency metric

For the Scanning Frequency security metric, the developer of the SVA mechanism has to define
monitoring events for the three associated measurements presented in Table 31. If at any
point the age of the scanning report is higher than the defined threshold, this represents an
SLA violation. SLA alerts are raised whenever the SVA Monitoring component detects and the
SPECS Monitoring module detects unavailability of the SVA Scanner, unavailability of the
vulnerability list or unavailability of the vulnerability repository. The defined monitoring
events are summarized in Table 32. Note that since each additional measurement can be used
to evaluate the status of more than one security metrics, the developer has to map defined
events to all affected security metrics.

Event ID | Event condition Affected metrics Event type
SVA-E1 | scanning_report_age > N violation
SVA-E2 | repository_availability = no
SVA-E3 | vulnerability_list_availability = no
SVA-E4 | repository_availability = no

Table 32. Monitoring events associated to the measurements of the LUF metric

Scanning Frequency Alert

Each defined monitoring event should be accompanied by a specified remediation plan, i.e., a
set of possible remediation actions and a clear sequence in which they should be executed.
Note that each remediation action should be composed either of some monitoring action (i.e.,
to check a measurement) or one or more enforcement actions followed by a monitoring action
(i.e., perform some reconfigurations and check a measurement related to them).

For example, in case of an alert associated to unavailability of the vulnerability list, the
developer considers the procedure depicted in Figure 31. First, the SVA Monitoring
component should verify whether the configured repository, from where the disclosed
vulnerabilities are extracted, is available. In case the repository is responsive, the SVA
Enforcement component should delete the old and generate a new list of vulnerabilities. If this
action solves the issue, the alert is resolved; otherwise the End-user should be notified about
the occurrence and warned that the SLA might be violated. If the initially configured
repository for downloading published vulnerabilities is unavailable, the first step would be to
reconfigure the repository and connect to an alternative one. If the new repository is

SPECS Project - Deliverable 1.5.1 68

Secure Provisioning of Cloud Services based on SLA Management

unavailable, the End-user is notified, otherwise the SVA Enforcement component tries to
generate a new vulnerability list. If the generation is successful, the alert is resolved,
otherwise the End-user is notified about the event and potential consequences.

SVA-E3: vulnerability_list_availability = no

Check if the configured
repository is available.

Delete old vulnerability list, generate Reconfigure
new vulnerability list, check if the repository and check
vulnerability list is available. if it is available.

observe Delete old vulnerability list, generate
new vulnerability list, check if the
vulnerability list is available.

observe

Figure 31. Remediation plan for one of SVA alerts

As seen in the diagram in Figure 31, a remediation plan comprises a set of remediation action
(in green), which involve either a single monitoring action (like remediation action SVA-A1)
or one or more enforcement actions followed by a monitoring action (like remediation actions
SVA-A3 and SVA-A3). Note that the monitoring actions have to be defined in such a way, that
there are always only two possible outcomes: whether the action indicates a partial (meaning
that the performed reconfiguration is successful and that some further steps might resolve
the issue) or full resolution (the alert/violation is resolved) of the issue or the action failed to
at least partially resolve the alert/violation. Depending on the result of that measurement,
SPECS decides on the next step.

Finally, to enable an automated execution of remediation plans, each remediation action has
to be accompanied by a sequence of Chef recipes. More precisely, each enforcement and/or

monitoring action involved in a remediation action has to be defined with a Chef recipe.

For the example above, the Table 33 lists the Chef recipes that the developer has to prepare
for remediation of the alert SVA-E3.

SPECS Project - Deliverable 1.5.1 69

Secure Provisioning of Cloud Services based on SLA Management

ID Description

SVA-R1 | Check if the configured repository is available (i.e., invoke the SVA Monitoring
component to take measurement Repository Availability).

SVA-R2 | Delete old vulnerability list (i.e., trigger the SVA Enforcement component to
delete the existing vulnerability list).

SVA-R3 | Generate new vulnerability list (i.e., trigger the SVA Enforcement component to
download published vulnerabilities from the configured repository and
generate a new vulnerability list).

SVA-R4 | Check if the vulnerability list is available (i.e., invoke the SVA Monitoring
component to take measurement Vulnerability List Availability).

SVA-RS5 | Reconfigure repository (i.e., reconfigure the SVA Enforcement component to

download published vulnerabilities from an alternative repository).
Table 33. Chef recipes for remediation of one of the SVA alerts

According to the remediation plan presented in Figure 31 and the set of Chef recipes
introduced in Table 33, in Table 34 we present remediation plan for the considered SVA alert
SVA-E3 in terms of the sequences of Chef recipes.

Event SVA-E3
Action 1 Recipes {SVA-R1}
Result yes no
: Recipes {SVA-R2, SVA-R3, SVA-R4} {SVA-R5, SVA-R1}
Action 2
Result yes no yes no
. Recipes {SVA-R2, SVA-R3, SVA-R4}
Action 3 Result OBSERVE NOTIFY OBSERVE | NOTIFY NOTIFY

Table 34. Remediation plan in the form of Chef recipes

Step 5: Create and register Chef cookbook

When all Chef recipes for the automated SLA implementation and the SLA remediation are
prepared, they need to be organized in a Chef cookbook and registered in the SPECS Chef
repository (for further details about where to register cookbooks and how they are uploaded
to the Chef Server, see deliverable D1.6.2).

Step 6: Create and register metadata

The last but most important step for an automated management of the developed mechanism
is the creation of the mechanism’s metadata representation. In this phase, the SPECS
developer has to prepare a description of the mechanism behaviour, according to the SPECS
security mechanism metadata (mechanism.json) proposed in deliverable D1.3.

Finally, this metadata description has to be registered in the SPECS SLA Platform’s Service

Manager component (see deliverable D1.4.1 for further details about the SLA Platform) to
automate mechanism’s management.

SPECS Project - Deliverable 1.5.1 70

