Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 4.5.2

Testing and validation - Intermediary

Version no. 1.1
18 February 2016

| —— N —

SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.:

D4.5.2

Deliverable title:

Testing and validation — Intermediary

Deliverable nature:

Report

Dissemination level:

Public

Contractual delivery:

18 February 2016

Actual delivery date:

18 February 2016

Author(s):

Jolanda Modic (XLAB), Miha Stopar (XLAB)

Contributors:

Damjan Murn (XLAB), Aljaz Kosir (XLAB), Stefano Marrone
(CeRICT), Roberto Nardone (CeRICT), Heng Zhang (TUDA),
Alain Pannetrat (CSA), Silviu Panica (IeAT), Giancarlo Capone
(CeRICT)

Reviewers: Dana Petcu (IeAT), Andrew Byrne (EMC)
Task contributing to the T4.5

deliverable:

Total number of pages: 92

SPECS Project - Deliverable 4.5.2 2

Secure Provisioning of Cloud Services based on SLA Management

Executive summary

Validation encompasses a variety of activities along the software development life cycle with
the common objective of ensuring that the developed product is secure, of good quality, and
that it complies with all requirements. This deliverable presents the final validation
methodology to be used for both, the Enforcement module and the other elements of the
entire framework.

Verification and testing methodologies defined in this task will be adopted on the project
level. Results for the Enforcement module are covered by deliverables produced in this task,
whereas outcomes of validation activities for other work packages will be presented in
dedicated prototype deliverables.

Based on what was explored in year 1 of the SPECS project in D4.5.1, the current document
presents the finalized verification and testing methodologies and tools to be used in the
project. Common development rules are briefly summarized and code quality analysis
approaches are specified. Some initial functional tests are reported, code quality analysis is
demonstrated with an example, and approach to the security review is presented.

SPECS Project - Deliverable 4.5.2 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

Deliverable INFOIMAatioN ... s 2
EXECULIVE SUMIMATY w.ovuiitiiirisssississssssiss st s b s b bbb 3
TADIE OF CONTENTS ...t 4
INAEX Of fIGUIES oot b bbb 5
INAEX Of TADIES ..ottt 6
I 00 0T LT 0 (o) o DO PP 7
2. Relationship with other deliverables ... 9
3. The Enforcement MOAUIE ...t sessssssessssssssssssessssssssssssssssssssssssssssssssssssessssasesns 10
3.1. Enforcement reqUITEIMENTS ... sssssssssss s sssssssssssssssssssssssssssssssanes 10
3.2. Main Enforcement components and the enforcement processmmnesernsesnenn: 10
3.3, SECUTIItY MECHANISINIS ..ottt 12

T VA=YV o E=Xw o) o 18 00 U= o o Lo T [o) o= 20O 16
5. Validation of the Enforcement Mmodule ... sssssssssssssssssssssssssens 20
5.1. Coverage of validatiOn SCENATIOSceererererreeeeeseeeseesesesesesessessssssssssssssssessssssssssssssssssssssees 20
5.2 CoVerage Of FEQUITEIMENTSoeurirrerrersiresssesssssses s ssssssssesssss s s ssssssssasssns 27

6. Testing techniques and teChNOIOGIES........o e 34
6.1. Collaborative development gUIAElINEScoeereereereereerernerreenersesee e sessessesssssesees 35
6.2. Code qUALILY ANAlYSIS v 36
6.3. FUNCHIONA] tESTING coureieieceee et 39
6.3.1. Unit and compPONent tEStINEG ... ssssssssssssens 39
6.3.2. Integration and SYSteM tESTING. ... ererereeeeeeeeeeseeseeseeseseessesessssessessesssssesssssssssssssssssssses 40

LT T\ [0) o B 00 Uotu (o) o = 1B T3 o ¥ PP 41
6.4.3. Interoperability tEStING ... 41
6.4.4. Dependability and robusStNess teStING.......cocuerereereereeneereeseeseeseeseeseeseessesesssssessessessesseeses 42
6.4.4.1. Perturbation analysis frameworkK ... 44
6.4.4.2. MethOdOIOZY ...cceurerieiirercesiteser s 45
6.4.4.3. Perturbation analysiS deMOcerereereeeeneeseeseeseeseeseessssesssssessssssssssssssssssssssssssssees 48
6.4.4.4. Scope and limitations of the methodology ... 55
6.4.4.5. Enforcement-related API LiSt ... eneeereeseeseeeeseesseseessessssssssssssssssssssssesssssssees 55

6.4.5. SECUIILY TESTINEG...cieiececereeeeeeeeesseeee s s 56

0.5, SECUTILY FEVIEW ..cceieeeieeesesseseessesessses st es s bbb bbb 57

7. Testing of the Enforcement MOAUIE ... sessesees 59
7.1, Code qQUALItY QNalySiS ... 59
7.2, FUNCHIONAI LESEING ourvireerieis ittt 61
7.2.1. The Planning COMPONENT......coireercereereererneesersessessessessessesssssesssssesssssesssssssssssesssssssssssesssssssaes 62
7.2.2. The SVA security MechaniSm......co s sessssssssssssssssssssens 65
7.2.2.1. SVA Enforcement COMPONENT.......ccvrerernmermnsssesressssssessssessssssessssssesssesssssssesssssssesssssssens 65
7.2.2.2. SVA Monitoring COMPONENT.....consiisssssssssssss s ssssens 67
7.2.2.3. SVA DASHDO0AI ...ttt st ssssssssnsans 71

S T 000 s Lol 113 10 -3 TP 74
Lo 2 10] U= i o) o |2 OO PP 75
Appendix 1. Requirements associated to the Enforcement module.........cvcenrcrnireninenenserenns 77
Appendix 2. Secure web application ChecKIiSt ... 85

SPECS Project - Deliverable 4.5.2 4

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

Figure 1. Verification aCtiVItIES ... sssss s ssssssssssssens 7
Figure 2. TeSting aCtIVITIES. ... 7
Figure 3. Relationship with other deliverables ... 9
Figure 4. Component validation PIrOCESSoeeereseeeseseseeessssssesssens 16
Figure 5. SQUALE TATINE ...courerererereressessessessessessessessessessessesssas 39
Figure 6. Dynamic teSting Cat@gOTrY ... s sas 44
Figure 7. Perturbation analysis framewWorK.......oneeseesesssssessessssssssessessssssssssessssaseens 45
Figure 8. Perturbation analysis methodology ... 46
Figure 9. Code quality analysis report for the Planning component - part 1.......nneninnneen. 59
Figure 10. Code quality analysis report for the Planning component — part 2ccccuveeererneennenn. 60
Figure 11. Code quality issues for the Planning component.........onssessseens 61

SPECS Project - Deliverable 4.5.2 5

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1. New requirements for SPECS security mechanisSms ... 10
Table 2. Overview of the Planning COMPONENT.........overerereeneeressessessseseessesssssessesssssssssssssssssssessssssss 11
Table 3. Overview of the Implementation COMPONENT ..o 12
Table 4. Overview of the Diagnosis COMPONENT.......vueurrereeurerseeressersessseseessesssssessessesssssssssessssssesssssssss 12
Table 5. Overview of the RDS COMPONENTouvvireninesinesissssisssns 12
Table 6. Overview of the Broker mechaniSIm ... ssesssssssssens 13
Table 7. Overview of the WebP0ool MeChaniSm ... sessssssssesssessssssessesssesns 13
Table 8. Overview of the DBB MeChaNISIMN ..ot sssssssssssens 14
Table 9. Overview of the E2EE MeChaniSm.......oonnenenesesessiseesese s ssssssssssssssens 14
Table 10. Overview of the SVA MeChaniSm. ... ssssssssssessssssesssssssns 14
Table 11. Overview of the TLS MeChaniSm ... sssssssssssens 15
Table 12. Methods/Criticality assignment eXample........c.coornnernneseseessssesessessessssssssssseens 17
Table 13. Coverage of Secure_Storage_Selection SCENATIOcerwereereereereeseesessesseesessessessessesssssssssssesseens 21
Table 14. Coverage of Secure_Storage_Brokering_with_Client_Crypto SCENATri0.......cccmererrerssens 21
Table 15. Coverage of Secure_Storage_with_Defined_CSP SCENATIO.......c.cocneereereererseeseesessessesseesessesseens 21
Table 16. Coverage of Secure_Storage_Brokering_with_Client_Crypto_Alert scenario 22
Table 17. Coverage of Secure_Storage_Brokering_with_Client_Crypto_Violation scenario........... 22
Table 18. Coverage of Secure_Web_Container_Selection SCENATIOcuuereereereereererrersersessessessessessesseens 23
Table 19. Coverage of Secure_Web_Container_Brokering SCENATIO0cuereerersesssssesssessssssessesssssss 23
Table 20. Coverage of Secure_Web_Container_Enhanced SCENATIOcocvcemeereereereeseereeressessessessessesseens 24
Table 21. Coverage of Secure_Web_Container_SVA_Enhanced_Alert SCENATIOcoccuuereereereereereeneens 24
Table 22. Coverage of Secure_Web_Container_TLS_SVA_Enhanced_Violation scenario................. 25
Table 23. Coverage of Secure_Web_Container_TLS_Multitenancy SCENATIO.......c.cuuereereereererrerrerseeseens 25
Table 24. Coverage of Secure_Web_Container_Web_Pool_Replication_Enhanced_Alert scenario
... 26
Table 25. Coverage of Secure_Web_Container_Web_Pool_Replication_Enhanced_Violation
Y025 1 -) o (0 T 26
Table 26. Coverage of Data_Center_Bursting_for_Storage_Resources SCENATIOcumeeereereereens 27
Table 27. Coverage of validation scenarios by Enforcement components/mechanisms 27
Table 28. Coverage of Enforcement requirements with respect to validation scenarios............ 32
Table 29. Enforcement components/mechanisms and related requirements...........c.ocvreesenienenne 32
Table 30. Tools used for unit and cOMpPONENt tESTINGcccrirrrereererriniereeeer s 40
Table 31. TeSt CASE LEMPIALE......cuverercrrirerrirerisires s 40
Table 32. Misuse case scenario template for perturbation analysis ... 47
Table 33. Perturbation TeSt ClASSEScuneneneeneneerseseesesssens 48
Table 34. Data Flow-Level Perturbationnneneesesesssssesssssesssssesssssssssssesssssesssssssssssssssssssseens 50
Table 35. Component and Interface-Level Perturbation ... 52
Table 36. Component and Interface-level Perturbation (Object-oriented based)........cccoconuureeneen. 53
Table 37. Component and Interface-Level Perturbation (Mutation based)........ccoonneneneenercenenn. 55
Table 38. Enforcement API as defined in D 1.3 ... ssessssssess s ssessssssessssssneans 56

SPECS Project - Deliverable 4.5.2 6

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

Task T4.5 focuses on validation and testing of the Enforcement module to provide a loop
between design and implementation activities in WP4, and to provide a basis for similar
activities in other work packages.

In SPECS, verification activities were planned in an agile way as much as possible. The plan
was to define user stories, build validation scenarios, elicit requirements, design the
framework, and then verify the design in early stages to allow the implementation and
integration to be more efficient. After the design of the architecture and the definition of all
processes, the set of elicited requirements was re-evaluated (some requirements were
discarded, added, merged, or remapped to new components/modules), initial validation
scenarios were amended and enriched, and the architecture itself was revamped. The adopted
process is depicted in Figure 1.

Figure 1. Verification activities

A similar approach was adopted in the next stage, namely the testing phase (see Figure 2).
Implemented pieces have been tested and test results were evaluated to improve the code.

Figure 2. Testing activities

There have also been some overlaps between the verification and testing phases. Some testing
outcomes resulted in adjusting the architecture and some implementation and integration
issues caused re-evaluation of requirements and validation scenarios.

In this deliverable, the focus is twofold. On one hand, the goal is to finalize the validation and
testing approach, which will be adopted in other work packages. The second focus is on

SPECS Project - Deliverable 4.5.2 7

Secure Provisioning of Cloud Services based on SLA Management

verifying the Enforcement module and presenting testing activities conducted under the WP4
umbrella during the last year.

The first release of this document (D4.5.1) outlined possible validation approaches, presented
possible methodologies to adopt and tools to use in the testing phase, and discussed the initial
verification of the Enforcement module. The current document presents the final validation
methodology and reports about verification of the refined Enforcement module. The proposed
validation methodology will be adopted on the project level and results will be reported in
dedicated prototype deliverables (for WP1, WP2, and WP3). This deliverable also presents the
final testing approach. Collaborative development rules are summarized, the final set of
testing methodologies and technologies are discussed, and the security review approach is
defined. Initial results of code quality analysis and functional testing of Enforcement module
are presented.

The final iteration of this deliverable (D4.5.3, due at M30) will report about final validation
results and present non-functional testing activities and outcomes of the security review
conducted for the Enforcement module. All tests performed at the integration and system
level will be reported in deliverables of task T1.5, and all tests conducted at the component
level for other modules will be presented and discussed in dedicated prototype deliverables.

The document is structured as follows. In Section 2, relationships between this document and
other deliverables of the project are discussed. Section 3 briefly summarizes the requirements
and the design of the Enforcement module. Validation methodology, testing techniques and
tools, and security review technique, adopted in the project, are described in Sections 4 and 6,
respectively. Intermediary results of validation and testing activities (including code quality
assessment and functional tests) are reported in Sections 5 and 7, respectively. The document
concludes with a brief summary of current results and future plans.

SPECS Project - Deliverable 4.5.2 8

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables

Testing and validation is an important part of the development cycle. With clear validation
and testing methodologies we can determine whether the developed framework complies
with all elicited requirements and whether it supports functionalities according to the design.

For the purpose of testing and validating the Enforcement module, the following inputs are
required:

e Refined user stories and validation scenarios discussed in D5.1.2.

e Requirements elicited in D4.1.2.
Architecture of the module presented in D4.2.2 and associated APIs defined in D1.3.
The module’s prototypes demonstrated in D4.3.2.
e The initial testing and validation methodology defined in D4.5.1.
e Feedback from the Platform’s prototype demonstrated in D1.6.1.

The methodologies defined in task T4.5 are not aimed only at the Enforcement module. In
order to assure a smooth integration process, techniques are also adopted by developers of
components and modules in other tasks and other WPs. Negotiation and Monitoring modules
will report testing and validation results in dedicated prototype deliverables (D2.3.2 and
D3.4.2, respectively). Test and validation results for the Platform will be reported in D1.6.2.
Credential Service and Security Tokens will be tested and validated under the dedicated task
T4.4 (presented in D4.4.2), and Auditing component will be tested and validated under task
T1.4 (see D1.4.1 and D1.4.2). The final results for the (entire) Enforcement module will be
presented in D4.5.3.

Results presented in this deliverable will be the main input for the final prototypes of the
Enforcement components, which will be demonstrated in D4.3.3. All integration and system

related testing activities will be reported in D1.5.1 and D1.5.2.

All above mentioned relationships among SPECS’ deliverables are depicted in Figure 3.

WP4
*» D41.2
WP1 + D422
D13 D432 WP5
* Dile6l * D451 « D51.2
WP1 WPpP2 WP3 WP4
= D151 « D232 » D342 » D433
« D152 *» D442
= Dle6.2 » D453

Figure 3. Relationship with other deliverables

SPECS Project - Deliverable 4.5.2

Secure Provisioning of Cloud Services based on SLA Management

3. The Enforcement module

Core components of the Enforcement module orchestrate the SLA implementation and SLA
remediation phases. The initial set of requirements for Enforcement’s functionalities is
reported in D4.1.2, and the initial design is defined in D4.2.2. Due to the feedback received
from implementation activities, the processes driven by the Enforcement module have been
slightly refined.

Similarly, a few changes occurred in the design of security mechanisms. Developers’ feedback
and outcomes of exploitation activities (additional requests from stakeholders) resulted in a
couple of new requirements associated with security mechanisms, and further refinements of
the architecture reported in D4.3.2.

In the remainder of this section a list of new requirements are discussed (Section 3.1), the
refined, final design is briefly presented for both, main Enforcement components (Section 3.2)
and the set of security mechanisms (Section 3.3). For more details about main Enforcement
components, security mechanisms, and the enforcement process itself see D4.3.2.

3.1. Enforcement requirements

The original set of Enforcement requirements is reported and discussed in D4.1.2. Here only a
set of newly elicited requirements are declared. The final list of all Enforcement requirements
is provided at the end of this document in Appendix 1.

REQ_ID Requirement Description
ENF_DBB_R1 | Offer secure storage The mechanism must be able to automatically offer
secure storage in the cloud.
ENF_DBB_R2 | Assure business continuity | The mechanism must be able to guarantee business
with backup continuity with backup.

Table 1. New requirements for SPECS security mechanisms

New requirements outline the need for a new security mechanism which has been designed
and developed in T4.3. Details are provided in D4.3.2.

Old and new requirements have been thoroughly analysed in terms of coverage by design and
coverage of validation scenarios. Results are reported in Section 5.

3.2 Main Enforcement components and the enforcement process

The architecture of the Enforcement module remains the same as it was initially designed in
D4.2.2. What has evolved are the details of the enforcement process. Refinements are
reported at the end of this subsection.

There are four main Enforcement components, namely Planning, Implementation, Diagnosis,
and Remediation Decision System (RDS), which oversee SLA implementation and SLA
remediation phase. The Auditing component is being developed in T4.3, but its functionalities
are offered to other modules as well, thus it has been placed into the Vertical Layer.

1 For the final SPECS architecture see D1.1.3.

SPECS Project - Deliverable 4.5.2 10

Secure Provisioning of Cloud Services based on SLA Management

After the End-user (EU) negotiates? security requirements, the Planning component has to
build one or more valid supply chains that implement the set of EU’s requirements. When the
Negotiation module builds SLAs according to the build supply chains, and the EU signs one of
them, the Planning prepares an implementation plan. The Implementation component (with
support of the Broker mechanism) acquires resources and deploys and configures
components as specified in the implementation plan. After a successful execution of the
implementation plan the Planning updates the Monitoring Policy3, and the SLA enters the
monitoring phase.

If/when the Diagnosis component receives a notification of a possible alert or a violation, it
performs a classification (i.e., determines whether the event represents an alert, a violation, or
a false positive), analysis (i.e., determines the effect on an SLA and determines the
risk/severity level of the event with respect to the affected SLA), and prioritization (i.e., puts
the SLA in the priority queue according to the assigned risk/severity level) of the notified
monitoring event. Each alerted/violated SLA is then pushed to the RDS to determine the root
cause, find the best proactive/reactive actions, and builds a remediation plan later executed
by the Implementation component.

EUs have an option to renegotiate signed SLAs and to terminate them before the expiration
dates. In some cases renegotiation or termination is required after an unsuccessful
remediation of an SLA violation. In this case the Planning component prepares a reaction plan
according to the old and new SLA/supply chain to reconfigure target services. The reaction
plan is later executed by the Implementation component.

All details about the Auditing component are available in deliverables D1.4.1 and D1.4.2.
As reported in D4.3.2 and outlined again here in the tables below, enforcement process has

been amended to support all diagnosis and remediation activities, but mostly to support
planning and implementation activities after remediation, renegotiation, and termination.

Main enforcement component Planning

Year 1 Year 2

e Validates supply chains. e Builds valid supply chains.

e Builds implementation plans. e Builds implementation plans and

associated supply chains.

e Builds reaction plans to reconfigure target
services after SLA renegotiation and SLA
termination.

e Updates Monitoring Policy.

Comments | e Inyear 2, generation and validation of supply chains is merged into one step.

e Building reaction plans has been added after refinement of renegotiation.

e Updating Monitoring Policy functionality has been moved from the
Implementation component to the Planning component.

Table 2. Overview of the Planning component

2 For details about the negotiation process see D2.2.2.
3 For details about the monitoring process and the Monitoring Policy see D3.3.

SPECS Project - Deliverable 4.5.2 11

Secure Provisioning of Cloud Services based on SLA Management

Main enforcement component

Implementation

Year 1

Year 2

e Executes implementation plans.
e Updates Monitoring Policy.

e Executes implementation plans.

e Executes remediation plans to reconfigure
target services during SLA remediation.

e Executes reaction plans to reconfigure
target services after SLA renegotiation or
SLA termination.

Comments | e
component.

Updating Monitoring policy functionality has been assigned to the Planning

e Executions of remediation and reaction plans have been added due to
refinements of remediation and renegotiation processes.

Table 3. Overview of the Implementation component

Main enforcement component

Diagnosis

Year 1

Year 2

e (lassifies, analyses, and prioritizes
monitoring events.

e Determines root causes of monitoring
events.

e (lassifies, analyses, and prioritizes
monitoring events.

Comments | o

remediation process.

Identifying root causes of monitoring events functionality has been moved to
the Remediation Decision System component during the refinement of the

Table 4. Overview of the Diagnosis component

Main enforcement component

Remediation Decision System (RDS)

Year 1

Year 2

e Searches for redressing techniques.

e Determines root causes of monitoring
events.

e Searches for redressing techniques.

e Builds remediation plans.

Comment °

Identifying root causes of monitoring events functionality has been moved
from the Diagnosis to the Remediation Decision System component during
the refinement of the remediation process.

e Building remediation plans functionality has been added during refinements
of the SLA remediation phase.

Table 5. Overview of the RDS component

3.3. Security mechanisms

Prototypes demonstrated in D4.3.2 and D4.4.2 comprise the following security mechanisms:

e Broker (Secure Provisioning),
WebPool (Secure Web Server),
DBB,
E2EE,
SVA Security,
TLS Security,
Credential Service, and
e Security Tokens.
SPECS Project - Deliverable 4.5.2

12

Secure Provisioning of Cloud Services based on SLA Management

The remaining two, namely AAA and DoS, will be demonstrated in D4.3.3 at the end of the
project.

Note that all details related to Credential Service and Security Tokens are provided in the
dedicated deliverable D4.4.2.

In the remainder of this section we report design details for each security mechanism (except
the ones yet to be demonstrated at M30 or the ones discussed in T4.4). If the architecture of a
mechanism has been refined due to the feedback received from developers, the refinements
are reported as well.

Security Broker
mechanism
Component Description Comment
Broker Manages the Broker configuration. Integrated into Resource Broker
Configuration Communicates with the SLA Platform, | component.
Manager in order to make the component
available and synchronized with the
Platform.
Resource Acquires and configures [AAS Integrates Chef Server.
Broker resources from a Cloud Service
Provider (i.e. configures the firewall
and the public/private keys in order
to enable the access to the machine
via ssh, etc.).

Table 6. Overview of the Broker mechanism

Security WebPool
mechanism
Component Description Comment

Web Container | Forwards all incoming requests to one
Pool Manager of the Pool Agents according to the
scheduling policy defined in its
property file. By default it uses round
robin algorithm.
Pool Agent Acts as a balancer/proxy towards the
web containers belonging to a pool. It
also enables the interaction with the
Monitoring module and the
Enforcement RDS component in order
to provide incident/vulnerabilities
management capabilities.

Table 7. Overview of the WebPool mechanism

SPECS Project - Deliverable 4.5.2 13

Secure Provisioning of Cloud Services based on SLA Management

Security DBB

mechanism

Component Description Comment

DBB Main Handles put and get requests and Initially considered as E2EE

Server orchestrates all associated operations | Encryption Configurator.
(writes/reads data to/from DBB Main
DB, performs backups).

DBB Main DB Stores original data.

DBB Backup Responsible for backups and

Server restorations.

DBB Backup DB | Manages backup data.

DBB Client Provides a web interface for Initially considered as part of E2ZEE
uploading and downloading files. Client component.

DBB Auditor Performs auditing (monitors write- Introduced in year 2.
serializability and read-freshness).

DBB Monitoring | Monitors availability of DBB servers

adapter and DBs.

Table 8. Overview of the DBB mechanism

Security E2EE

mechanism

Component Description Comment

E2EE Client Provides a web interface for Previously named Client-side
uploading and downloading files. Sent | Encryptor.

and received data is
encrypted/decrypted on the client’s
side.

E2EE Monitors certification status of the Introduced in year 2.
Monitoring E2EE Client.
Adapter
Table 9. Overview of the E2ZEE mechanism
Security SVA
mechanism
Component Description Comment
SVA Manages vulnerability list, Initially integrated scanners. In year 2,
Enforcement orchestrates vulnerability scans, scanners are considered as separate
checks for updates and upgrades of components. Automatic updating and
vulnerable libraries. patching have been discarded.
SVA Monitoring | Monitors SVA security metrics.
SVA Dashboard | Presents vulnerability list and SVA
reports.
OpenSCAP Performs vulnerability scans. Initially integrated in SVA
Scanner Enforcement.
OpenVAS Performs vulnerability scans. Initially considered as separate
Scanner Supports penetration testing. monitoring mechanism. To be

integrated in year 3.

Nikto Scanner

Performs vulnerability scans.
Supports penetration testing.

Added in year 2. To be integrated in
year 3.

Table 10. Overview of the SVA mechanism

SPECS Project - Deliverable 4.5.2

14

Secure Provisioning of Cloud Services based on SLA Management

Security TLS
mechanism
Component Description Comment

TLS Reasoner

Decides what security configuration
to be used for TLS Terminator. The
security configuration consists of a
group of cryptographic ciphers that
meet the cryptographic strength level
negotiated.

Initially integrated in TLS security
mechanism.

TLS Terminator
Configurator

Creates configuration templates used
by TLS Terminator to offer the
security metrics negotiated.

Initially integrated in TLS security
mechanism.

TLS Terminator

Manages the TLS Terminator

Initially integrated in TLS security

Controller behaviour allowing administrative mechanism.
tasks (start, stop, and status query)
over the TLS Terminator service.
TLS Prober Monitors TLS security metrics. Initially integrated in TLS security

mechanism.

Table 11. Overview of the TLS mechanism

SPECS Project - Deliverable 4.5.2

15

Secure Provisioning of Cloud Services based on SLA Management

4. Validation methodology

This section describes the overall process that is related to the definition of the chosen testing
levels and techniques. The objective is to relate the module-level testing activity concerned in
this deliverable to the user-oriented system-level testing approach adopted in T5.1 and
described in D5.1.1 and D5.1.2. This section also specifies which kind of testing (e.g.,
functional, non-functional, security, etc.) will be performed on Enforcement components as
well as the components of other SPECS modules. Figure 4 depicts the followed process.

Software Module Validation

Architecture Scenario
During this process, the role of
the component inside the

Define testing architecture is evaluated and how

best practices much a failure of the considered

component
. Components
[T ||_

component affects the entire
system’s functionalities.

Assign a criticality

toeach

component
Development
Plans
Plans Enactment

Figure 4. Component validation process

Assign a criticality
to each

This activity is conducted once
and captures the best
development practices available

for security-sensitive software.

These best practices count
a"”D”E_ Dthertgchnlquesfor The artifact consists in associating
software design, testing, etc. Such to each component one of the
actual criticality level considetred
in the best practices.

practices can be different
according to the different level of
criticality of the considered
software component.

For each componentand given its criticality
level, the development plan is chosen
among the best practices by selecting the
corresponding criticality level.

The first step is the definition of development and testing best practices that define, according
to a criticality level, some techniques and methodological tools that are recommended to
ensure a proper quality level for software components. Since there are different components
in our software system, each of one with a different role and a different set of responsibilities,
it is not realistic to use the same techniques for all of them. The components are classified
according to three different levels of criticality (low, medium, and high).

The best practices table (Table 12) for which the structure has been introduced in D4.5.1, has
on the rows the different component life-cycle phases:
e Specification: definition of a set of functional and/or security requirements.
e Design: definition of a software architecture, software components, and their
interactions and interfaces.
e Coding: implementation of defined components.
e Verification: definition, execution and analysis of test cases aimed at verifying the
correct implementation of specified requirements.
e Operation & Maintenance: continuous process related to the set up runtime
environment, collection and analysis of execution traces.

SPECS Project - Deliverable 4.5.2 16

Secure Provisioning of Cloud Services based on SLA Management

The definition of best practices is based on this above described classification, while the
activity of the followed process is in charge of assigning a criticality level to each component.
The inputs for this assignment phase are the Validation Scenarios (VSs) introduced in D5.1.1
and refined in D5.1.2, and the SPECS software architecture summarized in D1.1.3. By using
these inputs, the relationships and the dependency among the components are analysed in
particular in the interaction scenarios that are most sensitive from a user-perspective (the
VSs). This assignment is not made on the basis of a formalised approach, such as the HAZOP,
or other risk assessment approaches. Instead, the criticality is mainly assigned on the base of
the experience of the SPECS designers and architects. The reasoning behind this choice is
because the objective of this task is not the certification of the developed products but rather
a demonstration of the overall quality of the produced software.

Once each component has a criticality level assigned to it, by using the best practices defined,
it is possible to extract the specific set of techniques to apply for each component and apply it
during the component life-cycle.

It is important to underline that some development and verification activities will be
performed for all the components independently from their criticality level: requirements
engineering and traceability, UML modelling, version control, etc. In particular, functional
tests will be performed for all the components while, for non-functional properties and
testing activities, we proceed in the following way:

e For each Enforcement core component we determine the criticality of the test types.

e For each test type (security, interoperability, dependability, robustness) we define

specific testing techniques and goals to apply to the component under test.

Table 12 lists the best practices detected for the components as stated in Figure 4. Rows
represent the phases of the development life-cycle, while columns represent possible
criticality levels. Each cell contains the techniques applicable for all the components
characterized by a certain level of criticality (column) at a certain development phase (row).

High Medium Low
Specification | ¢ Traceability Traceability Traceability
e Peer-review inspection
Design ¢ Interfaces and behavioural UML Interfaces and Interfaces and
modelling behavioural UML behavioural UML
modelling modelling
Coding e Secure programming Coding standard Structured
e (Coding standard Programming
Verification |e Code quality analysis Black box Black box
e Black box functional testing functional testing functional testing
e Branch coverage white box testing Unit testing Unit testing
e Security testing Statement
e Security review coverage white
e Interoperability testing box testing
e Dependability and robustness
testing
Operation & | ¢ Use of versioning software Use of versioning Use of versioning
Maintenance systems software systems software systems
e Use of an open problems log

Table 12. Methods/Criticality assignment example

SPECS Project - Deliverable 4.5.2

17

Secure Provisioning of Cloud Services based on SLA Management

As an example, if we consider a component X and consider it as a medium critical component,
during its validation, the techniques listed in the related cell should be applied (i.e., black box
functional testing, unit testing, and statement coverage white box testing).

The following list briefly covers the single individual technique used:

Traceability: The requirements are traced on design components and tests. This
enables, during the verification phase, the definition of which component/requirement
represents some errors and which is the part of the system that is affected by a
requirements’ change.

Peer-review inspection: The requirements are checked in order to detect
inconsistencies and/or incompleteness.

Interfaces and behavioural UML modelling: By using UML, interfaces between the
components as well as the dynamic behaviour of components and their interactions
are clear and documented.

Secure Programming: Using a secure programming coding standard it is possible to
limit the occurrence of security bugs such as buffer overrun, etc.

Coding Standard: By using a coding standard, the developer knows if some construct
can or cannot be used. This has the effect of producing more stable and clear software
(an example is constituted by inhibiting the usage of function pointers in C/C++).
Structured Programming: Avoiding non-structured programming approaches is in
keeping with clear programming practices and quality improvement.

Black box testing: The software is tested by simply defining input/output couples. The
software is not inspected but the verification that input and output match is conducted.
This testing practice is in general associated with the verification of functional
requirements.

Unit Testing: Has the scope of testing single components by means of the definition of
stubs and driver software in general under the guidance of widespread testing
frameworks such as xUnit [32].

Statement coverage white-box testing: White-box testing looks inside the structure of a
component; covering the statements means to cover the greatest part of executable
statements at least once.

Branch coverage white-box testing: White-box testing looks inside the structure of a
component; covering the branches means to cover the greatest part of branches at
least once. It is important to underline that branch coverage is a stronger condition
than statement coverage.

Code Quality Analysis: By means of quantitative metrics, some quality indicators can be
computed indicating the overall quality of the software (lines of code per function,
software complexity, specific object-oriented metrics, etc.).

Security Testing: Security testing aims at finding software vulnerabilities, which can be
exploited by an attacker. By finding them as soon as possible, they can be fixed and the
overall vulnerability level of the software can be reduced.

Security Review: While the aim is the same as the Security Testing approach, the
Security Review is mainly conducted by defining and following security checklists by
static human based inspection of the software.

Interoperability Testing: The objective of this phase is to check the adherence of
produced software to international standards and to ensure that the produced
software package can properly work in different operative contexts (in the SPECS case,

SPECS Project - Deliverable 4.5.2 18

Secure Provisioning of Cloud Services based on SLA Management

we have to check that the SPECS modules, platform, and applications work with
different CSPs).

e Dependability and Robustness Testing: The objective here is to test the reliability of the
software also in the event of faulty conditions (network error, erroneous/malicious
inputs, etc.).

e Use of versioning software systems: Software configuration management is a critical
process in taming the complexity of large software projects. Through a comprehensive
configuration management process, product releases can be defined in an accurate
way by choosing the proper version of all the software artefacts.

e Use of an open problems log: By keeping, feeding and periodically reviewing an open
problem log, the software development team is able to keep software issues under
control and is able to plan improved releases according to a shared priority.

It is beyond the scope of this section to present the results of these approaches, instead
only presenting the approaches, providing motivation for the approaches, and defining the
proper development and testing framework. Concrete techniques and supporting tools
used for the single purposes (coverage, software metrics, etc.) will be presented in Section
6. For functional testing activities refer to Section 7.2. For results on integration refer to
D1.5.1/D1.5.2, and for activities related to non-functional testing refer to D4.5.3 (M30).
Moreover, all the life-cycle steps that have been highlighted, are touched in different tasks
and demonstrations of the achieved results is provided in different deliverables:
Specification was performed in Y1 (see D4.1.2).

Design was conducted in Y1 (see D4.2.2) and updated in Y2 (see D4.3.2).

The coding phase started in Y1 (see D4.3.1) and continued in Y2 (refer to D4.3.2).
Verification partially started in Y1 (D4.5.1), continued with component testing in
Y2 and will result with complete results in Y3 (refer to D4.5.3).

SPECS Project - Deliverable 4.5.2 19

Secure Provisioning of Cloud Services based on SLA Management

5. Validation of the Enforcement module

As anticipated in the introduction and discussed in D4.3.2, in the year 2 of the SPECS project
the Enforcement module has been improved to support not only all the steps of the refined
remediation phase but also to support implementation activities after renegotiation and
termination. Similarly, rethinking enforcement and monitoring of security metrics resulted in
a few amendments of the architecture of security mechanisms (for details see D4.3.2 and
D4.4.2). Moreover, exploitation activities produced a few new requirements implying the
need for a new security mechanism (DBB mechanism; see D4.3.2). This resulted in some
changes in coverage of requirements by the main Enforcement components and security
mechanisms.

A year of research, development, and integration also resulted in a new version of validation
scenarios reported in D5.1.2. Steps for each scenario have been revised, refined, and further
details have been added.

In order to verify the Enforcement module (to validate the intermediary design/prototype), in
the next subsections the new coverage matrices are presented and discussed, and summaries
of main changes are reported.

Note that all scenarios and requirements directly associated to Credential Service and
Security Tokens are verified in deliverable D4.4.2, and all scenarios and requirements strictly
related to the Auditing component are discussed in deliverable D1.4.1. Verification of all
scenarios and requirements associated to AAA and DoS mechanisms will be presented in
D4.5.3.

5.1. Coverage of validation scenarios

This section provides verification results for the Enforcement module with respect to
validation scenarios introduced in D5.1.1 and refined in D5.1.2. In order to evaluate the
intermediary Enforcement prototypes demonstrated in D4.3.2 and D4.4.2, each validation
scenario is presented in terms of coverage by main Enforcement components and security
mechanisms and by Enforcement requirements (see the tables below).

Coverage analysis of validation scenarios is an important step in the validation process since
validation scenarios serve as basis for defining integration scenarios (that will be presented in
deliverables of task T1.5).

Note that in the initial discussion related to coverage of scenarios by components the focus
was on the entire SPECS framework, whereas in this document the focus is on Enforcement
module only. In addition, the coverage analysis presented in this section is focused only on
components and mechanisms described in D4.3.2 and validated in this deliverable (i.e., core
Enforcement components, Broker, WebPool, TLS, SVA, DBB, E2EE).

Validation of other modules is performed in dedicated tasks and results are reported in

dedicated deliverables. The final validation of the entire framework will be performed at the
end of the project and results will be reported in the final iteration of this deliverable.

SPECS Project - Deliverable 4.5.2 20

Secure Provisioning of Cloud Services based on SLA Management

Scenario ID | SST-01 Secure_Storage_Selection

Scenario The End-user aims at acquiring a secure storage service from a cloud provider,

description | which fulfils specific security-related requirements. To achieve this service, the
End-user negotiates the desired features with SPECS.
In this validation scenario, the desired features are entirely implemented by an
external CSP, while SPECS only provides the End-user with the functionalities to
search, rank and select a service which is compliant to her/his requirements.
Moreover, in this scenario, SPECS supports the End-user in signing an SLA with
the selected provider.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains) e ENF PLAN_R1-R4

e ENF PLAN_R10-R12

Table 13. Coverage of Secure_Storage_Selection scenario

Scenario ID

SST-02 Secure_Storage_Brokering with_Client_Crypto

Scenario
description

The End-user aims at acquiring a secure storage service from a remote cloud
provider, which fulfils specific security-related requirements. Specifically, the
End-user needs the two capabilities of Database-as-a-Service and End-2-End
Encryption in order to detect and prove security-related violations and to locally
encrypt her/his data.

To achieve this service, the End-user negotiates the desired features with SPECS
and signs an SLA including all service terms and guarantees.

SPECS acquires the Database-as-a-Service on behalf of the End-user (registered
on SPECS) and provides her/him with end-2-end encryption security mechanism.
In this scenario, SPECS also provides monitoring functionalities.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains, builds e ENF PLAN_RI1-R7
implementation plan, updates MoniPoli)

e Implementation component (configures resources and SPECS
components)

e Broker mechanism (acquires resources)

o DBB mechanism (offers secure storage with backup)

e E2EE mechanism (provides client-side encryption)

ENF PLAN_R10-R12
ENF _IMPL _R1-R8
ENF_IMPL_R10
ENF_BROKER R1-R5
ENF CRYPTO_R1-R4
ENF_DBB_R1-R2

Table 14. Coverage of Secure_Storage_Brokering_with_Client_Crypto scenario

Scenario ID

SST-03 Secure_Storage_with_Defined_CSP

Scenario
description

The End-user aims at storing encrypted data on a known remote cloud provider
which offers a Database-as-a-service. The End-user asks SPECS for End-2-End
Encryption capability, needed to locally encrypt her/his data.

To achieve this service, the End-user also gives SPECS her/his credentials on the
chosen provider; SPECS manages these credentials and uses them to log into the
chosen provider and store User’s data.

In this scenario, SPECS also provides monitoring functionalities.

Involved Enforcement components/mechanisms

Related requirements

e Planning component (builds valid supply chains, builds
implementation plan, updates MoniPoli)

e Implementation component (configures resources and SPECS
components)

e Broker mechanism (acquires resources)

e DBB mechanism (offers secure storage with backup)
E2EE mechanism (provides client-side encryption)

ENF PLAN_R1-R7
ENF_PLAN_R10-R12
ENF _IMPL_R1-R8
ENF_IMPL_R10
ENF_BROKER R1-R5
ENF_CRYPTO_R1-R4
ENF_DBB_R1-R2

Table 15. Coverage of Secure_Storage_with_Defined_CSP scenario

SPECS Project - Deliverable 4.5.2

21

Secure Provisioning of Cloud Services based on SLA Management

Scenario ID | SST-04 Secure_Storage_Brokering_with_Client_Crypto_Alert

Scenario The End-user aims at acquiring a secure storage service from a remote cloud
description | provider, which fulfils specific security-related requirements. Specifically, the
End-user needs the two capabilities of Database-as-a-Service and End-2-End
Encryption in order to detect and prove security-related violations and to locally
encrypt her/his data.

To achieve this service, the End-user negotiates the desired features with SPECS
and signs an SLA including all service terms and guarantees.

SPECS acquires the Database-as-a-Service on behalf of the End-user (registered
on SPECS) and provides her/him with end-2-end encryption security mechanism.
In this scenario, SPECS also provides monitoring functionalities.

In this scenario, an alert is raised since the Encryption Server component is
detected to be down and, since no data are sent from the End-user during the
down time, no violation occurs.

Involved Enforcement components/mechanisms Related requirements
e Planning component (builds valid supply chains, builds e ENF PLAN_R1-R8
implementation plan, updates MoniPoli) e ENF PLAN _R10-R12

e Implementation component (configures resources and SPECS e ENF IMPL R1-R8
components, executes remediation plan)

e ENF_IMPL_R10
e Diagnosis component (analyses and classifies the monitoring e ENF DIAG R1-R18
event) e FENF REM R2-R9
e RDS component (builds remediation plan) e FENF BROKER R1-R5
e Broker mechanism (acquires resources) e ENF CRYPTO_R1-R4
o DBB mechanism (offers secure storage with backup) e ENF DBB RI1-R2
e E2EE mechanism (provides client-side encryption) e SLANEG R31

Table 16. Coverage of Secure_Storage_Brokering_with_Client_Crypto_Alert scenario

Scenario ID | SST-05 Secure_Storage_Brokering_with_Client_Crypto_Violation

Scenario The End-user aims at acquiring a secure storage service from a remote cloud
description | provider, which fulfils specific security-related requirements. Specifically, the
End-user needs the two capabilities of Database-as-a-Service and End-2-End
Encryption in order to detect and prove security-related violations and to locally
encrypt her/his data.

To achieve this service, the End-user negotiates the desired features with SPECS
and signs an SLA including all service terms and guarantees.

SPECS acquires the Database-as-a-Service on behalf of the End-user (registered
on SPECS) and provides her/him with end-2-end encryption security mechanism.
In this scenario, SPECS also provides monitoring functionalities.

In this scenario, a violation is detected since the Encryption Server component is
detected to be down.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains, builds ENF PLAN_R1-R8
implementation plan, updates MoniPoli) ENF PLAN_R10-R12
e Implementation component (configures resources and SPECS ENF_IMPL_R1-R8
components, executes remediation plan) ENF_IMPL_R10
e Diagnosis component (analyses and classifies the monitoring ENF DIAG_R1-R18
event) ENF REM_R2-R9
RDS component (builds remediation plan) ENF BROKER R1-R5
Broker mechanism (acquires resources) ENF CRYPTO R1-R4
DBB mechanism (offers secure storage with backup) ENF DBB R1-R2
E2EE mechanism (provides client-side encryption) e SLANEG R31

Table 17. Coverage of Secure_Storage_Brokering_with_Client_Crypto_Violation scenario

SPECS Project - Deliverable 4.5.2

Secure Provisioning of Cloud Services based on SLA Management

Scenario ID | SWC-01 Secure_Web_Container._Selection

Scenario The End-user aims at acquiring a web container from an Infrastructure-as-a-

description | Service CSP, represented by a VM hosting the Web Server, which fulfils specific
security requirements. To achieve this service, the End-User negotiates the
desired features with SPECS.
In this validation scenario, the desired features are entirely implemented by an
Infrastructure-as-a-Service CSP. SPECS only returns to the End-user the reference
to such provider.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains) e ENF PLAN_R1-R4

e ENF PLAN_R10-R12

Table 18. Coverage of Secure_Web_Container_Selection scenario

Scenario ID

SWC-02 Secure_Web_Container_Brokering

Scenario
description

The End-user aims at acquiring a web container from an Infrastructure-as-a-
Service CSP, represented by a VM hosting the Web Server, which fulfils specific
security-related requirements. To achieve this service, the End-User negotiates
the desired security features with SPECS.

In this validation scenario, the desired features are entirely implemented by an
Infrastructure-as-a-Service CSP. SPECS acquires the resources on behalf of the
End-user (registered on SPECS) and sets up some monitoring functionalities in
order to monitor the SLA achievement.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains, builds
implementation plan, updates MoniPoli)

e Implementation component (configures resources and SPECS
components)

e Broker mechanism (acquires resources)

e WebPool mechanism (offers a secure web container)

ENF PLAN_R1-R7
ENF PLAN_R10-R12
ENF_IMPL_R1-R8
ENF_IMPL_R10
ENF_BROKER R1-R5
e ENF POOL_R1-R5

Table 19. Coverage of Secure_Web_Container_Brokering scenario

Scenario ID | SWC-03 Secure_Web_Container_TLS_Enhanced

Scenario The End-user aims at acquiring a web container from an Infrastructure-as-a-

description | Service CSP, represented by a VM hosting the Web Server, which fulfils specific
security-related requirements. In particular, the End-user requires the adoption
of Transport Layer Security (TLS) protocol to protect the Web Server
communications, DoS detection and mitigation mechanisms. To achieve this
service, the End-user negotiates the desired features with SPECS.
In this validation scenario, the VM (without TLS) is provided by an
Infrastructure-as-a-Service CSP while the TLS protocol and the DoS detection and
mitigation mechanisms are provided by SPECS. SPECS acquires the resources on
behalf of the End-user (registered on SPECS), adds the TLS protocol, and sets up
some monitoring functionalities in order to monitor the TLS communication. In
this scenario, an alert regarding a DoS attack is detected, and SPECS reacts by
activating proper mitigation strategies. The scenario ends without any other
alert.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains, builds e FENF PLAN_RI1-R8

implementation plan, updates MoniPoli) e ENF PLAN_R10-R12
e Implementation component (configures resources and SPECS | ¢ ENF IMPL R1-R8
components, executes remediation plan) e FENF IMPI_R10
e Diagnosis component (analyses and classifies the monitoring e FENF DIAG R1-R18
SPECS Project - Deliverable 4.5.2 23

Secure Provisioning of Cloud Services based on SLA Management

event)

RDS component (builds remediation plan)
Broker mechanism (acquires resources) ENF POOL_R1-R5
WebPool mechanism (offers a secure web container) ENF TLS R1-R5
TLS mechanism (provides TLS protocol) e SLANEG_R31

ENF_REM_R2-R9
ENF BROKER R1-R5

Table 20. Coverage of Secure_Web_Container_Enhanced scenario

Scenario ID | SWC-04 Secure_Web_Container_SVA_Enhanced_Alert

Scenario The End-user aims at acquiring a web container from an Infrastructure-as-a-
description | Service CSP, represented by a VM hosting the Web Server, which fulfils specific
security-related requirements. In particular, the End-user requires the adoption
of Software Vulnerability Assessment (SVA) tools to protect the Web Server
environment. To achieve this service, the End-user negotiates the desired
features with SPECS.

In this validation scenario, the VM (without SVA) is provided by an
Infrastructure-as-a-Service CSP while the SVA agent is installed by SPECS. SPECS
acquires the resources on behalf of the End-user (registered on SPECS), adds the
SVA agents, and sets up some monitoring functionalities. This scenario includes
the raising of an alert due to a deviation of some metrics; SPECS reacts by
updating the software (redressing). The scenario ends without any other alerts.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains, builds ENF PLAN_R1-R8
implementation plan, updates MoniPoli) ENF_PLAN_R10-R12
e Implementation component (configures resources and SPECS ENF IMPL_R1-R8
components, executes remediation plan) ENF IMPL_R10
. Diagn)osis component (analyses and classifies the monitoring ENF DIAG R1- R18
event n -
RDS component (builds remediation plan) ENF_REM_R2-R9
Broker mechanism (acquires resources) ENF_BROKER R1-R5
WebPool mechanism (offers a secure web container) ENF_POOL_R1-R5
SVA mechanism (provides SVA security services) ENF_SVA_R1-R4
e SLANEG R31

Table 21. Coverage of Secure_Web_Container_SVA_Enhanced_Alert scenario

Scenario ID | SWC-05 Secure_Web_Container_TLS_SVA_Enhanced_Violation

Scenario The End-user aims at acquiring a web container from an Infrastructure-as-a-
description | Service CSP, represented by a VM hosting the Web Server, which fulfils specific
security-related requirements. In particular, the End-user requires the adoption
of Software Vulnerability Assessment (SVA) tools to protect the Web Server
environment. To achieve this service, the End-user negotiates the desired
features with the SPECS.

In this validation scenario, the VM (without SVA) is provided by an
Infrastructure-as-a-Service CSP while the SVA agents are installed by SPECS.
SPECS acquires the resources on behalf of the End-user (registered on SPECS),
adds the SVA agents, and sets up some monitoring functionalities in order to
detect the presence of exposed vulnerabilities. This scenario includes the raising
of an alert regarding a vulnerability threat which corresponds to a violation of the
agreed SLA. SPECS reacts by renegotiating the SLA; the End-user asks for the
adoption of Transport Layer Security (TLS) protocol to protect the Web Server
communications. The renegotiated SLA is hence signed and properly monitored
by SPECS.

Involved Enforcement components/mechanisms | Related requirements

SPECS Project - Deliverable 4.5.2

Secure Provisioning of Cloud Services based on SLA Management

ENF_TLS_R1-R5
ENF _SVA_RI1-R4
SLANEG_R30-R31

RDS component (builds remediation plan)

Broker mechanism (acquires resources)

WebPool mechanism (offers a secure web container)
SVA mechanism (provides SVA security services)
TLS mechanism (offers TLS protocol)

e Planning component (builds valid supply chains, builds e ENF PLAN R1-R12
implementation plan, builds reaction plan, updates MoniPoli) e ENF IMPL_R1-R10
e Implementation component (configures resources and SPECS e ENF DIAG R1-R18
components, executes remediation plan, executes reaction . ENF_ REM_RI R9
plan) . - e ENF_BROKER_RI-R5
e Diagnosis component (analyses and classifies the monitoring s
event) e FENF POOL_R1-R
[]
[
[]

Table 22. Coverage of Secure_Web_Container_TLS_SVA_Enhanced_Violation scenario

Scenario ID | SWC-06 Secure_Web_Container_TLS_Multitenancy

Scenario Two End-users aim at acquiring different web containers Infrastructure-as-a-
description | Service CSPs, represented by VMs hosting the Web Servers, which fulfil different
security requirements. In addition, both End-users require the adoption of
Transport Layer Security (TLS) protocol to protect the communications of Web
Servers. To achieve this service, the first End-user negotiates the desired features
with SPECS. The VM (without TLS) is provided by an Infrastructure-as-a-Service
CSP while the TLS protocol is added by SPECS setting up proper resources (e.g.,
reverse proxy).

The second End-user negotiates the desired features with the SPECS framework.
A different VM (without TLS) is provided by an Infrastructure-as-a-Service CSP
(either the same or a different one) while the TLS protocol is added by SPECS
reusing, for scalability purposes, the same resources adopted for the first End-
user.

This validation scenario considers the multi-tenancy in the usage of shared
resources between End-users.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains, builds ENF _PLAN_R1-R7
implementation plan, updates MoniPoli) ENF_PLAN_R10-R12

e Implementation component (configures resources and SPECS ENF_IMPL_R1-R8
components) ENF_IMPL_R10

e Broker mechanism (acquires resources) ENF BROKER R1-R5

o WebPool mechanism (offers a secure web container) ENF _POOL_R1-R5
TLS mechanism (offers TLS protocol) ENF _TLS_R1-R5

Table 23. Coverage of Secure_Web_Container_TLS_Multitenancy scenario

Scenario ID | SWC-07 Secure_Web_Container_Web_Pool_Replication_Enhanced_Alert

Scenario The End-user aims at acquiring a set of web containers from an Infrastructure-as-
description | a-Service CSP, each of them represented by a VM hosting the Web Server, which
fulfil specific security-related requirements. In particular, the End-user requires a
specific level of redundancy and session persistence among web container
replicas. To achieve this service, the End-user negotiates the desired features
with SPECS.

In this validation scenario, the VMs are provided by an Infrastructure-as-a-
Service CSP while session persistence among replicas is implemented by the
SPECS web pool mechanism. SPECS acquires the resources on behalf of the End-
user (registered on SPECS), adds the web pool components, and sets up proper
resources to handle HTTP request through proxying functionality in order to

SPECS Project - Deliverable 4.5.2

Secure Provisioning of Cloud Services based on SLA Management

forward the requests to one of the available the web container. In this scenario,
the proxy functionality is added, by SPECS, on a dedicated VM.

This scenario includes the rising of an alert regarding a vulnerability threat on a
specific web container; SPECS reacts by updating the implemented forwarding
policy (redressing) and removes the affected web container from the pool of
available web containers. The scenario ends without any other alerts.

Involved Enforcement components/mechanisms Related requirements

e Planning component (builds valid supply chains, builds e ENF PLAN_R1-R8
implementation plan, updates MoniPoli) e ENF PLAN_R10-R12

e Implementation component (configures resources and SPECS | ¢ ENF IMPL_R1-R8
components, executes remediation plan) e ENF IMPL R10

e Diagnosis component (analyses and classifies the monitoring e ENF DIAG R1- R18
event) e ENF REM R2-R9

e RDS component (builds remediation plan) e FENF BROKER R1-R5

e Broker mechanism (acquires resources) e ENF POOL _R1-R5

e WebPool mechanism (offers a secure web container) e SLANEG R31

Table 24. Coverage of Secure_Web_Container_Web_Pool_Replication_Enhanced_Alert scenario

Scenario ID

SWC-08 Secure_Web_Container_Web_pool_Replication_Enhanced_Violation

Scenario
description

The End-user aims at acquiring a precise number of web containers from an
Infrastructure-as-a-Service CSP, each of them represented by a VM hosting the
Web Server, which fulfil specific security requirements. In particular, the End-
user requires a specific level of redundancy and session persistence among web
container replicas. To achieve this service, the End-user negotiates the desired
features with SPECS.

In this validation scenario, the VMs are provided by an Infrastructure-as-a-
Service CSP while the session persistence among replicas is implemented through
the SPECS web pool mechanism by SPECS. SPECS acquires the resources on
behalf of the End-user (registered on SPECS), adds the web pool components, and
sets up proper resources to handle HTTP request through proxying functionality
in order to forward the requests to one of the available the web container. In this
scenario, the proxy functionality is added, by SPECS, on a dedicated VM.

This scenario includes the rising of an alert regarding a vulnerability threat on a
specific web container; SPECS reacts by removing the affected web container
from the pool of available web containers. The signed SLA is hence violated since
the number of available VMs is not sufficient to fulfil the SLA.

Involved Enforcement components/mechanisms Related requirements

event)

e Planning component (builds valid supply chains, builds
implementation plan, updates MoniPoli)

e Implementation component (configures resources and SPECS
components, executes remediation plan)

e Diagnosis component (analyses and classifies the monitoring

e RDS component (builds remediation plan)
e Broker mechanism (acquires resources)
e WebPool mechanism (offers a secure web container) e SLANEG R31

ENF_PLAN_RI1-R8
ENF_PLAN_R10-R12
ENF _IMPL_R1-R8
ENF IMPL_R10
ENF_DIAG_R1-R18
ENF_REM_RZ2-R9
ENF_BROKER R1-R5
ENF_POOL_R1-R5

Table 25. Coverage of Secure_Web_Container_Web_Pool_Replication_Enhanced_Violation scenario

Scenario ID

NGDC-01 Data_Center_Bursting_for_Storage_Resources

Scenario
description

A CSP hosting its own ngDC acting within a CSC role aims at using the SPECS
framework to perform Cloud bursting in order to extend its Secure Storage as a
Service (SStaaS) capabilities during a period of increased storage demand beyond

SPECS Project -

Deliverable 4.5.2

26

Secure Provisioning of Cloud Services based on SLA Management

its own ngDC storage capabilities by its CSCs and/or End-users.

The CPS considers its storage as first class storage due the capability to tune all
the security parameters. The CSP will allocate the first class storage to the End-
User that don’t need high-security capability. Otherwise it will allocate storage to
an external provider throw SPECS. All that process is transparent to the End-user.
Note while the CSP acquiring external CSP storage resources is typically
considered an End-user, it is not in the context of a SPECS defined End-user. That
is, the CSP intends to resell its acquired external storage resources and so is
considered a CSC (in the context of SPECS). For ease of exposition ‘customer’ is
used as a syntactic sugar to refer to either a CSC or End-user of the CSP hosting

the ngDC.
Involved Enforcement components/mechanisms Related requirements
e Planning component (builds valid supply chains) e ENF PLAN_R1-R4
e ENF PLAN_R10-R12

Table 26. Coverage of Data_Center_Bursting_for_Storage_Resources scenario

In summary, all reported validation scenarios involve at least one Enforcement component
and at least one security mechanism. The traceability matrix outlining correlation between
validation scenarios and Enforcement design is provided in Table 27 below.

Enforcement
component /
mechanism
Planning
Implementation
Diagnosis

RDS

Broker XX
WebPool
DBB XX
E2EE XX
SVA X[X
TLS X XX
Table 27. Coverage of validation scenarios by Enforcement components/mechanisms

> | SST-01
> || SST-02
> [>| SST-03

D <[> | >< [><| SST-04

D< | >< [5< | >< || SST-05
> | NGDC-01

>| SWC-01
> (> | SWC-02

D <[> <[> | < | SWC-03
D [< [| < | SWC-04
<< | > < | [| SWV-05

> |>| SWC-06

<D< | > < | [| SWC-07
D <[> <[> | < | SWC-08

> | <
> | <

> | <
> |

All requirements for the Enforcement module identified on the basis of user stories and
validation scenarios introduced in D5.1.1 cover all old/refined validation scenarios. Details
are discussed in the following subsection.

5.2 Coverage of requirements

In the first iteration of this deliverable, the “main” Enforcement requirements (the ones
associated with core Enforcement components) have been analysed in terms of coverage with
respect to validation scenarios. After refinement of validation scenarios, improvement of the
enforcement process, receipt of initial feedback from implementation activities, and
elicitation of some new requirements, a more detailed coverage matrix for the “main”

Enforcement requirements and even for ones associated to security mechanisms is provided
in the Table 28 below.

SPECS Project - Deliverable 4.5.2 27

Secure Provisioning of Cloud Services based on SLA Management

Since mapping between requirements and validation scenarios is already provided in Section
5.1, Table 28 focuses on explaining HOW each Enforcement requirement is covered by

prototypes developed so far.

REQ_ID Requirement Comment
ENF PLAN_R1 Get SLA to enforce The Planning component parses the SLA to build
supply chains and to prepare implementation plans.
ENF_PLAN_RZ Define security The Planning component considers the set of SLOs
mechanisms related | in the SLA (while building supply chains) and
to SLOs determines which kind of security mechanisms are
to be applied.
ENF_PLAN_R3 Get security The Planning component (while building supply
components chains) retrieves all security mechanisms able to
implement negotiated SLA.
ENF_PLAN_R4 Select best security The Planning component (while building supply
component chains) selects the best available security
mechanisms able to implement negotiated SLA.
ENF_PLAN_R5 Activate The Planning component triggers execution of an
implementation implementation plan by invoking the
Implementation component.
ENF_PLAN_R6 Log component The Planning component logs its activation and
activation and deactivation.
deactivation
ENF _PLAN_R7 Build an The Planning component prepares an
implementation plan | implementation plan based on the signed SLA and
associated supply chain. Building implementation
plan includes deducing alert thresholds.
ENF _PLAN_R8 Build a reaction plan | The RDS component is able to build a reaction plan
after an alert or a violation.
The Planning component has to be able to build a
reaction plan after renegotiation. This should be
covered by the final prototype demonstrated at M30.
ENF_PLAN_R9 Build a migration The RDS component is able to build a migration

plan

plan after an alert or a violation.

The Planning component has to be able to build a
migration plan after renegotiation. This should be
covered by the final prototype demonstrated at M30.

ENF PLAN_R10 Get monitoring The Planning component (while building supply
systems chains) retrieves all monitoring systems able to

monitor negotiated SLA.
ENF PLAN_R11 Select best The Planning component (while building supply

monitoring systems

chains) selects the best available monitoring
systems able to monitor negotiated SLA.

ENF_PLAN_R12

Validate an SLA

The Planning component builds only valid supply
chains. Consequently (in the SLA negotiation
process) only valid SLAs are built.

ENF_IMPL_R1

Implement Plan

The Implementation component executes
implementation plan by orchestrating the
acquisition of the needed resources, their
configuration, and the activation of involved
services.

ENF_IMPL_R2

Acquire resources

The Implementation component (the Broker)

SPECS Project - Deliverable 4.5.2

28

Secure Provisioning of Cloud Services based on SLA Management

acquires all resources needed to realize an
implementation plan.

ENF_IMPL_R3 Deploy and configure | The Implementation component deploys and
configures all acquired resources according to the
implementation plan.

ENF_IMPI,_R4 Start services The Implementation component activates all
services deployed and configured on top of acquired
resources.

ENF_IMPL_R5 Trigger monitoring The Implementation component

agent activation or activates/deactivates all monitoring agents
deactivation deployed and configured on top of acquired
resources.

ENF_IMPIL,_R6 Log service The Implementation component logs a successful

activation activation of each security service related to the
implemented SLA.

ENF_IMPL_R7 Update SLA state The Implementation component updates the state
of an SLA after its successful implementation.

ENF_IMPL_R8 Log component The Implementation component logs its activation

activation or or deactivation.
deactivation

ENF_IMPI,_R9 Implement reaction The Implementation component has to be able to

plan implement a reaction plan built after renegotiation.

This should be covered by the final prototype
demonstrated at M30.

ENF_IMPL_R10

Update monitoring
policy

The Planning component updates the monitoring
policy (with violation and alert thresholds)
according to a signed SLA.

ENF _DIAG_R1 Get monitoring event | The Diagnosis component receives notifications of
notification monitoring events from the Monitoring module.

ENF _DIAG_RZ2 Get monitoring event | The Diagnosis component is able to retrieve all
information information related to a monitoring event by

accessing the Auditing component.

ENF_DIAG_R3 Identify SLOs The Diagnosis component analyses notified
affected by a monitoring events and identify the SLOs at risk or
monitoring event violated.

ENF _DIAG_R4 Update SLA state The Diagnosis component updates the state of an
SLA (to Alerted or Violated) depending on the
classification of the notified monitoring event.

ENF _DIAG_RS Get SLAs affected by | The Diagnosis component identifies and retrieves
a monitoring event all SLAs affected by a notified monitoring event.

ENF _DIAG_R6 Activate reaction The Diagnosis component activates the RDS
component to react to an alert or a violation.

ENF _DIAG_R7 Express SLA violation | This requirement could possibly be covered by the

in terms of KPI final prototype demonstrated at M30.

ENF _DIAG_RS8 Query metric The Diagnosis component is able to query the
metric data stored inside the Event Archiver
(Monitoring module) when evaluating the status of
a notified monitoring event.

ENF _DIAG_R9 Log component The Diagnosis component logs its activation and

activation or
deactivation

deactivation.

ENF _DIAG_R10

Determine effect on

For each SLA affected by a monitoring event, the

SPECS Project - Deliverable 4.5.2

29

Secure Provisioning of Cloud Services based on SLA Management

an SLA Diagnosis component determines the effect the

monitoring event has on the SLA (i.e,, is it alerted or
violated).

ENF DIAG R11 Log SLA impact The Diagnosis component logs all event related
information.

ENF_DIAG_R12 Classify event The Diagnosis component classifies all notified
monitoring events.

ENF DIAG_R13 Identify root cause The Diagnosis component performs a root cause

analysis of each monitoring event.

ENF _DIAG_R14

Log root cause

The Diagnosis component logs all event related
information.

ENF DIAG_R15

Analyse monitoring
event

The Diagnosis component analyses each notified
monitoring event.

ENF _DIAG_R16

Prioritize events

The Diagnosis component prioritizes monitoring
events (actually, SLAs affected by notified events)
according to their risk/severity levels.

ENF DIAG_R17

Log priority queue

The Diagnosis component logs all event related
information.

ENF DIAG_R18

Log queue change

The Diagnosis component must be able to compare
the current metric/SLO data with the
alert/violation thresholds specified for an
alerted/violated SLA to verify if the severity of the
alert/violation has changed.

ENF_REM_R1 Trigger The RDS component triggers renegotiation when
renegotiation available remediation activities are unable to
resolve SLA violations.

ENF REM_RZ2 Log component The RDS logs its activation and deactivation.

activation or
deactivation

ENF_REM_R3 Get SLA state The RDS checks the state of an SLA in order to
identify proper remediation actions.

ENF_REM_R4 Update SLA state The RDS component updates SLA’s state (to
Proactive Redressing or Remediating) depending to
the type of the notified event (alert or violation).

ENF_REM_R5 Get SLA The RDS component retrieves an alerted/violated
SLA in order to identify required remediation
actions.

ENF_REM_R6 Get SLA impact The RDS component is able to retrieve all
information related to an alert/violation.

ENF REM_R7 Get security The RDS component retrieves all event related

components security components.

ENF REM_R8 Search for redressing | The RDS identifies remediation actions based on the

techniques event information and affected SLAs.

ENF_REM_R9 Notify End-user When End-user’s decision is needed in the process

of managing an alert or a violation, the RDS
component communicates the issue with the End-
user through the SPECS Application.

ENF_BROKER_R1

Enable CSP

The SPECS Administrator is able to configure and
enable the Broker to access and use an external CSP.

ENF_BROKER R2

Acquire cluster

The Broker component is able to acquire a cluster of
VMs on one of the enabled CSPs.

ENF_BROKER R3

Delete cluster

The Broker component is able to delete a cluster of

SPECS Project - Deliverable 4.5.2

30

Secure Provisioning of Cloud Services based on SLA Management

VMs previously acquired.

ENF_BROKER_R4 Add user The Broker component is able to add a new user to
the available cluster of VMs.

ENF BROKER R5 Execute script on The Broker component is able to execute on or

node more scripts on a cluster of VMs.

ENF _POOL_R1 Diversity This requirement is satisfied by acquiring many
VMs and configuring a different web server engines
on them.

ENF_POOL_R2 Load balancing This requirement is satisfied by configuring a proxy
that is able to forward all incoming requests to one
of the VMs hosting the web server engines. The
scheduling policy can be configured.

ENF_POOL_R3 Survivability This requirement is satisfied by acquiring and
configuring the same web server engine on more
than one VM.

ENF_POOL_R4 Session sharing This requirement is satisfied by configuring each
web server engine with a cache accessible to all web
server engines,

ENF_POOL_R5 Incident This requirement could possibly be covered by the

management final prototype demonstrated at M30.

ENF_TLS_R1 Translate TLS TLS Reasoner translates security high level

constraints constraints and requirements in configuration
templates that are used by both TLS Terminator, to
enforce, and TLS Prober, to monitor and generate
events.

ENF TLS _R2 Verify TLS TLS Configurator verifies if the configuration

constraints templates do not overlap or generate
misconfigurations by adding contradictory features
or configurations.

ENF_TLS_R3 Instantiate TLS TLS Terminator Configurator will add to the TLS

configuration Terminator the right configuration templates that
meet the negotiated requirements.

ENF TLS R4 Deploy TLS TLS Terminator Controller will deploy the

configuration configuration instantiated by the TLS Terminator
Configurator.
ENF TLS_R5 Probe TLS endpoint TLS Prober will periodically check if the
configuration instantiated and deployed configuration template is
not altered during the lifecycle of the component.
ENF_SVA R1 Detect vulnerabilities | The SVA mechanism is able to detect software
and vulnerabilities.
misconfigurations

ENF_SVA_R2 Report The SVA mechanism reports about the detected

vulnerabilities and software vulnerabilities.
misconfigurations

ENF SVA_R3 Upgrade libraries Due to complexity of the automatically upgrading

and fix libraries and fixing misconfigurations, this
misconfigurations requirement will most likely remain uncovered.

ENF _SVA_R4 Visualize detected The SVA Dashboard presents all software

vulnerabilities and
misconfigurations

vulnerability reports, list of published
vulnerabilities, and status of scans and
measurements taken under the umbrella of the SVA
mechanism.

SPECS Project - Deliverable 4.5.2

31

Secure Provisioning of Cloud Services based on SLA Management

ENF _CRYPTO_R1

Provide client-side
encryption tool as a

The E2EE mechanism provides client-side
encryption with the E2EE Client component.

elements of the
secure SLA hierarchy

plugin/extension
ENF_CRYPTO_R2 Configure and deploy | Encryption tools (components of the E2EE
encryption tools mechanism) are configurable.
ENF_CRYPTO_R3 Encrypt data The E2EE mechanism enables local encryption of
files.
ENF_CRYPTO_R4 Decrypt data The E2EE mechanism enables local decryption of
encrypted files.
ENF_DBB_R1 Offer secure storage | The DBB mechanism automatically offers secure
storage in the cloud.
ENF_DBB R2 Assure business The DBB mechanism comprises components
continuity with orchestrating backup services.
backup
SLANEG_R30 Remediation through | The RDS component considers renegotiation of an
SLA renegotiation existing signed SLA as a potential remedy to apply
in case of alerts and violations.
SLANEG_R31 Alerts/violations The RDS component considers interrelationships
affecting multiple among SLOs when choose the optimal redressing

technique in case of SLA alerts and violations.

Table 28. Coverage of Enforcement requirements with respect to validation scenarios

For the sake of completeness, Table 29 summarizes coverage of requirements by core
Enforcement components and security mechanisms.

Requirement ID

Implementation
Diagnosis

RDS

Broker
WebPool

DBB

E2EE

SVA

TLS

ENF_PLAN_R1-R12

ENF_PLAN_R8-R9

> |>| Planning

ENF_IMPL_R1-R9

>

ENF_IMPL_R10

>

ENF _DIAG_R1-R18

ENF_REM_R1-R11

SLA_NEG_R30-R31

ENF_BROKER R1-R5

ENF_POOL_R1-R6

ENF_TLS_R1-R5

ENF_SVA_R1-R4

ENFE_CRYPTO_R1-R4

X

ENF DBB R1-R2

X

Table 29. Enforcement components/mechanisms and related requirements

SPECS Project - Deliverable 4.5.2

32

Secure Provisioning of Cloud Services based on SLA Management

With respect to the mapping considered in the first year (reported in D1.1.2), the following
changes have been made (for details see D4.3.2):

e Requirements ENF_PLAN_R8 and ENF_PLAN_RY, related to building a reaction and a
migration plan, have been initially covered by the Planning component. Current
prototypes move these two functionalities to the RDS component.

e Requirement ENF_IMPL_R10, related to updating the monitoring policy, has been
moved from the Implementation component to the Planning.

e Newly defined requirements ENF_DBB R1 and ENF_DBB_RZ2 are covered by the DBB
mechanism.

If any changes occur during the final steps of the implementation and integration phases, they
will be reported in the final iteration of this document.

SPECS Project - Deliverable 4.5.2 33

Secure Provisioning of Cloud Services based on SLA Management

6. Testing techniques and technologies

Testing is an essential part of any software development life cycle. Having the right methods
and tools to detect faults at the right time is a primary factor for success in software
development. The first iteration of this deliverable presented a brief survey of all testing
techniques and technologies that could possibly be adopted in SPECS. In this section we
report the actual methods and tools adopted by project’s developers and integrators.

Although testing has a crucial role in software development, it is impossible to test all
preconditions, all possible inputs, all interactions, and all software’s characteristics. Therefore
testing must be conducted efficiently and systematically to optimize its effectiveness within
the given time frame. In SPECS, testing activities have been carefully scheduled in accordance
with implementation and integration plans in order to support agile development as much as
possible.

During the development stage of the project, developers working on the framework’s
components are predominantly performing functional, unit and component tests which are
driven by elicited requirements. Unit and component testing plays a very important role in
finding faults before the integration process. Testing outcomes provide a base for further
development and improvements. In order to reduce integration issues, to detect integration
errors as quickly as possible, and to support a development of a cohesive framework more
rapidly, the continuous integration approach has been adopted together with continuous
integration testing. Further details related to (continuous) integration will be provided in
deliverables D1.5.1 and D1.5.2. Nevertheless, some aspects (collaborative development
guidelines and code quality analysis) are briefly discussed here as they are also related to unit
and component testing.

To increase development productivity, some testing has been manually conducted with code
walkthroughs and (informal) technical reviews. During this phase requirements were
analysed with the purpose of identifying any overlapping or missing requirements, designs
were examined with the purpose of identifying any defects and possible performance issues,
and interfaces were reviewed in order to avoid inconsistent specifications.

A code quality analysis tool is used by developers in order to assure the quality of all
developed components and the quality of the entire system. Monitoring and fixing detected
code quality issues on one hand guarantees the quality of the product and on the other hand
assures easier and faster integration. Details are discussed in Section 6.2.

In order to choose the best testing techniques and technologies for automatic testing, a
number of factors have been taken into account (e.g., used programming languages, testing
objectives, and time constraints). To ensure smooth integration, functional tests have been
and will be conducted on component, integration, and system level. All details on
methodologies for functional testing are provided in Section 6.3. On the integration and
system level, some non-functional aspects will also be tested. Considering the complexity of
the entire framework, interoperability will be put to test. The framework’s dependability and
robustness will be evaluated. And most importantly, considering that the framework offers
security services, the framework itself will be tested in terms of security. Methods and tools
used to execute non-functional tests are discussed in Section 6.4.

SPECS Project - Deliverable 4.5.2 34

Secure Provisioning of Cloud Services based on SLA Management

Thanks to the Application Security Verification Standard (ASVS 2.0) proposed by OWASP [31],
all modules and security mechanisms developed in the project will be assessed in terms of
security as well. For details about the security review see Section 6.5.

Note that this section only provides information about the chosen code quality assessment
tools, testing methodologies and technologies, and approach to a security review. Initial
results of code quality analysis and components testing are reported in Section 7. Results of
integration and system testing will be reported in deliverable D1.5.2. Non-functional
evaluation of the Enforcement module and its security review will be reported in the final
iteration of this deliverable, namely in D4.5.3.

Note that testing activities will be performed in other work packages as well (adopting the
methodology presented in this task), and all designed and executed tests will be reported in
dedicated prototype deliverables.

Before discussing testing approaches, the collaboration guidelines are presented (for the
entire SPECS project, not only the Enforcement module).

6.1. Collaborative development guidelines

Since SPECS is a collaborative project, following the same rules and principles is very
important. Some guidelines for developers have been already presented in D4.5.1, but for the
sake of completeness, the summary is again reported here.

Initially, two repositories were anticipated for the project’'s code, namely GitHub and
Bitbucket, with two different accounts each. During the development and integration, the
decision was made to simplify the work and only use one repository with one account. All
code (official and experimental) produced in SPECS is available at Bitbucket [1].

In order to make development consistent and transparent, the SPECS repository can only be
used for software components like prototypes and tests, patched third-party software
components, and any other projects needed and developed in SPECS (e.g., scripts, recipes).

Project’s repositories are very different in terms of the content. There are repositories for
components, repositories for Chef cookbooks, and repositories for all other utilities (e.g., data
models). To simplify the process of integration and to make the project’s Bitbucket web site
more readable, a naming convention has been adopted. More details will be provided in
deliverable D1.5.1 focused on integration.

Bitbucket not only provides revision control and source code management, but also supports
bug tracking system which simplifies development, testing, and integration process. Each
creator or owner of a project simply activates the issue tracking functionality [2], which
outlines feature requests and bug reports.

In summary, some very basic rules for developing and committing code are followed for
better overview of the project and for easier integration:
e Committed code passes all basic tests (e.g., unit tests) which are also committed. Unit
tests cover at least 50% of the code.

SPECS Project - Deliverable 4.5.2 35

Secure Provisioning of Cloud Services based on SLA Management

e Committed code is analysed in terms of quality and at least issues outlining security or
performance flaws are fixed.

e Each repository/project contains at least a basic documentation providing installation
and usage guides for both, the code and the associated tests.

¢ The common data models defined in T1.3 are used.

e Naming convention for repositories is adopted.

e Each repository contains a README file with a clear description, installation and usage
guides, and tests.

e Each repository contains a LICENCE file summarizing the copyrights.

6.2. Code quality analysis

Assessment of the quality of the code for each component is conducted through metrics like
code complexity, number of detected issues and their severity, coverage and success of
accompanied unit tests, etc.

As anticipated in D4.5.1, SonarQube [3] is used for the purpose of code quality assessment,
since it is an efficient open source tool that supports many different programming languages,
and is able to evaluate all proposed code quality metrics for each component and all
accompanied unit tests. Also, SonarQube can be easily coupled with Atlassian Bamboo, i.e., the
system used for continuous integration.

SonarQube evaluates the following aspects and metrics*. Note that the following is only the
description of the tool; the evaluation of the code with this tool is presented in Section 7.1.

Complexity. Highly complex code may be hard to understand and is more prone to bugs.
Code bases with high complexity value are reviewed and (if possible) broken down to several
pieces of code. SonarQube metrics:

e Complexity: The cyclomatic complexity, known as McCabe metric (for details see [5]).
Whenever the control flow of a function splits, the complexity counter gets
incremented by one. In Java, for example, keywords incrementing the complexity are:
if, for,while, case, catch, throw, etc.

e (lass complexity: Average complexity by class.

e File complexity: Average complexity by file.

e Function complexity: Average complexity by function.

Each function has a minimum complexity of 1. According to McCabe [5] the value of 10 is
considered as the threshold between acceptable (i.e., low risk) code and too complex (i.e., high
risk) code. In SPECS, this threshold of complexity not exceeding value 10 is set to classes, files,
and functions.

Design. Unnecessary dependencies among files not only decrease code readability but also
affect incremental build time. SonarQube metrics:
e Directory tangle index: Level of directory interdependency. Best value of 0% means
that there is no cycle and worst value of 100% means that directories are really
tangled.

* For more thorough descriptions of SonarQube's metrics see [4].

SPECS Project - Deliverable 4.5.2 36

Secure Provisioning of Cloud Services based on SLA Management

e File cycles: Minimal number of file cycles detected inside a directory.

e Dependencies to cut between directories: Directory dependencies to cut in order to
remove cycles among directories.

e Dependencies to cut between files: File dependencies to cut in order to remove cycles
between files inside a directory.

In SPECS, code with a high amount of dependencies is reviewed and revised.

Documentation. Comments in code, especially in headers of public APIs, represent a main
source for documentation. Therefore they are key for the source code to be understandable
and useable. SonarQube metrics:

e Comment lines: Number of lines containing either comment or commented-out code.

e Comments: Density of comment lines, where 50% means that the number of lines of
code equals the number of comment lines and 100% means that the file only contains
comment lines.

e Public documented API: Number of public APIs with comments header.

e Public undocumented API: Number of public APIs without comments header.

e Documentation: Density of documented public APIs.

Duplications. In some cases (where they are unnecessary), code duplications may cause
issues in code maintenance and decrease code readability. They are usually solved by
factorizing the duplicated code. SonarQube metrics:

e Duplicated blocks: Number of duplicated blocks of lines.

e Duplicated files: Number of files involved in a duplication.

e Duplicated lines: Number of lines involved in a duplication.

e Duplication density: Density of duplicated lines.

In SPECS, the goal is to bring the level of duplications to almost non-existent.

Issues. In order to improve the quality of the code and assure its correctness, detection of any
minor or major issues affecting code’s usability and productivity or even security is of high
importance. SonarQube metrics:

e Number of issues: Number of detected issues.

e Severity: The severity level of detected issues, where:

o Blocker: Operational/security risk: This issue might make the whole code
unstable in production.

o Critical: Operational/security risk: This issue might lead to an unexpected
behaviour in production without impacting the integrity of the whole
application.

o Major: This issue might have a substantial impact on productivity.

o Minor: This issue might have a potential and minor impact on productivity.

o Info: Not known or yet well-defined security risk or impact on productivity.

e Debt: Effort to fix all issues.

SonarQube provides a detailed list and description of all detected issues. SPECS developers
are encouraged to address all detected issues and fix at least the most critical ones (blockers,
critical, and major issues).

SPECS Project - Deliverable 4.5.2 37

Secure Provisioning of Cloud Services based on SLA Management

Size. Since the size of the code is often correlated with number of duplications, issues, and the
overall complexity, the size of the code can have an impact on code quality. SonarQube
metrics:

e Lines of code: Number of physical lines that contain at least one character which is
neither a whitespace or a tabulation or part of a comment.

¢ Number of files: Number of files in analysed package.

e Number of directories: Number of directories in analysed package.

e Number of lines: Number of physical lines (number of carriage returns).

e Number of functions: Number of functions, methods, or paragraphs (depends on a
language).

e Number of classes: Number of classes (including nested classes, interfaces, enums, and
annotations).

e Number of statements: Number of statements in analysed code. In Java, statements
counter gets incremented by one each time a following key word is encountered: if,
else,while, do, for, etc.

e Number of accessors: Number of getter and setter functions used to get (reading) or
set (writing) a class property.

In SPECS, developers are encouraged to keep the code as simple (in terms of size) as possible.

Tests. As already mentioned, testing is a very important part of software development life
cycle. The basic testing includes a set of unit tests which have to cover a large portion of logic
in order to assure the correctness of behaviour. SonarQube metrics:

e Unit tests coverage: The density of unit test coverage. SonarQube checks how much of

the source code has been covered by the unit tests.

e Line coverage: Number of lines of code that have been executed during the execution

of unit tests.

e Condition coverage: The density of possible conditions in flow control structures that
have been followed during unit tests execution. On each line of code containing some
Boolean expression, SonarQube checks whether each Boolean expression has been
evaluated both to true and false.

Unit test success: Density of succeeded unit tests.

Failures: Number of unit test that have failed with an unexpected exception.
Errors: Number of unit tests that have failed.

Tests: Number of unit tests.

Execution time: Time required to execute all the unit tests.

Each developer in SPECS builds a set of unit tests for each component. The agreement is that
tests have to cover at least 50% of the code and all tests have to succeed.

For code coverage, JaCoCo [8], has been chosen since it is the most widely adopted and
recommended open source solution to be used with SonarQube.

SonarQube can also evaluate code’s technical debt in an objective, accurate, reproducible, and
automated way. Technical debt is measured according to SQUALEs method in terms of the

> SQUALE stands for Software Quality Assessmnet based on Lifecycle Expectations. For details see
http://www.sqale.org/.

SPECS Project - Deliverable 4.5.2 38

http://www.sqale.org/

Secure Provisioning of Cloud Services based on SLA Management

time needed to fix all detected issues. For this purpose SonarQube uses two metrics, namely
Technical Debt Ratio (TDR) and SQUALE rating. Technical debt ratio is the ratio between
estimations of the effort needed to fix detected issues and the effort needed to develop the
code from scratch. The SQUALE rating depends on the technical debt ratio and is defined as
shown in Figure 5. For details on the evaluation of these technical debt metrics see [6].

= 20% = 50% = 100%

Figure 5. SQUALE rating
An example of a code quality evaluation is presented and discussed in Section 7.

6.3. Functional testing

Functional testing is performed to ensure that the developed software conforms to all elicited
requirements and design specifications. As mentioned above, functional testing is performed
on component level (with unit and component testing) and also on integration and system
level. All details are provided in the following subsections.

Some tests for the Enforcement module are reported in Section 7. Testing of integration and
system will be conducted in task T1.5 and reported in deliverable D1.5.2 at the end of the
project.

6.3.1. Unit and component testing

Each module in SPECS consists of a set of components. For example, as seen in Section 3.2, the
Enforcement module comprises Planning, Implementation, Diagnosis, RDS, and Auditing.
Before integrating individual components and the entire module into the framework,
components need to be thoroughly tested. Developers are required to test individual
components’ functionalities in terms of unit tests, and when enough code coverage is achieved
with unit testing, they are required to test entire components in terms of component tests.
Prior to unit and component testing, some manual tests are conducted for each component of
each module with code walkthroughs and (informal) technical reviews to identify defects and
possible performance and integration issues.

The architecture of the Enforcement module itself may not be so complex. But because of the
high complexity of the enforcement process, there are many dependencies on other
modules/components. To isolate the behaviour of each tested component (when executing
unit and component tests), external dependent components are replaced by mocks that
simulate their behaviour.

Development efforts in SPECS are scattered over several teams and individuals who use
different technologies and different programming languages (e.g., Java, Python, Go). Some
differences are also necessary due to the fact that some pieces of the framework are just
adapted and integrated existing open source tools (e.g., OpenVAS, Nmap). Therefore unit and
component testing is executed with different technologies as outlined in Table 30.

SPECS Project - Deliverable 4.5.2 39

Secure Provisioning of Cloud Services based on SLA Management

Testing aspect Tool

Mocking WireMock [13], Mockito [14], Fongo [15]

Unit and component tests | JUnit [16], MockMvc [17], PyUnit [19]
Table 30. Tools used for unit and component testing

Testing activities covering functional aspects of the Enforcement module are discussed in
Section 7.2. Each discussed executed test is presented in the form of the following table.

Test ID

Test objective
Verified requirements
Inputs

Expected results
Outputs

Comments

Table 31. Test case template

6.3.2. Integration and system testing

SPECS’ core modules (Negotiation, Monitoring, Enforcement, SLA Platform) and security
mechanisms comprise a large set of components which are interrelated and interdependent.
To make sure that all components are working together as expected and that the data flow
among them is as specified, integration testing has to be conducted during all steps of
integration (i.e.,, after each component or a small set of components is added to already
integrated parts).

Considering that task T1.5 is specifically focused on the entire integration process (and thus
also on integration and system testing), this section will only provide a brief description of the
task.

Integration scenarios that will be detailed and reported in D1.5.1 are based on validation
scenarios defined in T5.1 and briefly described in Section 5.1. Components are implemented
and (continuously) integrated in such a way that EU’s and developer’s most valuable
requirements can be verified and tested as soon as possible, and that integration scenarios
can be implemented and tested as soon as possible. This allows the developers to receive the
feedback and use it to fix and eliminate any functional or non-functional flaws, bugs, and
errors.

In D4.5.1, continuous integration software Jenkins [7] was anticipated for the use in
integration testing. Jenkins provides an easy continuous integration tool which not only
enables easy integration but also conducts integration tests continuously. Considering that
Atlassian Bamboo [18] offers the same functionalities as Jenkins, but provides better
integration with other Atlassian tools (Bitbucket), the later has been adopted in the project.

Detailed implementation, integration, and testing plans will be discussed in D1.5.1 where, as

mentioned, integration scenarios will be introduced and discussed. Implementation details
and integration tests will be provided in D1.5.2.

SPECS Project - Deliverable 4.5.2 40

Secure Provisioning of Cloud Services based on SLA Management

6.4. Non-functional testing

In order to evaluate the quality and readiness of the entire system, some non-functional tests
will be performed on the entire system.

Considering the complexity of the entire framework and the fact that many different
programming languages are used, the system’s interoperability will be put to test. On one
hand this includes testing external interoperability in terms of evaluating readiness of the
entire SPECS system to be hosted/used by different CSPs, and on the other hand this also
includes evaluating internal interoperability in terms of testing compatibility among
components/modules of the SPECS framework. Details on the methodology and tools are
provided in Section 6.4.3.

Stability and robustness of the system will be evaluated by means of stress testing and
perturbation analysis. Details on the technique and technology are reported in Section 6.4.4.

Last but not least, security level of the entire framework will be evaluated to identify possible
flaws and weaknesses in terms of security, and determine how the developed system behaves
in the presence of malicious attacks. Details are discussed in Section 6.4.5.

Outcomes of all non-functional tests related to the Enforcement module will be reported at
the end of the project in D4.5.3, and for the entire framework in D1.5.2. As anticipated in the
description of the validation methodology in Section 4, each Enforcement core component
will be evaluated in terms of which test types are more or less critical.

6.4.3. Interoperability testing

Interoperability testing will be conducted on the SPECS Platform with the main objective of
evaluating the interoperability level reached by SPECS itself. Specifically, interoperability
testing verifies possible executions of the same scenarios in presence of different external
CSPs offering a target service, and/or hosting CSPs which hosts the SPECS Platform.
Moreover, interoperability among SPECS’ core modules is assured by adherence with the
SPECS REST APIs reported in D1.3. Additionally, SPECS’ core modules allow for
interoperability with new security mechanisms, which can be added by following the
development and deployment guidelines reported in D1.1.3.

Interoperability testing scenarios are identified from the integration scenarios, defined for
system functional testing purposes (see Section 6.3.2) and reported in D1.5.1, as well as from
validation scenarios, defined in T5.1 and reported in D5.1.1 and D5.1.2. Specifically, starting
from an existing scenario, some variants are identified if possible. These variants involve
mainly a different external CSP and/or hosting CSP and evaluate the capability of SPECS of
offering the same target service, by involving different CSPs. The definition and execution of
all possible interoperability scenarios with available CSPs is infeasible given the scope of this
deliverable.

The adopted interoperability testing methodology, hence, includes the following steps:

1. Identification of scenarios: Among the available scenarios (both validation scenario and
integration), those which can be adopted to evaluate the interoperability level are
selected. The selection criterion is mainly the possibility to involve a different CSP
(either external or hosting) with respect to those used in the scenario.

SPECS Project - Deliverable 4.5.2 41

Secure Provisioning of Cloud Services based on SLA Management

2. Definition of variants. Starting from the identified scenarios, possible variants are
defined. A variant is similar to the source scenario in terms of sequence of steps; it
differs in some details as, for example, the usage of different brokering features
requires the involvement of a different CSP.

Executions of scenario. The defined variants are executed.

4. Collection of results and analysis. The obtained results, for all possible variants, are
collected. A comparison between the source scenario and its related variants is
performed.

5. Corrective actions. If some variants discover bugs related to interoperability issues,
corrective actions shall be implemented and variants shall be executed again.
According to the specific implemented corrective action, an impact analysis could be
necessary in order to reduce the number of scenarios to execute.

w

Given the strict relationships between interoperability and integration and system testing,
both Jenkins [7] and Atlassian Bamboo [18] will be adopted to perform the interoperability
testing activities.

6.4.4. Dependability and robustness testing

This section investigates experimental processes to assess the dependability and robustness
of the SPECS implementation. We will refer to these tests as Perturbation Analysis (PA) where
PA entails the deliberate introduction of perturbations to examine how well the SPECS system
can tolerate data deviations on the input or interfaces, i.e., deviation tolerance. As
perturbations are typically encountered at the operational level, classical analytical testing
approaches such as static analysis (that focus on specification based testing) can only partially
address operational perturbations. Hence, the perturbation analysis is conducted on the
SPECS implementation and utilizes an experimental testing process. Such a perturbation
process (especially if it results in observable deviations of behaviour) enables the SPECS
developers to identify the weak elements in the design of the implemented system to make
corrective changes as needed.

The content of this section presents the conceptual methodology of conducting perturbation
analysis on the SPECS system. The methodology, as a supplement to functional and
interoperability testing, provides guidelines on test case design for verifying the correctness
of the implementation and its sustainability against the deliberate injection of perturbations
at different components, interface API's and/or architectural data flows as warranted by the
specifications.

It is important to highlight upfront that any experimental injection process, by its inherent
nature of statistical coverage¢ of the operational state space, does not provide for
completeness of the perturbation analysis of the SPECS Enforcement module. Hence, the
experimental injection process described in this section presents two elements as:

a) The general perturbation analysis methodology.

6 While static analysis techniques can potentially claim completeness of the state space to the degree of detail of
the available specifications (including source code though only for limited code sizes), the operational state
space is infinite for software. Consequently, operational testing techniques such as random testing, or directed
techniques such as bit flips, data types testing, among others, are invariably based on statistical approaches to
target focused partial areas of the operational state space.

SPECS Project - Deliverable 4.5.2 42

Secure Provisioning of Cloud Services based on SLA Management

b) Templates that constitute guidelines to develop implementation-specific perturbation
testing cases for robustness and dependability analysis.

The basic process of Perturbation Analysis was initially developed by TUDA in the ABC4Trust
project for testing crypto architectures [20]. While the ABC4Trust's hardware-oriented
crypto architecture fundamentally differs from the SPECS middleware-level Enforcement
Module, in SPECS the foundations and experiences from ABC4Trust are re-utilized, refined
and re-oriented for usage in the API-focused perturbation analysis methodology applicable to
the SPECS enforcement module. Furthermore, unlike the crypto reference implementation
analysis in ABC4Trust, SPECS develops the Enforcement module API testing guidelines demo
(see Scenarios #1, #2, #3, and #4 in Section 6.4.4.3) with Java-style pseudo code.

The objective of conducting perturbation analysis is to experimentally evaluate the
dependability and robustness of the SPECS implementation against potential stress or failure
scenarios. In this document, the terminologies of "dependability and robustness" refer to "the
correctness of SPECS implementation on encountering perturbations namely failures,
incorrect inputs and/or outlier conditions". The following sections present the general
framework for implementing such a perturbation analysis in order to serve as guideline to
develop specific and precise perturbation test cases. The perturbation analysis framework
puts emphasis on assessing the correctness of SPECS implementation via varied testing
campaigns such as injecting outliers and executing stress tests, etc.

The following is the basic terminology of dependability testing as background for
understanding the perturbation and analysis processes (for more details, the interested
readers can refer to [21]).

¢ Robustness refers to the correctness of implementation (in particular referring to
availability and integrity) in the presence of failures.

e Perturbation refers to a deliberately-introduced misuse or abuse event that has the
potential to interrupt the target system’s correct operations, and consequently affect
system robustness.

e Perturbation analysis (PA). The objective of perturbation analysis is to investigate
how a target system, or parts of the system, behave under anomalous (i.e., perturbed)
operational conditions. Perturbation analysis is able to highlight the types of outputs a
target system produces under those anomalous circumstances. In practice,
perturbation analysis simulates various scenarios to represent deviations from
standard system specification (also called “misuse cases”). The underlying assumption
is that those anomalous cases have not been taken into account during the system
designing stage and the corresponding reactions might not have been specified.
Contrary to traditional functional testing (correctness) and penetration testing
(usually a stable architecture and source code level implementation details are
needed), the primary target of perturbation analysis is to assess system robustness.
(c.f,, Figure 6). It is important to mention that perturbation analysis is not an approach
to determine system correctness, but primarily to assess the performance of
robustness/fault-tolerant mechanisms of the target system when encountering
perturbations.

SPECS Project - Deliverable 4.5.2 43

Secure Provisioning of Cloud Services based on SLA Management

API, data flow, interface

Perturbation

analysis
Robustness
testing
Perturbation
Correctness
] testing Source code

Figure 6. Dynamic testing category

e Perturbation Campaign Perturbation analysis does not focus on testing an individual
misuse case. It is implemented in the form of a perturbation campaign, which is a
collective set (or class) of misuse cases. A specific campaign might target different
elements of a system (cf. ET below).

e Evaluation Target (ET) The evaluation target refers to specific system elements (e.g.,
component, block, AP], etc.) that have been selected for conducting perturbations. In
this document, perturbation analysis focuses on architectural data flows and various
interfaces. Therefore, it can offer some degree of isolation from minor maintenance-
purpose modification at source code level of target components. In general, an
evaluation target subjected to a perturbation is expected to observe a successful “fail-
safe” reaction behaviour (i.e., in a perturbation analysis scenario, the evaluation target
has to respond correctly to ensure that the functional behaviour of other system
modules remains intact on occurrence of a perturbation or failure). A typical “fail-safe”
approach entails raising an exception when encountering a failure and halting the
subsequent operations immediately at a pre-defined safe state to prevent that failure
propagating to other modules. The halting of operations involves either completely
stopping all operations or switching to a pre-defined degraded form of operations.
Alternate types of “fail-safe” actions involve raising flags and requiring user inputs to
handle the identified anomaly in order to proceed with execution.

6.4.4.1. Perturbation analysis framework

In this document, the approach to perturbation analysis is based on the framework shown in
Figure 7 where an ET (from the SPECS implementation) is selectively exposed to a
perturbation based on the functional test cases for evaluating system robustness. The
selection of an ET is based on the following criteria:
e Focusing on a particular stage of SPECS’s life cycle.
e Selecting the:
(i) Data flows at the SPECS architecture level.
(ii) Components and interfaces of SPECS.

The perturbations in this document are based on perturbing the functional behaviour of the
target Enforcement module, with the goal of assessing the degree of robustness (to the
perturbations) of the SPECS implementation. Based on this framework, it is possible to
develop a comprehensive approach (to the limits of any experimental approach) that can
cover a spectrum of real or speculative perturbations conducted against the SPECS system. It
conceptually incorporates perturbations derived from system specifications at different levels
of abstraction during system construction, as well as feedback from operational conditions.
SPECS Project - Deliverable 4.5.2 44

Secure Provisioning of Cloud Services based on SLA Management

The results of perturbation analysis can be used by designers and developers to improve the
robustness of the SPECS implementation in its final edition. This document adopts some
existing perturbation frameworks (such as those that target ET assessment of availability and
integrity in the presence of failures [21]). The next section presents the methodology that
implements the proposed PA framework.

Function tests
(input)

SPECS life-cycle

[]—»[Monitoring]-[Enforcement]—D[Negotiation]—b[

<

Perturbation analysis

Components

Data flow and interfaces

<

Robustness
(output)

Figure 7. Perturbation analysis framework

6.4.4.2. Methodology

Perturbation analysis methodology consists of multiple steps illustrated in Figure 8 below. It
starts with identifying an ET based on the framework (see Figure 7 above), i.e., the SPECS life-
cycle and its associated flows/components and interfaces from relevant deliverables. In Steps
2-4, ET is first classified into different categories (namely, data flow, component or interface)
such that corresponding perturbation campaigns can be composed and implemented. In Step
5, generated perturbation results are analysed for developing possible corrective actions.
However, it is significant to be aware that corrective actions may change the ET type. Thus
the analysis of possible corrective actions can be used as feedback for further design and
development in the final edition of the SPECS implementation.

It is considered best-practice to document each perturbation as “misuse case scenarios”,
which specifies details about applied perturbations, observed results and any
mitigation/corrective actions that have been taken. At the state of the art, there is no
commonly-recognized format for documenting misuse cases. Therefore, in Table 32, we
propose a template for developing specific perturbation analysis test cases by developers.
Such a template can also be helpful to support system testing (e.g., trying to reproduce the
failure once a corrective action has been deployed).

SPECS Project - Deliverable 4.5.2 45

Secure Provisioning of Cloud Services based on SLA Management

Step 1
Identify ET
Step 2
Classify ET
Step 3
Select a perturbation class
Data flow Component
erturbation & Interface
P perturbation

Step 4
Perturbation test
implementation

!

Step 5
Perturbation
output analysis

Figure 8. Perturbation analysis methodology

Scenario #. Name of PA misuse case scenario

‘ Summary ‘ Brief description of misuse case scenario.
Evaluation Description of ET (for example, SPECS component, SPECS API).
Target (ET)
ET classification as
ET Type 1. Architecture Data Flow (Arch) or
2. Component/Interface (Comp).

‘ Normal flow ‘ Description of correct ET flow/usage.

‘ Perturbation ‘ Description of perturbation tests in the specific misuse case.

Perturbation

Perturbation classification for applying different testing class as followed,
1. Data Flow Level or

Class 2. Component/Interface Level.
Documentation of output of perturbation tests in the specific misuse case. The
output of perturbation analysis can be categorised into one of the following:
1. Compliant: The execution follows the documented specifications during the
perturbation testing phase, i.e., failures detected successfully once exceptions
Testing triggered. Alternatively, no unexpected behaviour (e.g., high resource consumption)
Result is observed during the perturbation phase.

2. Non-complaint: The execution does not follow the documented specification
during the perturbation testing phase, i.e., failures cannot be successfully detected
even if the exceptions are triggered. Alternatively, anomalous behaviour (e.g., high
resource consumption) is observed successfully during the perturbation testing
phase.

SPECS Project -

Deliverable 4.5.2 46

Secure Provisioning of Cloud Services based on SLA Management

3. Inconclusive: A conclusion cannot be made on the compliance of documented
specification during the perturbation testing phase for some reason, possibly the
test execution requires a significant amount of time.

Document the candidate mitigation actions based on the observed faults. When the
perturbation was handled by an ET correctly, the correctness of implemented
mechanism should be documented here.

Mitigation
Action

Table 32. Misuse case scenario template for perturbation analysis

Following with the methodology illustrated in Figure 8, perturbation analysis cases can be
designed or modified according to specific situations. The methodology comprises of five
steps:

Stepl. Identify the ET

The PA starts with analysing the entire target system to identify the components that can
compromise the overall robustness. For example, applying a perturbation to an API call’s
parameter might result in a specific type of exception (which can be managed at run-time by a
component), however applying a perturbation to a security level parameter might result in
altering original system parameters that can be used by the other components and cause
exceptions.

Step2. Classify the ET
After identifying the ET at Step 1, the perturbation analysis classifies ETs into different
categories, which will be used in the next step to select the appropriate perturbation. The ET
categories used in SPECS are:

1. Architecture flow.

2. Component/Interface.
We note that the PA at the component level will be focused on the SPECS API’s. This allows
focus on the functional interfaces representing data flow across components. It is also a
convenient point to inject faults before any specific implementation primitive get used (e.g., at
the transport level). This approach (originally proposed by Nik [22], [23]) allows data level
control at the functional level needed to apply perturbations.

Step3. Select a Perturbation Class

The classes of perturbation are selected from the list in Table 33. Each class defines a set of
tests. Each test is designed as starting from valid functional test cases, and then derived
according to perturbation class. For example, in Table 33, the Data Flow-Stress case (i.e., DF-
S) is used to test a particular class of Data Flow-Outlier cases (i.e., DF-0) that were derived by
introducing sustained concurrent requests. DF-S tests will consider two parameters: the
number k of concurrent requests and the time interval t in seconds. The test keeps k
concurrent requests during a period of t seconds. The Component Data Type (C-DT) and
Component Outlier (C-0O) tests are performed by selecting inputs over a set of invalid inputs.
Invalid inputs are identified by combining the syntax and semantics of the API call function
parameters. The selection can be done manually or automated by using a distribution
function e.g., uniform distribution.

SPECS Project - Deliverable 4.5.2 47

Secure Provisioning of Cloud Services based on SLA Management

‘ Type of ET ‘ Type of Perturbation ‘ Expectations on Perturbation Injection
Data Flow Outlier Perturbations test values that appear to deviate
Case(DF-0) significantly from other members of the sample in

which it occurs.

DF-O includes stress cases Perturbations (DF-S)
aimed at taking a system to an extreme working
mode (close to its DoS threshold).

Architecture Data Flow

Component Data Perturbations test values that are valid for the same
Type (C-DT) type of parameter, but that are invalid for the
specification. Typical DT perturbations must
consider the potential factors as comprehensively as
possible [24], [25], [26], [27], e.g., for an integer
parameter include: param--, param++, 1, 0, -1,
INT_MAX and INT_MIN.

Component/Interface In Service Oriented Architectures, the use of DT
perturbations is useful and more efficient than other
techniques (e.g., bit flipping) for testing fault
tolerance mechanisms.

Component Outlier |Perturbations test values that appear to deviate
(C-O0) significantly from other members of the sample in
which it occurs.

Table 33. Perturbation Test Classes

Step4. Test Perturbation

After selecting the class of perturbation, the corresponding perturbation campaign is
executed for the ET. This may require access to the running system (physical/remote) and to
the code (e.g., to increase log verbosity). In any case, the perturbation analysis must guarantee
that the perturbation is repeatable under the same conditions documented in the misuse case.
Stress tests are executed within a finite amount of time. If the test does not produce an
outcome within the time window, then the test is considered inconclusive. The size of the time
window is set by the specification of a different test. The results of the test execution are
documented for each designed scenario using the template shown in Table 32.

Step5. Analyze Output

During the test execution, the outputs are monitored and documented as part of the misuse
case. This is a critical step as corrective actions will be designed and deployed in the final
edition of the SPECS implementation based on these observations.

6.4.4.3. Perturbation analysis demo

Based on the PA methodology outlined in the prior sections, this section develops two
example scenarios as guidance for PA on the Enforcement module API. As PA constitutes a
natural extension to functional testing, the intent of the developed scenarios is to outline
representative API calls illustrating how to set up perturbations on the call parameters.

As specified in deliverable D4.2.2, the Enforcement module’s purpose is to create an
enforcement system to manage SLA implementation, enforce security services, and carry out
necessary prevention and recovery actions. For facilitating the design and implementation of
specific perturbation tests, a set of representative perturbation analysis testing cases for the
Enforcement module are presented as follows. The (representative) stress-oriented and

SPECS Project - Deliverable 4.5.2 48

Secure Provisioning of Cloud Services based on SLA Management

string-oriented test cases are demonstrated for PA purpose, which form the most common PA
testing scenarios. With the selected PA test cases we can verify the system’s robustness for
compliance with the specified exception handling behavior (e.g., "fail and stop" mechanism).
These two PA demos also cover the two main different PA categories, namely, Data-flow level
PA and component level PA. These representative PA categories form the basis for PA testers
to organize, implement, and evaluate different part of the system (ETs) via the full API list
applicable for the Enforcement module.

Two considerations are important to highlight in the context of PA, namely:

a) Defining the actual perturbation(s) to conduct (e.g., parameter types, data rates, ET
type, APl functionality) requires detailed implementation information to be
meaningful. As PA naturally supplements functional testing, the advocated basis is to
formulate PA tests as a) focussing on parameters already being used in
functional/interoperability testing, b) utilizing outliers on parameter specifications,
and c) defining extreme cases based on deliberate misspecification or stress conditions
(e.g., data rates, simultaneous invocation of multiple parameters) that breach
functional specifications. Equally important, based on the system threat model, is to
determine if single PA instances are desired or combinations of PA’s are needed.
Consequently, given the immense variety of parameter attribute combinations, the
composition of PA test cases is typically done as an extension of
functional/interoperability testing with the functional tests as a baseline.

b) The essence of PA, apart from setting up the perturbations, is to interpret the ‘“Testing
Result’ in the PA Scenarios where a designer has to interpret if the result was
Compliant/Non-Compliant/Inconclusive. This determination requires (a) detailed
understanding of the operational behaviour to assess valid/invalid responses, and
more importantly (b) comprehensive understanding of the data/information flows
across components as the perturbation in one component often manifests as a
deviation only in another component. Hence, meaningful PA requires having a
comprehensive system view of inter-component behaviour and data flows.

Based on these considerations, and for the dependency on implementation details for
component and inter-component functionality, the PA process is guided by the illustrative
representative scenarios #1 and #2 (respectively covering data-flow and component level PA)
to help compose and conduct the actual tests as extensions to functional/interoperability
testing. Two additional representative scenarios #3 and #4 (at the component and interface
levels) are developed to respectively outline the object-oriented and mutation based PA cases.
These scenarios outline the PA process, on the representative scenario classes, for guiding
actual testing on the implementation.

Scenario #1: Data Flow-Level Perturbation

The following content demonstrates an example of data flow-level misuse cases considered
for the Enforcement module, which covers two sets of SLA phases in
SPECS, namely implementation and remediation phase.

The selected scenarios particularly focus on assessing the robustness of the Enforcement
module under stress state, which is a typical situation for perturbation analysis in practice.
The involved API calls (described in detail in D1.3) are:

/sla-enforcement/diag-activities,

SPECS Project - Deliverable 4.5.2 49

Secure Provisioning of Cloud Services based on SLA Management

/sla-enforcement/diag-activities/{da-id},
/sla-enforcement/diag-activities/{da-id}/status,
/sla-enforcement/diag-activities/{da-id}/sla-id,
/sla-enforcement/diag-activities/{da-id}/classification.

Scenario 1. Stress PA on SPECS Enforcement module

Summary

Evaluation
Target (ET)

A stress perturbation implemented on SPECS Enforcement module to assess the
resilience against denial of service (DoS).

All components of the Enforcement module.

ET Type

Normal flow

Perturbation

Arch

Enforcement module supports continuously receiving monitoring events from the
Monitoring module, which is specified in deliverable D1.3 as “The Diagnosis
component must be able to receive notifications from the Platform about monitoring
events captured by the Monitoring module.”

Stress the Enforcement module by sending k monitoring events during a short
period of £ seconds. The purpose is to check the resource consumption (i.e.,
memory consumption, CPU usage rate, 10 idle status, etc.) and availability and
performance of the service (i.e., processing time of incoming monitoring events,
response time of incoming monitoring events, etc.), When applicable, this
perturbation test should be repeatable for all involved components.
The parameter k and t are the following:

e ke {50,2500,125000}

o te{l,2,3}
The pseudo-algorithm is described in the following(taking memory consumption,
for example):

public class Perturbation Pseudo Stress{
memBase = getFreePhysicalMemorySize () ;

while(Timer (t)) {
sendMonitoringEvent (k) ;

}

memCost = getFreePhysicalMemorySize () -memBase
Logger.getLogger (t, k, memCost) ;
}

Document the outputs and assess the consumption of memory resource.

Perturbation
Class

DF-S

Testing Result

The following content is ONLY for demonstration purpose

Compliant: Enforcement module has successfully passed the stress-oriented
perturbation. Unexpected resource consumption has not been observed during the
perturbation testing phase. Enforcement module works normally under all these
three stress scenarios.

Mitigation
Action

None

SPECS Project - Deliverable 4.5.2

Table 34. Data Flow-Level Perturbation
50

Secure Provisioning of Cloud Services based on SLA Management

Scenario #2: Component and Interface-Level Perturbation

The following content demonstrates an example of component level misuse cases considered
for the Enforcement module. Remediation Decision System is the main component of the
Enforcement module for managing SLA alerts and SLA violations as well as finding the most
suitable mitigation actions. In this context, the API call of /sla-enforcement/rem-activities/{ra-
id} is selected as the perturbation target. As aforementioned, perturbation analysis is specially
focusing on parameters that can potentially compromise system robustness. For instance, we
decide to test SPECS system resilience against perturbations affecting the value of parameter
ra-id with regard to API call /sla-enforcement/rem-activities/{ra-id}, which might propagate
the deviated value to other component and trigger unforeseeable system crash events.

Scenario 2. Outlier PA against parameter in /sla-enforcement/rem-activities/{ra-id}

Normal flow

Summary This perturbation targets to test the robustness of API call /sla-enforcement/rem-
activities/{ra-id}, by using values deviated from the specification of parameter ra-
id.

Evaluation RDS component

Target (ET)

‘ ET Type ‘ Comp

The RDS component should return the corresponding Remediation Activity object
based on the string identifier ra-id.

Perturbation

As the data model of the Remediation Activity described in D1.3, the parameter
"rem-act-id" should be the type of "string". Considering the data model is JSON-
compatible, the perturbation tests consider the following cases:

e Perturbation of string overflow.
The test introduces over-long strings as the value of "rem-act-id" against this API
call. Due to JSON having no size limitation on itself, but servers having a security
property called “Max/sonLength” for JSON file parsing. For example, IBM
WebSphere specified “Maximum Value String Length” with the size of 2,097,152 (2
MB) characters [28].

e Perturbation of subtly crafted strings.
The test introduces a set of intentionally-crafted Escape sequence as the value of
"rem-act-id". e.g, """\ 7\ \ag63645n”, “\u0062\u0022\u0035\u0001”

Assuming in total n string samples available for the data type perturbation, the first
m string samples target string overflow testing and the remaining samples are for
intentionally-crafted string testing. The pseudo-algorithm is described in the
following:

public class Perturbation Pesudo DateType({
String TestStringArrayl[]=new String[n];

//Define test sample for perturbation of string overflow

TestStringArray[0] = “bwgyp”;
TestStringArray[l] = “sdanvfkqgiz”;
TestStringArray[m-1] = “he36...$%&%"”; //str.length > 2097152

//Define test sample for perturbation of subtly crafted

SPECS Project -

Deliverable 4.5.2 51

Secure Provisioning of Cloud Services based on SLA Management

strings
TestStringArray[m] = ““\”\\ag63645n”;
TestStringArray[n-1] = “\u0062\u0022\u0035\u0001”;
int Counter = 0;
while (Counter < TestStringArray.size()) {

rem-act-id = TestStringArray.get (Counter) ,

L1177 777777777777777777777/777777/7/7/77/7/7/7777

invoking API /sla-enforcement/rem-activities/{ra-id}
L1177 7777777777777777777//77/7///7/777/////77777/
Logger.getLogger () ;

}

Document the outputs and observe the correctness of results or implementation of
exception handling mechanism.

Perturbation |C-DT

Class
The following content is ONLY for demonstration purpose
Testing Result
Non-complaint: EM has failed to switch to the “fail-stop” mode. During the
perturbation testing phase, failures cannot be detected successfully.
Mitigation Document the potential mitigation actions against the observed faults.
Action

Table 35. Component and Interface-Level Perturbation
Scenario #3: Component and Interface-Level Perturbation (Object-oriented based)

The following content demonstrates an example of object oriented perturbation analysis at
component level considered for the Enforcement module. As Java language is used to develop
the Diagnosis component of the Enforcement module, it is necessary to execute object-
oriented PA test cases for the purpose of robustness assessment. One common practice of
object-oriented PA is to perturb corresponding behaviours against public Java methods by
introducing special instances of different types. By applying this object-oriented perturbation
analysis, the performance of the targeted public methods can be evaluated to help prevent
incorrect inputs propagating further in SPECS implementation. The
DiagnosisActivityController.java is selected as the perturbation target for demonstrated of the
general object-oriented cases.

Scenario 3. Object Oriented PA against Java object type

Summary This perturbation test targets to test the robustness of Diagnosis component in
Enforcement module, by introducing object type manipulation perturbation.

Evaluation Diagnosis component

Target(ET)

‘ ET Type Comp

Normal flow |The Diagnosis component should return correct value of “ResponseEntity” and
correct Diagnosis Activity object in the end.

‘ Perturbation |The DiagnosisActivityController.java (as included in the Diagnosis component of

SPECS Project - Deliverable 4.5.2 52

Secure Provisioning of Cloud Services based on SLA Management

the Enforcement module) defines a class to act as the diagnosis activity controller.
An object type perturbation test case is introduced to assess its robustness and
detect dependability issues. In the example the method httpheaders () is used to
inject incorrect headers.

The pseudo-algorithm is described in the following:

public Perturbation Pseudo OO Type() {
try {
headers = (OtherType) super.clone();

return headers;
} catch (CloneNotSupporedException cnse) {
throw new RuntimeException (cnse); }

}

[11777 7707077777 777777777777
Target Java method to perturb
[11777 7707077777 777777777777

public ResponseEntity<DiagnosisActivity> create (@RequestBody
Notification notification, HttpServletRequest request) {
DiagnosisActivity diagnosisActivity =
daService.create (notification);

URI location =
URI.create (request.getRequestURL () .append ("/") .append (diagnosisAc
tivity.getId()) .toString());

HttpHeaders headers = new HttpHeaders():;

L1177 7777777777777 77777777777
Invoking object type perturbation against headers

[I77

headers.setLocation (location) ;

return new
ResponseEntity<DiagnosisActivity>(diagnosisActivity, headers,
HttpStatus.CREATED) ;

[17777777777777777777777777

Document the outputs and observe the correctness of results or implementation of
exception handling mechanism.

Perturbation
Class

C-DT

Testing Result

The following content is ONLY for demonstration purpose

Non-complaint: The Enforcement module has failed to switch to the “fail-stop”

example
(example) mode. During the perturbation testing phase, failures cannot be detected
successfully.
Mitigation Document the potential mitigation actions against the observed faults.
Action

Table 36. Component and Interface-level Perturbation (Object-oriented based)

SPECS Project -

Deliverable 4.5.2 53

Secure Provisioning of Cloud Services based on SLA Management

Scenario #4: Component and Interface-Level Perturbation (Mutation based)

The following content demonstrates an example of component level misuse cases considered
for Enforcement module. The Diagnosis component is the component for conducting
diagnosis process. In order to assess its robustness, the process to outline mutation based
perturbation analysis is introduced. As a common PA practice, mutation perturbation testing
consists of several various forms such as call sequence shifting, intentional call ignoring,
variable value alternation among others. By applying the mutation perturbation analysis, one
can assess whether an ET can successfully prevent the fault propagation in SPECS
implementation. For demonstration purpose, the DiagnosisActivityController.java is selected
as the perturbation target. As aforementioned, the emphasis of perturbation analysis is
focusing on erroneous input information that can potentially compromise system robustness.

Scenario 4. Mutation PA against parameter dalD in DiagnosisActivityController.java

Summary This perturbation targets to test the robustness of Diagnosis component in
Enforcement module, by introducing value mutation against parameter dalD

Evaluation Diagnosis component

Target(ET)

‘ ET Type ‘ Comp

Normal flow |The Diagnosis component should return correct diagnosis activity based on the
parameter dalD.

Perturbation |The DiagnosisActivityController.java (as included in the Diagnosis component of
the Enforcement module) defines a class to act as the diagnosis activity controller.
A mutation perturbation test case is introduced to assess its robustness and
dependability. The bit flip method is used in the following perturbation case:

public Perturbation Pseudo Mutation() {
string test=dalD;
test bits =test.getBytes();
new test bits=test bits.flipBit(n); //flip the n-th bit
string new_dalID=new string(new test bits, "UTF-8");
return new_dalD;

}

L1117 770777 777777777777777
Target code to perturb

L1111 77777 77777777777

@RequestMapping (value = "/{dalId}", method = RequestMethod.GET,
produces = {MediaType.APPLICATION JSON VALUE})

L1111 1777777 77777777777

Document the outputs and observe the correctness of results or implementation of
exception handling mechanism.

Perturbation |C-O
Class

The following content is ONLY for demonstration purpose

Testing Result

(example) Non-complaint: The Enforcement module has failed to switch to the “fail-stop”

SPECS Project - Deliverable 4.5.2 54

Secure Provisioning of Cloud Services based on SLA Management

mode. During the perturbation testing phase, failures cannot be detected
successfully.

Mitigation

Document the potential mitigation actions against the observed faults.
Action

Table 37. Component and Interface-Level Perturbation (Mutation based)

It is important to note that that actual knowledge of the detailed API and implementation
level behaviour is needed to compose the actual PA tests. The pseudo code level scenarios #1,
#2, #3, and #4 provide the guidelines for composing the tests. These scenarios also cover the
two main representative PA categories of Data-flow level PA and component level PA as
applicable to the SPECS Enforcement module, and serve as process guidelines to design and
implement the specific perturbation cases as actual tests over D4.5.3.

6.4.4.4. Scope and limitations of the methodology

The tests associated with the perturbation analysis documented were based on the
experimental version of the SPECS implementation (available on project’s Bitbucket site [1])
and architectural data flows (discussed in deliverables D4.4.2 and D4.3.2). The architecture
(and its corresponding implementation) will be referenced as “SPECS architecture” in the rest
of this document.

For the PA, both the data-flow level and component-level perturbations (example scenarios
#1, #2, #3, and #4) are designed by focusing on SPECS and core components invoked by the
APIs while performing the tests.

6.4.4.5. Enforcement-related API List

The prior sections have outlined both the Perturbation Analysis methodology and also
representative scenarios #1, #2, #3, and #4 that serve as guidelines for formulating and
conducting the PA on the full set of API calls involved in both the implementation and
remediation phases carried out by the Enforcement module. These scenarios, described with
Java style pseudo code, provide the guidelines for actual tests to be conducted on the
Enforcement module.

Composing tests essentially requires (a) details of the implementation, (b) details of the
functional behavior, and (c) detailed understanding what constitutes normal versus
anomalous behavior. Hence, the example scenarios #1, #2, #3, and #4 establish the basis (in
conjunction with possessing knowledge of the functional and implementation details) to
compose executable tests. The following table lists the relevant API calls needed for testing.
The details of these API's are present in D1.3.

Resource ID of the API
/sla-enforcement/sc-activities

/sla-enforcement/sc-activities /{sca-id}

/sla-enforcement/sc-activities/{sca-id}/status

/sla-enforcement/sc-activities /{sca-id}/sc-list

/sla-enforcement/supply-chains

/sla-enforcement/supply-chains/{sc-id}

/sla-enforcement/notifications

SPECS Project - Deliverable 4.5.2 55

Secure Provisioning of Cloud Services based on SLA Management

SPECS aims at offering Security-as-a-Service. Thus ensuring that the produced software itself
is secure which is of the utmost importance. The five basic security aspects that should be

/sla-enforcement/notifications/{n-id}

/sla-enforcement/diag-activities

/sla-enforcement/diag-activities /{da-id}

/sla-enforcement/diag-activities /{da-id}/status

/sla-enforcement/diag-activities/{da-id}/sla-id

/sla-enforcement/diag-activities /{da-id}/classification

/sla-enforcement/plan-activities

/sla-enforcement/plan-activities/{pa-id}

/sla-enforcement/plan-activities /{pa-id}/status

/sla-enforcement/plan-activities /{pa-id}/plansnum

/sla-enforcement/plan-activities /{pa-id}/planlist

/sla-enforcement/plan-activities /{pa-id}/active

/sla-enforcement/plans

/sla-enforcement/plans/{p-id}

/sla-enforcement/impl-activities

/sla-enforcement/impl-activities/{ia-id}

/sla-enforcement/impl-activities/{ia-id}/status

/sla-enforcement/reconfigs

/sla-enforcement/rem-plans

/sla-enforcement/rem-plans/{rp-id}

/sla-enforcement/rem-plans/{rp-id}/result

/sla-enforcement/rem-activities

/sla-enforcement/rem-activities /{ra-id}

/sla-enforcement/rem-activities/{ra-id}/status

Table 38. Enforcement API as defined in D1.3

6.4.5. Security testing

supported by and enforced with the developed system are:

There are many different ways to compromise software and exploit its weaknesses [33]. By
following a few simple guidelines for secure development, the developers of SPECS
components can ensure an adequate level of security of the entire framework and individual
SPECS components and applications (e.g., always keeping sensitive data encrypted, planning

Confidentiality. All data stored, used, and/or produced by the software is secure from
theft is disclosure to unauthorised entities.
Integrity. All data stored, used, and/or produced by the software cannot be altered
over its life cycle, either through accidental corruption of the data or targeted
manipulation by a malicious party.
Authentication. Valid credentials that grant access to the data stored, used, and/or
produced by the software are provided to authorised entities.
Authorization. Software’s users should only have access to authorized functions and
authorized data according to a set of policies or rules.
Non repudiation. The software has to ensure that senders and receivers of data
cannot deny having sent or received it.

SPECS Project - Deliverable 4.5.2

Secure Provisioning of Cloud Services based on SLA Management

for session time out after a specific time if the user is not active, validating all inputs and
outputs, authenticating each access request to every object). However, since many software
vulnerabilities result from defects that are unintentionally introduced in the software during
design, some basic secure software development principles were followed in the design phase
(for example, architecting a clear, simple design, using a strong authentication mechanism,
integrating known and already tested tools as much as possible).

As discussed in D4.5.1, there are many tools available that can easily uncover security
vulnerabilities and determine whether software’s data and resources are protected from
possible intruders. In SPECS, some individual components, but mostly integrated parts are
undergoing vulnerability scans and penetration tests with vulnerability scanners developed
and integrated in SPECS’ SVA security mechanism (i.e., with OpenSCAP and OpenVAS).

Further details about the outcomes of security testing of the Enforcement module will be
reported in D4.5.3.

6.5. Security review

In order to review the security of the Enforcement module, several strategies were
considered:
e Use a cloud security assessment standard such the CCM developed by CSA [29], a
partner in the SPECS project.
e Use a product-centric assessment framework such as common criteria [30].
e Review the application of best practices in security in web application development,
such as those provided by OWASP [31].

We chose the last solution for following reasons.

As described in D1.1.3, the SPECS platform is likely to help End-users (customers) to
implement some key controls of the CCM [29]. However, the CCM is not the right tool to
evaluate the security of the SPECS platform or its individual components such as the
Enforcement module described in this deliverable. Control frameworks such as the CCM are
designed to evaluate the implementation of an information system by an actual organisation,
taking into account aspects as diverse as human resources, national regulations or physical
security of data centres. In contrast, this document describes mainly a software system, for
which we can find better tools to conduct a security assessment.

The most well known approach for conducting an in-depth security analysis of a product is
Common Criteria [30]. It is used in particular in the banking sector to evaluate the software
and hardware security of smart cards used in payment systems. Unfortunately, common
criteria evaluations are typically long and expensive: bankcards typically take more than a
year to get certified, including all necessary preparatory work and lab analysis. As a cloud
application is expected to be much more complex than a smart card, a certification of the
enforcement module would probably take an order of magnitude more work, and way beyond
the resources of this project. To our best knowledge no cloud application has undergone such
a certification.

In essence, the Enforcement module, as with other modules in the SPECS project is a web
application centred on a RESTful API. As such, we finally considered that the best strategy for
a security evaluation is therefore to focus on risks that are specifically related to the

SPECS Project - Deliverable 4.5.2 57

Secure Provisioning of Cloud Services based on SLA Management

development of web applications, with an emphasis on the API platform. To this end, we
propose to base our analysis on the Application Security Verification Standard (ASVS 2.0)
proposed by OWASP [31]. The work of OWASP is well recognized in the community, and in
fact the very first control of CSA’s CCM (AIS-01) explicitly mentions this approach as an
example of best practices for secure cloud application development. As further evidence of the
value in adopting this strategy, the latest version of ASVS 2.0 was released in 2014 and is
currently used as a certifiable standard for the evaluation of web applications.

The ASVS 2.0 is presented as a security checklist which asks a series of questions against
which you can assess your security features. Since the Enforcement module is mainly a REST
API server, we decided to create our own security assessment checklist by taking the ASVS 2.0
as a foundation and removing any security check that relates more to client side security
and/or HTML/Javascript considerations, focusing solely on server side requirements. For
example, we removed the following question “Verify all password fields do not echo the user’s
password when it is entered”, since it relates to HTML form fields.

The resulting checklist is provided in Appendix 2.

SPECS Project - Deliverable 4.5.2 58

Secure Provisioning of Cloud Services based on SLA Management

/. Testing of the Enforcement module

This section presents tests designed and executed during the development stage in the second
year of the project. As anticipated in the introduction and further discussed in Section 6, this
document covers tests performed on the component level only. All analyses and tests are
conducted in accordance to methodologies defined in Section 6.

In the first subsection 7.1 an example of a code quality analysis is shown. Subsection 7.2
covers test cases designed and executed for functional testing of the Enforcement module.

7.1. Code quality analysis

Evaluating the quality of the code in SPECS is performed with SonarQube [3]. An example
report of the code quality analysis for the Planning component is presented in Figure 9 and
Figure 10.

sonarQube Dashboards » Issues Measures Rules Qua

40 |

‘I'i.I

o | v B -
1 2

a 6 g 10 12
) File

& Functior

Events All
Oct 01 2015 Version 0.1-SNAPSHOT

Figure 9. Code quality analysis report for the Planning component - part 1

SPECS Project - Deliverable 4.5.2 59

Secure Provisioning of Cloud Services based on SLA Management

Quality Gates More v Log In [’Q\il] (2]

680 1000

Figure 10. Code quality analysis report for the Planning component - part 2

Code quality analysis for the Planning component shows the following:

e The complexity of classes, functions and files is below the threshold of 10, which
implies that the code is of low risk.

e Directory tangle index of 0.0% means that there were no cycles detected inside the
directories.

¢ Documentation density of 0.0% and comment density of 1.7% implies that the code is
well documented, but more comments need to be added.

e The code does not contain any duplications.

e SonarQube identified 43 issues, where none of them are blockers or of critical severity,
and 25 of them are of major severity. The list of issues is reported in Figure 11.

SPECS Project - Deliverable 4.5.2 60

Secure Provisioning of Cloud Services based on SLA Management

e The code for the Planning component in spread over 22 files in 13 directories, and
contains 1185 lines (930 lines of code). 65 functions containing 332 statements are
defined in 23 classes. The code is considered of acceptable size.

e The Planning component is accompanied with 7 unit tests for which the success rate is
100% (no failures and no errors). Tests executed 69.5% of all lines and 61.1% of all
conditions in the code. This means that almost 70% of the code is covered by unit tests.

e Technical debt ratio is extremely low (1.5%) which results in SQUALE rating A.

=) specs-core-enforcement-planning = specs-core-enforcement-planning-core [2 src/main/java/eu/specs/project/enforcement
/planning/core/exceptions/NotFoundException.java

Add a nested comment explaining why this method is empty, throw an l4daysago~ L5 §3
UnsupportedOperationException or complete the implementation. b
[~] Major O Open Damjan Murn Mot planned 5min debt suspicious

= specs-core-enforcement-planning = specs-core-enforcement-planning-core [src/main/java/eu/specs/project/enforcement
/planning/corefexceptions/PlanningException java

Add a nested comment explaining why this method is empty, throw an l4daysago~ L5 $3
UnsupportedOperationException or complete the implementation. 5
[~] Major O Open Damjan Murn Not planned 5min debt suspicious

= specs-core-enforcement-planning = specs-core-enforcement-planning-core [src/main/java/eu/specs/project/enforcement
/planning/core/processor/PlanningActivityProcessorjava

Rename the "logger” logger to comply with the format "LOG(?GER)7". l4daysago~ L26 3
>

Minor O Open Damjan Murn Not planned 5min debt convention

This block of commented-out lines of code should be removed. l4daysago~ L43 £3
>

(] Major O Open Damjan Murn Mot planned 5min debt misra, unused

Add a nested comment explaining why this method is empty, throw an 14daysago~ L53 §3
UnsupportedOperationException or complete the implementation. »

(] Major O Open Damjan Murn Mot planned 5min debt suspicious
Define and throw a dedicated exception instead of using a generic one. 14daysago~ L73 §3 N

[~} Major O Open Damjan Murn Not planned 20min debt cwe, error-handling, security

Figure 11. Code quality issues for the Planning component

Quality reports for other pieces of code for the Enforcement module can be found on
dedicated repositories on Bitbucket [1].

7.2. Functional testing

Each component developed in SPECS is subject to a set of unit and component tests. For
readability’s sake, only tests for one core Enforcement component and one security
mechanism are presented here. Tests for other Enforcement components and the rest of the
security mechanisms are available at dedicated Bitbucket web sites (together with code).

SPECS Project - Deliverable 4.5.2 61

Secure Provisioning of Cloud Services based on SLA Management

Note that the reported tests do not cover all requirements associated to the Planning
component and the SVA security mechanism. This is due to the fact that some tests will be
performed under the integration task (reported in D1.5.2), and due to further development
plans (see D4.3.2). Also note that some tests only verify correct behaviour of the code and do
not cover any requirement directly.

7.2.1. The Planning component

The following are the tests executed for the Planning component [12]. Further details are
available in D4.3.2.

Test ID test_supply_chain_activity_repository
Test objective Test Supply Chain Activity repository operations.
Verified ENF PLAN_R1, ENF_PLAN_R2, ENF_PLAN_R3, ENF_PLAN_R4,
requirements ENF PLAN_R10, ENF_PLAN_R11, ENF_PLAN_R12
Inputs A test Supply Chain Activity object.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed successfully.
Test ID test_supply_chain_repository
Test objective Test Supply Chain repository operations.
Verified ENF PLAN_R1, ENF_PLAN_R2, ENF_PLAN_R3, ENF_PLAN_R4,
requirements ENF PLAN_R10, ENF_PLAN_R11, ENF_PLAN_R12
Inputs A test Supply Chain object.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed successfully.
Test ID test_planning_activity_repository
Test objective Test Planning Activity repository operations.
Verified ENF_PLAN_R1, ENF_PLAN_R7
requirements
Inputs A test Planning Activity object.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed successfully.
TestID test_supply_chain_activity_service
et obesiie Test service class that provides operations for dealing with Supply
Chain Activity objects.
Verified ENF PLAN_R1, ENF_PLAN_R2, ENF_PLAN_R3, ENF_PLAN_R4,
requirements ENF PLAN R10, ENF_PLAN _R11, ENF PLAN_R12
e Atest SLA Template document in the XML format.
Inputs e A test Supply Chain Activity input data (as sent by the Supply
Chain Manager component).
e Avalid Supply Chain Activity is created.
Expected results e Avalid Supply Chain is created.

SPECS Project - Deliverable 4.5.2

62

Secure Provisioning of Cloud Services based on SLA Management

o All operations execute successfully.

Outputs None.

e All operations executed successfully.

Comments . .
e Uses SLA Platform’s Service Manager mock service.

Test ID test_supply_chain_activity_service_error_behaviour

Test the build supply chains method's behaviour when an invalid

Test objective . L
J input data is given.

Verified ENF_PLAN_R1, ENF PLAN_R2, ENF_PLAN_R3, ENF_PLAN_R4,
requirements ENF_PLAN_R10, ENF_PLAN_R11, ENF PLAN_R12

e Atest SLA Template document in the XML format.

Input
nputs e Aninvalid test Supply Chain Activity input data.

e The status of the created Supply Chain Activity is ERROR.
Expected results | ¢ The annotation property contains the error description and the

stack trace.
Outputs None.
Comments All operations executed as expected.
Test ID test_supply_chain_service

Test service class that provides operations for dealing with Supply

Test objective Chain objects.

Verified ENF_PLAN_R1, ENF_PLAN_RZ2, ENF_PLAN_R3, ENF_PLAN_R4,
requirements ENF_PLAN_R10, ENF PLAN_R11, ENF_PLAN_R12

Inputs A test Supply Chain object.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed successfully.

Test ID test_planning_activity_service

Test service class that provides operations for dealing with

HESE QI Planning Activity objects.

Vertiilzs ENF_PLAN_R1, ENF PLAN_R7
requlrements
Inputs A test Supply Chain object.

e Avalid Implementation Plan object is created.

Expected results o All operations execute successfully.

Outputs None.

Uses Enforcement Implementation mock service and Monitoring

Comments .
module mock service.

Test ID test_planning_activity_service_error_behaviour

Test the create planning activity method's behaviour when an

e invalid input data is given.

Verified ENF_PLAN_R1, ENF_PLAN_R7
requirements
Inputs A test Supply Chain object with some invalid data.

Expected results | ¢ The status of the created Planning Activity is ERROR.

SPECS Project - Deliverable 4.5.2

Secure Provisioning of Cloud Services based on SLA Management

o The annotation property contains the error description and the

stack trace.
Outputs None.
Comments All operations executed as expected.
Test ID test_solver
Test objective Test the Solver functionality (building supply chains).
Verified ENF_PLAN_R1, ENF_PLAN_RZ, ENF_PLAN_R3, ENF_PLAN_R4,
requirements ENF_PLAN_R10, ENF_ PLAN_R11, ENF_PLAN_R12
Inputs A test Supply Chain Activity object.

Expected results

Valid Supply Chain objects are created corresponding to the Supply

Chain Activity data.
Outputs None.
Comments All operations executed as expected.
Test ID test_dump
Test objective Test dump method of the JsonDumper class.
Verified
requirements /
Inputs A test Java object.
Expected results | Java object is serialized to a valid JSON string.
Outputs None.
Comments All operations executed as expected.
TestID test_app_config
Test objective Test application configuration loading from a file.
Verified
requirements /
Inputs A test application configuration file.
Expected results | Application configuration properties are set correctly.
Outputs None.
Comments All operations executed as expected.
Test ID test_api_supply_chains

Test objective

Perform full test of the functionalities of the Planning component
related to supply chains through the REST API provided by the
planning-api (part of the Planning component [12]).

Verified ENF PLAN_R1, ENF_PLAN_R2, ENF_PLAN_R3, ENF_PLAN_R4,
requirements ENF_PLAN_R10, ENF_PLAN_R11, ENF_PLAN_R12

e Atest SLA Template document in the XML format.
Inputs e A test supply chain activity input data (as sent by the Supply

Chain Manager).

Expected results

e Avalid Supply Chain Activity object is created.

e Avalid Supply Chain objects are created according to the input
SLA Template, Supply Chain Activity object input data, and
security mechanisms.

e All operations execute successfully.

SPECS Project - Deliverable 4.5.2

64

Secure Provisioning of Cloud Services based on SLA Management

Outputs None.
e Uses SLA Platform’s Service Manager mock service.
e All operations executed as expected.

Comments

Test ID test_api_planning_activity

Perform full test of the functionalities of the Planning component
Test objective related to planning activities through the REST API provided by the
planning-api (part of the Planning component [12]).

Veriilzs ENF_PLAN_R1, ENF_PLAN_R7
requlrements
Inputs A test Supply Chain object.

e Avalid Planning Activity object is created.

e A valid Implementation Plan object is created according to the
input Supply Chain, and security mechanisms.

o All operations execute successfully.

Expected results

Outputs None.
e Uses Enforcement’s Implementation mock service and
Comments Monitoring module mock service.

e All operations executed as expected.

7.2.2. The SVA security mechanism

In next subsections we present tests for all SVA components. For details of the mechanism’s
design see D4.3.2.

7.2.2.1. SVA Enforcement component

The following set of tests has been performed to test code for the SVA Enforcement
component [9]. Detailed description of the component is provided in D4.3.2.

Test ID test_download_ovals
L Test if oval (list of published vulnerabilities) is downloaded
Test objective
successfully.
Verified ENF_SVA_R1
requirements
Inputs URL to oval repository.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.
TestID test_reconfigure_repository
Test objective Test if repository is successfully changed.
Verified ENF_SVA_RI
requirements
Inputs None.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.

SPECS Project - Deliverable 4.5.2 65

Secure Provisioning of Cloud Services based on SLA Management

TestID test_run_scanner

Test objective Test if the scanner generates the scanning report.
Verified ENF_SVA_R1

requirements

Inputs A test vulnerability list.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_send_scanning_report

Test objective Test if the scanning report is successfully sent to the django server.
Verified ENF_SVA_R2

requirements

Inputs Django server IP.

Expected results

All operations execute successfully.

Outputs

None.

e The Django server is the server used by the SVA Dashboard.

Comments _

e All operations executed as expected.
Test ID test_generate_up_report
Test objective Test if the update/upgrade report is successfully generated.
Verified ENF_SVA_R1
requirements
Inputs None.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.
Test ID test_send_up_report

Test objective

Test if the update/upgrade report is successfully sent to the django
server.

Verified ENF_SVA_R2

requirements

Inputs None.

Expected results | All operations execute successfully.
Outputs None.

e The Django server is the server used by the SVA Dashboard.

Comments
e All operations executed as expected.
TestID test_vulnerability_list command
Test objective Test if the vulnerability list command is executed without errors.
Verified ENF SVA_R1
requirements
Inputs None.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.

SPECS Project - Deliverable 4.5.2

66

Secure Provisioning of Cloud Services based on SLA Management

Test ID test_vulnerability_scan_command

Test objective Test if vulnerability scan command is executed without errors.

Verified ENF_SVA_RI

requirements

Inputs A test vulnerability list.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_up_report_command

st o/beiie Test if update/upgrade report command is executed without
errors.

Verified ENF_SVA_R1

requirements

Inputs None.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_reconfigure_repository_command

et olbesiie Test if reconfigure repository command is executed without
errors.

Verified ENF_SVA_RI

requirements

Inputs None.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

7.2.2.2. SVA Monitoring component

The following tests have been executed to test the code for the SVA Monitoring component
[10]. For details about components activities and about measurements taken by the
component to evaluate validity of SVA metrics, see D4.3.2.

TestID test_get_list_age_if list_ update_frequency_not_selected
Tests if the vulnerability list age measurement is taken in case
when the list update frequency metric is not selected.

Test objective

Verified ENF SVA_R1
requirements
Inputs None.
Expected results | All operations execute successfully (measurement is not taken).
Outputs None.

e When the list update frequency metric is not selected, the SVA
Comments Monitoring component should not be taking vulnerability list

age measurements.
e All operations executed as expected.

SPECS Project - Deliverable 4.5.2 67

Secure Provisioning of Cloud Services based on SLA Management

Test ID

test_send_list_age

Test objective

Test if the vulnerability list age measurement is sent to the
Monitoring module (to the Event Hub) and the SVA Dashboard.

Verified ENF_SVA_R2

requirements

Inputs None.

Expected results | All operations execute successfully.
Outputs None.

e Both the SVA Dashboard and the Event Hub should be running

Comments or else test fails.
e All operations executed as expected.
TestID test_send_repository_availability

Test objective

Test if the repository availability measurement is sent to the
Monitoring module (to the Event Hub).

Verified ENF_SVA_R2

requirements

Inputs None.

Expected results | All operations execute successfully.
Outputs None.

Comments

e The Event Hub must be running or else test fails.
e All operations executed as expected.

Test ID

test_get_basic_report_age_if basic_scan_frequency_not_selected

Test objective

Test if the basic scan report age measurement is taken in case
when the scanning frequency - basic scan metric is not selected.

Verified ENF_SVA_R1
requirements
Inputs None.

Expected results

All operations execute successfully (measurement is not taken).

Outputs

None.

e When the scanning frequency - basic scan metric is not
selected, the SVA Monitoring component should not be taking

Comments :
basic scan report age measurements.
e All operations executed as expected.
Test ID test_send_basic_report_age

Test objective

Test if the basic scan report age measurement is sent to the
Monitoring module (to the Event Hub) and the SVA Dashboard.

Verified ENF_SVA_R2

requirements

Inputs None.

Expected results | All operations execute successfully.
Outputs None.

Comments

e Both the SVA Dashboard and the Event Hub should be running
or else test fails.

e All operations executed as expected.

SPECS Project - Deliverable 4.5.2

68

Secure Provisioning of Cloud Services based on SLA Management

Test ID

test_send_list_availability

Test objective

Test if the list availability measurement is sent to the Monitoring
module (to the Event Hub).

Verified

: ENF_SVA_R2
requirements
Inputs None.
Expected results | All operations execute successfully.
Outputs None.

Comments

e The Event Hub must be running or else test fails.
e All operations executed as expected.

Test ID

test_send_scanner_availability

Test objective

Test if the scanner availability measurement is sent to the
Monitoring module (to the Event Hub).

Verified

: ENF_SVA_R2
requirements
Inputs None.
Expected results | All operations execute successfully.
Outputs None.

Comments

e The Event Hub must be running or else test fails.
e All operations executed as expected.

Test ID

test_get_up_report_age_if up_report_frequency_not_selected

Test objective

Test if the update/upgrade report age measurement is taken in
case when the up report frequency metric is not selected.

Venites ENF SVA_R1
requirements
Inputs None.

Expected results

All operations execute successfully (measurement is not taken).

Outputs

None.

e When the up report frequency metric is not selected, the SVA
Monitoring component should not be taking update/upgrade

Comments
report age measurements.
e All operations executed as expected.
Test ID test_send_up_report_age

Test objective

Test if the update/upgrade report age measurement is sent to the
Monitoring module (to the Event Hub) and the SVA Dashboard.

Verified ENF_SVA_R2

requirements

Inputs None.

Expected results | All operations execute successfully.
Outputs None.

Comments

e Both the SVA Dashboard and the Event Hub should be running
or else test fails.

e All operations executed as expected.

SPECS Project - Deliverable 4.5.2

69

Secure Provisioning of Cloud Services based on SLA Management

Test ID

test_send_scan_report_availability

Test objective

Test if the scan report availability measurement is sent to the
Monitoring module (to the Event Hub).

Verified ENF _SVA_R2

requirements

Inputs None.

Expected results | All operations execute successfully.
Outputs None.

Comments

e The Event Hub must be running or else test fails.
e All operations executed as expected.

Test ID

test_send_up_report_availability

Test objective

Test if the up report availability measurement is sent to the
Monitoring module (to the Event Hub).

Verified ENF_SVA_R2

requirements

Inputs None.

Expected results | All operations execute successfully.
Outputs None.

e The Event Hub must be running or else test fails.

Comments i
e All operations executed as expected.
Test ID test_invoke_msr_repository_availability
Test objective Test if the command is executed without errors.
Verified ENF_SVA_R1
requirements
Inputs None.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.
Test ID test_invoke_msr_list_availability
Test objective Test if the command is executed without errors.
Verified ENF SVA_R1
requirements
Inputs None.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.
TestID test_invoke_msr_scanners_availability
Test objective Test if the command is executed without errors.
Verified ENF_SVA_R1
requirements
Inputs None.

SPECS Project - Deliverable 4.5.2

70

Secure Provisioning of Cloud Services based on SLA Management

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_invoke_msr_scan_report_availability

Test objective Test if the command is executed without errors.
Verified ENF_SVA_R1

requirements

Inputs None.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_invoke_msr_up_report_availability

Test objective Test if the command is executed without errors.
Verified ENF_SVA_R1

requirements

Inputs None.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

7.2.2.3. SVA Dashboard

The following tests have been executed to test the code for the SVA Dashboard [11]. For
further details about the component see D4.3.2.

Test ID test_scan_report_post

Test objective Test if the scan report is uploaded successfully.
Verified ENF _SVA_R4

requirements

Inputs A test scan report.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_oval_report_post

Test objective Test if the vulnerability list is uploaded successfully.
Verified ENF_SVA_R4

requirements

Inputs A test vulnerability list.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

SPECS Project - Deliverable 4.5.2 71

Secure Provisioning of Cloud Services based on SLA Management

TestID test_up_report_post

Test objective Test if the update/upgrade report is uploaded successfully.
Verified ENF_SVA_R4

requirements

Inputs A test up report.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_scan_report_available

Test objective Test if the scan report is available in the database after the upload.
Verified ENF_SVA_R4

requirements

Inputs A test scan report.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_vulnerability_list_available

Test objective

Test if the vulnerability list is available in the database after the
upload.

Verified

: ENF_SVA_R4
requirements
Inputs A test vulnerability list.
Expected results | All operations execute successfully.
Outputs None.
Comments All operations executed as expected.
Test ID test_up_report_available

Test objective

Test if the update/upgrade report is available in the database after
the upload.

Verified ENF_SVA_R4

requirements

Inputs A test up report.

Expected results | All operations execute successfully.
Outputs None.

Comments All operations executed as expected.
TestID test_report_url

Test objective Test if URL for a VM is available.
Verified ENF_SVA_R4

requirements

Inputs A test URL for a VM.

Expected results | All operations execute successfully.
Outputs None.

Comments All operations executed as expected.

SPECS Project - Deliverable 4.5.2

72

Secure Provisioning of Cloud Services based on SLA Management

Test ID

test_ wrong vim

Test objective

Test if the client is redirected to the index page after accessing a
virtual machine, which is not in the database.

Verified ENF_SVA_R4

requirements

Inputs A test URL for a VM not in the database.

Expected results | Redirected to index page.

Outputs None.

Comments All operations executed as expected.

Test ID test_oval_file_url

Test objective Test if the client is able to view the vulnerability list.
Verified ENF_SVA_R4

requirements

Inputs A test vulnerability list.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_scanning report file_url

Test objective Test if the client is able to view the scanning report.
Verified ENF_SVA_R4

requirements

Inputs A test scan report.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

Test ID test_up_report _file_url

Test objective Test if the client is able to view the update /upgrade report.
Verified ENF_SVA_R4

requirements

Inputs A test update/upgrade report.

Expected results | All operations execute successfully.

Outputs None.

Comments All operations executed as expected.

SPECS Project - Deliverable 4.5.2

73

Secure Provisioning of Cloud Services based on SLA Management

8. Conclusions

This document finalizes the validation and testing methodologies adopted in the project.
Although this particular deliverable is focused on the Enforcement module, all methodologies
and technologies proposed here are to be used on the project level. Details will be provided in
dedicated WP1, WP2, and WP3 prototype deliverables at M24 and M30.

With respect to the first iteration of this document, many improvements are reported. Apart
from the
e complete and final testing and validation approach in terms of criticality assignment
procedure, code quality assurance method, chosen test types, testing methodologies
and technologies to be used, and
e security review procedure to be adopted,

some initial results are presented and discussed as well:
e Report of the code quality analysis is demonstrated for one main Enforcement
component.
e Functional tests (unit and component tests) are demonstrated for one main
Enforcement component and one security mechanism.

All other functional tests for Enforcement module are available at dedicated Bitbucket web
sites [1]. Integration and system tests will be presented and discussed in T1.5 deliverable
D1.5.2.

The non-functional characteristics of the Enforcement module will be evaluated and all
associated tests will be reported in the final release of this deliverable, namely in D4.5.3 at the
end of the project. The final iteration of this document will also summarize the validation of
the entire Enforcement module and outcomes of the security review.

SPECS Project - Deliverable 4.5.2 74

Secure Provisioning of Cloud Services based on SLA Management

9. Bibliography

[1] SPECS, “SPECS Team”, 2015. [Online]. Available: https://bitbucket.org/specs-team/.

[2] Atlassian, “Use the issue tracker”, 2015. [Online]. Available:
https://confluence.atlassian.com/bitbucket/use-the-issue-tracker.

[3] SonarSource, “SonarQube”, 2015. [Online]. Available: http: //www.sonarqube.org/.

[4] SonarSource, “Metric definitions”, 2015. [Online]. Available:
http://docs.sonarqube.org/display/SONAR /Metric+definitions.

[5] T.]. McCabe, “A complexity Measure”, IEEE Transactions on Software Engineering, SE-
2(4):308-320, 1976.

[6] SonarSource, “Technical Debt Evaluation”, 2015. [Online]. Available:
http://www.sonarsource.com/products/plugins/governance/sqale/.

[7] Atlassian, “Meet Jenkins”, 2015. [Online]. Available:
https://wiki.jenkins-ci.org/display /JENKINS /Meet+]enkins.

[8] Mountainminds GmbH & Co. KG and Contributors, “JaCoCo Java Code Coverage Library”,
2015. [Online]. Available: http://www.eclemma.org/jacoco/.

[9] SPECS, “SPECS Enforcement SVA Enforcement”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-
sva vulnerability manager.

[10] SPECS, “SPECS Enforcement SVA Monitoring”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva.

[11] SPECS, “SPECS Enforcement SVA Dashboard”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva dashboard.

[12] SPECS, “SPECS Enforcement Planning”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-core-enforcement-planning.

Tom Akehurst, “WireMock”, 2015. [Online]. Available: http://wiremock.org/.

Szczepan Faber, “Mockito”, 2015. [Online]. Available: http://mockito.org/.

JUnit, “JUnit”, 2015. [Online]. Available: http://junit.org/.

Pivotal Software, “Spring Framework - Class MockMvc”, 2015. [Online]. Available:
http://docs.spring.io/spring-

framework/docs/3.2.0.RC2 /api/org/springframework/test/web/servlet/MockMvc.htm
L

[18] Atlassian, “Bamboo”, 2015. [Online]. Available:
https://www.atlassian.com/software /bamboo.

[19] Steve Purcell, “PyUnit”, 2015. [Online]. Available:
http://pyunit.sourceforge.net/pyunit.html.

[20] J.Luna., N. Suri, G. Pellegrino, H. Zhang, M. Bladt Stausholm, “D4.3 Final Perturbation
Analysis of the Implementation”. ABC4Trust project, July 2014.

[13]
[14]
[15] Fongo Inc., “Fongo”, 2015. [Online]. Available: https://www.fongo.com/.
[16]
[17]

SPECS Project - Deliverable 4.5.2 75

https://bitbucket.org/specs-team/
https://confluence.atlassian.com/bitbucket/use-the-issue-tracker
http://www.sonarqube.org/
http://docs.sonarqube.org/display/SONAR/Metric+definitions
http://www.sonarsource.com/products/plugins/governance/sqale/
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
http://www.eclemma.org/jacoco/
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_vulnerability_manager
https://bitbucket.org/specs-team/specs-mechanism-monitoring-sva
https://bitbucket.org/specs-team/specs-mechanism-enforcement-sva_dashboard
https://bitbucket.org/specs-team/specs-core-enforcement-planning
http://wiremock.org/
http://mockito.org/
https://www.fongo.com/
http://junit.org/
http://docs.spring.io/spring-framework/docs/3.2.0.RC2/api/org/springframework/test/web/servlet/MockMvc.html
http://docs.spring.io/spring-framework/docs/3.2.0.RC2/api/org/springframework/test/web/servlet/MockMvc.html
http://docs.spring.io/spring-framework/docs/3.2.0.RC2/api/org/springframework/test/web/servlet/MockMvc.html
https://www.atlassian.com/software/bamboo
http://pyunit.sourceforge.net/pyunit.html

Secure Provisioning of Cloud Services based on SLA Management

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

J. M. Vaas, K. W. Miller, “Software Teastability: The New Verification”. Proc. of IEEE
Software, vol. 12, no. 3, pp. 17—28, May 1995.

L. Nik, M. Munro, J. Xu, “Assessing the Dependability of SOAP RPC-Based Web Services by
Fault Injection”. Proc. of Intl. Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS), 2003.

L. Nik, M. Munro, J. Xu, "Simulating errors in web services". International Journal of
Simulation Systems, Science & Technology, pp. 29—37, 2004.

P. Koopman, et al., "Comparing operating systems using robustness benchmarks". Proc. of
the Symposium on Reliable Distributed Systems (SRDS), pp. 72—79, 1997.

S. Winter, C. Sarbu, N. Suri, et al.,, “The impact of fault models on software robustness
evaluations”. Software Engineering (ICSE 2011), 33rd International Conference on
Software Engineering, pp. 51—60, 2011.

S. Winter, N. Suri, et al.,, "simFI: From single to simultaneous software fault injections".
43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2013.

S. Winter, N. Suri, et al,, "No PAIN, No Gain? The Utility of PArallel Fault INjections". In
Proceedings of the 37th International Conference on Software Engineering (ICSE) (to
appear), 2015.

IBM Knowledge Center, “Considerations for J[SON parser limits”, 2015. [Online]. Available:
https://www-

01.ibm.com/support/knowledgecenter/SS9H2Y 7.1.0/com.ibm.dp.doc/json parserlimit
s.html.

Cloud Security Alliance “Cloud Control Matrix version 3.0.1”, [Online]. Available:
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/.

The Common Criteria Recognition Agreement Members. “Common criteria for
information technology security evaluation”, 2006. [Online]. Available:
http://www.commoncriteriaportal.org/.

The Open Web Application Security Project, “Application Security Verification Standard
(2014)”, 2014. [Online]. Available:
https://www.owasp.org/images/5/58 /OWASP ASVS Version 2.pdf.

Outercurve Foundation, “xUnit.net”, 2015. [Online]. Available: http://xunit.github.io/.

Microsoft, “Security Threats”, 2015. [Online]. Available: https://msdn.microsoft.com/en-
us/library/cc723507.aspx.

SPECS Project - Deliverable 4.5.2 76

https://www-01.ibm.com/support/knowledgecenter/SS9H2Y_7.1.0/com.ibm.dp.doc/json_parserlimits.html
https://www-01.ibm.com/support/knowledgecenter/SS9H2Y_7.1.0/com.ibm.dp.doc/json_parserlimits.html
https://www-01.ibm.com/support/knowledgecenter/SS9H2Y_7.1.0/com.ibm.dp.doc/json_parserlimits.html
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
http://www.commoncriteriaportal.org/
https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf
http://xunit.github.io/
https://msdn.microsoft.com/en-us/library/cc723507.aspx
https://msdn.microsoft.com/en-us/library/cc723507.aspx

Secure Provisioning of Cloud Services based on SLA Management

Appendix 1.

Requirements associated to the Enforcement module

The following table presents a list of all requirements associated to the Enforcement module.

REQ_ID Requirement Description

ENF PLAN_R1 Get SLA to enforce | The Planning component must be able to retrieve and
parse the SLA to implement, by invoking proper
functionalities offered by the Platform.

ENF_PLAN_RZ2 Define security The Planning component must be able to determine
mechanisms which kind of security mechanisms are to be applied,
related to SLOs given a set of high-level SLOs contained in the SLA to

implement.

ENF_PLAN_R3 Get security The Planning component must be able to retrieve the
components available Enforcement security components that

implement the security mechanisms related to the
fulfilment of the SLOs defined in the SLA to implement.

ENF_PLAN_R4 Select best security | Based on the selected target service and on the
components negotiated SLA, the Planning component must be able to

select the best available Enforcement components to
invoke, among different technology stacks, in order to
meet the SLOs defined in the SLA.

ENF_PLAN_RS Activate The Planning component must be able to activate the
implementation selected plan, by properly invoking the Implementation

component.

ENF_PLAN_R6 Log component The Planning component must be able to report about its
activation and activation or deactivation for accountability purposes.
deactivation

ENF_PLAN_R7 Build an After the set of high-level SLOs specified in an SLA have
implementation been correlated to the appropriate security mechanisms
plan and the best associated security components have been

retrieved, the Planning component must be able to
prepare an implementation plan. Building
implementation plan includes deducing alert thresholds.

ENF_PLAN_RS8 Build a reaction The Planning component must be able to plan the actual
plan activation of the redressing technique selected by the

Remediation Decision System component. This may
include different strategies (e.g., the definition of a chain
of service invocations or the activation of a new
configuration of a running service).

ENF_PLAN_R9 Build a migration | The Planning component must be able to plan the

plan

strategy to migrate from the target service currently
being delivered to the new version of it, if this is a part of
a redressing technique chosen by the Remediation
Decision System component.

ENF _PLAN_R10 Get monitoring The Planning component must be able to retrieve a list of

systems available monitoring systems/agents, associated to
security components that fulfil the requirements of the
SLA.

ENF _PLAN_R11 Select best The Planning component must be able to select the
monitoring appropriate monitoring systems/agents that will monitor
systems metrics/SLOs specified in the SLA.

ENF PLAN_R12 Validate an SLA The Planning component has to be able to validate an SLA

SPECS Project - Deliverable 4.5.2

77

Secure Provisioning of Cloud Services based on SLA Management

by verifying that it can be enforced (ENF_PLAN_R1).

reaction plan

ENF_IMPL_R1 Implement Plan The Implementation component must be able to actually
realize the plan built by the Planning component, by
orchestrating the acquisition of the needed resources,
their configuration, and the activation of involved
services.

ENF_IMPL_R2 Acquire resources | The Implementation component must be able to acquire
all the resources needed, based on the plan built by the
Planning component.

ENF_IMPL_R3 Deploy and The Implementation component must be able to deploy

configure and configure all the resources, based on the plan built by
the Planning component.

ENF_IMPL_R4 Start services The Implementation component must be able to properly
start the needed services on top of the acquired
resources, in order to build the plan.

ENF_IMPL_R5 Trigger The Implementation component must be able to trigger

monitoring system | activation/deactivation or reconfiguration of the
agent activation or | appropriate monitoring agents by accessing the
deactivation functionalities offered by the Platform.

ENF_IMPL_R6 Log service The Implementation component must be able to log a

activation successful activation of each security service related to a
certain SLO in an SLA.

ENF_IMPL_R7 Update SLA state The Implementation component must be able to update
the state of an SLA after its successful implementation.

ENF_IMPL_RS8 Log component The Implementation component must be able to report

activation or about its activation or deactivation for accountability
deactivation purposes.

ENF_IMPL_R9 Implement The Implementation component must be able to apply

the reaction and migration plans previously defined in
the reaction plan.

ENF_IMPL R10

Update monitoring
policy

The Implementation component must be able to update
the monitoring policy according to each signed SLA.

ENF _DIAG_R1 Get monitoring The Diagnosis component must be able to receive
event notification | notifications from the Platform about monitoring events

captured by the Monitoring module.

ENF _DIAG_RZ Get monitoring The Diagnosis component must be able to retrieve all
event information | information, related to a monitoring event notified

through the Platform, by accessing the Auditing
component.

ENF_DIAG_R3 Identify SLOs The Diagnosis component must be able to identify the
affected by a SLOs at risk or violated by processing a monitoring event
monitoring event | that has been notified by the Platform.

ENF_DIAG_R4 Update SLA state The Diagnosis component must be able to update the
state of an SLA by accessing the proper functionalities
offered by the Platform.

ENF_DIAG_R5 Get SLAs affected Given a monitoring event which has been notified by the
by a monitoring Platform, the Diagnosis component must be able to
event retrieve all SLAs affected by such an event.

ENF_DIAG_R6 Activate reaction The Diagnosis component must be able to activate the

Remediation System component to react to an alert or a
violation and find the best redressing techniques or
remediation actions, respectively.

SPECS Project - Deliverable 4.5.2

78

Secure Provisioning of Cloud Services based on SLA Management

ENF _DIAG_R7 Express SLA The Diagnosis component must express the SLA violation
violation in terms | detection in terms of KPI rules.
of KPI

ENF _DIAG_R8 Query metric The Diagnosis component can query the metric data
stored inside the monitoring results repository in the
Platform.

ENF_DIAG_R9 Log component The Diagnosis component must be able to log its
activation or activation or deactivation for accountability purposes.
deactivation

ENF_DIAG_R10 Determine effect For each SLA affected by a monitoring event, the
on an SLA Diagnosis component must be able to determine the

effect the monitoring event has on the SLA (i.e,, is it
alerted or violated).

ENF_DIAG_R11 Log SLA impact When all SLOs affected by a monitoring event are
identified, and the severity of the impact of the
monitoring event has been determined, the Diagnosis
component must be able to log this information.

ENF_DIAG_R12 Classify event The Diagnosis component must be able to classify a
monitoring event with regard to each affected SLA, based
on the information provided by the Monitoring
component and the affected SLOs and SLAs.

ENF_DIAG_R13 Identify root cause | The Diagnosis component must be able to perform a root

cause analysis of each monitoring event that causes alerts
or violations of one or more monitored SLAs.

ENF_DIAG_R14

Log root cause

The Diagnosis component must be able to log the
information about the root cause of a monitoring event.

ENF DIAG_R15

Analyse
monitoring event

The Diagnosis component must be able to analyse each
monitoring event related to an alert or a violation of one
or more monitored SLAs.

ENF_DIAG_R16

Prioritize events

After the impact of a monitoring event on each of the
affected SLAs is known and the root cause of the
monitoring event is identified, the Diagnosis component
must be able to create a priority queue.

ENF_DIAG_R17 Log priority queue | The Diagnosis component must be able to log the
information about the priority queue.

ENF _DIAG_R18 Verify SLA state The Diagnosis component must be able to compare the
current metric/SLO data with the alert/violation
thresholds specified for an alerted/violated SLA to verify
if the severity of the alert/violation has changed.

ENF_REM_R1 Trigger The Remediation Decision System component will

renegotiation provide a mechanism to trigger renegotiation activities,
by accessing the proper Platform functionalities.

ENF_REM_RZ2 Log component The Remediation Decision System component must be

activation or able to log its activation or deactivation.
deactivation

ENF_REM_R3 Get SLA state The Remediation Decision System component must be
able to check the state of an SLA in order to react either
to an alert or a violation.

ENF_REM_R4 Update SLA state In the process of reacting to an event, the Remediation
Decision System component must be able to update SLA’s
state.

ENF_REM_R5 Get SLA The Remediation System Component must be able to

SPECS Project - Deliverable 4.5.2

79

Secure Provisioning of Cloud Services based on SLA Management

retrieve an SLA.

ENF_REM_R6 Get SLA impact The Remediation Decision System component must be
able to retrieve information about the impact of a
monitoring event to an affected SLA, provided by the
Diagnosis component through the Auditing component.

ENF_REM_R7 Get security In the process of searching for the best actions to apply in
components order to mitigate the risk of having a violation or to

recover from a violation, the Remediation Decision
System component must be able to retrieve all relevant
security components.

ENF REM_R8 Search for Based on the event information, associated SLAs and
redressing security mechanisms available, the Remediation Decision
techniques System component must be able to find redressing

techniques to invoke in case of an alert or a violation.

ENF_REM_R9 Notify End-user When End-user’s decision is needed in the process of
managing an alert or a violation, the Remediation
Decision System component must be able to
communicate the issue with the End-user through the
SPECS Application.

ENF_AUD_R1 Create log The Auditing component must be able to create different
types of logs (e.g., activation/deactivation of a
component, service activation, priority queue, etc.).

ENF_AUD_RZ Query log The Auditing component must enable all components of
the SPECS framework to query for different types of logs
(retrieving logs from the database using different search
criteria).

ENF_AUD_R3 Support different The Auditing component has to support different
communication (software) communication technologies (REST, Thrift,
technologies etc.).

ENF_AUD_R4 Support log The Auditing component has to support correlation
correlation among different logs, i.e. consolidate logs created due to

the same request or event into a workflow.

ENF_AUD_R5 Support different The Auditing component has to support the use of
databases different databases.

ENF_BROKER R1 Enable CSP The SPECS Administrator must be able to configure and

enable the Broker to access and use an external CSP.

ENF_BROKER R2

Acquire cluster

The Broker component must be able to acquire a cluster
of VMs on one of the enabled CSPs.

ENF_BROKER R3

Delete cluster

The Broker component must be able to delete a cluster of
VMs.

ENF_BROKER R4 | Add user The Broker component must be able to add a new user to
the available cluster of VMs.

ENF_BROKER R5 | Execute script on The Broker component must enable the execution of

node scripts on a cluster of VMs.

ENF_POOL_R1 Diversity A minimum (with respect to End-user’s requirements
and technological constraints) Level of Diversity must be
ensured, through the availability of a pool of different
web server engines for hosting End-user’s applications.

ENF_POOL_RZ2 Load balancing Load balancing features should be provided, to enable the
distribution of the workload generated by the End-user’s
web applications across multiple servers.

ENF_POOL_R3 Survivability A minimum (with respect to End-user’s requirements

SPECS Project - Deliverable 4.5.2

80

Secure Provisioning of Cloud Services based on SLA Management

and technological constraints) Level of Redundancy must
be ensured: in case some web containers become
unavailable, the End-user’s web application shall still run
on the other web containers belonging to the pool. If all
web containers in a pool fail, the End-user’s web
application will become unavailable until at least one of
those web containers become healthy again.

vulnerabilities and
misconfigurations

ENF_POOL_R4 Session sharing All web containers belonging to a pool must be able to
access the shared session variables saved into a
distributed caching system. This ensures session data
sharing among different web servers. Also this system
part exploits the advantages of replication.

ENF POOL_R5 Incident Incident management features must be provided, enabled

management by the interaction with the SPECS Monitoring module and
the Enforcement components, and consisting in isolating
the VMs affected /targeted by some incident while
ensuring business continuity to the End-user.

ENF TLS_R1 Translate TLS Based on high-level constraints and requirements, the
constraints TLS component must be able to generate technology

independent configuration parameters.

ENF_TLS_R2 Verify TLS The TLS component must be able to verify that the high-
constraints level constraints and requirements are valid and not

contradictory.

ENF_TLS_R3 Instantiate TLS Based on technology independent configuration
configuration parameters, the TLS component must be able to generate

technology dependent parameters, ready for deployment.

ENF_TLS_R4 Deploy TLS Taking as input the technology dependent configuration
configuration parameters, the TLS component must be able to

configure a target server.

ENF_TLS_R5 Probe TLS The TLS component must be able to periodically check
endpoint the actual exposed parameters by a TLS endpoint.
configuration

ENF _SVA_R1 Detect Software modules/libraries that should be upgraded to
vulnerabilities and | resolve known issues in older versions of the monitored
misconfigurations | software, as well as misconfigurations enabling known

vector attacks, must be detected.

ENF _SVA_R2 Report Software modules/libraries that need an upgrade and
vulnerabilities and | any detected misconfigurations must be reported to the
misconfigurations | Platform.

ENF_SVA_R3 Upgrade libraries | Upgrade or reconfiguration of the vulnerable libraries
and fix must be supported.
misconfigurations

ENF _SVA_R4 Visualize detected | A dashboard for the visualization of detected

vulnerabilities and misconfigurations as well as of the
policies and rules defined by the Enforcement module
must be provided.

ENF _CRYPTO_R1

Provide client-side
encryption tool as
a plugin/extension

The mechanism must provide client-side encryption in
the form of a plugin/extension to download and add to
the browser, in order to avoid MITM attacks. It needs to
be provided as a plugin or extension (Chrome) to avoid
modifications of the tool when it is being transferred to
the user’s machine.

ENF_CRYPTO_R2

Configure and

Encryption tools must be configurable. They should

SPECS Project - Deliverable 4.5.2

81

Secure Provisioning of Cloud Services based on SLA Management

deploy encryption | supportasymmetric/symmetric encryption, different key
tools management techniques, file sharing etc.

ENF_CRYPTO_R3 Encrypt data The mechanism should enable encryption of files - either
locally (end-to-end) or on server (depending on the
security requirements).

ENF_CRYPTO_R4 Decrypt data The mechanism should enable decryption of files.

ENF_AAA_R1 Support different The AAA mechanism should support different
authentication authentication sources, i.e., internal/external software
sources components providing authentication services (e.g., LDAP

server, DB, social networks).

ENF _AAA_R2 Manage different In case of multiple supported authentication sources, the
accounts for a user | AAA mechanism must properly manage the different

accounts associated to an End-user (for example, via a
federation identity).

ENF_AAA_R3 Link different The AAA mechanism must allow an End-user to create a
identities to a personal account on the target system, and to associate
single account one or more external identities to this account.

ENF AAA R4 Login The AAA mechanism must allow End-users owning a
valid account to login with such account or with any of
the other identities associated with it.

ENF_AAA_R5 Authenticate The AAA mechanism must apply access control policies
to an End-user, whenever it invokes a service provided
by the target system.

ENF_AAA_R6 Dynamically The AAA mechanism must envision a dynamic

manage access management of access control policies carried out by an
control policies administrator.

ENF_AAA_R7 Logout The AAA mechanism must provide a user with the
capability of logging out of a target system.

ENF_AAA_R8 Authentication and | The AAA mechanism must include authentication and
authorization authorization modules which are independent one from
independency the other and can be configured dynamically.

ENF_AAA_R9 Confidentiality and | The AAA mechanism itself must be protected from
integrity external compromise.

ENF_CRED_R1 Target service The Credential Service mechanism needs to implement
authentication the relevant part of the chosen target service
schemes support authentication schemes, namely the one involving the

usage of credentials.

ENF_CRED_R2 Access control The Credential Service mechanism needs to provide
policies to the support for limiting the usage of certain credentials to a
credentials usage | well-defined set of clients.

ENF_CRED_R3 Multiple The Credential Service mechanism needs to allow the
credentials for the | concurrent usage of different credentials for the same
same target target service.
service

ENF_CRED_R4 Credentials usage | The Credential Service mechanism needs to provide
auditing credentials usage auditing. It needs to provide enough

information to identify the software component
requesting access.

ENF_CRED_R5 Disjoint The Credential Service mechanism needs to separate the
credentials data actual credentials usage from their long term storage, in
management and | order to, possibly, prevent or reduce losses and risks in
storage case of successful attack on any of the credential service

SPECS Project - Deliverable 4.5.2

82

Secure Provisioning of Cloud Services based on SLA Management

components.

ENF_TOK_R1 Support offline The offline validation of tokens without calling the

token validation central validation service must be supported to provide
scalability: if every API request would require calling
central validation service, the validation service might
become a serious bottleneck.

ENF_TOK_R2 Send tokens in Tokens must be small enough to fitinto HTTP header.
HTTP header Indeed, putting the token in request body might be a

problem for methods that expect for example MIME type
image/jpg. Also, putting the token for example in query
string is not fully secure.

ENF TOK R3 Obtain security A centralized service that issues security tokens for
tokens issued by a | subjects and maintains the token revocation list must be
centralized service | provided. The security tokens must contain the claims

about the specified subject and must be stored in a
proper database. A client application that wants to invoke
a REST API adopting tokens for
authentication/authorization must be able to obtain, if
provided with valid credentials, the tokens to send with
the request.

ENF_TOK R4 Request, parse and | A client for requesting, parsing and validating tokens
validate tokens must be provided. It must enable offline validation of

token signatures and must be able to determine whether
a token has been revoked.

ENF_TOK_R5 Revoke tokens Tokens revocation must be supported if needed. It may
be carried out by marking the specified token in the
database as revoked and by storing its revocation date.
The revoked token remains in the database till the token
expiration.

ENF_TOK_R6 Generate token The possibility of retrieving all revoked tokens from the

revocation lists database must be supported, to enable the generation of
token revocation lists used to validate requests.

ENF_TOK_R7 Sign certificates The functionalities needed to sign a certificate (i.e. to
digitally sign a token) must be provided.

ENF_TOK_R8 Decode tokens Proper functionalities to decode tokens and retrieve the
required information from them must be provided.

ENF_TOK_R9 Determine access Security Tokens mechanism has to be able to determine
rights according to | access rights according to SLAs.

SLA

ENF_DOS_R1 Detect DoS attack | DoS attack detection features must be provided.

ENF_DOS_R2 Classify detected Detected DoS attacks must be correctly classified: there
DosS attacks are numerous DoS attack types based on consumption of

computational resources, disruption of configuration,
obstructing the communication media, etc.

ENF DOS_R3 Mitigate DoS Mitigation functionalities must be provided. Note that
attacks mitigation depends on type of attack (e.g,, filters may be

used to block illegitimate traffic, using reverse proxies).

ENF_DBB R1 Offer secure The mechanism must be able to automatically offer
storage secure storage in the cloud.

ENF_DBB_R2 Assure business The mechanism must be able to guarantee business
continuity with continuity with backup.
backup

SLANEG_R30 Remediation Enforcement should consider the renegotiation of an

SPECS Project - Deliverable 4.5.2

83

Secure Provisioning of Cloud Services based on SLA Management

alerts/violations).

through SLA existing SLA as a potential remedy to apply in case of
renegotiation alerts and violations.

SLANEG_R31 Alerts/violations A detected alert/violation might affect more than one
affecting multiple | element of the SPECS security SLA hierarchy.
elements of the Enforcement should consider interrelationships along
secure SLA SLA elements to choose the optimal redressing technique
hierarchy (e.g., renegotiation might help to manage multiple

SPECS Project - Deliverable 4.5.2

84

Secure Provisioning of Cloud Services based on SLA Management

Appendix 2. Secure web application checklist
Derived from OWASP Application Security Verification Standard 2.0 (2014).

a. Authentication Verification Requirements

ID Requirement

sc1 Verify all resources require authentication except those specifically intended to be
public (Principle of complete mediation).

SC2 Verify all authentication controls are enforced on the server side.

sc3 Verify all authentication controls (including libraries that call external authentication
services) have a centralized implementation.

SC4 Verify all authentication controls fail securely to ensure attackers cannot log in.
Verify all account identity authentication functions (such as registration, update profile,

SC5S forgot username, forgot password, disabled / lost token, help desk or IVR) that might
regain access to the account are at least as resistant to attack as the primary
authentication mechanism.

SC6 Verify users can safely change their credentials using a mechanism that is at least as
resistant to attack as the primary authentication mechanism.

SC7 Verify that all authentication decisions are logged. This should include requests with
missing required information, needed for security investigations.
Verify that account passwords are salted using a salt that is unique to that account (e.g.,

SC8 internal user ID, account creation) and use bcrypt, scrypt or PBKDF2 before storing the
password.

SC9 Verify that credentials, and all other identity information handled by the application(s),
do not traverse unencrypted or weakly encrypted links.

SC10 Verify that the forgotten password function and other recovery paths do not reveal the
current password and that the new password is not sent in clear text to the user.

sc11 Verify that username enumeration is not possible via login, password reset, or forgot
account functionality.

SC12 Verify there are no default passwords in use for the application framework or any
components used by the application (such as “admin/password”).
Verify that a resource governor is in place to protect against vertical (a single account
tested against all possible passwords) and horizontal brute forcing (all accounts tested

SC13 | with the same password e.g. “Password1”). A correct credential entry should incur no
delay. Both these governor mechanisms should be active simultaneously to protect
against diagonal and distributed attacks.

SC14 Verify that all authentication credentials for accessing services external to the
application are encrypted and stored in a protected location (not in source code).

SPECS Project - Deliverable 4.5.2

85

Secure Provisioning of Cloud Services based on SLA Management

SC15

Verify that forgot password and other recovery paths send a link including a time-
limited activation token rather than the password itself. Additional authentication
based on soft-tokens (e.g. SMS token, native mobile applications, etc.) can be required
as well before the link is sent over.

SC1e6

Verify that forgot password functionality does not lock or otherwise disable the account
until after the user has successfully changed their password. This is to prevent valid
users from being locked out.

SC17

Verify that there are no shared knowledge questions/answers (so called "secret”
questions and answers).

b. Access Control Verification Requirements

ID Requirement

Sc18 Verify that users can only access secured functions or services for which they possess
specific authorization.

SC19 Verify that users can only access secured URLs for which they possess specific
authorization.

SC20 Verify that users can only access secured data files for which they possess specific
authorization.
Verify that direct object references are protected, such that only authorized objects or

SC21 | data are accessible to each user (for example, protect against direct object reference
tampering).

SC22 | Verify that access controls fail securely.
Verify that all user and data attributes and policy information used by access controls

SC23 : e .
cannot be manipulated by end users unless specifically authorized.

SC24 | Verify that all access controls are enforced on the server side.

SC25 Verify that there is a centralized mechanism (including libraries that call external
authorization services) for protecting access to each type of protected resource.

SC26 | Verify that all access control decisions are logged and all failed decisions are logged.
Aggregate access control protection - verify the system can protect against aggregate or

Sc27 continuous access of secured functions, resources, or data. For example, possibly by the
use of a resource governor to limit the number of edits per hour or to prevent the entire
database from being scraped by an individual user.

SPECS Project - Deliverable 4.5.2

86

Secure Provisioning of Cloud Services based on SLA Management

c. Malicious Input Handling Verification Requirements

ID Requirement
SC28 Verify that the runtime environment is not susceptible to buffer overflows, or that
security controls prevent buffer overflows.
SC29 | Verify that all input validation failures result in input rejection.
SC30 | Verify that a character set, such as UTF-8, is specified for all sources of input.
SC31 Verify that all input validation or encoding routines are performed and enforced on the
server side.
SC32 Verify that a single input validation control is used by the application for each type of
data that is accepted.
SC33 | Verify that all input validation failures are logged.
SC34 Verify that all input data is canonicalized for all downstream decoders or interpreters
prior to validation.
Verify that the runtime environment is not susceptible to SQL Injection, or that security
SC35 .
controls prevent SQL Injection.
Verify that the runtime environment is not susceptible to OS Command Injection, or
SC36) C
that security controls prevent OS Command Injection.
Sc37 Verify that the runtime environment is not susceptible to XML External Entity attacks
or that security controls prevents XML External Entity attacks.
Verify that the runtime environment is not susceptible to XML Injections or that
SC38 . -
security controls prevents XML Injections.
If the application framework allows automatic mass parameter assignment (also called
automatic variable binding) from the inbound request to a model, verify that security
SC39 L . “ »” o« ”n «“ ”
sensitive fields such as “accountBalance”, “role” or “password” are protected from
malicious automatic binding.
Verify that for each type of output encoding/escaping performed by the application,
SC40 : . ; . o
there is a single security control for that type of output for the intended destination.

d. Cryptography at Rest Verification Requirements

ID Requirement

sca1 Verify that all cryptographic functions used to protect secrets from the application user
are implemented server side.

SC42 | Verify that all cryptographic modules fail securely.

SPECS Project - Deliverable 4.5.2

87

Secure Provisioning of Cloud Services based on SLA Management

SC43

Verify that access to any master secret(s) is protected from unauthorized access (A
master secret is an application credential stored as plaintext on disk that is used to
protect access to security configuration information).

SC44

Verify that all random numbers, random file names, random GUIDs, and random strings
are generated using the cryptographic module’s approved random number generator
when these random values are intended to be unguessable by an attacker.

SC45

Verify that cryptographic modules used by the application have been validated against
FIPS 140-2 or an equivalent standard.

SC46

Verify that cryptographic modules operate in their approved mode according to their
published security policies.

SC47

Verify that there is an explicit policy for how cryptographic keys are managed (e.g.,
generated, distributed, revoked, expired). Verify that this policy is properly enforced.

e. Error Handling and Logging Verification Requirements

ID Requirement
Verify that the application does not output error messages or stack traces containing

SC48 | sensitive data that could assist an attacker, including session id and personal
information.

SC49 | Verify that all error handling is performed on trusted devices

SC50 | Verify that all logging controls are implemented on the server.

SC51 | Verify that error handling logic in security controls denies access by default.

SC52 Verify security logging controls provide the ability to log both success and failure events
that are identified as security-relevant.
Verify that each log event includes: a timestamp from a reliable source, the severity
level of the event, an indication that this is a security relevant event (if mixed with other

SC53 | logs), the identity of the user that caused the event (if there is a user associated with the
event), the source IP address of the request associated with the event, whether the
event succeeded or failed, and a description of the event.

SC54 Verify that all events that include untrusted data will not execute as code in the
intended log viewing software.

SC55 | Verify that security logs are protected from unauthorized access and modification.

SC56 Verify that there is a single application-level logging implementation that is used by the
software.

scs7 | Verify that the application does not log application-specific sensitive data that could
assist an attacker, including user’s session identifiers and personal or sensitive

SPECS Project - Deliverable 4.5.2

88

Secure Provisioning of Cloud Services based on SLA Management

information. The length and existence of sensitive data can be logged.

SC58

Verify that a log analysis tool is available which allows the analyst to search for log
events based on combinations of search criteria across all fields in the log record format
supported by this system.

SC59

Verify that all non-printable symbols and field separators are properly encoded in log
entries, to prevent log injection.

SC60

Verify that log fields from trusted and untrusted sources are distinguishable in log
entries.

Sceé1

Verify that logging is performed before executing the transaction. If logging was
unsuccessful (e.g. disk full, insufficient permissions) the application fails safe. This is for
when integrity and non-repudiation are a must.

f. Data Protection Verification Requirements

ID

Requirement

SC62

Verify that the list of sensitive data processed by this application is identified, and that
there is an explicit policy for how access to this data must be controlled, and when this
data must be encrypted (both at rest and in transit). Verify that this policy is properly
enforced.

SC63

Verify that all sensitive data is sent to the server in the HTTP message body (i.e.,, URL
parameters are never used to send sensitive data).

SCé64

Verify that all cached or temporary copies of sensitive data stored on the server are
protected from unauthorized access or purged/invalidated after the authorized user
accesses the sensitive data.

SC65

Verify that there is a method to remove each type of sensitive data from the application
at the end of its required retention period.

SC66

Verify the application has the ability to detect and alert on abnormal numbers of
requests for information or processing high value transactions for that user role, such
as screen scraping, automated use of web service extraction, or data loss prevention.
For example, the average user should not be able to access more than 5 records per
hour or 30 records per day, or add 10 friends to a social network per minute.

g. Communications Security Verification Requirements

ID Requirement

Verify that a path can be built from a trusted CA to each Transport Layer Security (TLS)
SC67 . o . :

server certificate, and that each server certificate is valid.
SC68 | Verify that failed TLS connections do not fall back to an insecure HTTP connection.

SPECS Project - Deliverable 4.5.2

89

Secure Provisioning of Cloud Services based on SLA Management

SC69 Verify that TLS is used for all connections (including both external and backend
connections) that are authenticated or that involve sensitive data or functions.

SC70 | Verify that backend TLS connection failures are logged.

Sc71 Verify that certificate paths are built and verified for all client certificates using
configured trust anchors and revocation information.

SC72 Verify that all connections to external systems that involve sensitive information or
functions are authenticated.
Verify that all connections to external systems that involve sensitive information or

SC73 | functions use an account that has been set up to have the minimum privileges necessary
for the application to function properly.
Verify that there is a single standard TLS implementation that is used by the application

SC74 | thatis configured to operate in an approved mode of operation (See
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2 /FIPS14021G.pdf).

SC75 | Verify that specific character encodings are defined for all connections (e.g., UTF-8).

h. HTTP Security Verification Requirements

ID Requirement
SC76 Verify that the application accepts only a defined set of HTTP request methods, such as
GET and POST and unused methods are explicitly blocked.
Verify that every HTTP response contains a content type header specifying a safe
SC77
character set (e.g.,, UTF-8).
SC78 Verify that HTTP headers in both requests and responses contain only printable ASCII
characters.
Verify that HTTP headers added by a frontend (such as X-Real-IP), and used by the
SC79 -
application, cannot be spoofed by the end user.
SC80 Verify that the HTTP headers do not expose detailed version information of system
components.

i. Malicious Controls Verification Requirements

ID Requirement
scs1 Verify that no malicious code is in any code that was either developed or modified in
order to create the application.
Verify that the integrity of interpreted code, libraries, executables, and configuration
SC82 | .=~ e .
files is verified using checksums or hashes.

SPECS Project - Deliverable 4.5.2

90

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

Secure Provisioning of Cloud Services based on SLA Management

scs3 Verify that all code implementing or using authentication controls is not affected by any
malicious code.

SC84 Verify that all code implementing or using access controls is not affected by any
malicious code.

SC85 | Verify that all input validation controls are not affected by any malicious code.

SC86 Verify that all code implementing or using output validation controls is not affected by
any malicious code.

scg7 Verify that all code supporting or using a cryptographic module is not affected by any
malicious code.

Scss Verify that all code implementing or using error handling and logging controls is not
affected by any malicious code.

SC89 | Verify all malicious activity is adequately sandboxed.
Verify that sensitive data is rapidly sanitized from memory as soon as it is no longer

SC90 | needed and handled in accordance to functions and techniques supported by the
framework/library/operating system.

j. Business Logic Verification Requirements

ID

Requirement

SCca1

Verify the application processes or verifies all high value business logic flows in a
trusted environment, such as on a protected and monitored server.

S$C92

Verify the application does not allow spoofed high value transactions, such as allowing
Attacker User A to process a transaction as Victim User B by tampering with or
replaying session, transaction state, transaction or user IDs.

SC93

Verify the application does not allow high value business logic parameters to be
tampered with, such as (but not limited to): price, interest, discounts, PII, balances,
stock IDs, etc.

SC94

Verify the application has defensive measures to protect against repudiation attacks,
such as verifiable and protected transaction logs, audit trails or system logs, and in
highest value systems real time monitoring of user activities and transactions for
anomalies.

SC95

Verify the application protects against information disclosure attacks, such as direct
object reference, tampering, session brute force or other attacks.

SC96

Verify the application has sufficient detection and governor controls to protect against
brute force (such as continuously using a particular function) or denial of service
attacks.

SCca97

Verify the application has sufficient access controls to prevent elevation of privilege

SPECS Project - Deliverable 4.5.2

91

Secure Provisioning of Cloud Services based on SLA Management

attacks, such as allowing anonymous users from accessing secured data or secured
functions, or allowing users to access each other’s details or using privileged functions.

SC98

Verify the application will only process business logic flows in sequential step order,
with all steps being processed in realistic human time, and not process out of order,
skipped steps, process steps from another user, or too quickly submitted transactions.

SC99

Verify the application has additional authorization (such as step up or adaptive
authentication) for lower value systems, and / or segregation of duties for high value
applications to enforce anti-fraud controls as per the risk of application and past fraud.

SC100

Verify the application has business limits and enforces them in a trusted location (as on
a protected server) on a per user, per day or daily basis, with configurable alerting and
automated reactions to automated or unusual attack. Examples include (but not limited
to): ensuring new SIM users don’t exceed $10 per day for a new phone account, a forum
allowing more than 100 new users per day or preventing posts or private messages
until the account has been verified, a health system should not allow a single doctor to
access more patient records than they can reasonably treat in a day, or a small business
finance system allowing more than 20 invoice payments or $1000 per day across all
users. In all cases, the business limits and totals should be reasonable for the business
concerned. The only unreasonable outcome is if there are no business limits, alerting or
enforcement.

k. Files and Resources Verification Requirements

ID Requirement
Verify that file names and path data obtained from untrusted sources is canonicalized to
SC101 L
eliminate path traversal attacks.
SC102 Verify that files obtained from untrusted sources are scanned by antivirus scanners to
prevent upload of known malicious content.
Verify that parameters obtained from untrusted sources are not used in manipulating
SC103 | filenames, pathnames or any file system object without first being canonicalized and
input validated to prevent local file inclusion attacks.
Verify that parameters obtained from untrusted sources are canonicalized, input
SC104 | validated, and output encoded to prevent remote file inclusion attacks, particularly
where input could be executed, such as header, source, or template inclusion
SC105 Verify that web or application server is configured by default to deny access to remote
resources or systems outside the web or application server.
SC106 Verify the application code does not execute uploaded data obtained from untrusted
sources.

SPECS Project - Deliverable 4.5.2

92

