
Secure Provision and Consumption
in the Internet of Services

FP7-ICT-2009-5, ICT-2009.1.4 (Trustworthy ICT)

Project No. 257876

www.spacios.eu

Deliverable D4.1
SPaCIoS Tool mock up, Technology survey,

Validation methodology patterns v.1

Abstract
In this deliverable, we provide a mock up of the SPaCIoS Tool, illustrating its
main functionalities and how the user will interact with it, a survey of the ex-
isting technology, as well as a first version of a collection of general validation
methodology patterns that comprises of two specific patterns corresponding
to automated test case generation and interactive penetration testing.

Deliverable details
Deliverable version: v1.1 Classification: public
Date of delivery: 10.10.2011 (v1.0: 06.10.2011) Due on: 30.09.2011
Editors: all Total pages: 38

Project details
Start date: October 01, 2010 Duration: 36 months
Project Coordinator: Luca Viganò
Partners: UNIVR, ETH Zurich, INP, KIT, UNIGE, SAP, Siemens, IeAT

http://www.spacios.eu
www.spacios.eu

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 2/38

(this page intentionally left blank)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 3/38

Contents
1 Introduction 6

2 Overview of the SPaCIoS Tool 8
2.1 Components . 8
2.2 Example of Interaction between the Security Analyst, the SPa-

CIoS Tool, and the SUV . 10

3 Technology Survey 15
3.1 Testing techniques . 15

3.1.1 Black-box testing (functional testing) 15
3.1.2 Source code analysis and white-box testing 15
3.1.3 Model-based testing 16

3.2 Tools type . 16
3.2.1 Port Scanners . 17
3.2.2 Vulnerability Scanners 17
3.2.3 Application Scanners 18
3.2.4 Web Application Assessment Proxy 18
3.2.5 Packet sniffer (protocol analyzer) 19

3.3 Tools survey . 19
3.4 Conclusion . 19

4 Validation methodology patterns 22
4.1 Automated test case generation 22
4.2 Interactive penetration testing 24

5 Conclusion 26

A Attack methodology 27

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 4/38

List of Figures
1 The SPaCIoS Tool and its interplay with the Security Analyst

and the SUV . 12
2 Architecture of the the Property-driven and Vulnerability-driven

Testcase Generation Component 13
3 Interaction between the Security Analyst, the SPaCIoS Tool,

and the SUV . 14
4 Validation methodology: penetration testing approach using

the library of attack patterns 25

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 5/38

List of Tables
1 Some tools categorized by their behavior 20
2 Some tools categorized by their potentiality 21

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 6/38

1 Introduction
SPaCIoS has been developing and will develop a number of property-driven
security testing and vulnerability-driven testing techniques. Automated sup-
port for these techniques will be provided by generating test cases with model
checking and related automated reasoning techniques, applied to a model of
the System Under Validation (SUV, although we will also synonymously
speak of System Under Testing, SUT), the security goals, and a model of
the attacker. The information that serves as input for the analysis (i.e., the
security goals, the model of the attacker, and the model of the SUV) is typi-
cally provided by the Security Analyst, although in specific situations it will
be possible to automatically derive the model of the SUV by taking advan-
tage of behavioral service model specifications or by using model inference
techniques that we are also developing.

In order to assess the effectiveness of the validation techniques developed
within the project, we will implement and integrate them into the SPaCIoS
Tool and apply the tool to a number of industrial-strength use cases from
IoS scenarios. The architecture of the SPaCIoS Tool is depicted in Figure 1,
and described in more detail in the following sections. In a nutshell, the tool
takes as input a formal description of the SUV, the expected security goals,
and a description of the capabilities of the attacker, and then automatically
generates and executes a set of test cases on the SUV.

The architectural view of Figure 1 provides a preliminary and abstract
description of the interplay among the techniques and libraries developed in
the context of the project. In this deliverable, we present a more concrete
architectural view of the tool that encompasses a description of the function-
alities provided by the components as well as of their interfaces. In particular,
in Section 2, we explain the main functionalities of the SPaCIoS Tool and
their interplay with the Security Analyst and the SUV. This architecture will
be used as a reference model for the integration that will be carried out in
WP 4 (of which this deliverable is a part) of the prototype techniques and
libraries developed in WP 2 and WP 3.

Then, in Section 3, we give a survey of existing penetration testing tools,
along with the techniques used during the tests and the differences between
tools. This survey results from a thorough analysis of the available open-
source security testing tools that we carried out in order to assess the state-
of-the-art technologies best suited to our task.

In Section 4, we provide a first version of a collection of general valida-
tion methodology patterns: we define two specific validation methodology
patterns, corresponding to automated test case generation and interactive
penetration testing.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 7/38

We conclude by summarizing the main issues and giving a brief descrip-
tion of future work in WP 4 in Section 5, and by describing an attack method-
ology in Appendix A.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 8/38

2 Overview of the SPaCIoS Tool
The SPaCIoS Tool mock up we present in this deliverable consists of a re-
fined version of the architecture illustrated in the Description of Work, a
presentation of the functional behavior of the component modules as well
as of the workflow encompassing the internal functioning of the tool and its
interaction with the Security Analyst and the SUV. The architecture of the
SPaCIoS Tool is depicted in Figure 1, which refines the one given in the DoW
and in previous deliverables. In Section 2.1, we present the components of
the tool and then, in Section 2.2, we illustrate an example of interaction
between the SPaCIoS Tool and the Security Analyst as well as that between
the SPaCIoS Tool and the SUV. An example of application of the SPaCIoS
Tool is given in [29, §10.2].

2.1 Components
User Interface. It is the interface component between the Security Ana-
lyst and the main functionalities offered by the SPaCIoS Tool. The Security
Analyst uses the User Interface to (1) provide a formal model of the system
under test and the environment, and the expected security properties, (2) de-
fine the correspondence between the formal model and the SUV, (3) retrieve
information on the status of the SPaCIoS Tool, and (4) execute, monitor,
and debug the tests.

Property-driven and Vulnerability-driven Testcase Generation. This
module is in charge of the generation of the testcases starting from a formal
model of the system under test and its environment and a description of the
expected security property (or, dually, of a security weakness). The testcases
generated are such that their execution should lead to the discovery of viola-
tion of the security property (or should confirm the existence of the security
weakness, respectively).

Libraries There are four different categories of elements in the library com-
ponent:

• Vulnerabilities (see [28])

• Attack Patterns (a set of rules for describing an attack [5])

• Security goals (see [28])

• Attacker models (see [28])

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 9/38

All these sets will be used as input for the Property-driven and Vulnerabili-
ty-driven test case generation component. Moreover, Attack Patterns will be
also used to guide the analyst in the iterative penetration testing phase (see
Section 4.2) and in the refinement of abstract traces involving respectively
the User interface and the Test Execution Engine. In both cases, Attack
patterns will be used as inputs.

Model Inference and Adjustment. This component has the twofold
task of building a formal model of the system under test and of the envi-
ronment, and to adjust the available one. The construction of the model is
necessary whenever no model is initially available. This is performed off-line,
i.e. before starting the testcase generation and testing the SUV. Model ad-
justment is instead an online activity which is triggered when the execution
of a test reveals a discrepancy between the model and the system under test
and/or the environment.

Test Execution Engine. The testcases are finally executed by the Test
Execution Engine (TEE) by handling the exchange of messages with the
SUV. The TEE relies on the services offered by a Test Driver, an API offer-
ing a number of useful functionalities for parsing and generating the actual
messages exchanged between SPaCIoS Tool and the SUV.

The internal architecture of the Property-driven and Vulnerability-driven
Testcase Generation component is depicted in Figure 2. The functionalities
offered of its sub-components is briefly described as follows.

Abstract Trace Generation via Model Checking. It takes a formal
model of the SUV and of the environment (in the form of a labeled transition
system) and the expected security properties (expressed as a LTL formula) as
input and systematically explores the execution traces of the system looking
for a violation of the properties. On demand, the model checker is also
capable to enumerate all such execution traces.

Model Mutation. When the model-checker does not report any attack
trace, potential faults are injected into the model such that the model-checker
can find some attack traces to try on the system. The mutation operators
represent known vulnerabilities that come from a priori knowledge.

Property Rewriting. When the model-checker does not report any attack
trace for the LTL formula Φ that expresses the expected security property,

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 10/38

the property Φ is rewritten into an LTL formula Ψ. The property Ψ is
in separated form, such that some future condition F implies some past
condition P . Due to the specific choice of Ψ, each (finite) abstract trace
in the model that can be extended to satisfy F has to satisfy P ; else, the
property Φ is violated. Therefore, by model checking ¬F we find an abstract
trace in the model that shows F is reachable (otherwise, the model satisfies
Φ vacuously). By projecting the trace reaching F on the SUV, we check
whether, or not, P holds in the trace exhibited by SUV.

Testcase Generation The abstract trace generated so far specifies the
incoming and the outgoing messages for each step but it does not specify
how they should be checked and generated, nor the way in which the inter-
nal state of the principals should be updated. For this reason the model is
enriched with annotations that tell the TEE how to verify (respectively, gen-
erate) incoming (respectively, outgoing) messages by using the functionalities
offered by the Test Driver. Moreover, additional steps can also be added in
the abstract trace in order to test some specific vulnerabilities that can affect
the SUV (vulnerability-driven testing). For instance, we envision that attack
traces can be transformed in order to reproduce attack patterns available in
the Libraries. Finally, the execution trace is projected on the input/output
behavior of the SUV to produce the corresponding testcase.

2.2 Example of Interaction between the Security An-
alyst, the SPaCIoS Tool, and the SUV

An example of interaction between the Security Analyst, the SPaCIoS Tool,
and the SUV is as follows:

1 Formal Modeling. The Security Analyst specifies a formal model of
the system under test and of the environment along with the expected
security properties. The analyst also specifies the scenario to be con-
sidered in the analysis, i.e. the set of involved principals and the roles
played in the system.

2 Model Inference or Adjustment. If no model is provided by the Se-
curity Analyst, model inference techniques are applied in the attempt
to automatically build a model of the system under test and of the
environment; otherwise, execution continues with property-driven and
vulnerability-driven testcase generation.

3 Model Mutation. Vulnerabilities are injected into the model.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 11/38

4 Property Rewriting. The LTL formulae specifying the expected security
properties as rewritten in separated form.

5 Abstract Trace Generation. Abstract traces are automatically gener-
ated by invoking a model checker. The model checker systematically
explores the model looking for abstract traces witnessing the violation
of the expected security properties. If no such a trace is found then
execution terminates, otherwise these traces are returned. Notice that
traces are abstract at this point, in the sense that only the pattern of
the messages exchanged between the principals are specified.

6 Definition of the SUV. The Security Analyst specifies which principals
are in the SUV and defines the correspondence between the model and
the SUV. This amounts to specifying which entities of the model belong
to SUV, the concrete configuration of SUV (i.e., the IP addresses and
port numbers of services, etc.), as well as the information of the Point
of Control and Observation (PCO) (i.e., which interface we can inject
(observe) messages to (from, resp.)).

7 Testcase Generation. Abstract traces are refined into concrete testcases
by adding program fragments that will be used during the execution
of the test to check if incoming messages have the expected form and
to generate the outgoing messages and by projecting the traces on the
input/output behavior of the SUV.

8 Test Execution. The concrete execution traces are projected on and
then executed against the SUT. If a discrepancy between the model and
the actual system is detected, then the model inference and adjustment
module is invoked to rectify the model.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 12/38

Legend :
Test Stub

System Under
Validation (SUV)

Model of
the SUV

Abstract execution trace Test case

The SPaCIoS Tool

Test Execution Engine

Vulnerabilities
Attack Patterns
Security Goals

Attacker Models

User Interface

Model of the
SUV

Security
goals

User
guidance

Security
Analyst

Model inference
and adjustment

Property-driven and
vulnerability-driven
test case generation

Libraries

Te
st

 R
es

ul
ts

Model of
the attacker

Figure 1: The SPaCIoS Tool and its interplay with the Security Analyst and
the SUV

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 13/38

Mutate Model Rewrite Property

Abstract Trace Generation

Testcase Refinement
and ImprovementTestcase Generation

Security
Goals

Model of
Attacker

User Guidance

Abstract trace

Concrete testcase

Model of
System

Property-driven and vulnerability-driven testcase generation

Figure 2: Architecture of the the Property-driven and Vulnerability-driven
Testcase Generation Component

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 14/38

Model
available?

Mutate model Rewrite property

Abstract Trace Generation

Testcase Generation

Execute tests

Discrepancy
detected?

Infer/adjust model

no

yes no

Formal Modeling

Define SUV

Any abstract
trace?

yes

End

Property-driven and vulnerability-driven testcase generation
8

6

7

5

43

2

1

yes

no

Print Verdict

Figure 3: Interaction between the Security Analyst, the SPaCIoS Tool, and
the SUV

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 15/38

3 Technology Survey
In this section, we give a survey about penetration testing tools, along with
the techniques used during the tests and the differences between tools.

In Section 3.1, we present three main testing techniques used in several
different tools. In Section 3.2, we give a first raw classification for security
tools and we list some tools currently available to security analysts. We fi-
nally categorized these tools with respect to some parameters (like performing
the real attack or API capability and so on) in Section 3.3.

3.1 Testing techniques
There exist several methodologies used by different tools for testing a system,
for example: Black-box testing, source code analysis or model-based testing.
In the following sections, we will give an overview of these approaches and
we will categorize them based on the knowledge needed for using each tool
(e.g. in black box testing we don’t have the knowledge of the application
source code).

3.1.1 Black-box testing (functional testing)

We use the term “black box testing” for describing test methods that are not
based directly on application architecture source code. This term connotes
a situation in which either the tester does not have access to the source code
or the details of the source code are irrelevant to the properties being tested.

In this scenario the tester acquires information by testing the system
using test cases; input and the expected output. All the tests are carried out
from the user point of view (the external visible behavior of the software),
for example, they might be based on requirements, protocol specifications,
APIs, or even attempted attacks.

This kind of tests, simulates the process of a real hacker but they are
time-consuming and expensive.

3.1.2 Source code analysis and white-box testing

Source code analysis (see, e.g., [6]) is the process of checking source code for
coding problems based on a fixed set of patterns or rules that might indicate
possible security vulnerabilities. This process is a subset of white-box testing
(see, e.g., [15]), which is a method of testing applications by checking the
structure starting from the source code.

These testing techniques are interesting and useful but we mention them
in this section only for completeness as they have not (yet) been the focus

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 16/38

of our project. Their investigation will be carried out in the final two years
of SPaCIoS, especially thanks to the addition of the new partner IeAT (as
described in the amended description of work effective from October 1, 2011).

3.1.3 Model-based testing

Model-Based Testing (MBT) consists in a variant of software testing in which
a model of the system under testing (SUT) is used to derive test cases,
namely pairs of inputs and (expected) outputs, for its implementation. The
purpose of MBT, as for software testing, is to generate a test suite (a set
of test cases) accordingly to a specific criterion and to execute it on the
SUT in order to acquire more confidence about the correct behavior of a
system implementation, or to discover failures (i.e., unexpected behaviors).
Advantages of adopting MBT in contrast of other testing approaches that
do not rely on an abstract model of the SUT, are many-fold and mainly
related to the involvement of Model Checkers in the testing process. The
most important advantage is the possibility to generate test cases having
a specific purpose in an automated way, thanks to the capability of the
Model Checker to provide attack traces. It is indeed possible to formalize
the purpose of a test suite in terms of goals and use them, with the model
of the SUT, in order to cast the test case generation problem as a model
checking problem. For example, in the context of coverage testing, one can
generate abstract tests by using goals checking the execution of transitions.
By doing so, the Model Checker will provide every execution trace including
such transition.

In the context of SPaCIoS, we are interested in security testing and we are
going to use two techniques of MBT, namely Mutation and LTL Separation
(which are described in Section 4).

In general, MBT covers three majors tasks: automatic generation of ab-
stract test cases from models, concretization of abstract tests in order to
obtain executable tests, and theirs execution on the SUT by using manual
or automatic means.

3.2 Tools type
In the previous section we have seen which methods are used by tools in
order to test applications. In this section we will use a different approach.
In fact, as parameters, we will consider what kind of information is retrieved
during test and what kind of tests are performed.

Following the partition from [34] we have categorized tools as following:

• port scanners,

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 17/38

• vulnerability scanners,

• application scanners,

• web application assessment proxy,

• packet sniffer.

This classification is not exclusive (some tools can be in more than one cat-
egory) but it cover all the security-tools nowadays available.

3.2.1 Port Scanners

Port scanning tools are used to gather information on the target of the test.
Specifically, port scanners attempt to locate which network services are avail-
able on each target host. They do this by probing each of the designated (or
default) network ports or services on the target system.

Most can also target a specified list of ports and can be configured for
setting the speed and ports sequence that they have to scan. Additionally,
most port scanners are able to perform a range of different varieties of port
probes. They can have the ability to deduce the operating system type and
often the version number based on watching the empirical behavior that it
exhibits when probed with variations of TCP flag settings.

3.2.2 Vulnerability Scanners

The primary distinction between a port scanner and a network-based vul-
nerability scanner is that vulnerability scanners attempt to exercise (known)
vulnerabilities on their targeted systems, whereas port scanners only produce
an inventory of available services.

They provide an essential means of meticulously probing each and every
available network service on the targeted hosts. Vulnerability scanners work
from a database of documented network service security defects, exercising
each defect on each available service of the target range of hosts.

Traditional vulnerability scanners are generally able to scan only target
operating systems and network infrastructure components, as well as any
other TCP/IP device on a network, for operating system level weaknesses.
They are not able to probe general purpose applications, as they lack any
sort of knowledge base of how an unknown application functions.

Some vulnerability scanners are able to attempt to exploit network trust
relationships by recursively scanning the targeted network on each compro-
misable host.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 18/38

Host-based vulnerability scanners scan a host operating system for known
weaknesses and un-patched software, as well as for such configuration prob-
lems as file access control and user permission management defects. Although
they do not analyze application software directly, they are useful at finding
mistakes made in access control, configuration management, and other con-
figuration attributes, even at an application layer.

3.2.3 Application Scanners

Taking the concept of a network-based vulnerability scanner one step further,
application scanners began appearing several years ago. These attempt to do
probing of general purpose web-based applications by attempting a variety
of common and known attacks on each targeted application and page of each
application.

Most application scanners can observe the normative functional behavior
of an application and then attempt a sequence of common attacks against
the application. The attacks include buffer overruns, cookie manipulation,
SQL insertion, cross-site scripting (XSS), and the like.

Since the testing is still performed in an entirely black box manner, the
utility of such tools is greatly diminished to any serious testing process.

That is, although failing any of the tests is demonstrably a bad situation,
passing all of the tests can only provide, at best, a misplaced sense of security.

3.2.4 Web Application Assessment Proxy

Although they only work on web applications, web application assessment
proxies are perhaps the most useful of the vulnerability assessment tools
listed here. Assessment proxies work by interposing themselves between the
tester’s web browser and the target web server. Further, they allow the tester
to view and manipulate any and all data content flowing between the two.
This gives the tester a great deal of flexibility in trying different “tricks”
to exercise application weaknesses in the application’s user interface and
associated components. This level of flexibility is why assessment proxies are
considered essential tools for all black box testing of web applications.

For example, the tester can view all cookies, hidden HTML fields, and
other data in use by a web application and attempt to manipulate their
values to trick the application into allowing access where the tester should
not be able to get to. Changing cookie values such as “customerID” can have
startling results on poorly developed applications.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 19/38

3.2.5 Packet sniffer (protocol analyzer)

Packet sniffers are commonly used to intercept and log traffic passing over a
digital network or part of a network. The sniffer capture every packet and,
if needed, decodes it showing the values of various field in the packets.

The captured information is decoded from raw digital form into a human-
readable format that permits users of the packet sniffer to easily review the
exchanged information. Packet sniffer vary in their abilities to display data
in multiple views, automatically detect errors, determine the root causes of
errors, generate timing diagrams, etc.

Protocol Analyzers can also be hardware based, either in probe format,
or as is increasingly more common combined with a disk array. These devices
record packets (or a slice of the packet) to a disk array. This allows historical
forensic analysis of packets without the user having to recreate any fault.

3.3 Tools survey
Following the initial categorization given in Section 3.1 and Section 3.2, we
have collected some tools in Table 1.

Tools in the Table 1 are quite different and some of them costs money
(free limited/demo/trial versions sometimes are available). We can see that
the majority of tools belongs to the “Application scanners” category: a first
way to read this data is the fact that this kind of tools are very interesting
for both white hat and black hat community.

After this previous (generic) distinction we will go a little bit into details.
In Table 2 we have categorized tools listed in Table 1 with respect to the
ability of performing some kind of actions.

From the data collected in Table 2, together with data from Table 1, some
interesting facts arise:

• Tools have different goals and capability;

• Some feature cross the boundaries of the categorization;

• The most commonly used tools cannot handle a model;

• There is a balance between tools that can or cannot perform attacks.

3.4 Conclusion
In this section we have given an overview of the most used security tools, re-
garding their use and their capabilities. From this point of view, the SPaCIoS
Toolwill have characteristic in common with many tools we have previously

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 20/38

A B C D E
Nmap [19] X
Scapy [4] X
Tenable Nessus [22] X
Core Impact [33] X
Qualys’s QualysGuard [25] X
ISS’s Internet Scanner [25] X
Nikto [31] X
Wikto [18] X
Maltego [20] X
SPI Dynamics’s WebInspect [10] X
Rational Appscan [13] X
N-STEALTH [21] X
Metasploit [26] X
Canvas [14] X
Acunetix free ed wvs [1] X
Hailstorm [12] X
Beef [3] X
Wapiti [32] X
owasp lapse [16] X
Paros Proxy [7] X
OWASP’s WebScarab [23] X
Burpsuite [17] X
Acunetix wvs [2] X
Grendel-Scan [11] X
PAROS pro desktop [7] X
Selenium [27] X
Ettercap [8] X
Firesheep [9] X
Wireshark [35] X

Table 1: Some tools categorized into: A - Port scanners, B - Vulnerability
scanners, C - Application scanners, D - Web application assessment proxy,
E - Packet sniffer.

appointed. We can say that the SPaCIoS Toolwill be a sort of hybrid, taking
the best from all the tools nowadays available, and adding feature like the
testcase generation via model checking or interactive penetration testing.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 21/38

A B C
Nmap X
Scapy X X
Tenable Nessus X
Core Impact
Qualys’s QualysGuard X
ISS’s Internet Scanner
Nikto
Wikto
Maltego
SPI Dynamics’s WebInspect X X
Rational Appscan X
N-STEALTH X
Metasploit X X
Canvas X
Acunetix free ed wvs
Hailstorm
Beef X
Wapiti
owasp lapse
Paros Proxy
OWASP’s WebScarab X X
Burpsuite X
Acunetix wvs
Grendel-Scan
PAROS pro desktop
Selenium X X
Ettercap X X
Firesheep X X
Wireshark

Table 2: Some tools categorized into: A - Scripting / API capabilities, B -
handle a model, C - perform attacks.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 22/38

4 Validation methodology patterns
As the architecture of the SPaCIoS tool suggests (see Section 2), there are
different approaches and techniques employed together in order to achieve the
project objectives. All these techniques constitute the Validation methodol-
ogy patterns of the SPaCIoS project and consequently of the tool we will
implement in the next two years.

The validation methodology encompasses the automated test case gener-
ation and the interactive penetration testing respectively described in Sec-
tion 4.1 and in Section 4.2. The first methodology comprises three techniques
for the generation of test cases, Model-Checking based Testing, Mutation and
LTL separation. The second methodology is based on an attack methodol-
ogy which is adopted in order to provide guidelines to perform a penetration
testing on the SUV.

4.1 Automated test case generation
Model-Checking based Testing

As a security validation pattern, the following steps are involved in the model-
checking based testing:

• Formal Modeling. The first step is the definition of an ASLan++ spec-
ification of SUV with expected security properties. This is done in a
way that (1) the size of the model could be handled by model-checker,
(2) the system aspects relevant for the expected security properties are
present in the model, and (3) the attack traces returned by the model
checker (if any) contain information useful to automate the execution
of the test. The Refinement Mapping between the formal model and
the actual system is also specified.

• Model Checking. The ASLan++ specification is submitted to the
model checker, which may find an Abstract Attack Trace as the re-
sult of the violation of certain security properties. In case the expected
security properties are not violated, this security validation pattern
terminates.

• Trace Improvement. More transitions are added into Abstract Attack
Trace to obtain a more specific attack trace, the Improved Attack Trace.
This is done by taking into account (1) the guidance of the security an-
alyst, (2) the Refinement Mapping, namely a set of information char-
acterizing the SUT, (3) the formal model, and (4) the libraries of the
SPaCIoS tools.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 23/38

• Model Instrumentation. The model is annotated with information
about how to (1) generate messages for the SUV, (2) parse messages
from the SUV, and (3) update the internal state of the principals. In
particular, each component a of a messages is annotated as `a#pa where
pa is a program fragment that has to be executed by the Test Execution
Engine in order to (1) calculate the concrete value of a (for messages
delivered to SUV), or (2) checking the compliance of a concrete mes-
sage with the structure of the expected one (for messages coming from
SUV). `a is a pointer to an internal location of the SPaCIoS tool where
the corresponding value, obtained by executing pa, is stored.

• Test Execution. The Test Execution Engine takes Refinement Map-
ping, Instrumented Model, and Improved Attack Trace as input, ex-
ecutes the test by simulating the principals of the model that do not
belong to the SUV and by executing the attack trace on the SUV. As
the result, a test verdict is obtained.

Mutations

When the model of the SUV is secure, the model-checker does not report any
attack trace. In order to test the SUT, we need to introduce potential faults
in the model such that the model-checker finds some attack traces to try on
the system. The fault injection is done via mutation operators at the model
level. Instead of using any mutation operator allowed by the description
language (ASLan++), a set of mutation operators is selected that represent
known vulnerabilities coming from a priori knowledge.

The current mutation operators we have studied so far all reflect autho-
rization flaws. They are based on manipulating checks at the model level that
should guarantee authorization properties. In practice this could be reflected
by accepting any value for a received variable instead of a specific value, or
by commenting out security-related conditions based on fact statements. Un-
fortunately the current mutation operators do not apply to any ASLan++
model in general. Therefore we are looking for ways to generalize this but
the most promising direction is to provide guidelines to modelers. Thus, such
mutation operators could be automatically applied to any ASLan++ model
that follows those guidelines.

LTL Separation

If the model of the SUV satisfies the desired security properties, then model-
checking is unable to produce any Abstract Attack Trace. This does not
necessarily mean the SUV satisfies the desired properties, as there may be a

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 24/38

discrepancy between the model and the SUV. LTL separation can then be
used to generate abstract test cases by checking the model of the SUV with
respect to “separated” security properties.

A desired security property is expressed in the form of an LTL formula Φ.
LTL separation is used to obtain a formula Ψ in a separated form, such that
some future condition F implies some past condition P . Due to the specific
choice of Ψ, each (finite) Abstract Trace in the model that can be extended
to satisfy F has to satisfy P ; else, the property Φ is violated.

This information reveals which Abstract Traces are more likely to have
concretizations in the SUV violating the security property. Moreover, for
each such Abstract Trace, there is a corresponding finitely testable condition
given by P .

4.2 Interactive penetration testing
In addition to the techniques described above, we also envision the possi-
bility to stress the SUV in order to perform a penetration testing following
an attack methodology. We are willing to adopt the attack methodology
described in [30], integrated with the library of attack patterns, as one of the
methodologies to validate the SUV with the SPaCIoS tool. This is possible
thanks to the fact that an attack strategy can be reused as a way to test if
the SUT implements countermeasures capable of protecting its assets from
common types of attack. In other words, if all different attempts to attack
the SUV fails, the security analysts become more confident about the cor-
rectness of the SUV with respect to the security requirements it is supposed
to meet.

The interactive penetration testing validation pattern is depicted in Fig-
ure 4 where the big arrow indicates the order of steps composing the at-
tack strategy e.g. analyze the application has to be executed before test the
client-side controls. Other arrows indicate that elements of the library of
attack patterns can be used in order to narrow subtasks composing the steps
of the methodology: sequences of actions belonging to an attack pattern
can be adopted to complete subtasks and, as explained in the following, to
guide the analysts in performing penetration testing. Indeed, we envision
the possibility to guide security analysts in the penetration testing process
step-by-step thanks to the adoption of attack patterns, given that a current
state is provided to the SPaCIoS tool from the analyst. Namely, given the
set of steps already performed (from the attack methodology) and the inter-
actions with the SUV already occurred, it could be possible to look into the
set of libraries of attack patterns in order to provide security analysts with
a list of suggested steps. These suggested steps will be a possible way to

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 25/38

Map
application

content

ATTACK
PATTERNS
LIBRARY

VALIDATION METHODOLOGY

Test
client-side
controls

Attack
patterns

Attack
patterns

Attack
patterns

Attack
patterns

Analyze
the

application

Test for
logic flaws

Test
authentication

Test
session

management

Test access
controls

Input
handling

Misc.
checks

Figure 4: Validation methodology: penetration testing approach using the
library of attack patterns

proceed with the penetration testing, accordingly to the attack methodology
described in Appendix A.

As already mentioned, the attack methodology described in Appendix A
reflects the approach followed in [30] to attack a Web application. Although
the techniques we considered could be seen as a subset of the ones contained
in [24], they are nevertheless a core set suitable for the current stage of
the SPaCIoS project. In particular, they will be the basis for defining the
first set of attack patterns in the library component of the SPaCIoS tool
(see Figure 1). We are also going to extend the described techniques in order
to cover as much as possible the penetration testing features of [24] in the
remaining two years of the project.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 26/38

5 Conclusion
We have presented an overview of the SPaCIoS Tool with a short description
of each component, as well as its interaction with the Security Analyst and
the SUV. In addition to clarifying the role of the different components of the
architecture of the tool, this deliverable will provide a reference model for
the integration that will be carried out in WP 4 of the prototype techniques
and libraries developed in WP 2 and WP 3.

We have also given a survey about penetration testing tools, along with
the techniques used during the tests and the differences between tools. We
expect that this will provide the basis for a more in depth comparison of the
SPaCIoS Tool with such tools, as well as possible cross-fertilization of ideas
and combination/integration of SPaCIoS with other tools.

The first version of the collection of general validation methodology pat-
terns that we have given (comprising of automated test case generation and
interactive penetration testing) will be extended in future deliverables with
additional patterns together with a specification of the use case scenarios for
which they are best suited. We expect that other, more sophisticated pat-
terns, lying in the continuum between automated test case generation and
interactive penetration testing, will be identified as the SPaCIoS Tool will
be applied against the problem cases identified in WP 5.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 27/38

A Attack methodology
Identify application content The first step of attacking an application
is to gather information about it, in order to gain a better understanding of
what one is up against.

1. Discover content:

• Hidden content: Confirm how the application handles requests for
“nonexistent items”. Obtain listings of common file and directory
names, and common file extensions. Try to understand the naming
conventions used by application developers. Review all client-side code
to identify any clues about hidden server-side content, including HTML
comments and disabled form elements.

• Default content: Detect any default or well-known content that is
present.

2. Non-standard access methods

• Identifier-specified functions: Identify any instances where specific ap-
plication functions are accessed by passing an identifier of the function
in a request parameter. Compile a list of common function names or
cycle through the syntactic range of identifiers observed to be in use.

• Debug parameters: Choose one or more application pages or func-
tions where hidden debug parameters may be implemented. Review
the application’s responses for any anomalies that may indicate that
the added parameter has had an effect on the application’s processing.

Analyze the application
1. Identify the core functionality that the application was created for.

• Identify the core security mechanisms employed by the application and
the ways they work.

• Understand the key mechanisms that handle authentication, session
management, and access control, and the functions that support them,
such as user registration and account recovery.

• Identify all of the more peripheral functions and behavior (e.g. redi-
rections, off-site links, error messages, and administrative and logging
functions).

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 28/38

2. Identify data entry points

• Identify all of the different entry points that exist for introducing user
input into the applications processing, including URLs, query string
parameters, POST data, cookies, and other HTTP headers processed
by the application.

• Examine any customized data transmission or encoding mechanisms
used by the application.

• Identify any out-of-band channels via which user-controllable or other
third-party data is being introduced into the application’s processing.

3. Identify technologies

• Identify each of the different technologies used on the client side.

• As far as possible, establish which technologies are being used on the
server side.

• Try to fingerprint the web server.

• Identify any interesting-looking script names and query string param-
eters that may belong to third-party code components.

4. Identify the attack surface.

• Try to ascertain the likely internal structure and functionality of the
server-side application and the mechanisms that it uses behind the
scenes to deliver the behavior that is visible from the client perspective.

• For each item of functionality, identify the kinds of common vulnera-
bilities that are often associated with it.

• Formulate a plan of attack, prioritizing the most interesting looking
functionality and the most serious of the potential vulnerabilities asso-
ciated with it.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 29/38

Test client-side controls
1. Transmission of data via client

• Hidden fields: Locate all instances within the application where hidden
form fields, cookies, and URL parameters are apparently being used to
transmit data via the client. Modify the item’s value in ways that are
relevant to its role in the application’s functionality. Determine whether
arbitrary values submitted in the field are processed by the application,
and whether this can be exploited to interfere with its logic or subvert
any security controls.

2. Test Client-Side Controls over User Input

• JavaScript validation or length limit: Identify any cases where client-
side controls such as length limits and JavaScript checks are used to
validate user input before it is submitted to the server. Test each af-
fected input field in turn by submitting input that would ordinarily be
blocked by the client-side controls, to verify whether these are repli-
cated on the server.

Test for logic flaws

• Multi-stage processes. When a multistage process involves a defined
sequence of requests, attempt to submit these requests out of the ex-
pected sequence.

• Incomplete input. For critical security functions within the applica-
tion, which involve processing several items of user input and making
a decision based on these, test the application’s resilience to requests
containing incomplete input.

• Trust boundaries. Probe the way the application handles transitions
between different types of trust of the user. Look for functionality
where a user with a given trust status can accumulate an amount of
state relating to their identity. Try to find ways of making improper
transitions across trust boundaries by accumulating relevant state in
one area and then switching to a different area in a way that would not
normally occur.

• Transaction logic. In cases where the application imposes transaction
limits, test the effects of submitting negative values.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 30/38

Test authentication
1. Direct attacks

• Test password quality. For example we can check for very short or
blank password, common dictionary words or names, password set to
the same as the username or still set to a default.

• Test impersonation functions: some application implements the facility
for a privileged user of the application to impersonate other users, in
order to access data and carry out actions within their user context.

• Test username uniqueness. If the application has a self-registration
function that lets you specify a desired username, attempt to register
the same username twice with different passwords.

• Check for unsafe transmission of credentials. Walk through all authen-
tication-related functions that involve transmission of credentials, in-
cluding the main login, account registration, password change, and any
page that allows viewing or updating of user profile information. Mon-
itor all traffic passing in both directions between the client and server.

2. Authentication logic

• Test for Fail-Open Conditions: For each function in which the appli-
cation checks a user’s credentials, including the login and password
change functions, walk through the process in the normal way, using
an account you control. Note every request parameter submitted to the
application. Modifying each parameter in turn in various unexpected
ways designed to interfere with the application’s logic.

• Test Any Multistage Mechanisms: If any authentication-related func-
tion involves submitting credentials in a series of different requests,
identify the apparent purpose of each distinct stage, and note the pa-
rameters submitted at each stage. Repeat the process numerous times,
modifying the sequence of requests in ways designed to interfere with
the application’s logic. Determine whether any single piece of infor-
mation (such as the username) is submitted at more than one stage,
either because it is captured more than once from the user or because
it is transmitted via the client in a hidden form field, cookie, or preset
query string parameter. If so, try submitting different values at differ-
ent stages (both valid and invalid), and observing the effect. Try to
exploit the application’s behavior to gain unauthorized access or reduce
the effectiveness of the controls imposed by the mechanism.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 31/38

Test session management
1. Token generation

• Test for meaning: some session tokens are created using a transforma-
tion of the user’s name or email address, or the information associated
with them.

• Test for predictability. The type of potential variations one might en-
counter here are open ended, but the authors indicates that predictable
session token commonly arise from three different sources: i) concealed
sequences, ii) time dependency, and iii) weak random number genera-
tion.

2. Token handling

• Check for insecure transmission

• Check for disclosure in logs. If your application mapping exercises
identified any logging, monitoring, or diagnostic functionality, review
these functions closely to determine whether any session tokens are
disclosed within them.

• Test mapping of tokens to sessions.

– Log in to the application twice using the same user account, either
from different browser processes or from different computers. De-
termine whether both sessions remain active concurrently. If so,
the application supports concurrent sessions, enabling an attacker
who has compromised another user’s credentials to make use of
these without risk of detection.

– Log in and log out several times using the same user account,
either from different browser processes or from different comput-
ers. Determine whether a new session token is issued each time,
or whether the same token is issued each time the same account
logs in. If the latter occurs, then the application is not really em-
ploying proper session tokens at all, but is using unique persistent
strings to re-identify each user. In this situation, there is no way
to protect against concurrent logins or properly enforce session
timeout.

– If tokens appear to contain any structure and meaning, attempt
to separate out components that may identify the user from those

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 32/38

that appear to be inscrutable. Try to modify any user-related
components of the token so that they refer to other known users
of the application, and verify whether the resulting token i) is
accepted by the application, and ii) enables you to masquerade as
that user.

• Test session termination. After logging out, attempt to reuse the old
token and determine whether it is still valid by requesting a protected
page using the token. If the session is still active, then users remain vul-
nerable to some session hijacking attacks even after they have “logged
out”.

• Test for session fixation. If the application issues session tokens to
unauthenticated users, obtain a token and perform a login. If the
application does not issue a fresh token following a successful login,
then it is vulnerable to session fixation.

• Check for XSRF (Cross-site request forgery). If the application re-
lies solely upon HTTP cookies as its method for transmitting session
tokens, then it may well be vulnerable to cross-site request forgery
attacks.

Test access controls

• Understand the requirements. Based on the core functionality imple-
mented within the application,understand the broad requirements for
access control, in terms of vertical segregation (different levels of user
having access to different types of functionality) and horizontal seg-
regation (users at the same privilege level having access to different
subsets of data).

• Testing with multiple accounts.

– If the application enforces vertical privilege segregation, first use
a powerful account to locate all of the functionality that it can ac-
cess, and then use a less-privileged account and attempt to access
each item of this functionality.

– If the application enforces horizontal privilege segregation, per-
form the equivalent test using two different accounts at the same
privilege level, attempting to use one account to access data be-
longing to the other account. This typically involves replacing an
identifier (such as a document ID) within a request to specify a
resource belonging to the other user.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 33/38

– When you perform any kind of access control test, be sure to test
every step of multistage functions individually, to confirm whether
access controls have been properly implemented at each stage, or
whether the application assumes that users who access a later
stage must have passed security checks implemented at the earlier
stages.

• Test for insecure methods.

Input handling
1. Code injection The topic of code injection is a huge one, encompassing
dozens of different languages and environment, and a wide variety of different
attacks.

• SQL injection (see http://ha.ckers.org/sqlinjection/).

• XSS & response injection (see http://ha.ckers.org/xss.html).

– Reflected XSS.
– Stored XSS.
– DOM-based XSS.

• OS command injection.

• Path traversal: many kind of functionality oblige a web application to
read from or write to a file system on the basis of parameters supplied
within user requests. If these operations are carried out in an unsafe
manner, an attacker can submit crafted input which causes the appli-
cation to access files that the application designer did not intend it to
access.

• Script injection.

• File inclusion.

2. Test for function-specific input vulnerabilities
• SMTP injection.

• Native code flaws.

• SOAP injection.

• LDAP injection.

• XPath injection.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/xss.html

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 34/38

Miscellaneous checks
1. Test for shared hosting issues

• Test segregation in shared infrastructure

• Test segregation between ASP-hosted applications

2. Test the web server

• Test for default credentials. For any identified interfaces, consult the
manufacturer’s documentation and common default password listings
to obtain default credentials. If you gain access to an administrative
interface, review the available functionality and determine whether this
can be used to further com promise the host and attack the main ap-
plication.

• Test for dangerous HTTP methods. Use the OPTIONS method to
list the HTTP methods that the server states are available. Note that
different methods may be enabled in different directories.

• Test for proxy functionality. Using both GET and CONNECT requests,
try to use the web server as a proxy to connect to other servers on the
Internet, and retrieve content from them.

• Test for virtual hosting misconfiguration.

• Test for web server software bugs

3. Test for DOM-based attacks. Perform a brief code review of every piece of
JavaScript received from the application to identify any XSS or redirection
vulnerabilities that can be triggered by using a crafted URL to introduce
malicious data into the DOM of the relevant page. Include all standalone
JavaScript files and scripts contained within HTML pages (both static and
dynamically generated). Identify all uses of the following APIs, which may
be used to access DOM data that is controllable via a crafted URL. Trace the
relevant data through the code to identify what actions are performed with
it. If the data (or a manipulated form of it) is passed to one of the following
APIs, then the application may be vulnerable to XSS. If the data is passed
to one of the following APIs, then the application may be vulnerable to a
redirection attack.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 35/38

4. Test for frame injection. If the application uses frames, review the HTML
source of the main browser window, which should contain the code for the
frameset. Look for <frame> tags which contain a name attribute. If any are
found, then the application is potentially vulnerable to frame injection.

5. Follow up information leakage. In all of your probing of the target ap-
plication, monitor its responses for error messages that may contain useful
information about the cause of the error, the technologies in use, and the
application’s internal structure and functionality.

6. Test for weak SSL ciphers. If any weak or obsolete ciphers and protocols
are supported, then a suitably positioned attacker may be able to perform an
attack to downgrade or decipher the SSL communications of an application
user, gaining access to their sensitive data.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 36/38

References
[1] Acunetix. Acunetix web vulnerability scanner. http://www.acunetix.

com/.

[2] Acunetix web application security. http://www.acunetix.com/
vulnerability-scanner/.

[3] Beef: The browser exploitation framework project. http://
beefproject.com/.

[4] Philippe Biondi. Scapy. http://www.secdev.org/projects/scapy/.

[5] CAPEC. CAPEC – Common Attack Pattern Enumeration and Clas-
sification, release 1.6. The MITRE Corporation, 2010. Available at
http://capec.mitre.org/.

[6] Steven R. Lavenhar Christoph Michael and Howard F. Lipson. Source
Code Analysis Tools - Overview. https://buildsecurityin.us-cert.
gov/bsi/articles/tools/code/263-BSI.html, 2009.

[7] Chinotec Technologies Company. Paros - for web application security
assessment. http://www.parosproxy.org/.

[8] Ettercap. http://ettercap.sourceforge.net/.

[9] Firesheep. http://codebutler.github.com/firesheep/.

[10] HP Fortify. Hp webinspect. https://www.fortify.com/products/
web_inspect.html.

[11] Grendel-scan. http://grendel-scan.com/.

[12] Cenzic hailstorm professional. http://www.cenzic.com/products/
cenzic-hailstormPro/.

[13] IBM. Rational appscan. http://www-01.ibm.com/software/
awdtools/appscan/.

[14] Immunity Inc. Immunity canvas. http://www.immunitysec.com/
products-canvas.shtml.

[15] Girish Janardhanudu and Ken van Wyk. White Box Test-
ing. https://buildsecurityin.us-cert.gov/bsi/articles/
best-practices/white-box/259-BSI.html, 2009.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

http://www.acunetix.com/
http://www.acunetix.com/
http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
http://beefproject.com/
http://beefproject.com/
http://www.secdev.org/projects/scapy/
http://capec.mitre.org/
https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/263-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/263-BSI.html
http://www.parosproxy.org/
http://ettercap.sourceforge.net/
http://codebutler.github.com/firesheep/
https://www.fortify.com/products/web_inspect.html
https://www.fortify.com/products/web_inspect.html
http://grendel-scan.com/
http://www.cenzic.com/products/cenzic-hailstormPro/
http://www.cenzic.com/products/cenzic-hailstormPro/
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.immunitysec.com/products-canvas.shtml
http://www.immunitysec.com/products-canvas.shtml
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box/259-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box/259-BSI.html

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 37/38

[16] Lapse: The security scanner for java ee applications. https://www.
owasp.org/index.php/OWASP_LAPSE_Project.

[17] PortSwigger Ltd. Burp suite. http://portswigger.net/burp/.

[18] SensePost Pty Ltd. Wikto. http://www.sensepost.com/labs/tools/
pentest/wikto.

[19] Gordon Lyon. Nmap security scanner. http://www.nmap.org/, 2011.

[20] Maltego. http://www.paterva.com/web5/.

[21] N-Stalker. N-stalker web application security scanner. http://www.
nstalker.com/products/editions/.

[22] Tenable network security. Tenalbe nessus. http://www.nessus.org/
products/nessus.

[23] OWASP. OWASP WebGoat and WebScarab. OWASP, 2007.
Available at http://www.lulu.com/product/file-download/
owasp-webgoat-and-webscarab/1889626.

[24] OWASP. OWASP_Testing_Guide_v3. https://www.owasp.org/
images/5/56/OWASP_Testing_Guide_v3.pdf, 2008.

[25] Qualysguard it security. http://www.qualys.com/products/qg_
suite/.

[26] Rapid7. Metasploit framework. http://www.metasploit.com/.

[27] Selenium. http://seleniumhq.org/.

[28] SPaCIoS. Deliverable 2.1.1: Analysis of the relevant concepts used in
the case studies: applicable security concepts, security goals and attack
behaviours, 2011.

[29] SPaCIoS. Deliverable 5.1: Proof of Concept and Tool Assessment v.1,
2011.

[30] Dafydd Stuttard and Marcus Pinto. The web application hacker’s hand-
book: discovering and exploiting security flaws. John Wiley & Sons, Inc.,
New York, NY, USA, 2007.

[31] Chris Sullo and David Lodge. Nikto. http://www.cirt.net/nikto2.

[32] Nicolas Surribas. Wapiti. http://wapiti.sourceforge.net/, 2006.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

https://www.owasp.org/index.php/OWASP_LAPSE_Project
https://www.owasp.org/index.php/OWASP_LAPSE_Project
http://portswigger.net/burp/
http://www.sensepost.com/labs/tools/pentest/wikto
http://www.sensepost.com/labs/tools/pentest/wikto
http://www.nmap.org/
http://www.paterva.com/web5/
http://www.nstalker.com/products/editions/
http://www.nstalker.com/products/editions/
http://www.nessus.org/products/nessus
http://www.nessus.org/products/nessus
http://www.lulu.com/product/file-download/owasp-webgoat-and-webscarab/1889626
http://www.lulu.com/product/file-download/owasp-webgoat-and-webscarab/1889626
https://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
https://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
http://www.qualys.com/products/qg_suite/
http://www.qualys.com/products/qg_suite/
http://www.metasploit.com/
http://seleniumhq.org/
http://www.cirt.net/nikto2
http://wapiti.sourceforge.net/

D4.1: SPaCIoS Tool mock up, Technology survey, Validation methodology
patterns v.1 38/38

[33] Core Security Technologies. Core impact. http://www.coresecurity.
com/content/core-impact-overview.

[34] Kenneth R. van Wyk. Penetration Testing Tools. https://
buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/
657-BSI.html, 2007.

[35] Wireshark. http://www.wireshark.org/.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

http://www.coresecurity.com/content/core-impact-overview
http://www.coresecurity.com/content/core-impact-overview
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.html
http://www.wireshark.org/

	Introduction
	Overview of the SPaCIoS Tool
	Components
	Example of Interaction between the Security Analyst, the SPaCIoS Tool, and the SUV

	Technology Survey
	Testing techniques
	Black-box testing (functional testing)
	Source code analysis and white-box testing
	Model-based testing

	Tools type
	Port Scanners
	Vulnerability Scanners
	Application Scanners
	Web Application Assessment Proxy
	Packet sniffer (protocol analyzer)

	Tools survey
	Conclusion

	Validation methodology patterns
	Automated test case generation
	Interactive penetration testing

	Conclusion
	Attack methodology

