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1 Introduction

D4.3 is a report that describes �nal development, testing and validation results
of the self-optimizing multi-agent system. It includes a description of advances
by WP4 about learning and optimization capability over a distributed Neighbor-
hood of consuming and producing devices, according to the research activities
planned in Task 4.3 and Task 4.4 of the work-plan. Based on the analysis of
results collected by running the �rst version of the CoSSMic software, the learn-
ing capability and the distributed negotiation, integrated into the self-optimizing
multi-agent system, have been revised and advanced. This document provides
a detailed overview of learning and optimization techniques, a description of
developed software and a discussion of results.

1.1 Tasks from the DoW

According to the DoW (Description of Work) two Task 4.3 and Task 4.4 con-
tribute to the development to this deliverable. The following two subsections
are a copy of the content the DoW.

1.1.1 Task 4.3 Learning and self-optimisation

The �rst activity of this task is to identify the active decisions to be made by
the players in neighbourhood energy distribution system, i.e. their strategies or
actions. An obvious action for all players is to abstain from a play, i.e. with-
draw temporarily by not consuming energy from the common pool. A house
with solar panels can do this by reducing the energy consumption to match
exactly the production, and an electric car can remain unplugged for the du-
ration of the play. However, for players that are pure consumers, switching o�
all consumption for a period of time will probably not make sense. For these it
would probably be more useful if the actions could be de�ned as "reduce power
budget by 10%" or "increase power budget by 10%" or "consume as now". The
identi�cation and de�nition of the actions are the reasons for the task to start
early in the project, and the �ndings will feed into the previous task on the
design of the multi-agent framework. The player or agent will obviously chose
the action that will maximise the payo�. Since the individual payo� depends
on the actions by all players, it is a stochastic value for each player. Thus, the
player should also select the action randomly, according to a given probabil-
ity distribution. If the player modi�es the action probability distribution as a
result of the payo�, the player or agent learn the combination of actions that
maximises the sum of all future payo�s. This is the de�nition of reinforcement
learning, and CoSSMic will therefore model the players as reinforcement learn-
ing agents. Central research questions are: How to select the best algorithm for
updating the action probability vectors? And more importantly, which algo-
rithms scale well in the number of players and avoid in�nite oscillations in the
action probabilities? Furthermore, as indicated in Section 1.2 [of the DoW] on
peer to peer optimisation, the actions might be dependent on the current state
of the system, turning the learning problem into a Markov Decision Problem
(MDP). This task will implement the algorithms described in Section 1.2 [of
the DoW], and then conduct extensive multi-agent simulations to evaluate both
the e�ciency of the learning approach, as well as the scalability to systems and
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neighbourhoods of a size well beyond what can be demonstrated by the trials
in this project. The simulations and the trials of WP5 will be carried out in
parallel, and feedback from both activities will be used to further improve the
algorithms and the learning based approach. The scalability simulations may
proceed in parallel with the trials since we can dimension the trial neighbour-
hoods such that scalability is not a problem. UIO will be the main partner, in
this task supported by SUN. Results will be delivered by D4.2.

1.1.2 Task 4.4 Distributed policy ful�lment

Where the previous task took the view point of a single control agent, this task
deals with the more complex situation where many control agents must collab-
orate to achieve a policy set by the user. One example is when the user �rst
wants to use the power produced by her own solar panels, before buying power
from the neighbourhood or the grid. In this case the �xed power budget set
by the solar panel control agent must be distributed by the control agents of
the consumers. A �rst approach is to view this as a smaller scale neighbour-
hood optimisation, and reuse the techniques of the "Power Game" described in
Section 1.1 [of the DoW] to manage the situation. However, since all the con-
trol agents belong to the same user agent, distributed negotiation models will
also be investigated for scheduling the allocation between power sources and
energies storages, such as auction and reverse auction models , game theory,
iterative bargaining, and many-to-many protocols. The work on this task is
deliberately scheduled after the neighbourhood optimisation problem has been
solved, since this work is more exploratory, and can be added late to the tri-
als. SUN will contribute to this activity starting from, and advancing the agent
based services and algorithms for negotiation and brokering of Cloud resources
developed in the FP7 mOSAIC project, and UIO will investigate the suitability
of a multi-agent learning based MDP approach. The policies will be designed to
be integrated as independent pluggable modules that allows to extend the D4.2
prototype. D4.3 will deliver results of this task.

608806 CoSSMic 4 of 77



CoSSMic D4.3 Validation results of the self-optimising multi agent framework.

2 Improved Learning capabilities

Advanced learning capabilities have been designed and implemented in order to
achieve the following main objectives:

� Automation of task management to foster the usage of the CoSSMiC
scheduler.

� Support of a greater number of heterogeneous devices.

� Improvement of learning results in terms of energy pro�les.

In this section we present learning models for di�erent classes of supported
devices. We will introduce development achievements and results of validation
activities.

2.1 Learning models

2.1.1 Single run devices

Single run devices are characterized by one task per run, whose energy pro�le
is represented by a single, usually not interruptible load.

The load pro�le can change because of a di�erent con�guration of the de-
vice for the speci�c run or di�erent environmental conditions. For example a
washing machine uses a di�erent amount of energy to run a task, according to
the programming parameters set by the user, and depending on the weather
conditions. In fact on a winter day the energy needed to warm the water could
be much more than in summer. Even the amount of clothes to be washed can
a�ect consumption.

For these kind of devices, the energy consumption is continuously measured
by CoSSMic, and it is used to learn the average pro�le and predict the energy re-
quirements for the next run. In Figure 1 there are examples of washing machine
pro�les for two di�erent programs, measured during the trials at Konstanz in
the KN10 site. We show time-series of consumed power, rather than of energy,
because the variations can be better understood.

(a) High consuming working mode (b) Low consuming working mode

Figure 1: Example of washing machine power pro�les for two di�erent washing
programs. Data are collected from KN10 trials.

The learning model for these kind of devices uses a 3-steps approach, (that
is an original result of the CoSSMic project) [2, 4]: start detection,stop detec-
tion, average pro�le reconstruction by a regression model, that uses B-spline
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approximation.

The technique for detection of start of appliances has been de�ned by SUN
and improved with the support of ISC. The improvements allows to better �lter
noise and peaks which was observed in some installations. The �nal version of
the start detection model uses three parameters.

� noise. It is a power threshold (Watt). A device consuming less power than
this threshold is probably o�. On the other hand if it is consuming more
than this threshold is probably on.

� silence. It is a time interval (seconds). A device that is consuming less
than the noise threshold for more than this time interval must be o�.

� silence_start. It is a time interval (seconds). If its value is 0 and the
device is o�, then the start of the device is detected at the �rst power
sample greater than noise. If its value is greater than 0, and the device is
o�, then the start is detected if after the �rst power sample greater than
noise, the next power sample is greater than the noise and it is received
within silence_start seconds.

The improvement of the start detection model that uses the silence_start
parameter has been suggested by ISC. It observed some spurious power peaks,
which produced false detections of switch-on of appliances. The issue was caused
by some power peaks over the noise threshold, that were detected for example
in KN04, as false switch-on of a dishwasher.

By a deeper analysis about possible causes of this problem, we have con-
cluded that the observed phenomena was associated to a combination of two
simultaneous conditions:

a) the usage of some low cost smart-meters (smart-plugs) that communicate
only the energy and not the sample time.

b) the high number of devices which communicate their energy at the same
time.

Because of the a) condition the platform synchronizes the energy measures at
the data collection point. On one side this allows to use the same time reference,
that is the CPU clock for all the devices, on the other side the sample time di�ers
from the collection time, because of the delay due to the transmission.

Because of the condition b), the sample E1 communicated by the smart-
meter at time t1 can be delayed when the channel is busy. It happens if other
meters try to communicate their measures at the same time. The time between
the delayed sample and the next sample E2 (not delayed) could be shorter than
the actual interval between samples. Thats why the power value computed
as ( E2-E1)/(t2-t1-delay) could be greater than the true value. In this case
a software solution, that is the usage of silence_start, allowed us to address
the problem without spending more e�ort. We did not need to change the in-
stalled equipments with more expensive ones, and without reducing the number
of monitored devices. The solution worked because the installed smart plugs
increase the communication frequency, when consumed power changes faster.
The lesson learned tells us that to avoid this kind of problems one needs to use
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smarter smart-meters, which allow for reading both energy and sample-time, or
at least both energy and power.

On clicking a single run device such as the washing machine in the CoSSMic
user interface, the form shown in Figure 2 appears. It includes static parameters
that should be set once, at device installation time.

These parameters must be tuned for the speci�c devices and installations.
During the project it was the responsible of installation and con�guration, who
collected and analysed the measures and the consuming pro�les. In production
these parameters will be part of the device templates, which will be pre-loaded
into the software, and eventually updated from remote, selected by the user
herself, who will apply the one corresponding to manufacturer and model of her
own device.

Figure 2: User interface to con�gure Single run devices

Stop detection
Suppose we are measuring the cumulative energy consumed by device at any
sampling rate, that is not necessary uniform. We compute the power consump-
tion from these values. The stop of energy consumption by a single run device
is detected using two parameters:

� the average duration of the load pro�le

� the silence parameter de�ned at the previous paragraph.

The stop of a device is detected when the power samples, whose values are
less than the noise threshold, are received for a time interval that is longer
than the number of seconds speci�ed by silence. In addition, when the average
duration, which has been learned from previous runs, is greater than 0, the
system asynchronously checks the status of the device to speed up the detection.
The stop time is the time value of the �rst sample below noise received during
the silence interval.
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Average pro�le learning
The last n executions detected by the systems, for the same working program,
are used to learn an average pro�le and to predict the energy requirement for the
next run. At the state of the art CoSSMic is not able to dynamically recognize
the program set by the user. We suppose that the user sets a default working
program and changes it, if it is necessary, before switching on the device. An
o�-line method, for supervised clustering of exection according to the related
working program has been de�ned and developed by SUN. It will be described
in Section 2.3. According to the methodology described in [4], we merged all
the samples for the di�erent runs to reconstruct a �ne grained time series of
cumulative energy samples.

In Figure 3 we have the power pro�le of a single load and its original repre-
sentation as cumulative energy.

(a) Original cumulative time-series for
measured samples

(b) Computed power pro�le

Figure 3: Comparison of original energy samples with computed power time-
series

Every new run with a particular working mode, of a single-run device, adds
new samples to the observation set of the ensemble of runs. The load pro�le
for a given working mode of an appliance should represent the mean value
of the cumulative energy consumption at a given time, based on the scattered
observation set. It is therefore natural to think of the load pro�le as a regression
function, i.e. the conditional expectation of the energy consumption given the
time samples. In general, a regression function is amodel of the relation between
the independent time variable and the dependent energy consumption, L(t|θ),
where θ is a vector of model parameters.

One model free solution would be to use smoothing splines that are poly-
nomials of degree d between any pair of samples 〈tk, tk+1〉 and the resulting
regression function is continuous in the �rst (d + 1)/2 derivatives The main
issue with this approach is that the resulting function has as many �pieces� as
there are intervals between samples. The available measurements from various
devices seem to indicate that a device will typically have periods of little con-
sumption, or �o�� periods intermixed with periods of continuous consumption or
�on� periods. This indicates that it should be possible to make the interpolating
curves span larger sections of the sample interval.

Our suggestion is to use basis splines (B-splines) for the regression [8]. Like
smoothing splines the B-spline will consist of a set of continuous polynomi-
als that are joined to a continuous regression function at a set of knots whose
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cardinality may be much less than, and independent of, the cardinality of the
observation set. Furthermore, the geometric properties of the function is deter-
mined by a set of control points. B-splines are generalisations of Bézier curves
as the latter is a B-spline with no internal knots. The design parameters to be
chosen are the number of control points, C, and the degree of the partial spline
polynomials, d.

The parameter vector θ will consist of the knot positions and the control
points of the B-spline. The number of parameters will in general be less than the
number of observation points, and the parameter vector will be found by solving
the non-linear programming problem for n equal to the number of observations

min
θ

1

n− 1

n∑
k=1

[L (tk)− L (tk|θ)]
2 (1)

As L(t|θ) is the conditional expectation, the objective function in (1) is easily
recognised as the unbiased sample variance of the observations. The resulting
load pro�le will consequently be a minimum variance regression to the available
observations.

The vector of regression errors follows directly from the minimisation prob-
lem as e − B (t|k) cE . Its sample average is [e−B (t|k) cE ]

T
1/n where 1 is

a vector with all elements equal to unity. Its unbiased variance estimate is
‖e − B (t|k) cE‖2/(n − 1). Both quantities are readily available after solving
the minimisation problems, and one can then use sample Chebyshev bounds [7]
to establish a con�dence interval around the load pro�le.

This process is illustrated in Figure 4, which shows the 62 observations of
the same mode sampled twice from consecutive runs of a washing machine. The
95% Chebychev con�dence interval using sample mean and variance is about
±0.092 for these time series. It evident that scheduling the load based on the
upper bound seems a safe choice.

Additional information has been published in [4].
The B-spline approximation provides an analytical representation of the pro-

�le that:

� minimize the error square root;

� allows to reduce the communication overhead during the negotiation be-
tween producers and consumers of di�erent micro-grids;

� allows to choose a compromise between precision of the analytical repre-
sentation and communication overhead.

The B-spline formula for representing such a pro�le is:
f (t) =

∑
pi (t)Bi,0 (t)

An example of pro�le representation is expressed by the following list of
parameters-values.

"k": 3, "y": [171.20715823281222, -3.7774669541951154, 429.3349908308822,
486.90619333257257, 993.0089657794821, 929.9440925276704], "t": [0.0, 2348.0,
3924.0, 4981.0]

(2)
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Figure 4: The two runs 9 and 13 of the same mode with the conditional mean
load as a B-spline curve of degree d = 3 with 15 control points and its 95%
Chebychev bound based on sample mean and variance.

The size of representation does not depend on the number of samples, which
compose the time-series, but only on the polynomial degree and on the numbers
of knots.

2.1.2 Continuously run devices

Continuously run devices are characterized by long executions. Examples of ap-
pliances are fridges, freezers, heat pumps, air conditioners. During their execu-
tion, they periodically generate new tasks, that is de�ned as an consuming-time
(with a speci�c energy load) and a o�-time. Start, stop, duration and energy
consumption of tasks are managed by an internal controller and usually depend
on environmental conditions.

The frequency of task generation and their energy pro�les can change from
season to season, from day to day and during the day. Moreover some random
conditions can also occur. For example when the user frequently opens the door
of the fridge or the window of a room the internal controller of devices can
switch on the cooler and starts to consume.

In Figure 5 there is an example of pro�le of an heat-pump and of a fridge
installed in KN10.

Because of the heterogeneity of devices, and because of the lack of an open
interface for monitoring and controlling this kind of devices currently installed in
users households, we used smart-plugs both to monitor the energy consumption
and to unplug the device. The smart-plug allows to shift the consumption only
forward. In fact we switch-o� a device if the scheduler suggests to delay the
consumption.

The learning model designed and developed in CoSSMic represents each long
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(a) Heat pump power pro�le from trial
KN10

(b) Fridge power pro�le from trial
KN10

Figure 5: Power pro�le of two di�erent continuously running device

run of this kind of devices as a sequence of tasks. Each task is modeled by three
parameters:

� o�-duration. This is the duration (secs) of the last time interval from
when the device has been switched o� by the internal controller and until
it has been switched on again.

� on-duration. This is the duration (secs) of the last time interval from when
the device has been switched on by the internal controller and until it has
been switched o�.

� consumed-energy. This is the amount of energy used during the last run.

These parameters are used to predict the consumption at the next switch-on
and the time when the next switch-on is expected. In particular when a switch-
on is detected the o�-duration is learned. When a switch-o� has been detected,
the consumed-energy and the on-duration are recorded. Moreover, when the
switch-o� has been detected, the next switch-on is estimated at the switch-o�
time plus the o�-duration. Start-time and stop-time detections work according
to the same approach de�ned for Single run devices. A continuously run pro�le
will be represented as a simple time-series of cumulative energy:

[[0,0]

[on-duration,consumed-energy]]

A click on a continuously running device, like a heat-pump, in the CoSSMic
GUI, opens the form shown in Figure 33. The form allows for setting static pa-
rameters, which must be initialized at installation time to con�gure the learning
process.

2.1.3 E-cars

The e-cars are modeled as consuming devices, which can generate multiple and
di�erent loads, which can be separated or can overlap. Each e-car is modeled
as a storage with static and dynamic parameters:

� capacity. It is the amount of energy that the battery can store, as declared
by the manufacturer.

� ChargingE�ciency. It is the percentage of capacity the battery can e�ec-
tively use at the current time because of its aging.
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� MinimumChargingLevel. It is the minimum charging level that is needed
to guarantee not to damage the battery.

� MaxChargingPower. This is the maximum power we can use to charge the
battery.

� MinChargingPower. If power is below this value the battery cannot charge.

� minimum_energy_target. This is the minimum charging level the user
wants to charge as soon as possible.

� energy_target. This is the charging should be charged within the target
deadline.

� target_deadline. This is the time of the day before which the battery of
the e-car must be charged at the energy target value.

In Figure 6 a common charging pro�le for e-car of KN10 trial is shown. It
charges the e-car at the maximum charging power.

Figure 6: Example of power pro�le of e-car from trial KN10

Using a speci�c API, it is necessary that the driver alerts the CoSSMic
learning process when the car is plugged. In fact the start detection of charging
is not enough to plan the next loads. It needs to get the State of Charge (SoC)
of the battery.

In the case of the e-car model of CoSSMic trials, the manufacturer provided a
web service by which it was possible to get the SoC of the e-car. The service was
invoked by the driver. However only when the e-car charger is plugged, the SoC
value is used to plan the charging pro�le. The e�ort needed to develop the driver,
and the software updates of the service interface by the manufacturer, limited
the exploitation of the e-car model in the trials. This particular experience
demonstrates once more the need of open and hopefully standard interface of
smart devices, and above all of battery management systems. Moreover, above
all in the case of e-cars, which are unplugged and move from a location to a
di�erent one, it is necessary to make this information available by an ubiquitous
service.
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When the driver noti�es the SoC a �rst load is planned. It will charge the
e-car at the maximum charging power until the minimum_energy_target is
reached.

For this reason a �rst load will have:

on_duration =
minimum_energy_target−current_energy_target)

MaxChargingPower

consumed_energy = minimum_energy_target− current_energy_level

It will be submitted with EST=LST=now only if current_energy_level is
less than minimum_energy_target.

A second load is planned with an earliest start time right after the end of
the �rst load. The learning process will �rst compute the average power needed
to charge the battery from the end of the �rst load to the target_deadline. If
such value is less than the MinimumChargingPower than the MinimumCharg-
ingPower is used.

Its pro�le will be:

on_duration =
energy_target−max(current_energy_level,minimum_energy_target)

average_power

consumed_energy = energy_target−max(current_energy_level,minimum_energy_target)

Figure 7: Planning example for e-car as a sequence of two loads.

After the fast charge to the minimum_energy_level the residual energy to
achieve the energy_target can be also split into more loads. For example, using
the parameters values in the following list, the charging pro�le can be split as
it is shown in Figure 7.

� Capacity: 24 kWh

� ChargingE�ciency: 1

� MaxChargingPower: 50kW
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� minimum_energy_target: 50%

� energy_targetl: 100%

� target_deadline: 20:00

A click on an e-car device, in the CoSSMic GUI, opens the form shown in
Figure 8. It shows static parameters that must be set at device installation
time.

Figure 8: E-car static con�guration.
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2.1.4 Reactive management of background consumption

These kinds of loads belong to the background consumption of the micro-grid,
which that is monitored using a global smart-meter. It is computed by subtract-
ing the consumptions of devices which are individually controlled by CoSSMic
from the total consumption of the household. This load cannot be shifted,
however the awareness of this unmanaged consumption can be used by CoSS-
Mic to better estimate the renewable energy actually available. Two learning
approaches are available in CoSSMic to optimize the schedule:

� Predictive. The background load for the current day is predicted equal
to the background consumption of the same day of the previous week.

� Reactive. The background load for the next time slot is predicted equal
to the load of the last slot.

In the �rst case the daily background prediction is split in di�erent chunks
of a �xed duration and average power. Duration is set statically, average power
is computed analytically. They are submitted at the beginning of the day with-
out �exibility and are allocated by the producer to improve the estimation of
the available renewable energy. In the second case, chunks are estimated and
submitted one after the other. If the background load was greater than 0 during
the last time slot, a load equals to the last observed one is submitted for the
next time slot.

How background loads are estimated will be explained in the Section2.3.3.

2.1.5 Zero delay single-run devices

If the user does not want to delay the start of the device it can set a 0 delay and
the energy pro�le will be submitted only to improve the estimation of available
energy as it was explained for for background loads in the previous section.

2.1.6 Photovoltaic Panels

In order to improve the prediction of production, NTNU research unit investi-
gated the overshadowing e�ect on solar systems, which have been installed in
urban areas, exploiting the data collected by the Konstanz trials. The focus
was to develop a PV-shadowing prediction model based on the combination
between solar analyses conducted by using dynamic simulation software (i.e.
DIVA for Rhino) and a python-based code developed in order to handle the
outputs coming from the solar analyses on the surface.

The approach used for the case study in Konstanz faces the challenge to
bridge the gap between the solar analyses which calculate the hourly values of
solar radiation arriving on the surfaces and the estimation of the energy pro-
duction evaluated using the yield-calculation tool. It is a tool able to calculate
energy gains from PV installations on buildings. Annual values of solar radi-
ation components comprising global, beam and di�used radiations are used as
inputs for this tool. Moreover, technical speci�cations related to PV panels such
as the orientation, the installation parameters etc. are taken into consideration
by the tool as well. The annual energy gained from PV is provided by the tool.
It along with the solar analysis provides an integrated algorithm used to obtain
a more precise prediction of solar electricity for buildings. The prediction takes
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in consideration both the solar radiation under the real weather conditions as
well as the overshadowing e�ect created by the urban surrounding and by the
design of the solar system itself. The entire process is composed of the following
steps:

1. Modeling from the vector �le (i.e. dwg), the surfaces of the urban sur-
rounding and the pro�le of the terrain of the urban area where the case
study is located;

2. Converting the weather data climate from a meteorological station into an
.epw �le format usable for running the solar simulations for the real cases.

3. Conducting solar dynamic simulation analyses for calculating the solar
radiation on the building envelopes and/or PV surfaces such as louvres
using DIVA for Rhino. The outputs of this stage are the hourly values of
the direct, di�use and global components of the solar irradiation for the
entire year.

4. The outputs of the step 3 will be used as inputs for the energy production
calculation conducted by the yield-calculation tool. At this stage the �nal
outputs are the energy gains from PV installations.

After that, we started an analysis of the potential solar radiation obtained
from an hypothetical weather data �le. The methodology consisted of the fol-
lowing phases:

1. Use of the same case study model of the previous analysis.

2. Creation of a potential weather data climate in .epw �le format from
statistical available data to be used for running the solar simulations in
the hypothetical scenario of maximum solar irradiation. It was developed
individuating the maximum hourly value for each week and these results
were applied to 7 days of a week. The process was carried on for the entire
year.

3. Conducting solar dynamic simulation analyses for calculating the solar ra-
diation on PV surfaces using DIVA for Rhino and the previously developed
potential weather data �le.

Simulations were run both for the isolated and obstructed contexts. The outputs
of this stage are the hourly values of the direct, di�use and global components
of the solar irradiation for the entire year, obtained setting materials re�ection
and the parameter ab (maximum number of di�use bounces computed by the
indirect calculation) with values 0-1.

In Table 10 there is a description of the parameters used for the di�erent
analysis.

The process has been tested on the solar systems installed on the facade
(PV/1) and on the roof (PV/2) of a commercial building in Konstanz (Ger-
many). The two systems have the following features:

� The facade system PV/1 is constituted by �ve rows of 14 PV panels (di-
mensions: 64.5cm x 128cm) each. The distance between the rows is 1.5m.
The panels are 30 tilted and 170 South-East oriented (Figure 11 (a).)
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Figure 9: Scheme of the methodology

Figure 10: Input data for simulations: materials and parameters.

� The roof system PV/2 is composed by nine rows of six PV panels (dimen-
sions: 99cm x 168cm) each. The distance between the rows is 34cm. The
panels are 14 tilted and 170 orientation South-East oriented (Figure 11
(c)).

From the process, examples of di�erent pro�les have been extracted are:

1. Pro�le 1 describes the solar potential radiation (ideal weather conditions
with clear sky for an entire year). This pro�le will calculate the solar
radiation on the analyzed surfaces without any obstruction and under
ideal weather condition of clear sky. The analyses will be conducted in
isolated scenario with the pro�le of the terrain that will give a contribution
in terms of solar re�ection from the ground.

2. Pro�le 2 describes typical solar radiation during an entire year (real
weather conditions). This pro�le allows calculating the solar radiation on
surfaces considering the real weather data climate provided every 4 hours
from the meteorological data station. The pro�le 2 will be calculated in
isolated scenario without any obstruction given by the urban surrounding.
The simulations will be run considering the pro�le of the terrain that will
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(a) The photo shows how the PV/1 sys-
tem looks like.

(b) The composition of the PV/1 sys-
tem on the facade.

(c) The photo shows how the PV/2 sys-
tem looks like

(d) The composition of the PV/2 sys-
tem on the facade.

Figure 11: Example of real systems and composition of facades.

give a contribution in terms of solar re�ection. In this way is possible to
deduct the di�erences between pro�le 1 and pro�le 2 without any a�ection
given by the urban surrounding.

3. Pro�le 3 describes solar radiation a�ected by mutual urban solar re�ec-
tion. The analyses calculate the solar radiation in context scenario in order
to take into account the solar mutual contributions (re�ections among the
building and the ground) and the overshadowing e�ect by urban surround-
ing.

4. Pro�le 4 describes typical solar radiation during an entire year as done
in Pro�le 2, but using maximum potential weather conditions. It was
calculated in isolated scenario without any obstruction given by the ur-
ban surrounding. The simulations were run considering direct and global
irradiations as output. Secondly, it was possible to deduct the di�use
irradiation as di�erences between the previous ones.

5. Pro�le 5 describes solar radiation a�ected by mutual urban solar re�ec-
tion. The analyses were used to evaluate the solar radiation in context
scenario in order to take into account the solar mutual contributions (re-
�ections among the building and the ground) and the overshadowing e�ect
by urban surrounding. Simulations were run using the maximum potential
weather data �le, di�erent ab parameters and material settings to obtain
direct irradiation, global irradiation without re�ections and re�ected irra-
diation. Secondly, the di�use irradiation was calculated starting from the
previous achieved data.

For the case study in Konstanz the .epw weather data climate extracted from
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Meteonorm 1 has been used for Pro�les from 1 to 3, while for Pro�le 4 and 5 it
was used the potential weather data �le, created as described above. The most
relevant results for the system PV/1 and PV/2 analyzed in Konstanz are shown
below for both weather data �les used.

Results for the real weather data from Meteonorm are:
Isolated scenario:

� The PV1 system is a�ected by overshadowing e�ect due to its reported
shadowing. This aspect is responsible by 6% of reduction of direct radia-
tion, and until 10% for the global radiation between the pro�le 1 and the
pro�le 2;

� The PV2 system has a reduction caused by its design around 2% for direct
radiation, and until 2.5% for the global radiation between the pro�le 1 and
the pro�le 2;

Context scenario

� The PV1 system is a�ected by overshadowing e�ect due to the urban
surrounding. This caused until 10% of reduction of direct radiation, and
until 20% for the global radiation between the pro�le 2 and the pro�le 3;

� As expected the results have con�rmed that for PV/2 is practically not
a�ected by the overshadowing created by the surrounding.

(a) The solar mapping of the entire dis-
trict in which the ISC building is lo-
cated

(b) The solar mapping analysis of the
ISC building with the system PV/1
installed on the facade and PV/2 in-
stalled on the roof

Figure 12: Example of solar mapping

For the system PV/1 installed on the facade, the highest contribution in
terms of solar reduction comes from the direct radiation: from 7.7% for the 2nd
row and 10.5% for the 5th row on the bottom in the isolated scenario. While in
the context scenario, the presence of the urban surrounding and in particular
of the intervention of renovation constituted by a new horizontal block added
on the top of the existing building and the balcony give a reduction in terms
global of solar radiation (from 12.6% to 21.1%) (Figure 14). The di�erence is
made by comparing pro�le 2 and pro�le 3 (Figure 15).

For the system PV/2 installed on the roof, the reduction in terms of solar
radiation is around 2% in both scenarios, isolated and obstructed Figure 14.

1Meteonorm Software - Irradiation data for every place on Earth.
(http://meteonorm.com/)
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(a) The solar mapping analysis of the
PV/1 system on the facade. The image
shows the overshadowing e�ect from
the top to the bottom of the system.

(b) The solar mapping analysis of the
PV/2 system on the roof. The image
shows the homogenous radiation on the
system

Figure 13: Example of.

This means that the overshadowing e�ect is created only by the design of the
system, while there is not any in�uence from the urban surrounding. Regarding
the solar re�ected component (from the ground re�ection), it is resulted in a very
low in�uence (<1%) for the PV/1in the context scenario, while is completely
absent for PV/2.

Figure 14: Direct and global radiation on the system PV/1 in the isolated and
context scenario.

The results of PV/2 were compared with the measured data on site con-
ducted by Abdelraheem, Ahmed Khaled Farghaly during his master thesis con-
ducted at ISC in Konstanz. The results are similar for direct radiation (Figure
22) and global (Figure 21), while there are some di�erences for the di�use ra-
diation (Figure 23). However, all the pro�les of the components are similar:
in both conducted analyses the periods of the year in which the system PV/2
has the highest reductions in terms of solar radiation are always the same. The
pro�les of the components are quite similar and the calculations demonstrated
that the methodology used for achieving the goal of prediction solar potential
and overshadowing e�ect caused by the design of the system and the urban
surrounding gives reliable results and trends.

Results arising from simulations with the developed potential weather data
are shown below. Speci�cally, they resulted from the isolated and context sce-
nario for PV/1 and PV/2 systems.

For the system PV/1 installed on the facade, the highest gap between the
row 1 and row 5 resulted in the periods of May-June and of July-August when
the sun is higher and consequently the radiation is greater. This loss is due
to an atypical cloudy condition during summer in the weather data �le from
Meteonorm. In addition, the loss between the �rst and the last row of the
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Figure 15: The pro�le of the global radiation on the row 1 and 5 of the PV/1
in the context scenario.

system in terms of radiation is due to shadowing e�ect caused by the geometry
and the position of the entire panel facade. In order to avoid these consequences,
the system should be improved taking into account the inclination of panels and
the distance between them.

For the system PV/2 installed on the roof, the main di�erence between the
�rst and the last row is identi�ed during winter season, contrarily to the facade
system. This is due to the inclination of the sun during that period of the year.
Moreover, the reduction in terms of solar radiation is caused by panels design,
including their geometry and the presence of a border in the roof. In fact, the
overshadowing e�ect is created more by the design of the system, than the urban
surrounding.
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Figure 16: The pro�le of the direct radiation on the row 1 and 5 of the PV/1
in the context scenario

Figure 17: Direct and global radiation on the system PV2 in the isolated and
context scenario.

Figure 18: The pro�le of the global radiation on the row 1 and 9 of the PV/2
in the context scenario.
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Figure 19: The pro�le of the direct radiation on the row 1 and 9 of the PV/2
in the context scenario

Figure 20: The pro�le of the di�use radiation on the row 1 and 9 of the PV/2
in the context scenario
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Figure 21: The pro�le global radiation of the system PV/2 carried out from the
measured data on site. (Author: Abdelraheem, Ahmed Khaled Farghaly)

Figure 22: The pro�le direct radiation of the system PV/2 carried out from the
measured data on site. (Author: Abdelraheem, Ahmed Khaled Farghaly)
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Figure 23: The pro�le di�use radiation of the system PV/2 carried out from
the measured data on site. (Author: Abdelraheem, Ahmed Khaled Farghaly)

Figure 24: Direct and global radiation on the system PV/1 in the isolated and
context scenario.

Figure 25: The pro�le of the global radiation on the row 1 and 5 of the PV/1
in the context scenario.
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Figure 26: The pro�le of the direct radiation on the row 1 and 5 of the PV/1
in the context scenario

Figure 27: . Direct and global radiation on the system PV2 in the isolated and
context scenario..
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Figure 28: The pro�le of the global radiation on the row 1 and 9 of the PV/2
in the context scenario.

Figure 29: The pro�le of the direct radiation on the row 1 and 9 of the PV/2
in the context scenario
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Figure 30: The pro�le of the di�use radiation on the row 1 and 9 of the PV/2
in the context scenario
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2.2 Automatic task planning

Automatic task planning is a feature that leverages the usage of CoSSMic plat-
form by the user and provide advanced autonomic capabilities to agents. It is
based on the start detection mechanism and on default preferences set by the
user, who no longer needs to manually schedule a task each time he is switching
on the devices. Below, we describe how it works with di�erent kinds of devices.

2.2.1 Automatic task planning for single run devices

In order to use the automatic task planning of single run devices the user needs
to set:

� default program. This is the default con�guration set by the user when
the appliance is used. It is necessary to de�ne if it is preferred to delay
the execution, or to de�ne a time slot.

� default delay. This is the maximum delay allowed to the CoSSMic sched-
uler for shifting forward the start of the device.

� default EST and LST. If these parameters are used the device will start
between EST and LST of the current day when the switch-on is detected
before LST, otherwise the day after in the same time slot.

� Program. It speci�es if the default working program set for the related
device.

Such parameters are set by the GUI shown in Figure 31. The user will select

Figure 31: Scheduler interface showing the list of planned, executing and com-
pleted tasks.

the radio option to enable the form of interest. After that he will set either the
EST and LST parameters, or the delay. At the end of the form he will set the
preferred working program of the device.

In particular CoSSMic detects the start of devices. If default parameters have
been de�ned by the user a smart-plug is used to unplug the power. Contextually
a task is generated using the default parameters and it is submitted to the
scheduler. The system waits for an assigned start time. The smart plug will be
switched on again at the assigned start time.
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The user can still override the default con�guration described before by
setting the needed preference only for the next run using the form shown in
Figure 32. In this case a planned task is stored in the system and it is found
when the device start is detected. In this case the new task is not generated by
the default parameters.

Figure 32: Con�guration of default user's preference for task scheduling of a
single run device.

2.2.2 Automatic task planning for continuously running devices

The current approach is based on the the working model of many simple internal
controllers of continuously running devices. For example, in the case of the
fridge, the internal controller switches on and o� the device engine when the
temperature goes across some speci�c thresholds. The internal control is able
to modify frequency and the duty cycle according to the actual needs. As the
devices currently installed at trials sites do not provide open interfaces we can
only delay the switch-on of the device disconnecting the power by a smart-plug.

The automatic task planning model designed in CoSSMic uses the following
three parameters:

� default_max_delay. It is a con�guration parameter. It speci�es how long
the start time of the device can be delayed (to not let the temperature go
out of a comfort interval).

� allowed_delay. It is a con�guration parameter. This the maximum cu-
mulative delay that a device can accept in a day. In fact the internal
controller could not be able to recover the e�ects of all previous delay in
a day.
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� accumulated_delay. It is a dynamic changing parameter. It is set to 0 at
the beginning of the day. It is incremented when the switch on is delayed.

When the switch o� is detected by the learning process, a new task is sub-
mitted to the scheduler if the accumulated delay is less than the allowed delay.
The schedule constraints will be:

� EST = tofftime+off_duration

� LST = EST+min[default_max_delay, allowed_delay−accumulated_delay]

The smart-plug is switched o� and it will be switched on again at the As-
signed Start Time (AST). If the internal control does not start the device right
after the AST, it means that the delay has not been used. In the opposite case
the used delay (AST-EST) is added to the accumulated_delay.

The appliance con�guration form shown in Figure 33 allows to set the con-
�guration parameters. In the CoSSMic trials it has been set by the personnels
who installed and con�gured the platform.

Because of the lack of open interfaces for continuously run devices it has
not been possible neither to read the temperature of the internal sensor, nor
to overcome the internal controller. The developed approach does not use the
temperature (or other parameters) at all and switches the smart-plug according
to the introduced parameters valued, which are learned by experience, and are
currently not directly related to temperature. For this reason we did not spend
e�ort to design and implement an user's dashboard. The user dashboard will be
useful only when we will be able to read the temperature from the device interface
and to control directly it.

Figure 33: Admin interface for heat-pump con�guration
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2.2.3 Automatic task planning for e-cars

The automatic task planning for e-cars works according to the technique ex-
plained in section 2.1.3. In Figure 34 the default parameters values for the e-car
are set.

Figure 34: User interface for e-car default con�guration

The forms shown in Figure 35 allows for overriding the default parameters
values with new ones, which are valid just for the next charge.

Figure 35: User interface for e-car next charge con�guration
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2.3 Evaluation tools and validation of results

Validation of results of learning techniques has been done by testing learning
algorithms on data collected from trials. SUN developed evaluation tools to
process o�-line data, for evaluating and improving algorithms and for generating
input for the simulation tool developed in WP6.

2.3.1 Trials Backup

Collected data as well as CoSSMic con�guration �les are periodically uploaded
to a remote server for each trial. In particular a backup includes:

� The dump of mysql Emoncms database

� A directory with all time-series. They are stored in di�erent php-time-
series binary �les.

Some bash scripts have been developed to extract necessary information from
the dump of the mysql database and to convert all binary �les to csv. Users can
process data manually, using spreadsheets, or can do it automatically using the
tools presented in the next sections.

In Figure 2.3.1 each directory, named kn01, ..., kn10, contains the emoncms
database and a sub-directory, name phptimseries with binary �les. The root
directory of the backup, named trials, contains the scripts to convert binary �les
to csv. Figure 2.3.1 shows the results after the execution of the convertall.sh
script:

1. all the csv �les (feedxx.MY D.csv) are created in the related phptime-
series subdirectory.

2. all original binary �les have been deleted (feedxx.MY D).

3. for each trial two new �les devices_info.csv and series_info.csv are
also created, extracting information from the emoncms.mysql. They re-
spectively contain information about each device and about time-series,
such as device type, content of time-series (power, energy, ...).
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trials

kn01

devices_info.csv

series_info.csv

emoncms.mysql

phptimeseries

feed_10.MYD.csv

feed_11.MYD.csv

feed_12.MYD.csv

feed_12.MYD

[..............]

feed_36.MYD.csv

feed_9.MYD

kn02

devices_info.csv

series_info.csv

emoncms.mysql

phptimeseries

feed_1.MYD.csv

[..............]

bin2csv.py

convertall.sh

mysqldumpsplitter.sh

mysqldump_to_csv.py

Figure 36: Directory tree of trials backup
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2.3.2 Computing loads for single-run devices

A set of utilities allows to process the time series of consumed power for:

� identifying the di�erent runs of the device.

� clustering, by a supervised technique, the loads belonging to di�erent
working modes.

� applying the B-spline approximation, to evaluate the learning results and
to export the parametric representation of pro�les.

Identifying runs of a device
The cluster.py script of the learning tools implements this functionality. The
man page of the cluster.py utility is shown below:

usage: %prog [options] ts_filename [-h] [-d NOISE SILENCE]

[-c NCLUSTERS NOISE] [-p]

[-r RUNID [RUNID ...]] [-i] [-v]

FILENAME

positional arguments:

FILENAME

optional arguments:

-h, --help show this help message and exit

-d NOISE SILENCE, --detect-runs NOISE SILENCE

detect runs from file

-c NCLUSTERS NOISE, --cluster-runs NCLUSTERS NOISE

interactive kmeans clustering of detected runs

-p, --print-images print clustered runs to png files

-r RUNID [RUNID ...], --remove-runs RUNID [RUNID ...]

print clustered runs to png files

-i, --interactive ask the user to delete runs in small clusters (default

false)

-v, --verbose

Detections of start-time and stop-time
In the �rst step we detect each start-time and stop-time of the device, from the
beginning to the end of the time-series. In the following example the script gets
as an input the csv �le, which includes power samples of a washing machine.

python cluster.py --detect-runs 40 600 -i -v feed_92.MYD.csv

detected 304 runs

saving to feed_92.MYD.csv.runs

The output �le (feed_92.MY D.csv.runs) contains a row for each detected run:

0 , 72 ,0, 1444919344

407 , 413 ,0, 1444979993

424 , 530 ,0, 1444981323

577 , 693 ,0, 1444995185

775 , 882 ,0, 1445015768

[...]
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The di�erent elements of each row are:

� the sample of the time-series that corresponds to the start of the run

� the sample of the time-series that corresponds to the end of the run

� the id of the working mode (all 0 at this stage)

� the start-time of the corresponding the run in linux epoch format.

Clustering of working programs
In the CoSSMic approach, the user tells to the platform the working program
is being executed, because there is not an available interface to read it by a
driver. Maybe in the future we will have device that allows to read also the
current working program. However for evaluation purpose we investigated the
utilization of clustering techniques for identifying the di�erent working modes
from back-up of time-series. Techniques for automatically detecting, on the �y
and in real time are out of the scope of CoSSMic research activities, but the issue
we address here is a di�erent problem. In fact the time-series to be classi�ed
are already all available.

The clustering program uses the K-means algorithm, that needs to know the
number of clusters we want to build. Each run has been represented with the
following features:

� total energy,

� duration,

� peak value,

� peaks number,

� duty cycle (that is the ratio between the time spent over the noise threshold
and the time below the noise threshold),

� peaks position.

If we suppose that there are 3 relevant programs for this device, we can trust
the algorithm, or set the number of cluster equal to 5 and use the interactive
option to supervise the clustering. In the latter case it allows us to search wrong
detections, remove them and to repeat the clustering.

An example of supervised clustering follows. First of all we use the −i
option, to ask for an interactive detection and to set the number of clusters and
the value of the noise. The noise value is necessary to improve the result of
clustering.

python cluster.py -c 5 40 -i -v feed_92.MYD.csv

In Figure 37 di�erent points correspond to di�erent runs of the device, while
colors represent di�erent clusters. The x axis represents duration and y axis
represents energy.

When the window is closed by the user, the interactive approach shows the
runs belonging to the two clusters with the minimum number of runs, and allows
to the user:
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Figure 37: Clustering of detected runs.

� to keep them

� to delete them

� to skip the cluster evaluation and save the results.

In Figure 38(a) and 38(b) the loads of two di�erent runs are shown. The
�rst image is clearly a feasible power pro�le and is kept. The second one should
be deleted.

(a) Power pro�le of correct detection. (b) Power pro�le of wrong detection.

Figure 38: Power pro�les of clustered runs.
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If the user asks for deleting at least one run, the program re-executes the
clustering algorithm . In Figure 39 an excerpt of the console output is shown.

evaluate and clusters, evaluation restart if some runs are deleted

evaluating 1/1 individual of cluster 1 ....

0 1462528642.0 1462534960.0

remove run? (y/n/s) n

remove run? (y/n/s) y

evaluating 1/11 individual of cluster 1 ....

0 1452514495.0 1452521013.0

remove run? (y/n/s) n

evaluating 2/11 individual of cluster 1 ....

0 1452866394.0 1452872862.0

[...]

clusters cardinality: Counter({3: 232, 0: 32, 1: 14, 4: 8, 2: 1})

clusters cardinality: Counter({3: 232, 0: 32, 1: 14, 4: 8, 2: 1})

evaluate and clusters, evaluation restart if some runs are deleted

evaluating 1/1 individual of cluster 1 ....

0 1462542998.0 1462549370.0

remove run? (y/n/s) n

evaluating 1/8 individual of cluster 1 ....

0 1450352890.0 1450359197.0

remove run? (y/n/s) n

Figure 39: Console output of cluster program

The clustering results are saved in two �les:

� feed_92.MYD.csv.runs is now updated with the related cluster identi�ca-
tion number of each row.

� feed_92.MYD.csv.features contains the list of features of each run.

The third column of the runs �le is now:

0 , 72 ,1, 1444919344

424 , 530 ,3, 1444981323

577 , 693 ,3, 1444995185

775 , 882 ,3, 1445015768

[...]
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Learning the average pro�le
The last step consists of the emulation of learning process. It uses the last
runs of the same working mode to compute the average energy pro�le, which
corresponds to the prediction of the next energy requirements. The utility man
page is:

usage: usage: %prog [options] ts_filename [-h] [-lm MODEL] [-pl] [-n N-RUNS]

[-s STEPS] [-i] [-pm] [-v]

FILENAME

positional arguments:

FILENAME

optional arguments:

-h, �help show this help message and exit

-lm MODEL, �learning-model MODEL

interactive kmeans clustering of detected runs

-pl, �print-learning print clustered runs to png files

-n N-RUNS, �history-length N-RUNS

use N-RUNS time series for regression

-s STEPS, �steps STEPS

number of learning steps

-i, �interactive ask the user to delete runs in small clusters (default

false)

-pm, �print-model print clustered runs to png files

-v, �verbose

The following command uses the last three runs of the same working mode
to compute the energy pro�le.

feed_92.MYD.csv -n 3 -pl

The result is an output �le that contains, for each row of the input �le, the
B-spline parametric representation of the average pro�le computed from the
previous runs. The output �le will be named feed_92.MYD.csv.spline.

1;1444919344.0;1444924325.0;

{"k": 3,

"c": [171.207158, -3.77746695, 429.335, 486.9062, 993.00896, 929.944],

"t": [0.0, 2348.0, 3924.0, 4981.0]}

3;1444981323.0;1444987854.0;

{"k": 3,

"c": [31.30866, 146.80942, 402.725746, 755.27821, 791.65071, 1318.720],

"t": [0.0, 1204.0, 4726.0, 6531.0]}

[...]

The -pl option creates a directory with one subdirectory per cluster. The
�lename of each image is the starting date-time of the run and contains both the
time-series used for learning, and the time-series reconstructed by the B-spline
model. In Figure 40 we show a B-Spline reconstruction that approximates the
load pro�le, merging the samples of last three runs. In Figure 40, the black
samples belong to �rst three runs. The red samples belong to the time-series
obtained sampling the B-spline approximation.
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(a) (b) (c)

(d) (e) (f)

Figure 40: Each chart represents in black the measures of last three monitored
loads and in red the learned pro�le, which will be used for the next schedule.

2.3.3 Computing the background load

The background load is computing splitting the background energy consumed by
an household in many chunks of �xed length The functionality is implemented
by the splitloads.py script. Its man page is shown below.
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Man page

usage: python splitloads.py directory_name

[-h] [-d DATE] [-n DAYS]

[-l SECONDS]

[-p] [-v]

[-e INPUTID [INPUTID ...]] [-i]

positional arguments:

directory_name

optional arguments:

-h, �help show this help message and exit

-d DATE, �starting-date DATE

yyyymmdd

-n DAYS, �days-numbers DAYS

number of day from starting date (default 1)

-l SECONDS, �length SECONDS

number of seconds of each chunk

-i, �-show-inputs list of existing devices for this household

-p, �predictive predict 24h background load from the previous

day of the week (default is false)

-v, �verbose

-e INPUTID [INPUTID ...], �exclude INPUTID [INPUTID ...]

list of input_ids to be exclude

Examples

In order to compute the background load for a time-period it needs to
download and extract a backup archive in some directory (we assume here
/var/trials/kn10).

The −i options allows to see which are the available consuming inputs for
that household:

python splitloads.py /var/trials/kn10 -i

INPUTID: 40 type: Hauptzahler

INPUTID: 49 type: Warmepumpe

INPUTID: 53 type: Elektroauto

INPUTID: 56 type: Waschmaschine

INPUTID: 59 type: Gefriertruhe

INPUTID: 62 type: Splmaschine

INPUTID: 65 type: Kahlschrank

The next step is the computation of background load. Let's suppose we want
to compute the background load of April 10th 2016, splitting it in chunks of 20
minutes.

The �rst input of the list shown before is the household smart meter, which
must be excluded from the background computation using the -e option.

N.B. The -e option must be the last one.

python splitloads.py /var/trials/kn10 -d 20160410 -n 1 -l 1200 -e 40
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duration: 1200

task 1 est: 2016-04-09 21:57:22 creation_time: 2016-04-09 21:57:22

task 2 est: 2016-04-09 22:21:22 creation_time: 2016-04-09 22:21:22

task 3 est: 2016-04-09 22:51:12 creation_time: 2016-04-09 22:51:12

task 4 est: 2016-04-10 00:03:22 creation_time: 2016-04-10 00:03:22

task 5 est: 2016-04-10 00:24:27 creation_time: 2016-04-10 00:24:27

task 6 est: 2016-04-10 00:48:18 creation_time: 2016-04-10 00:48:18

[...]

The program prints out the list of chunks generated. Duration is not exactly 20
minutes because start and termination of chunks correspond to sample times.
Moreover time slots without background load are ignored.

The result is saved in the current directory. In Figure 41 it is shown the cu-
mulative energy (background, self-consumption, total consumption and energy
consumed by the devices).

Figure 41: Graphical representation of background cumulative energy and of
energy time-series used for its computation.

In Figure 42 it is shown the directory containing the list of loads (kn10_background_tasks.xml)
and one �le for each load pro�le.

Figure 42: Files generated by the script for the background computation.
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N.B.: A reactive approach for scheduling is suggested. Creation time is equal
to Earliest Start Time and to Latest Start Time (it cannot be shifted, but a short
interval is added to allow for the scheduling of load before the LST expires).

The content of taks.xml looks like:

<household name="kn10">

<device>

<id>background</id>

<est> 1460239042 </est>

<lst> 1460239062 </lst>

<creation_time> 1460239042 </creation_time>

<profile>back1</profile>

</device>

<device><id>background</id>

<est> 1460240482 </est>

<lst> 1460240502 </lst>

<creation_time> 1460240482 </creation_time>

<profile>back2</profile>

</device>

[...]

</household>

The predictive option

The predictive option assumes that the workload of the �xed day is predicted
using the one of the same day of the previous week. In this case:

� the loads are computed from data collected 7 days before the de�ned date

� the creation-time of each loads will be midnight of the de�ned date.

The option is speci�ed as follow:

python splitloads.py /var/trials/kn10 -d 20160410 -n 1 -l 1200 -p -e 40

The content of tasks.xml looks like:

<household name="kn10">

<device><id>background</id>

<est> 1460239035 </est>

<lst> 1460239055 </lst>

<creation_time> 1460160000 </creation_time>

<profile>back1</profile>

</device>

<device><id>background</id>

<est> 1460240667 </est>

<lst> 1460240687 </lst>

<creation_time> 1460160000 </creation_time>

<profile>back2</profile></device>

[...]

</household>
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2.3.4 Requirements and installation

The Learning Tool has been developed as a Python package and made available
at the bitbucket repository: https://bitbucket.org/cossmic/learningtool. You
need just to install python and the required libraries on your machine. In
particular you need to install:

� python-numpy

� python-scipy

� python-sklearn

� python-matplotlib

Requirements are satis�ed running on any debian distribution the following
bash command:

sudo apt-get install python-numpy python-scipy python-sklearn python-matplotlib
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At
KN10

10.
April-
Sun

11 April-
Mon

12. April -
Tue

13. April-
Wed

14. April -
Thu

15.April-
Fri

16. April-
Sat

HP

5.8(on
till
10am;
2/h
2kW
on/o�
1/2)

0.2 0.2 0.2 0.2 0.2 1.5

WM 0 0
0.85
Start-End:
9.25-11.45

0 0 0
1.1 Start-
End:
12.30-16.45

DW

0.72
Start-
End:
2.15-
3.15pm)

0 0.05

0.68 Start-
End:
14.15-
15.30:

0 0.03 0.03

Fridge

0.4
(2.5/4h;
on/o�:
1/2;60W)

0.36 0.36 0.36 0.34 0.34 0.34

Table 1: Manually evaluated data for checking the results of the automatic
evaluation tools.

2.3.5 Comparison with manual evaluation

Table 1 shows some information about device usage. They have been evaluated
manually using data collected from trials.

We will show how validation of results can be performed using the developed
tools.

Experiment 1 - background generation
First of all the background load of kn10 from April 10th to April 16th, is

computed splitting consumed energy in 20 minutes chunks.
It is obtained executing the command to list the monitored devices in KN10.
python splitloads.py /var/cossmic/e_shape/trials/kn10 -i

� INPUTID: 40 type: Global Meter

� INPUTID: 49 type: Heat Pump

� INPUTID: 53 type: E-car

� INPUTID: 56 type: Washing machine

� INPUTID: 59 type: Freezer

� INPUTID: 62 type: Dishwasher

� INPUTID: 65 type: Fridge
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The tool wants to know which of these input must be included into the
background. We want to use only the global meter (option : -e 40 ) while the
other will be subtracted as they are independently managed by CoSSMic.

Another choice would be to let CoSSMic schedule only the single-run devices
and consider all the rest background load. In this case we have to use the -e
option to include all periodic devices (-e 40 49 59 65).

python splitloads.py -d 20160410 -n 7 /var/cossmic/e_shape/trials/kn10
-l 1200 -e 40

In Figure 43 the background time-series computed from original measures is
shown.

Figure 43: Background energy of kn10 from April 10th − 16th 2016

Moreover the same utility creates a directory that includes:

� one �le containing the list of chunks background_tasks.xml with the
references to their energy pro�les

� for each chunk a �le containing the energy pro�le backs[id].csv

� a �le with features of di�erent energy pro�le.

The directory tree is shown in Figure 44.
In this case Load creation time = EST. Using the -p option, a predictive

approach is used. It means that all background chunks will be submitted at
midnight for the next day using the measures of one week before.

In this case the command will be:
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loads/

back0.csv

[.....]

kn10_back_91.csv

kn10_back_92.csv

kn10_back_93.csv

kn10_back_94.csv

kn10_back_95.csv

kn10_back_96.csv

kn10_back_97.csv

kn10_back_98.csv

kn10_back_99.csv

kn10_back_9.csv

kn10_background_features.csv

kn10_background_tasks.xml

tasks.xml

Figure 44:

python splitloads.py -d 20160410 -n 7 /var/cossmic/e_shape/trials/kn10
-l 1200 -e 40 -p

The content of �le features.csv is shown in Table 2.3.5. For each day it
provides date, total energy, average energy consumed by chunks, maximum
energy consumed by chunks .

device kwhd average kwh max kwh
2016-04-09 00:00:00 background 1.2911773111 0.6279705917 0.6374338957
2016-04-10 00:00:00 background 17.5974823318 0.7347591788 3.9324843483
2016-04-11 00:00:00 background 5.6227380177 0.2334512423 0.8804279774
2016-04-12 00:00:00 background 17.1194478318 0.7103914725 3.3879164314
2016-04-13 00:00:00 background 5.3025582131 0.221851468 0.8728448276
2016-04-14 00:00:00 background 5.0796341232 0.2116759213 1.2558613859
2016-04-15 00:00:00 background 11.2175012413 0.4616202886 2.0939955593
2016-04-16 00:00:00 background 12.594632984 0.5790266106 2.7092974799

Validation of learning algorithm on KN10 Washing Machine
In this case we will validate the learning algorithm on a single run device.

The goal is to detect and evaluate all the loads of washing machine installed
in kn10 from April 10th to April 16th. In order to produce also an ouput for
the simulator we set a default delay equals to 2 hours (7200 seconds). It means
that for each run, the corresponding task to be scheduled will be generated with
EST= start-time and LST=start-time + default-delay.

First we show the list of available time-series.
python export-tasks.py -i /var/cossmic/e_shape/trials/kn10

� INPUTID: 41 type: HauptzÃ¤hler consumption
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device kwhd average kwh max kwh
2016-04-12 07:26:44 57 0.8362426013 0.363320464 1.98
2016-04-16 10:32:30 57 0.813938812 0.2802390707 1.9938461914
2016-04-16 14:05:46 57 0.2981780459 0.4607042769 1.9337142334

Table 2: Features of detected loads

� INPUTID: 44 type: HauptzÃ¤hler production

� INPUTID: 47 type: Solaranlage production

� INPUTID: 50 type: WÃ¤rmepumpe consumption

� INPUTID: 54 type: Elektroauto consumption

� INPUTID: 57 type: Waschmaschine consumption

� INPUTID: 60 type: Gefriertruhe consumption

� INPUTID: 63 type: Splmaschine consumption

� INPUTID: 66 type: KÃ¼hlschrank consumption

After that we choose to export the runs of the INPUT 57 (Washing Machine)
using the following command.

python export-tasks.py -d 20160410 /var/cossmic/e_shape/trials/kn10
-n 7 -t single-run -delay 7200 -p -ids 57

This facility use the learning tools described in Section 2.3.
If the run detection and learning has not already been done before, �le with

the runs is not available in the current directory , the script asks for some
parameters. If the detection and clustering has been already executed, the
scripts uses the available results and simply select and to export the loads of
interest.

In the �rst case, an example of requests from the console are:

� SILENCE parameter(Secs)? 600

� NOISE parameter (Watt)? 40

� SILENCE_START parameter(Secs)? 20

The output of the script includes:

� a set of csv �les containing load pro�les

� images of runs if -p option is used, such as Figure 2.3.5.

� a �le with features of loads, containing the information shown in Table
2.3.5 to be checked against Table1.
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Figure 45: Example of detected load.
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2.4 Integration of learning capability in the CoSSMic plat-

form

Development activities focused on the integration of learning functionalities in
the CoSSMic platform are tested at trial sites and to provide tools for o�-line
evaluation.

2.4.1 CoSSMic learning con�guration

In order to provide a better performing and reliable implementation the learning
capabilities have been implemented as extended functionalities of the Emoncms
web application.

Learning functionalities are triggered on each update of the energy inputs
by smart meters. The trigger has been developed as a new Emoncms process

A process is a function of Emoncms that elaborates a sample when it is
received from the driver. Each process executes the implemented function and
returns the same sample, or the result of its elaboration. A chain of processes
can be attached to an input stream. The result of the elaboration of a process
is passed as input to the next process. In the example a "log" process saves
the sample into a time-series and returns the sample itself. The "kwh2power"
process computes the power value from the last two energy samples, stores the
power value into a time-series and returns to the next process the power value.

In order to enable the learning process for a device, it needs to add the
p_learn process to its input "EnergyIn" just after the kwhpower process. The
p_learn process needs that input itself as parameter. In Figure 46 the chain of
processes for some devices of KN10 is shown. In particular the energy input is
updated by a sensor with the cumulative energy consumed.

The chain of processes stores the energy value, computes the average power
from the previous sample, forwards this value to the learning process and �nally
updates the daily consumed energy. The learning process can be attached to
any input according the Emoncms model. When a new device is added to the
micro-grid con�guration, the process is automatically added to the chain if the
device type is single-running or continuously-running.

Figure 46: Learning process attached to Emoncms inputs

The status of the learning process is stored in Redis as a tuple of elements
with key profiles : $inputid. To restart the learning process, it needs to FLUSH
the Redis memory or to delete the corresponding key.

The p_learn process calls API of MAS module in order to monitor the life-
cycle of the device.
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In particular the software implementing the learning capabilities presented
in the previous sections are coded in the CoSSMic TaskManager (mas Module
of Emoncms). The module is organized according to the structure shown in
Figure 47.

Figure 47: Structure of mas module in Emoncms

In particular:

� view/mas_learning.php provides a web list of devices the system is learn-
ing.

� view/automata.php provides a graphical view of the learning process for
the speci�c device.

� mas_model.php integrates learning capabilities as methods of the mas
software module.

The implemented methods added to the mas_model.php package are shown
in Figure 48:

� updateLearning. It is the method triggered by the arrival of incoming
samples. According to the kind of device it uses the related functions.

� updateSingleRunLearning. It is the method that implements the learning
behaviour for single-run devices.

� updatePeriodicLearning. It is the method that implements the learning
behaviour for continuosly-run devices.
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� loadTemplate. It is a method that retrieves the status of the learning
behaviour for the related device. The status of the device is saved in
the Redis Key-Value store, shared with the Emoncms web application, to
improve performance and to guarantee persistence.

� updatePro�le. It is a method that uses the historical information to update
the average pro�le after each run of a device.

� updateSinglRunPro�le is a specialization of updatePro�le for single-run
devices. This method is supported by a python script that implements
the regression and approximation models presented before.
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Figure 48: PHP methods implementing learning algorithms.
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The load pro�le is stored in two �les:

� /var/www/emoncms/pro�les/u[$userid]d[$deviceid]m[$modeid].prof (it is
a symbolic representation of the pro�le according to the B-Spline model
de�ned before)

� /var/www/emoncms/pro�les/u[$userid]d[$deviceid]m[$modeid].prof_raw (it
is a time-series representation of the pro�le)

To compute the pro�les the last 5 tasks, which are in completed status (=5)
are queried from the mysql table user_tasks. In Figure 2.4.1 the query results
are shown. The ast and ltime parameters correspond to start time and stop
time of each load.

select id, ast,ltime from user_tasks

where deviceid=1 and modeid=13

and ast <> 0 and status=5 order by ast desc limit 5

+����+������������+������������+

| id | ast | ltime |

+����+������������+������������+

| 40 | 1467193140 | 1467193335 |

| 38 | 1467189840 | 1467189869 |

| 37 | 1467189540 | 1467189583 |

| 36 | 1467189180 | 1467189242 |

+����+������������+������������+

Figure 49: Example of start time and stop time for 5 loads in Emoncms
database.

The energy consumed after ast and before ltime are read and extracted from
the energy time-series (emoncms feed) and saved into a temporary csv �le. Then
a python program (/var/www/emoncms/Modules/mas/bin/updateprof.py) pro-
duces two �les with the symbolic representation and the raw time-series of that
load (u1d1m13.prof, u1d1m13.prof_raw).

The status of each learning process is saved in the Redis key value store.
In this way we save all static and dynamic parameters in memory, improving
performance and reducing the overhead due to the usage of database and �le-
system. This solution also increases the life of the secure digital memory storage
of the raspberry.

In order to monitor the status of the learning processes we developed a web
interface whose link is hidden to the user, but available to the administrator.
The �rst page, available at http : //localhost/emoncms/mas/learning.html, is
shown in Figure 50. It shows the list of existing processes and gives information
about the related devices, the working programs and the status of each device.

Moreover the web page, for each learning process, allows to view: the time-
series of the last pro�le learned for all working modes of the corresponding
devices and the status of the automata implementing the process behaviour.

In Figure 51 the time-series shows the load pro�le for the selected device
and speci�c working mode. Only the working mode already learned is shown
by the select widget. It is shown the average pro�le that has been or will be
scheduled.
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Figure 50: List of active learning processes.

Figure 51: Example of learned pro�le. This has been scheduled or will be at
next switch of the device.
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In Figure 52 the automata of the learning process is shown graphically. The
current status is colored in red and the table shows the values of the main
parameters stored in Redis.

Figure 52: Graphical visualization of the learning automata.
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2.4.2 Integration in the simulation environment

The simulator uses the learning tool presented before to create con�gurations
from back-up of trials. This is used to reproduce a situation as similar as
possible to the real trials, from which the user can start to further specify or
change the con�guration. In fact the simulation uses the CoSSMic scheduler
to evaluate di�erent testing conditions (number of devices, di�erent �exibility,
di�erent devices, multiple runs, ...).

In Figure 53 it is shown the simulator GUI by which the user is selecting
the households and devices to be used for the con�guration of simulation. In
particular the user is selecting the continuously-run devices to include them into
the background load and to schedule only single-runs.

Figure 53: Simulator GUI. Continuously run devices are included into the back-
ground load.

In Figure 53 the user is con�guring the background load in a way that only
the global meter is not subtracted from the total consumption. The parame-
ters of the form are the same explained when we illustrated the command line
interface of the tools.

Figure 54: Simulator GUI. Continuously both single-run devices and
continuously-run devices are scheduled and not included into the background
load.
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3 Optimisation Algorithm

The task scheduler solves the problem of assigning start times to loads whose
earliest start time and latest start time are provided by the user, and there
are load pro�les available describing the cumulative energy consumption of the
load. For the PV producers there must be production prediction �les describing
the cumulative energy production by the producer.

The Consumer Agent represents one load pro�le, and the user parameters
for its earliest start time and its latest start time. The PV Producer represents
a photo voltaic (PV) panel characterised by the fact that it has a prediction of
the energy it will produce based on the weather forecast for the location of the
PV panel.

In order to be scalable and resilient to households joining or leaving the
neighbourhood, each Consumer Agent acts independently. Each Consumer
Agent tries to allocate energy for its load by:

1. Selecting a producer

2. Letting the producer solve the related optimisation problem to assign a
start time to each of the associated loads.

These mechanisms are described in the following sections.
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3.1 Negotiation: Selection of producers

When a load is submitted, a Consumer Agent is created in the system, and it
will select a producer to provide the energy needed by the load. If this producer
has su�cient energy according to its prediction to start the load between the
load's earliest start time and its latest start time, it will assign a start time to
the load. If not it will refuse the allocation, and the Consumer Agent will select
another producer.

It could happen that this new load will make a more optimal consumption
of a producer's predicted energy production than its current set of load assign-
ments. In this case the producer could cancel any of the previously assigned
loads. Each of these rejected Consumer Agents will then have to select other
producers to serve their needs.

The selection process repeats until every load has assigned a start time from
a producer. As the Consumer Agents act autonomously, this is a game where
each play corresponds to a consumer selecting a producer, and the epoch of the
game is the number of plays needed to have a new solution when the system is
perturbed by either a new prediction or the arrival of a new load to the system.
A particular set of assignments,i.e. bindings of loads to producers, is called a
con�guration of the game.

The game will always converge to a con�guration provided that the grid
accepts to start any load within its allowed start time interval given by the
load's earliest start time and its latest start time. This condition must be
met even if one uses a grid model that is arti�cially limited in order to avoid
peaks, meaning that peak avoidance cannot be guaranteed if there is no feasible
schedule for the loads that have selected the grid as their producer under the
maximum grid peak limit. Furthermore, the game is cooperative [5], because all
the involved consumers and producers jointly try to minimise the grid energy
consumed by the neighbourhood.

A consumer's selection of a producer is carried out using a variable struc-
ture stochastic automaton (VSSA) [9]: A consumer has a probability vector
p = [p1, . . . , pn]T with one probability for each producer, the grid inclusive.
This vector represents a probability distribution with

∑
i pi = 1. For each play,

the Consumer Agent selects the candidate producer according to this empiri-
cal probability distribution, and the available producers are called actions in
the �eld of Learning Automata (LA) research, a branch of reinforcement learn-
ing [14]. In order to ensure that the PV producers are evaluated �rst, a reduced
action set automata is used where the actions are initially the set of all PV
producers, but when a selected producer fails to provide energy for the load,
it will be excluded from the reduced action set. Should the system be loaded,
and all PV producers refuse the load, the restricted action set will eventually
become empty after which the grid is the only candidate producer and will be
selected with probability one.

When the con�guration is rewarded, the action probabilities will be changed
according to some algorithm that will increase the probabilities for the producers
that normally tend to accept the load, and reduce the probabilities for the others
since the probabilities of the empirical distribution must sum to unity. The
probability update proposed by Pozniak and Najim [1] is used for the reduced
action set probabilities.
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3.2 Optimisation: Assigning start times

Classical scheduling originated in manufacturing disciplines and considers the
problem of assigning a set of n jobs onto m machines. Each job j is assumed to
have a known processing time on machine i. It should be noted that classical
scheduling only implicitly considers the resources provided by the machine, i.e.
the capacity of the machine is re�ected in the time it takes to complete the job
on that machine.

The situation considered here is di�erent in that the �machine� is a PV panel
that provides time variant resources, and the scheduling problem is to start
the time variant �jobs� that are the assigned loads according to the resource
availability on the �machine�. The load pro�les are continuous and once a load
has started it will have to run to completion,i.e. the problem is a nonpremptive
single-machine scheduling problem. In contrast to classical scheduling problems,
the PV Producer Agent may start two or more loads with overlapping execution
periods if the predicted production pro�le allow this.

In contrast to the cominatorial assignedment prolem, a relaxed form of the
problem is considered here where it is possible to acquire additional resources
for PV Producer Agent to supply the loads with energy since it can supplement
with energy from the grid. This will guarantee that the problem has a solution,
and transform the problem to �nd the schedule that minimises the cost of the
additional resources, i.e. the grid energy.

Each PV Producer Agent solves independently an optimisation problem to
�nd the schedule for the loads assigned to it given its predicted energy produc-
tion. Hence, the following text refers to the algorithm run independently by
each of the PV Producer Agents in the neighbourhood.

3.2.1 Consumption intervals

The schedule is fundamentally a vector s ∈ Rn that assigns a start time sj to
each of the n loads accepted by the PV producer. Each load has a duration
∆j . Since the loads are nonpremptive, the continuous interval for which a load
j consumes energy is referred to as the load's consumption interval and it is
denoted Ij = [sj , sj + ∆j ] ⊂ R.

One or more other loads can be started within a given load's consumption
interval. Thus, in the extreme, all consumption intervals will overlap and there
will be only one consumption period. In the general case, however, there will
be several disjoint consumption periods where one or more loads are executed
in each period. Formally, a given schedule s will partition the loads' index set,
L = {1, . . . , n}, into disjoint index sets Pk|s such that⋃

k

Pk|s = L

Each of these consumption periods correspond to a consumption interval Ik|s
being the union of the consumption intervals of the loads in the consumption
period.

Each load's consumption pro�le is a continuous function whose value rep-
resent the cumulative amount of energy consumed by the load at a given time,
i.e. L0

j (t) for t ∈ [0,∆j ]. The amount of energy consumed between two time
stamps 0 ≤ t1 ≤ t2 ≤ ∆i is therefore L0

j (t2)− L0
j (t1) ≥ 0.
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Assigning a start time sj to a load will have the e�ect of shifting its energy
consumption in time. There will obviously not be any energy consumed before
the load starts, and no further energy will be consumed when the load �nishes.
Hence, the load's cumulative energy consumption conditioned on a given the
schedule s is

Lj (t|s) =


0 t < sj

L0
j (t− sj) sj ≤ t ≤ sj + ∆j

L0
j (∆j) sj + ∆j < t

(3)

Based on this, it is straight forward to de�ne the total energy consumption
in a consumption period as the sum of the energy demands of the various loads
scheduled for that interval. Hence,

LIk|s(t) =
∑

j∈Pk|s

Lj (t|s) (4)

In order to schedule the loads according to the predicted energy production
of a PV panel, the prediction must be known as a continuous and cumulative
function, R(t). Again, this implies that the function is strictly increasing with
the property that R(t1) ≤ R(t2) if t1 ≤ t2.

3.2.2 Objective function

A feasible schedule s satis�es

LIk|s(t)−
[
R (t)−R

(
min Ik|s

)]
≤ 0 for all t (5)

The last term in the bracket re�ects the fact that the predicted energy produc-
tion R(t) is cumulative, and only the energy being produced over the consump-
tion interval can be used to execute the loads scheduled for this interval. It is
therefore necessary to subtract the cumulative amount of enargy produced up
to the start of the consumption interval, implying that the expression in the
bracket is zero at the beginning of the consumption interval.

The assumption (5) is an absolute requirement if it is not possible to change
the provisioning of energy. It is a goal in situations where additional energy can
be obtained from the grid, albeit possibly at a high cost.

In this relaxed problem, one could therefore face situations where assumption
(5) momentarily does not hold. In these cases it would be desirable for the total
energy consumption over the entire interval not to exceed the available energy
produced over that interval. In other words, one would integrate assumption
(5) over the whole consumption interval:∫ max Ik|s

min Ik|s

[
LIk|s(t)−

[
R (t)−R

(
min Ik|s

)]]
dt ≤ 0 (6)

The scheduling problem is therefore a standard non-linear mathematical
programming problem [3] aiming at minimising the external grid energy re-
quirement:

min
s

∑
k

∫ max Ik|s

min Ik|s

[
LIk|s(t)−

[
R (t)−R

(
min Ik|s

)]]
dt (7)
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subject to the constraints on the starting times for the jobs.
It is important to note that despite the fact that the value of the integral (6)

only depends on the consumption interval for which it is evaluated, the actual
schedule s is common to all consumption intervals, and the schedule s de�nes
the partitioning of the load set. The problem is therefore not separable, i.e.
one cannot interchange the sum and the minimisation to solve the problem as
a sum of smaller minimisation problems.

Even though the optimisation problem cannot be separated, the functional
form (7) can be signi�cantly simpli�ed rendering the problem tractable for nu-
merical solution, and it can be proved that the following holds: The minimi-
sation problem (7) is independent of the loads' temporal energy consumption,
and the non-linear mathematical programme can be written as

min
s

[∑
k

∑
j∈Pk|s

L0
j (∆j)

[
max Ik|s − (sj + ∆j)

]
+
∑
k

(
R
(
min Ik|s

) [
max Ik|s −min Ik|s

]
−
∫ max Ik|s

min Ik|s

R(t) dt

)] (8)

and solved subject to the constraints on the start times.
Any kind of standard non-linear solver can be used to �nd the schedule s

that minimises (8). CoSSMic uses Powells algorithm for solving constrained
optimisation problems by linear interpolation [11] as it seems to be one of the
better gradient free algorithms [12].
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3.3 Reinforcement learning: Computing the rewards

Shapley proved the optimal fair distribution of value of the game to each player
in a cooperative game [10]. In CoSSMic the Shapley values attributed to each
Consumer Agent and Producer Agent adds up to the value of the grid energy
saved by the neighbourhood. Note that even though the consumption of energy
is only done by the Consumer Agents, the Producer Agents should have their
share of the saved energy cost to the neighbourhood since they enable the savings
to be made.

Unfortunately, it is an NP-complete problem to compute the Shapley values,
but in the case where the values are produced by pairwise relationships, the
Shapley value is half the sum of the weights on the edges incident with a node
in the relationship graph [17].

When one of the Consumer Agents terminate, its consumed PV energy is
measured, and the edge weights in the neighbourhood's pairwise relationship
graph is updated with this new value. The Shapley value is then computed for
each node in this graph, i.e. for each Consumer Agent and each Producer Agent,
and they are all rewarded. It may seem strange that agents that are not part
of the �nalised transaction are rewarded. The argument is that a con�guration
is a set of active pairwise assignments, and when one of the Consumer Agents
terminate a new con�guration results. This new con�guration is identical to the
previous one, except for the now terminated Consumer Agent. This marks the
end of the previous game epoch, and a reward for this epoch should be given to
all players.

A result of this is that the a Consumer Agent may be rewarded repeatedly for
its choice of a Producer Agent as the other Consumer Agents �nishes, even if its
own choice of producer does not change. The positive side e�ect of this is that
it will speed up the learning of the good producers since each Consumer Agent
can be rewarded many times for the same choice of �action�. However, more
research is needed to understand the potential impact of this on the Learning
Automata (LA) updating algorithms since their convergence is proved based on
the repeated pattern of an action selection to be followed by a probability vector
update, which is again followed by an action selection based on the updated
probability vector. The last part is violated by the CoSSMic approach as the
next action is unchanged, and hence identical to the one selected according to
the probability vector as it was several rounds of feedback ago.

A strength reward to a learning automaton is a number in the interval [0, 1],
and hence twice the Shapley value for each Consumer Agent is normalised on the
total PV energy consumed by the neighbourhood at the time of computation.
The Shapley value is multiplied by two since the original division by two was
a result of the double counting of the edge weight in the relationship graph �
once for each end of the edge � so that the sum of Shapley values for all nodes
will equal the Shapley value for the whole game. It is not necessary that the
rewards will add up to a given number. The reward then indicates how much
each Consumer Agents probabilities for the producers will be changed.

The reward to the household will be computed as the sum of the Shapley
values (not multiplied by two) for all the active Consumer Agents in the house-
hold and all its Producer Agents. This is number is then divided by the total
PV energy consumption in the neighbourhood in this game epoch to give an
index for the houshold's relative performance in the neighbourhood.
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3.3.1 Emulation

Even if the validation of the taskscheduler algorithm has been done by the sim-
ulator developed in WP6, the test of the integration with the CoSSmic platform
has been done by a new facility developed in the last year of the project. In
particular we provided a methodology and a tool that allow to restore a trial
and to use the historical data for emulating at the current time one ore more
days in the past

In order to emulate a trial, �rst of all it needs to restore a backup.
A backup contains:

� the emoncms database the emoncms settings.php �le.

� the directory /var/lib/phptimeseries with binary �les containing time-
series.

It is suggested to backup the current installation of emoncms �rt. Moreover
if you do not know username and password of trial user, the current installation
could be used to replace it.

After the local data have been saved it needs to perform the following steps:

� Drop the emoncms database using mysql.

� Create again an empty emoncms database

� Import the emoncms database from the backup

� Delete the content of /var/lib/phptimeseries

� Copy the �les from the phptimeseries directory of the backup to /var/lib/ph-
ptimeseries

After this, it needs to avoid that the current installation starts to synchronize
with the remote server. Then open the �le settings.php of emoncms and delete,
or change, the server APIKEY to avoid sinchronization as follows:

#!php

$cossmic['apikey'] = �;

Now it needs to know the username and password of backup trial to use
emoncms, otherwise there are two alternatives:

1. copy password and salt �elds from users table of your old emoncms database
to the current one.

2. generate a new value for the password �eld and insert into users table. In
particular for this option using the linux bash:

#!bash

$ echo -n mypassword | sha256sum

89e01536ac207279409d4de1e5253e01f4a1769e696db0d6062ca9b8f56767c8 -

$echo -n [salt]89e01536ac207279409d4de1e5253e01f4a1769e696db0d6062ca9b8f56767c8

| sha256sum

1d5eed48874df313375187ec1c70e90ac96514dd5b8208b25aba69b8a17738dc -
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where [salt] should be replaced with the current value in the users table of
emoncms database.

The emulation is implemented by the TimeMachine agent presented in the
next section. This agents reads old samples from the time-series and write them
into the emoncms again. To let TimeMachine emulate the stop and the start
of devices, it needs to update the driver of all devices. It can be done by mysql
executing the following query:

#!sql

update node_parameters set driver="tester"

Finally MAS Con�guration must be updated with the current APIKEY.
The TimeMachine Agent
This Agent is conceived to emulate a list of con�gured devices using past

samples from the time-series. Input of the TimeMachine are:

� a con�guration �le (tm.conf)

� a directory with binary php time-series previously recorded by Emoncms.

The implementation currently only works with cumulative energy inputs.
The Con�guration File of TimeMachine must be named tm.conf and stored

in the mas directory. It is composed of multiple lines, one line per input. Each
line must specify the following parameters separated by a semicolon as delimiter:

#!csv

[nodeid];[inputname];[timeseriesid];[startingtime];[deviceaddress];[deviceid]

� nodeid: is the node where the measures of this timeseries must be written

� inputname: is the name of the input

� timeseriesid : it is the id of the corresponding time-series (emoncms feed)
and it is used to identify the binary �le where the data are stored (feed_id.MYD)

� startingtime: it is the date-time in the past from which we want to start
the emulation of the corresponding time-series

� deviceaddress: it is the address of the device, used by emoncms to send
command by the driver.

� deviceid : it is used by TimeMachine match address and device

An example of line in the con�guration �le is:

#!csv

4;energyIn;56;201611071025;GPIO-Relais9;5

We want to emulate the stored in time-series 56, writing it to energiIn input of
node 4 in emoncms. The corresponding device has ID=5 and address=GPIO-
Relais9.

At startup TimeMachine parses the con�guration �le. For each line it:

� search the closest epoch to the start time in the binary �le
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� for each input it gets the last sample from emoncms (to emulate the past
cumulating energy)

� it reads the next sample in the time series, computes the time to the next
sample and sets a time-out

� the time-out triggers the write of an energy increment, the reading of the
next sample and the set of a new time-out

When a stop command is received for a device the agents always writes the
last sample and waits for a time-out. When the start is received it continues to
read samples from the time-series according to the steps listed before.
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4 Distributed Payo� Calculation

4.1 Visualization of distributed payo�

In order to visualize both the exchange of energy between the household and the
neighborhood three inputs, and related feeds, are updated by the mas module
of CoSSMic:

� The neighborhood2household is a cumulative energy feed. It contains the
amount of energy that the household has consumed from all the PVs of the
neighborhood. It is updated at the end of each load. When the device is
not consuming anymore, and the end of the execution has been detected,
the mas module checks: 1) if that load was scheduled by CoSSMic and 2)
which vendor provided the energy. If the vendor is not the grid this feed
is incremented with the amount of consumed energy.

� The pv2neighborhood is a cumulative energy feed. It contains the amount
of energy that the PV of the current household has provided to this house-
hold and to all the neighbors. The containing information is known by the
producer agent that shares the information about the energy provided to
the neighborhood with all the other producers, and uses it to compute the
distributed payo�. As this information is updated in a local �le, the Task
Manager agent periodically reads from the �le and writes the updated
data into this feed.

� The reward feed is updated periodically according to the same approach
used for the previous item. However it is restored at the beginning of each
day and decreases until the end of the same day. The feed is updated
when other producers share additional energy with the neighborhood.
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4.2 Scalability of Communication protocol

To validate the proposed architecture and to test the performances of the P2P
communication overlay built for the neighbourhood communication, we set some
experiments based on the proposed infrastructure. REST performances have
already been discussed in [15], so we do not present them here. Besides, in this
application they are not relevant since the speed depends on the frequency of
measurement that is of the order of minutes, thus being very slow. Instead,
it is important the speed at which the agents communicate, considering that
they have to exchange several messages and to repeat the negotiation when
environment conditions change. The XMPP server used in CoSSMic has been
compared with the Tigase implementation and OpenFire. Tigase [6] is an open
source project to develop an XMPP server implementation in Java. OpenFire
[13] is an instant messaging and groupchat server that uses XMPP server written
in Java and licensed under the Apache License.

The �rst experiment aims at evaluating the performances of the chosen
XMPP servers; to do this, we set up a stress test by using only one host equipped
with a 2.67 GHz i5 processor, 4 GB of memory and Windows 7 operating sys-
tem. On this machine we install the whole testbed and the tested XMPP server,
in order not to contaminate the tests with network delays. The testbed is com-

(a) OpenFire vs Tigase

(b) OpenFire Performance

Figure 55: XMPP servers experimental results

posed by a single producer that always accepts o�ers coming from consumers
running within the simulated neighbourhood: we measure the transaction time
as the timespan within the sending of an energy request and the receipt of
the request's outcome. The number of consumers has been increased in each
experiment: furthermore, we consider 500 transactions for each consumer in
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order to have a mean value quite truthful. The chart in Figure 55 (a) shows
the mean time to close a transaction for the two servers. It is clear that Open-
Fire exhibits better performance than Tigase in terms of messages' management
and dispatching. In addition, when the number of transactions exceeded 2000
Tigase crashed and the server connection went down. We have therefore chosen
OpenFire as the server to be used for subsequent experiments.

To evaluate the impact of the network in the overlay performances, we re-
peated the same experiment by using three machines, the �rst one hosting
OpenFire, the second one hosting the consumers and the third one hosting
the producer: as depicted in Figure 55 (b), the network delay impacts on the
transaction time but the obtained results (around 600 ms with 50 consumers)
do not impact too much if related to our application's context. Through this
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Figure 56: Average transaction time per consumer

experiment it is also possible to evaluate prototype performance in terms of
transaction time with the growth of the consumers' number. Figure 56 de-
picts the average transaction time per consumer for three kinds of tests: 30
consumers, 40 consumers, 50 consumers. As it is deductible, each consumer
exhibits the same mean transaction time within the same experiment: thus,
the time's growth depends on the number of consumers in the community. In
order to highlight the impact of the consumers' number on the performance,
in Figure 57 we plotted the average transaction time for each experiment: the
time's growth exhibits a linear behaviour with the consumers' growing, with
an increase of about 60 ms every 10 consumers, that is symptoms of good per-
formance in terms of scalability with the community's growth. To understand
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Figure 57: Average transaction time for 30, 40, 50 consumers within the com-
munity
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the behaviour of the proposed architecture in a real scenario, we create a new
testbed with 10 producers and 50 consumers (producers and consumers running
on di�erent machines). We performed the tests using three di�erent algorithms,
starting from a purely theoretical case and making it gradually more realistic.
The �rst test was carried out using a round robin algorithm. In this test the
�rst producer to be contacted is chosen randomly by each consumer and in suc-
cession all the others are contacted. In the second and in the third test, instead,
we use an algorithm that exploits the ranking of the producers. In particular
each consumer has a vector that stores all the producers and for each a certain
reputation. The reputation, which is initially 0 for all, is incremented by 1 each
time the producer accepts the proposal. The �rst time everyone chooses ran-
domly which producer to contact, and thereafter always contact the one that
has the highest score, as long as this does not reject the proposal. Once a pro-
ducer rejects a proposal, it will reject all subsequent requests. We made this
choice to simulate the depletion of energy available by a certain producer. The
producer may agree to a proposal of the consumer in accordance with a certain
probability α. α represents the capacity of a producer to sell energy, thus acting
as a production strength index : an higher value of α indicates more ability to
produce energy and so an higher probability to sell the produced energy. In the
third test we introduce a delay between one request and the other whereas in
the second one the requests are made in succession. The delay follows a Poisson
distribution. We chose this type of distribution because it should be used when
an event has a probability to happen very low but the amount of repetitions of
the experiment (or the sample size) is so high as to make the event probable to
occur.
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(a) With Round Robin Algorithm (b) Without delay

(c) With delay

Figure 58: Number of simultanoeus requests

Figure 58 (a), (b) and (c) show the tests results: the charts represent the
number of simultaneous requests per producer when we use, respectively, a
Round Robin algorithm, a ranking algorithm without delays among requests
and a ranking algorithm with delays. The x-axis scale in Figure 58 (c) is dif-
ferent with respect to the other experiments (Figure 58 (a) and (b)) because
the messages are sent with di�erent splits. In the �rst two cases, the scale is
1 second, in the latter 10 seconds. Besides, the experiments without delays
take about 24 seconds, while with delays the duration is about 240 seconds. In
all the experiments we can see that there is an initial transient and that the
number of requests decreases when the energy providers �nishes. In the �rst
test (Figure 58 (a)) the number of requests for each second is quite uniform
without particular peaks. When it is used a ranking mechanism (Figure 58 (b)
and (c)) a regime is reached when all the producers accept requests. At the
end of regime there is a new transitory since all consumers are turning to the
same producer who is continuing to provide energy. By comparing the tests
represented in Figure 58 (b) and (c) we can see that the maximum number of
simultaneous requests when there is a delay decreases. In particular the number
of requests in the second test is comparable to those of the �rst one. In the last
test, instead, to have the same number of requests of the �rst two tests we must
consider an interval of 10 seconds.

By Figure 59 it is possible to understand that with the introduction of the
delay that follows a Poisson distribution, (thus approaching to a more realistic
case), the decrease of the number of simultaneous requests means that response
times are lower: for this reason, the performances are compliant with the re-
quirements of scalability and with the dynamics of the system we want to follow.
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Figure 59: Transactions Time with three hosts
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4.3 Evaluation tool for distributed energy utilization

In this section, we present the technologies used to collect the energy data and to
evaluate the energy improvements, also integrated with the simulator developed
in WP6.

The main objective of the system is to give the opportunity to analyze the
energy consumption for each di�erent input con�guration. There was therefore
the need to save all information relating to the consumption and production
of energy of each device. For this purpose it was decided to use a Time Series
Database (TSDB). A TSDB is a software system that is optimized for handling
time series data. A time series can be seen as an array of numbers indexed by
time. In some �elds these time series are called pro�les, curves, or traces. As
TSDB we decide to use In�uxDB. In�uxDB (https://in�uxdb.com/) is an open-
source distributed time series database with no external dependencies where
everything is managed as a time series. It provides some standard functions
and its data model supports arbitrary event data. It is possible to write in
a hash of associated data and count events, uniques, or grouped columns on
the �y. It provides native HTTP-API that allows to read and write data from
JavaScript. A SQL-like query language designed for working with time series
and analytics is provided by In�uxDB. Besides, In�uxDB is designed to scale
horizontally.

Grafana provided the technology for chart drawing and visualization. Grafana
(http://grafana.org/) is an open source, feature rich metrics dashboard and
graph editor for di�erent Time Series DB such as Graphite, In�uxDB and
OpenTSDB. It allows to create fast and �exible client side charts with a multi-
tude of options. Grafana is organized in dashboards where it is possible to add
and manage several types of graphs. It includes a built in Graphite query parser
that takes writing graphite metric expressions to a whole new level. It o�ers
the possibility to connect and interact with In�uxDB through a query editor.

Figure 60: Visualization and evaluation of energy utilization

After the user has con�gured the neighborhood, the emulation can be started.
In essence, the entire con�guration is built using the mediator (Emoncms) ser-
vices and devices are started. At the end of the emulation, the system will
bring in In�uxDB all consumption/production time series. From now on, the

608806 CoSSMic 73 of 77



CoSSMic D4.3 Validation results of the self-optimising multi agent framework.

user can analyze what happened with that particular con�guration. The GUI of
our system (Figure 60) follows the tree structure of a CoSSMic neighborhood. In
fact, on the left, there are all the micro-grids that constitute the neighborhood.
For each node there are the individual user (All in Home con�guration) or all
users (All in Cloud con�guration). Finally for each user there are all devices.
The system gives the possibility to analyze consumption/production of each in-
dividual device, of user (as sum of all devices), of node (as sum of all users)
and of neighborhood (as sum of all nodes). In the screenshot in Figure 60, for
example, we can see the GUI. On the left, we can see the Neighborhood with
Users and Devices structured as the tree shown in Figure 1. On the right two
charts are shown: the power produced by solar panels and the power provided
to the households of the neighborhood. Other charts that the system is able to
elaborate are: the amount of power provided to the grid, the amount of power
received from the grid and the amount of power consumed by devices.
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5 Conclusion

This deliverable described the improvements designed and developed in the
last phase of the CoSSMic project to maximize the e�ectiveness of the energy
management optimization pursued by the CoSSMic multi agent-system. In par-
ticular we distinguished two main contributions: improved learning capabilities
and a smarter negotiation model. Learning capabilities allowed agents to bet-
ter predict the energy pro�les of next loads, for di�erent kinds of consuming
appliances. They also made easy the usage of the system by the user. In fact
we exploited the automatic detection of starting devices to update the user's
plan by allowing him to set default parameters. The same learning capabilities,
together with machine learning techniques, were validated o�-line, using data
collected by trials. The results of validation activities include in fact a set of
tools for processing of time-series collected almost since the beginning of the
project.

Distributed negotation has also been improved to support management of
energy storages, which consume and produce at the same time, and to speed
up convergence to the maximum self-consumption of the neighborhood. In fact
to accomplish the distributed policy each agent is able now to learn which are
its best vendors. The vendors' priority are used to increase performance and
scalability of the system. A mechanism for the distributed computation of
user's reward has also been implemented. That is necessary to compensate the
contribution of each user in terms of energy sharing and of �exibility in planning
the usage of its own devices. Performance evaluation and scalability have been
evaulated here, and in WP6 using simulation.

Finally a functionality that implements the emulation of trials has been de-
veloped for testing purpose. It allowed to test the CoSSMic software without the
the need to use the infrastructures at trial sites. It allows also for changing the
CoSSMic con�guration and repeat the tests reproducing the same conditions.

All presented technologies have been integrated in the platform itself and
into the simulator developed in WP6.

608806 CoSSMic 75 of 77



CoSSMic D4.3 Validation results of the self-optimising multi agent framework.

References

[1] Alexander Semenovich Poznyak and Kaddour Najim. Learning automata
with continuous input and changing number of actions. International Jour-
nal of Systems Science, 27(12):1467� 1472, 1996.

[2] A. Amato, M. Scialdone, and S. Venticinque. An application of learning
agents to smart energy domains. In CEUR Workshop Proceedings, volume
1382, pages 11�18, 2015. cited By 0.

[3] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming.
Springer, 3rd edition, 2008.

[4] G. Horn, S. Venticinque, and A. Amato. Inferring appliance load pro�les
from measurements. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioin-
formatics), 9258:118�130, 2015. cited By 1.

[5] Imma Curiel. Cooperative Game Theory and Applications - Cooperative
Games Arising from Combinatorial Optimization, volume 16 of Theory and
Decision Library C: Game Theory, Social Choice, Decision Theory, and
Optimization. Springer, Berlin Heidelberg, 1997.

[6] Tigase Inc. Tigase XMPP server. http://projects.tigase.org/projects/tigase-
server.

[7] John G. Saw, Mark C. K. Yang, and Tse Chin Mo. Chebyshev inequality
with estimated mean and variance. The American Statistician, 38(2):130�
132, May 1984.

[8] Klaus Höllig and Jörg Hörner. Approximation and Modeling with B-Splines.
Society for Industrial and Applied Mathematics, Philadelphia, mar 2014.

[9] Kumpati S. Narendra and Mandayam A. L. Thathachar. Learning Au-
tomata: An Introduction. Prentice Hall, May 1989.

[10] Lloyd S. Shapley. A value for n-person games. In H. W. Kuhn and A.
W. Tucker, editors, Contributions to the Theory of Games, volume 2/28 of
Annals of Mathematical Studies, page 307�317. Princeton University Press,
1953. Paper 17.

[11] M. J. D. Powell. A direct search optimization method that models the
objective and constraint functions by linear interpolation. In Susana Gomez
and Jean-Pierre Hennart, editors, Advances in Optimization and Numerical
Analysis, number 275 in Mathematics and Its Applications, pages 51�67.
Springer Netherlands, 1994. DOI: 10.1007/978-94-015-8330-5_4.

[12] M. J. D. Powell. Direct search algorithms for optimization calculations.
Acta Numerica, 7:287�336, January 1998.

[13] Ignite Realtime. OpenFire XMPP server.
http://www.igniterealtime.org/projects/open�re/.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement learning, volume 9.
MIT Press, Boston, MA, USA, 1998.

608806 CoSSMic 76 of 77



CoSSMic D4.3 Validation results of the self-optimising multi agent framework.

[15] Marco Scialdone, Luca Tasquier, Rocco Aversa, and Salvatore Venticinque.
Communication overlay for communities of collaborative agents in smart
grid domains. International Journal of Bio-Inspired Computation, in press.

[16] Luca Tasquier, Marco Scialdone, Rocco Aversa, and Salvatore Venticinque.
Agent Based Negotiation of Decentralized Energy Production. In Intelligent
Distributed Computing VIII, pages 59�67. Springer, 2015.

[17] Xiaotie Deng and Christos H. Papadimitriou. On the complexity of coop-
erative solution concepts. Mathematics of Operations Research, 19(2):257�
266, May 1994. ArticleType: research-article / Full publication date: May,
1994 / Copyright © 1994 INFORMS.

608806 CoSSMic 77 of 77


