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1 Introduction

Building self-managing systems with Niche Building self-managing distributed systems raises at
least two kinds of issues: architectural ones (how is a self-managed system organized ? how is self-
management enabled ?), and decision and control ones (how are decisions for management actions
reached ? how are such actions carried out ?). Ideally, under defined architectural templates, given high-
level descriptions of the system functional behavior or goals, and of management policies to be observed,
one should be able to synthetize (or evolve) a self-managing system. We are far from achieving this
ideal, however: architectural principles are still in flux, with major insights coming from architectures of
control, and we do not have the tools to synthetize decision and control, the knowledge in this area is
very fragmented, with partial insights coming from many disciplines, including control theory [8], discrete
event systems [3], distributed algorithms [7], and multi-agent systems [13]. In Grid4All, we focus on a
classical view of the design of self-managing distributed systems, where human designers elaborate the
system architecture and its decision and control structure, aided with a component model, associated
linguistic tools, and target execution environment (Niche).

The Niche approach developed in Grid4All (see deliverable D6.7A) constitutes an original contribu-
tion to the question of architecting self-managing distributed systems. It combines a control-based and
architecture-based approach — as exemplified e.g. by Rainbow [5] or Darwin [9] — with a peer-to-peer
substrate: a self-managing system consists of an overlay of interacting components, under the supervi-
sion of a set of (possibly interacting, typically feedback) control loops. Each control loop, itself composed
of a collection of interacting components, continuously monitors part of the system, analyzes its behavior
based on it observations, plans and applies corrective actions if required. Under this approach, a sim-
ple self-managing application featuring a single control loop can roughly be considered as having three
parts: the functional part, the touchpoints, and the autonomic manager. The functional part corresponds
to the nominal behavior of the system. The autonomic manager corresponds to the analysis and decision
stage of the management control loop. The touchpoints correspond to the sensors and effectors used
by the autonomic manager to complete the control loop (monitoring the functional part, and carrying out
corrective actions).

To support self-configuration, the Niche programming model is based on the Fractal reflective com-
ponent model [2]. In the Fractal model, components are bound and interact with each other using two
kinds of interfaces: (1) server interfaces offered by the components; (2) and client interfaces used by
the components. Components are interconnected by bindings: a client interface of one component is
bound to a server interface of another component. Different interaction semantics between components
can be mediated by binding components, possibly spanning different nodes. Fractal allows nesting of
components in composite components and sharing of components. Components have control (manage-
ment) membranes, with introspection and intercession capabilities. It is through this control membrane,
that components are started, stopped, configured. It is through this membrane that the components
are passivated (as a prelude to component migration), and through which the component can report
application-specific events to management (e.g. load). Fractal can be seen as defining a set of capa-
bilities for components, it does not force application components to comply, but clearly the capability of
the programmed components must match the needs of management. For instance, If the component
is both stateful and not capable of passivation (or checkpointing) then management will not be able to
transparently migrate the component. In terms of our control loop approach, a Fractal component can be
understood as providing an encapsulation of functional behavior with explicit touchpoints provided by its
control membrane as specific interfaces.

Building autonomic managers For many applications and environments, a single control loop struc-
ture is not sufficient. It is then desirable to decompose the autonomic manager into a number of cooper-
ating autonomic managers each performing a specific management function or/and controlling a specific
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part of the application. We have defined the following iterative steps to be performed when designing and
developing the management part of a self-managing distributed application in a distributed manner:

• Decomposition The first step is to divide the management into a number of management tasks.
Decomposition can be either functional or spatial .

• Assignment The tasks are then assigned to autonomic managers each of which becomes respon-
sible for one or more management tasks.

• Orchestration Multiple autonomic managers, in the general case, are not independent since they
manage the same system and there exist dependencies between management tasks. Therefore
they need to interact and coordinate their actions in order to avoid conflicts and interference and to
manage the system properly.

• Mapping The set of autonomic managers are then mapped to the resources.
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(c) Direct interactions (d) Shared managed element

Figure 1: Orchestrating managers

Autonomic managers can interact and coordinate their operation in the following four ways:

• Stigmergy : Stigmergy is a way of indirect communication and coordination between agents (Fig-
ure 1(a)). Agents make changes in their environment, and these changes are sensed by other
agents and cause them to do more actions. Stigmergy was first observed in social insects like
ants. In our case agents are autonomic managers and the environment is the managed applica-
tion.

• Hierarchical Management : By hierarchical management we mean that some autonomic managers
can monitor and control other autonomic managers (Figure 1(b)). The lower level autonomic man-
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agers are considered as a managed resource for the higher level autonomic manager. Communi-
cation between levels take place using touchpoints. Higher level managers can sense and affect
lower level managers.

• Direct Interaction: Autonomic managers may interact directly with one another. Technically this is
achieved by binding the appropriate management elements (typically managers) in the autonomic
managers together (Figure 1(c)). Cross autonomic manager bindings can be used to coordinate
autonomic managers and avoid undesired behaviors such as race conditions or oscillations.

• Shared Managed Elements: Another way for autonomic managers to communicate and coordinate
their actions is by sharing managed elements (Figure 1(d)). This can be used to share state
(knowledge) and to synchronise their actions.

Deliverable contributions This deliverable is organized in two parts. In the first part, we report on
support for self-configuration that was developed during the third year of the project. In the second part,
we report on three case studies, also completed during the third year of the project, that exemplify the
potential for self-management provided by the Niche approach, and illustrate different cases of autonomic
manager orchestration.

To further support self-configuration, we have extended the Fractal model with a formal model for dy-
namic component deployment and configuration. This model makes explicit the different entities involved
in a distributed deployment process, and the dependencies that may exist between executing components
and the software executables used to build them and activate them. This is crucial to ensure consistent
decisions for component deployment and configuration can be made in a distributed environment (an
example of the need to coordinate decisions across the part of a system, or of the need to coordinate
local decisions – in this case by configuration managers). We have also extended our Oz Fractal imple-
mentation, that comprised the FructOz and LactOz libraries developed during year 2 of the project, with
the WorkflOz library to complete our support for constructing self-configurable compnents in Oz.

Our three case studies deal with different examples of self-management that illutrate the design
methodology mentioned above, and different examples of autonomic manager orchestration. The first
case study, called YASS (Yet Another Storage Service), built using Niche, is a storage service that allows
users to store, read and delete files on a set of distributed resources, and that transparently replicates
the stored files for robustness and scalability. The second one, called YACS (Yet Another Computing
Service), automatically distributes tasks among available distributed resources (masters and workers),
monitors task execution and restarts failed tasks. YACS guarantees execution of jobs despite of nodes
leaving or failing. The third case study is a self-repair framework, built on the Jade system that inspired
Niche, for loosely-coupled cluster systems such as JEE application servers.

2 Support for self-configuration

2.1 Deployment and configuration model

The Fractal deployment and configuration model provides a formal analysis of the main abstractions
involved when dynamically deloying and configuring distributed component structures, including relation-
ships between executing components and their supporting software executables. The model has been
formally specified with the Alloy specification language, and buids on the Alloy specification of the Fractal
component model that was initially presented in Grid4All deliverable D1.4, and further refined [11]. The
Fractal deployment and configuration model was developed with three specific objectives in mind:

1. To ensure that one could describe, using the model, heterogeneous deployment processes, i.e. de-
ployment processes involving executables in different programming languages, relying on different
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deployment tools at different software layers (e.g. deploying Java applications using OSGI bundles
for Java code and RPM packages for the supporting C libraries in a Linux environment).

2. To make explicit relations between different entities involved in a deployment process so as to
be able to monitor them and to control them in a self-managed distributed environment, where
configuration management extends as much to running components than to the executables they
depend upon.

3. To develop a formal model that can ultimately be used to reason about deployment processes,
deployment-related functions and abstractions, and to characterize correctness conditions associ-
ated to such functions and processes.

Interestingly, although there have been numerous works on software deployment, especially, dur-
ing the past decade, on architecture-based approaches to deployment (approaches that exploit software
architecture descriptions to drive deployment processes), there are few works that address the above
objectives. The three works most closely related to the Fractal deployment model are the Buildbox model
[10], the OpenRec framework [14], and the Deployware framework [4]. The OpenRec framework uses
the Alloy specification to formally characterize component configurations and to describe reconfigura-
tion operations, however it supports only a non-hierarchical component model, and does not provide an
analysis of deployment concepts and operations. The Builbox model provides a formal analysis of key
deployment operations by means of a labelled transition system which are close to those described in
our deployment model, but the Buildbow model does not consider deployment in a distributed context,
and does not provide a modular analysis of the key components involved in a deployment process, a key
requirement to address our second objective above. The Deployware framework addresses heteroge-
neous deployment processes, and relies on a UML meta-model to describe key deployment abstractions,
which are modelled, as in our work, as Fractal components. The Deployaware metamodel is not formally
specified, however, and provides an insufficiently detailed analysis in comparison to our model to meet
our second objective.

The main concepts in the Fractal deployment model belong roughly to three main categories: software
unit concepts, that capture the notion of executable software; transformer concepts, that capture basic
forms of operations that can be applied to executables in the process of delivering them in a distributed
environment; and support concepts, that capture key functionality required to enact the actual deploy-
ment of executables in a distributed environment. All these different concepts are specified as Fractal
components, which makes the model fully recursive: components that implement a deployment process
can themselves be deployed and configured, using the same abstractions and supporting mechanisms.

The software unit concepts are: software unit (SU), software unit system (SUS), and descriptor.
A software unit corresponds to some software executable. Each software unit belongs primitively to a
software unit system, i.e. a set of rules, APIs, or tools that define an executable format, and the operations
that can be applied to it. For instance, an RPM package [1] corresponds to a software unit, while the set
of tools, conventions, format rules, etc that define how RPM packages are formed and how they can
be manipulated (mostly implicitly by the RPM tools), constitute a software unit system. Ditto for OSGI
bundles (software units) and the OSGI specifications and tools (software unit system) [12]. From the
point of view of formal model, one distinguishing feature of a software unit system is that it constitutes a
naming context, as defined by the Fractal specification. This allows to freeely combine within the same
deployment process, software units from different software unit systems, with no risk of confusion.

A software unit is characterized primarily by its set of descriptors. These are typed interfaces, i.e.
access points for interaction with a component, according to the Fractal model, and can be server inter-
faces or client interfaces. The server descriptors of a software unit define the elements that are provided
by a software unit (its exports – which can be as simple as sets of procedures or values), whereas the
client descriptors define the elements it depends upon (its imports – which will be provided by other soft-
ware units). As with general Fractal components, software units can be bound with other components
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(which may or may not be other software units), and can be composites i.e. contain subcomponents (typ-
ically, other software units). Descriptor types abstract constraints attached to imports, such as versioning
constraints.

The transformer concepts encompass the following components: launcher, installer, and resolver. A
launcher takes as input a set of software units and produces a running component. An installer takes as
input a set of software units and produces other software units. A resolver takes as input a set of soft-
ware units and binds the client and server descriptors of these software units, thus (possibly only partially)
resolving the dependencies between the given software units. Deploying an executing component thus
typically involves a combination of installers, resolvers, and launchers. The software architecture of an
application, as envisaged with the Fractal deployment model, thus encompasses both the relations (bind-
ing and containment) between running components, but also the relations between running components
and software units that have been transitively involved in their launch.

The last concepts of the Fractal deployment model are: (deployment) node and (software unit) reposi-
tory. A node is an abstraction of a set of computing resources, that are capable of executing components.
We require a node to comprise at least a binding factory, to support some form of remote communica-
tion with its environment (other computing nodes), and a launcher, to support the creation of executing
components from some software units. A repository is a store of software units, possibly from different
software unit systems, and that provides access to software units through their names or their types.

2.2 Oz support for self-configuration

The FructOz and LactOz Oz/Mozart libraries, developed during year two of the project, have been refined
and evaluated in particular in relation to the work which appears closest to it, the Smartfrog system
[6]. To complement these two libraries, we have developed the WorkflOz library, that builds on FructOz.
Together, these three libraries provide a set of basic operations for self-configuration as follows:

• Components and reconfiguration: The FructOz library supports the Fractal component model, and
allows dynamic deployment and configuration of a distributed component structure.

• Observation and navigation: The LactOz library allows dynamic navigating and monitoring of a
distributed component structure.

• Tasks and Orchestration: the WorkflOz library allows the coordination structure of a distributed
system to be made explicit as a distributed structure of task components. This provides direct
and reconfigurable support for manager orchestration, which we provide in WorkflOz in the form of
workflow synchronization patterns.

WorkflOz is an Oz-based framework for defining component-based distributed coordination structures
or workflows. The main goal of WorkflOz is to enable programmers to write succinct descriptions of
complex processes, involving both control flow and data flow, in a compositional and intuitive style. To
achieve this goal, WorkflOz provides direct support for all common workflow patterns, which represent
widely used, recurring constructs in modern workflow management systems and languages. Unlike most
workflow management systems and languages, WorkflOz can be extended with abstractions that capture
new patterns, which can be assembled to express arbitrary coordination situations.

WorkflOz is based on the concept of a task, which represents a unit of computation that can be
in different states (e.g., executing, terminated). A task has a set of input/output pins through which it
receives/emits data values while it is executing. WorkflOz enables composing tasks using operators that
capture workflow patterns. For example, consider the operator Seq that captures the sequence pattern.
The following expression defines a composite task T3 that represents the sequence of tasks T1 and T2.

T3={Seq T1 T2}
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T1

T2

T3 T4

MultiMerge

Seq

Figure 2: A composition of task components.

WorkflOz provides a set of operators similar to Seq (e.g., Sync, Parallel) which can be combined
to express complex workflows and corresponding component configurations. For example, the following
simple expression creates the component configuration depicted in Figure 2:

T5={Seq {MultiMerge {Sync T1 T2} T3} T4}

Primitive tasks can be created using helper functions, such BasicWrapper. This function takes as
input an Oz unary function and creates a primitive task with one input pin and one output pin. When this
task is executed, it invokes the Oz function with the input pin value, and emits the result to the output pin.
Using BasicWrapper, T1 and T2 could be defined as follows:

T1={ BasicWrapper fun {$ X} X+1 end}
T2={ BasicWrapper fun {$ X} X*2 end}

T3 can be executed or cancelled using the following calls:

{Execute T3}
{Cancel T3}

Pins can be accessed directly to send or read data. For example, one can send the value 8 to the
single input pin of T3 (the input pin identifier is 1) through the call:

{Send T3 1 8}
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Tasks are realised as FructOz components with a particular type of controller (i.e., the task controller )
and specially-marked server and client interfaces representing input and output pins respectively. Com-
posite and primitive tasks correspond to composite and primitive FructOz components. Input and output
pins are realised respectively as server and client interfaces. Following the FructOz design, pins are
connected through bindings and hold a potentially unbounded list of values (i.e., an Oz stream). Input
and output pins are identified using their order (from 1 to the number of input/output pins). When a task
is executing, it continuously reads values from its input pins and writes values to its output pins, thus
supporting streaming-style data flow. Tasks may be primitive or composite, containing any number of
interconnected sub-tasks.

Tasks expose a task controller interface through which their lifecycle is managed. A basic task con-
troller is defined in WorkflOz, in which tasks can be in one of four states: Ready, Executing, Cancelling,
Terminated. The task controller exposes operations to trigger state changes (i.e., execute and cancel),
to obtain the current state of the task, and to subscribe/unsubscribe to events corresponding to state
changes (e.g., from Cancelling to Terminated). These operations are invoked by components external
to the task (e.g., task controllers of containing components). The transitions from Executing and Can-
celling to Terminated are triggered by the task itself when its computation or the cancellation process are
terminated.

WorkflOz provides operators for creating different types of composite tasks, each type corresponding
to a particular workflow pattern. A type of composite task (e.g., sequence type) specifies data- and
control-flow dependencies between its sub-tasks. Specifically, it specifies the number of pins of the
composite and the binding structure among sub-tasks and the composite. Moreover, it specifies control
and lifecycle dependencies between the composite and its sub-tasks (e.g., the composite terminates
when any of its subtasks terminate). Those dependencies are implemented by the task controller of
the composite task using the controllers of the sub-tasks. In the previous sequence example, the task
controller of T3 uses the task control interface of T1 to register for state change events; when a termination
event is received, the controller triggers the execution of T2 through the T2 task controller.

Extending WorkflOz with support for a new pattern involves (1) defining the control- and data-flow
semantics of the corresponding composite task, and (2) implementing the associated task controller and
any supporting functionality. This implementation is facilitated by utility classes for managing the task
lifecycle, sending events, and accessing and connecting pins.

3 Case study: a distributed storage service

We present in this section the YASS (Uet Another Storage Service) case study, that illustrates how to
design a self-managing distributed system monitored and controlled by multiple distributed autonomic
managers.

3.1 YASS specification

YASS is a storage service that allows users to store, read and delete files on a set of distributed resources.
The service transparently replicates the stored files for robustness and scalability. Assuming that YASS
is to be deployed and provided in a dynamic distributed environment, the following management tasks
are required:

• Maintain the file replication degree by restoring the files which were stored on a failed/leaving
resource. This function provides the self-healing property of the service so that the service is
available despite of the resource churn.

• Maintain the total storage space and total free space to meet QoS requirements by allocating
additional resources when needed. This function provides self-configuration of the service.
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Figure 3: YASS functional part.

• Increasing the availability of popular files. This and the next two functions are related to the self-
optimization of the service.

• Release excess allocated storage when it is no longer needed.

• Balance the stored files among the allocated resources.

3.2 YASS design

Functional part

A YASS instance consists of front-end components and storage components as shown in Figure 3. The
front-end component provides a user interface that is used to interact with the storage service. Storage
components represent the storage capacity available at the resource on which they are deployed. The
storage components are grouped together in a storage group. A user issues commands (store, read,
and delete) using the front-end. A store request is sent to an arbitrary storage component (using one-to-
any binding between the front-end and the storage group) which in turn will find some r different storage
components, where r is the file’s replication degree, with enough free space to store a file replica. These
replicas together will form a file group containing the r storage components that will host the file. The
front-end will then use a one-to-all binding to the file group to transfer the file in parallel to the r replicas
in the group. A read request is sent to any of the r storage components in the group using the one-to-any
binding between the front-end and the file group. A delete request is sent to the file group in parallel using
a one-to-all binding between the front-end and the file group.
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Figure 4: YASS Self-healing control loop.

Enabling management

Given that the functional part of YASS has been developed, to manage it we need to provide touchpoints.
DCMS provides basic touchpoints for manipulating the system’s architecture and resources, such as
sensors of resource failures and component group creation; and effectors for deploying and binding
components. Beside the basic touchpoint the following additional, YASS specific, sensors and effectors
are required:

• A load sensor to measure the current free space on a storage component.

• An access frequency sensor to detect popular files.

• A replicate file effector to add one extra replica of a specified file.

• A move file effector to move files for load balancing.

Management part

The following autonomic managers are needed to manage YASS in a dynamic environment. All four
orchestration techniques described above are demonstrated.

Replica Autonomic Manager The replica autonomic manager is responsible for maintaining the de-
sired replication degree for each stored file in spite of resources failing and leaving. This autonomic
manager adds the self-healing property to YASS. The replica autonomic manager consists of two man-
agement elements, the File-Replica-Aggregator and the File-Replica-Manager as shown in Figure 4.

Storage Autonomic Manager The storage autonomic manager is responsible for maintain the total
storage capacity and the total free space in the storage group, in the presence of dynamism, to meet
QoS requirements. The dynamism is due either to resources failing/leaving (affecting both the total
and free storage space) or file creation/addition/deletion (affecting the free storage space only). The
storage autonomic manager will reconfigure YASS to restore the total free space and/or the total storage
capacity to meet the requirements. The reconfiguration is done by allocating free resources and deploying
additional storage components on them. This autonomic manager adds the self-configuration property to
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Figure 5: YASS Self-configuration control loop.

YASS. The storage autonomic manager consists of Component-Load-Watcher, Storage-Aggregator, and
Storage- Manager as shown in Figure 5.

Direct Interactions to Coordinate Autonomic Managers The two autonomic managers, replica au-
tonomic manager and storage autonomic manager, described above seem to be independent. The first
manager restores files and the other manager restores storage. But as we will see in the following exam-
ple it is possible to have a race condition between the two autonomic managers that will cause the replica
autonomic manager to fail. For example, when a resource fails the storage autonomic manager may
detect that more storage is needed and start allocating resources and deploying storage components.
Meanwhile the replica autonomic manager will be restoring the files that were on the failed resource. The
replica autonomic manager might fail to restore the files due to space shortage if the storage autonomic
manager is slower and does not have time to finish. This may also prevent the users, temporarily, from
storing files. If the replica autonomic manager would have waited for the storage autonomic manager to
finish, it would not fail to recreate replicas. We used direct interaction to coordinate the two autonomic
managers by binding the File-Replica-Manager to the Storage-Manager. Before restoring files the File-
Replica-Manager informs the Storage-Manager about the amount of storage it needs to restore files. The
Storage-Manager checks available storage and informs the File-Replica-Manager that it can proceed if
enough space is available or ask it to wait.

Optimising Allocated Storage It is possible to design an autonomic manager that will detect low
resource utilization, move file replicas stored on a chosen lowly utilized resource, and finally release
it. Since the functionality required by this autonomic manager is partially provided by the storage and
replica autonomic managers we will try to augment them instead of adding a new autonomic manager,
and use stigmergy to coordinate them. It is easy to modify the storage autonomic manager to detect low
storage utilization. The replica manager knows how to restore files. When the utilization of the storage
components drops, the storage autonomic manager will detect it and will deallocate some resource. The
deallocation of resources will trigger, through stigmergy, another action at the replica autonomic manager.
The replica autonomic manager will receive the corresponding resource leave events and will move the
files from the leaving resource to other resources.
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Figure 6: Hierarchical management in YASS.

Improving file availability Popular files should have more replicas in order to increase their availability.
A higher level availability autonomic manager can be used to achieve this through regulating the replica
autonomic manager. The autonomic manager consists of two management elements. The File-Access-
Watcher and File- Availability-Manager shown in Figure 6 illustrate hierarchical management.

Balancing File Storage A load balancing autonomic manager can be used for self-optimization by
trying to lazily balance the stored files among storage components. Since knowledge of current load is
available at the Storage- Aggregator, we design the load balancing autonomic manager by sharing the
Storage-Aggregator as shown in Figure 7. All autonomic managers we discussed so far are reactive.
They receive events and act upon them. Sometimes proactive managers might be also required, such as
the one we are discussing. Proactive managers are implemented in DCMS using a timer abstraction.
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Figure 7: Sharing of managed elements in YASS.
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4 Case study: a distributed computing service

The second case study is a computing service called YACS (Yet Another Computing Service). It illustrates
how to design a self-managing distributed system with a computational oriented service.

4.1 YACS Specification and design

Yet Another Computing Service, YACS, is a robust computing service that executes jobs submitted by
end-users through service front-ends. A job is specified as a bag of independent tasks to be computed
on a set of distributed nodes (computers). The service can be used to perform different kinds of batch
jobs or bag-of-task applications such as parameter-sweep simulation, video transcoding, ray-tracing or
other applications that follow the master-worker paradigm.

The service automatically distributes tasks among available distributed resources (masters and work-
ers), monitors task execution and restarts failed tasks. YACS guarantees execution of jobs despite of
nodes leaving or failing. YACS supports checkpointing that allows restarting execution from the last
checkpoint. Furthermore, YACS scales, i.e. changes the number of master and workers, when the num-
ber of jobs/tasks changes. In order to achieve high availability, the service always maintains a number of
free masters and workers so that new jobs can be accepted without delay.

Following the Niche design guidelines the YACS service is designed as consisting of a functional part
resposible for job execution, and a management part resposible for self-healing and self-configuration of
the service.

Functional part The functional part of YACS contains the following two parts. Job execution manage-
ment is in charge of managing and executing of jobs. This is done using a master-worker pattern where
each job is assigned to a master which collects a set of workers to execute the job; Resource manage-
ment is in charge of resource allocation to the job execution management. The resource service knows
the status of the system’s functional resources (masters and workers) by means of monitoring. The func-
tional part of YACS includes a set of functional components: masters, workers and the resource service.
A master accepts submitted jobs, finds workers, assigns tasks to the workers, monitors execution and
collects results. A worker executes tasks assigned to it and communicates results back to its master. The
resource service keeps track of resources, i.e. masters and workers, and allocates them to requesting
clients: front-ends and masters, respectively. A user submits a job via a front-end, which contacts the
resource service to obtain a free master to execute the job, and sends the job to the master. The mas-
ter gets free workers from the resource service and assigns tasks to the workers for execution. Upon
completion of all tasks and collecting all results, the master communicates the results to the frontend.

Management part The management part of YACS includes a set of management components, watch-
ers, aggregators and the control manager, that are in charge of detecting and healing failures of functional
components (workers, masters and the resource service). It is also responsible for scaling and recon-
figuring the functional part (i.e. creating/removing and binding functional components) when the service
load changes beyond specified thresholds. Watchers monitor functional components; aggregators collect
and analyze the monitoring information coming from watchers and issues status events to the control
manager, which performs self- management actions.

4.2 Self-management in YACS

There is a need for self-management capabilities within YACS in order to guarantee execution of jobs
and service availability despite of node failures, departures and arrivals, as well as changes in load. This
requires self-healing of masters, workers and the resource service as well as self-configuration to react on
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load changes. The functional part of YACS includes execution management (masters and workers) and
resource management (the resource service); therefore the self-management capabilities are split into
two parts, one managing the job execution management, the other managing the resource management.
Self-management is achieved by placing management elements (watchers, aggregators and managers)
to build self-healing and self-configuration control loops. Self-management of execution management is
concerned with self-healing. There are watchers that monitor the state of masters and workers and take
action upon detecting failures. Upon sensing failures they perform healing and actuation by redeploying
jobs or tasks on replacement masters or workers. If the job supports checkpointing, tasks are restarted
based on their last known state. The process follows the same pattern when a master component is
healed.

Self-management of resource management is concerned with both self-healing and self- configura-
tion. The self-healing control loop is responsible for healing the resource service if any of the components
that make up the service fail. This is critical since the resource service is used by all jobs. The self-
configuration control loop senses the availability of free functional resources within the system, and upon
need deploys additional functional components. The ServiceWatcher senses the state of the system
through sensors on resource service components, as well as failures of resource service components.
This information is sent to the ServiceAggregator which analyzes the state to see if the availability of
free resources is below the configurable threshold, in which case actuation is needed to deployment of
additional functional components. The ConfigurationManager performs this actuation by trying to find
free physical nodes and deploys the additional components there.

5 Case study: a self-healing JEE cluster

The third case study is a self-healing cluster of legacy JEE servers. It illustrates the application of our
self-management approach to legacy systems and a form of distributed design for an autonomic manager
based on active replication.

5.1 Design

Functional part

In a JEE multi-tiered architecture, the Web application server is classically divided in several tiers: the
HTTP daemon (e.g. Apache), the servlet engine (e.g. Tomcat), the EJB business server (e.g. JOnAS),
and the database tier (e.g. MySQL). To manage a cluster of such application servers, JEE Each tier can
be independentlyly wrapped by Fractal components that provide the required sensors and effectors for
management.

Management part

Each physical machine in the cluster is represented by components called nodes. Managed elements
executing on these physical machines are subcomponents of nodes. The set of nodes together with their
subcomponents constitutes a management domain, i.e. a set of entities under the control of a single
management authority and associated set of policies.

To support repair, i.e. the recovery from failures of managed elements corresponding to hardware
or software resources, some knowledge must be maintained of the runtime configuration of the system,
which should persist even in presence of failures. This knowledge takes the form of a system map, a
component structure that mirrors the component structure of the managed system. The system map
serves as an intermediate between manager components and managed components, and that carries
out reconfiguration operations originating with the repair manager component. The repair manager is
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responsible for the analysis of observations on the managed system, the planning and (ultimately) exe-
cution of management operations in response to observations, and according to management objectives
and policies. A repair manager component and the system map together form an autonomic manager,
and execute on a node called a manager node. We call management subsystem the set of manager
nodes together with their manager subcomponents. To enable self-repair, i.e. to recover from faults that
may occur within the management subsystem, the manager nodes are replicated and are an integral part
of the managed system.

System Map: basic structure

The runtime configuration of the managed distributed system is captured in the System Map that provides
not only an accurate representation of the managed distributed system but also the ability to reconfigure
it. In other words, the System Map acts as an intermediate reflective structure between autonomic man-
agers and managed elements. The System Map, depicted in Figure 8 where managed components are
wrapped legacy elements, relies on the concept of mirror components.

Each managed component has a mirror component in the System Map. Hence, one finds a mirror in
the System Map for each managed component and each managed node. Each mirror captures the com-
plete architectural state of the managed component it mirrors, which includes the following information:

• The lifecycle status of the managed component (at a minimum: started or stopped) (captured as
the lifecycle status of the mirror component).

• The managed component attributes, in the form of 〈key,value〉 pairs (captured as attributes of the
mirror component).

• The managed component client and server interfaces (captured as interfaces of the mirror compo-
nent) together with their bindings (which are captured as bindings between mirror components).

• The subcomponents of the managed components (captured as subcomponents of the mirror com-
ponent)

Through mirrors, manager components can both introspect and reconfigure the architecture of the
managed system. By introspecting, we mean that managers can access the mirrors and therefore obtain
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the architectural state they mirror. For instance, managers can know which managed components are
deployed where, if they are started, and what are the bindings that link them. By reconfiguring, we mean
that manager components can change the managed architecture as required. For instance, managers
can start-stop mirrors or change managed component attributes. They can also create new managed
components (and their mirrors), or remove or create bindings between managed components (and their
mirrors).

Since mirrors are Fractal components, such reconfigurations are simply done through the control
interface of the mirrors, using the regular management operations available via control interfaces of the
components. In other words, manager components reconfigure mirrors as they would the actual managed
components. Such reconfigurations of mirrors are done within atomic sessions on the System Map.
During each session, only the mirrors are reconfigured, management operations are not propagated to
their managed components. When a session is committed by managers, it is the responsability of the
System Map to carry out the reconfiguration out to the concerned managed components.

The rationale for our construction of the System Map is worth discussing. We noted above that some
knowledge of the managed system and its management state must be available: the System Map pro-
vides it. One could have built the System Map as a pure data structure, leaving manager components
the responsibility for updating the System Map and maintaining its causal connection with the managed
system. Having a System Map as an active entity provides a useful decoupling of responsibilities be-
tween System Map and manager components: the System Map is responsible for maintaing its causal
connection with the managed system, whereas manager components are responsible for analysis, plan-
ning a reconfiguration in response to the analysis, and updating the System Map to launch the execution
of the reconfiguration, which will be carried out ultimately by the System Map. With this design, manager
components do not need to reimplement each time mechanisms to maintain the causal connection of the
System Map with the managed system.

5.2 Self-repair

Principles of repair When a repair manager is notified of a failure (node failure detection is provided via
a classical heartbeat protocol, run by the manager nodes), A repair manager recovers from it by opening
an atomic session, conceptually composed of two phases: analyzing the system map, and reconfiguring
the system map to repair the failure. The repair manager only interacts with the system map, never
directly with the wrappers. At any time up to the final commit of the session, the repair manager can
abort the repair session. Once the repair manager commits a session, the actual commit becomes the
responsibility of the system map.

The commit of a session that repairs a single failed component is essentially a two-step process.
The first step recreates the managed components lost to a failure on available nodes. The second step
updates bindings: it recreates bindings on the new managed component, using the isomorphic bindings
between mirrors, and it removes and replaces stale bindings, i.e. bindings that connected the failed
components to other ones.

A corresponding simple case is illustrated in Figure 9. The left hand of the figure represents the
state of system map and of the managed system right at the end of the repair session, when the repair
manager is about to commit. The managed component B has failed on node N’. The repair manager
decided to recreate it on the node N, which is simply expressed by removing the mirror of B from the
composite mirror for the node N’ and adding it to the composite mirror of the node N. The right hand side
of the figure depicts the end result of the commit, applying the pseudo-code in Listing ??. A new managed
component B has been created on the node N and all the bindings have been changed accordingly. The
management reference from the mirror of B has also been updated accordingly.

This example corresponds to a real situation between an Apache HTTP daemon and its Tomcat
servlet engines. When the hardware node where a Tomcat servlet engine runs fails, a new instance of a
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Tomcat servlet engine must be recreated on a new hardware node. Therefore, the Apache HTTP daemon
must first close its socket to the failed Tomcat and re-open one to the newly created Tomcat. The unbind
operation resets the IP address and port in the Apache configuration file while the bind operation sets the
new correct values. It is interesting to point out that the Apache daemon has to be restarted to re-read
its configuration file. Hence, to apply the unbind-rebind operations, the wrapper has to actually shutdown
and restart the Apache HTTP daemon. This works perfectly well with loosely-coupled legacy systems:
clients will reissue the requests lost during the short period of time it takes for the Apache HTTP daemon
to restart.

Self-repair To achieve full self-repair, even if failures occur in the management subsystem itself, we use
an active replication scheme between manager nodes. We use a uniform atomic broadcast protocol [7]
that ensures a one-and-only-one semantics for issued managed operations. Since we replicate manager
nodes, there can be redundant repair sessions happening across replicas. Each repair session will
issue redundant management operations when committing. The atomic broadcast protocol ensures that
each individual management operation forwarded from the redundant session commits onto a managed
component is received once and only once. However, replication only hides the failures of individual
manager nodes. As in any replication scheme, such individual failures must be repaired to maintain the
replication cardinality and thereby preserve the availability of the replicated service over the long term.

In order for the management subsystem to repair itself, we have to deal with two issues. First, the
architecture of the management subsystem must be captured within the System Map. Indeed, when a
failure occurs, the Repair Manager introspects and reconfigures the System Map in order to understand
and repair a failure. While we need no modification to the repair algorithm presented in Listing ??, we
need to enhance our System Map to capture replicated components. Second, we need to extend the
repair capabilities to replicated components. So far, our commit protocol knows how to repair a failed
component that is not replicated. With failures of individual manager components, we have to repair
individual replicas of replicated components.

To deal with the first issue, we introduce the concept of replicator mirrors. A replicator mirror is a
mirror composite, that mirrors a Fractal composite. Therefore, a replicator mirror is a tree of mirrors since
a Fractal composite is actually a tree of composites with components as leaves. The semantics of a
replicator mirror is deep replication. Akin to a deep copy, a deep replication applies not only to the root
composite but also to all its subcomposites and subcomponents. Figure 10 depicts a replicator mirror C
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and the corresponding deep replication of managed components. As a composite, the replicator mirror
C is a tree of mirrors, represented as nested rectangles. For each mirror in that tree, the corresponding
managed component is replicated across the nodes N and N’.

Also note on Figure 10 that the node mirrors for nodes N and N’ refer to the replicator mirror for the
component C. This captures the knowledge that the replicator mirror has deployed replicas of the com-
posite C on both nodes N and N’. This ensures that our Repair Manager can correctly analyze a failure.
For instance, upon a node failure, our Repair Manager introspects the System Map to find components
that were deployed on the failed node. It therefore finds the replicator mirrors that have replicas on that
node. Our Repair Manager has no concept of a replicator mirror, it treats them as regular mirrors; simply
relocating a failed mirror to an available node, as it did before in Figure 9. Removing a mirror from a node
mirror and adding it to another node mirror actually updates the list of parent composites of that mirror. In
the case of a replicator mirror, the parent composites are nodes and represents the list of nodes where
the replicator will replicate components.

Using replicator composites, manager components can be replicated at install time. Once installed
and running, each manager replica watches over the other manager replicas, detecting their failure and
repairing them. Figure 11 depicts the complete architectural view of a replicated management structure
and its distributed managed system. As before, we can see the managed system distributed on several
nodes, Node 4 and Node 5 in this case. Both Node 4 and Node 5 have a complex composite with
multiple components wrapping different legacy systems (not depicted in the figure). We can also see
that the autonomic repair manager, comprising the repair manager and the system map, is replicated on
Node 1 and Node 2.

Each replica of the system map has a complete description of the managed distributed sytem. Pre-
cisely, we see that the mirrors for Node 4 and Node 5 refer to the mirrors for the components wrapping
legacy systems deployed on these two nodes. This description in terms of mirrors enable the repair
manager to analyze and repair failures on managed legacy components on either Node 4 or Node 5,
as discussed in Section ??. However, the system map also contains the description of the replicated
manager components. Looking at node mirrors for Node 1 and Node 2, once can see that they refer
to replicator mirrors, one for the composite of the system map and one for the composite of the repair
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manager.
If Node 1 or Node 2 would fail, the node that is still standing would detect and repair the failure.

For instance, if Node 1 fails, the replica of the repair manager on Node 2 will detect the failure and
start a repair session. The analysis will happen on the replica of the system map on Node 2, yielding a
reconfiguration of the architecture where all replicators on the failed Node1 are relocated to an available
node, in this particular case it would be the Node 3. This is all what needs to happen during the repair
session. At commit, since failed composites are mirrored through a replicator mirror, the commit will not
simply recreate the lost components but actually reinsert them as new replicas. There is nothing special
here about this replica reinsertion, we can use any standard reinsertion techniques suited for an active
replication scheme [7]. This ensures that the newly created replicas do have a correct state and are
reinserted properly in the atomic broadcasts. In the end, Node 3 would look exactly like Node 1, prior to
its failure.

5.3 Evaluation

In this section, we evaluate our approach with the management of a cluster of multi-tiered Web servers.
This evaluation has two purposes. First, it provides an example of a concrete use of our repair manage-
ment architecture with a legacy system. Second, this evaluation allows us to demonstrate the negligible
overhead of the management framework, and to analyze the Mean Time To Repair (MTTR) of a managed
system. Our goal is not instantaneous repair since our repair management system first aims at replacing
a human administrator whose MTTR are classically well over dozens of minutes, even for skilled oper-
ators. In average, even for complex repairs, our repair management achieves an MTTR well below a
minute. In simpler failure cases, it achieves fast MTTR of a few seconds. More importantly, it is com-
patible with high-availability designs based on replicated servers, maintaining the replication degree by
repairing and reinserting replicas in the background. In the following, we first discuss the wrapping of
JEE tiers. We then discuss the MTTR achieved by a multi-tier Web server with our repair management,
considering different failures, either in a basic multi-tiered architecture or in a more advanced architecture
designed for high availability with replicated tiers.
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Wrapping JEE Web Servers

In a JEE multi-tiered architecture, the Web server is classically divided in several tiers: the HTTP daemon
(e.g. Apache), the servlet engine (e.g. Tomcat), the EJB business server (e.g. JOnAS), and the database
tier (e.g. MySQL). Each tier is independently wrapped in a component. Figure 12 illustrates the wrapping
of a JEE Web server. In the bottom layer, the figure shows the legacy elements and the way they are
connected through legacy communication channels. At the top, the Managed Distributed System level
provides control on the legacy elements through wrappers that expose uniform management operations.

Wrappers are bound in a way that reflects the legacy communication channels. In particular, the
Apache wrapper requires the JKConnector interface that the Tomcat wrapper provides. This enables
a binding to be created between the Apache and Tomcat wrappers that captures the presence of a jk
connection between the Apache HTTP daemon and the Tomcat servlet engine. The Tomcat wrapper
also requires a JNDI interface that captures the connection to a JNDI naming service. In addition, it
exposes the port and maxClient attributes. The wrapper of the EJB Server requires a JNDI interface, as
previously described for the Tomcat wrapper. as well as a JdbcConnector interface, capturing the use of
the JDBC connector. This JdbcConnector interface is provided by the wrapper of MySQL.
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Figure 12: Wrapping a JEE Web Server

It is important to point out that the Java implementation of these wrappers mainly relies on the ma-
nipulation of shell scripts and standard configuration files (e.g. my.cnf for MySQL, httpd.conf for Apache,
etc).

Repairing JEE Web servers

To illustrate repairing a JEE cluster, we wrapped and managed a multi-tiered JEE server running the RU-
BIS benchmark [?]. We used the version 1.4.2 that comes with a Web client emulator allowing to simulate
a realistic load on the JEE server. This server was composed of a Web tier running Apache version 1.3.29,
a servlet engine based on Tomcat version 3.3.2, and a database server based on MySQL version 4.0.17.
Experiments were made on nodes running Linux x86, 1.8GHz/1Go, interconnected through a 100Mbps
Ethernet network.

We measured the overhead of the repair management system on the CPU of the JEE managed
subsystems. As can be seen in Figure 13, this overhead can be considered as negligible. This is due
to the out-of-band design of the management system: during nominal operation of the managed JEE
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Figure 13: Overhead of the repair management system (CPU)

system, the only cause of overhead is failure detection, since in this case study the communication path
between tiers is not modified to enable management. This overhead remained similarly negligible in
larger cluster configurations we have experimented with (up to 16 nodes).

We provoked failures on either Apache or Tomcat, as depicted in Figure 14 and Figure 15. the
management system detects and repairs the Apache daemon failure within 12 seconds and the Tomcat
failure within less than 50 seconds. These numbers include the time for the failure detector to trigger and
the time for downloading and installating the necessary software (Rubis, Apache daemon, and Tomcat).
They include the installation of the Java wrappers and the application of the management operations,
including writing the configuration files from attributes. Ultimately, they also include the time it takes for
Apache or Tomcat to start. While Apache is a fast starter, Tomcat is rather slow. While these numbers
could be considered large, they are orders of magnitude better than any manual repair time, even by
skilled operators.

The repair management system was also applied to a clustered JEE architecture where Apache is
used with the modJK connector that can load balance requests on multiple replicated Tomcat instances.
The management system repaired failed Tomcat instances while maintaining the high availability of the
Web server. Because wrappers may actually delay and re-order management operations within the
commit of a repair session, the Apache daemon is kept running while the management system repairs
the failed Tomcat. It is only stopped and restarted by its wrapper at the very last moment—upon receiving
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Figure 14: Apache failure

the end-commit. The interruption of service will be down to the time it takes to restart the Apache HTTP
daemon. This restart is required by the modJK plugin that requires to be stopped to be reconfigured.

Finally, we experimented with the self-repair behavior of the management subsystem itself and its
overhead on its ability to repair managed legacy systems. We kept the above failure of a Tomcat but
forced a simultaneous failure of one of the autonomic manager replicas. These three failures are detected
and handled in this experiment in one repair session. Hence, there is more work to do for repairing not
only the lost Tomcat but also the lost replicas of the repair manager and the system map. As above, the
repair of Tomcat and of the management subsytem were done without impacting the availability of the
Web server (but for the short restart of the Apache daemon).
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