

Project no. 034567

Grid4All
Specific Targeted Research Project (STREP)

Thematic Priority 2: Information Society Technologies

D2.1 Requirements for Grid4All Virtual
Organisations and Resource Management and

State of the art analysis

Due date of deliverable: 1st June 2007

Actual submission date: 28th June 2007

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: FT, INRIA, UPC, UPRC

Contributors: Fabienne Boyer, Jakub Kornas, Jean-Bernard Stefani, Nikos Parlavanzas, Noel de Palma
(INRIA), Adam Ouorou, Eric Gourdin, Nejla Amara, Ruby Krishnaswamy (FT), Leandro Navarro, Rene
Brunner, Xavier Leon, Xavier Vilajosana (UPC), Derrick Kondo, Gilles Fedak, Paul Malecot (INRIA),
Alexandros Valarakos, Andreas Papasalouros, George Vouros, Konstantinos Kotis, Symeon Retalis
(UPRC), Jorge Quiane-Ruiz, Patrick Valduriez, Philippe Lamarre (INRIA)

Release 1

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 2

Table of Contents

Grid4All list of participants...................... ... 4

1. Executive Summary.................................. ... 5

2. Autonomic VO management framework – requirements, s tate of art, and architecture.................. 6

3. Grid4All Market – requirements, state of art, archi tecture 37

4. Semantic discovery – state of art, first architectu re .. 126

5. Scheduling service – state of art, requirements, ch aracterisation, design 184

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 3

Table of figures

Figure 1 Overall view of an autonomic element 10
Figure 2 A virtual organisation management system.. .. 12
Figure 3 A complex system description.............. .. 14
Figure 4 The steps of the deployment process 21
Figure 5 An autonomic element 23
Figure 6 Multiple domains for autonomic management. ... 24
Figure 7 An overview of the deployment system...... ... 28
Figure 8 Architecture of the deployment system..... .. 31
Figure 9 Interactions in Layer 1 32
Figure 10 Jade deployment engine................... ... 33
Figure 11 Reference Economic Grid Architecture (cou rtesy Buyya)....................................... 43
Figure 12 Aggregates or composites of resources 56
Figure 13 Item specification 57
Figure 14 Bid structure 63
Figure 15 Auction process pipeline................. .. 73
Figure 16 system architecture...................... .. 75
Figure 17 Main actions of the consumer trading agen t... 76
Figure 18 Conceptual architecture of market factory .. 78
Figure 19 Grid market place architecture........... ... 82
Figure 20 Activity diagram of a single-bid auction 85
Figure 21 Activity diagram of a continuous double a uction 86
Figure 22 Class diagram of the market components... .. 1
Figure 23 Functional components of market process.. ... 90
Figure 24 Main components and interfaces........... ... 91
Figure 25 Market components in Fractal............. .. 93
Figure 26 Architectural view of the Currency Manage ment System.. 104
Figure 27 Part of the Core Grid Ontology 152
Figure 28 Main Concepts of OWL-S ontology 154
Figure 29 The proposed concepts ‘Job Submission Des cription’, ‘Job’ and ‘Grid Service’ in the OWL-

S ontology. 155
Figure 30 The ‘Job’ concept is specialization of th e Atomic Process Concept........................... 155
Figure 31 OWL-WS: concrete components representatio n example.. 156
Figure 32 OWL-WS: abstract components representati on example... 156
Figure 33 OWL-WS: service grouping capability exam ple.. 157
Figure 34 Layers of the ontology 158
Figure 35 The knowledge layer on top of Gridbus bro ker.. 164
Figure 36 Query Allocation Schema.................. .. 174
Figure 37 A comparison of Grids vs Desktop Grids 184
Figure 38 Overview of the XtremWeb platform archite cture.. 186
Figure 39 Overview of the OurGrid platform architec ture... 187
Figure 40 Overview of the BOINC platform architectu re ... 189
Figure 41 A survey of Desktop Grid systems......... .. 191
Figure 42 An example of a divisible workload schedu le [33].. 198

Table 1 Bidding capabilities of some market-based r esource allocation systems 58
Table 2 Auction characterization 61
Table 3 Reasoning Engines......................... .. 171
Table 4 Ontology repository systems 172
Table 5 Providers that are able to deal with the eW ine's query.. 175

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 4

Grid4All list of participants

Role Participant N° Participant name Participant
short name

Country

CO 1 France Telecom FT FR

CR 2 Institut National de Recherche
en Informatique en
Automatique

INRIA FR

CR 3 The Royal Institute of
technology

KTH SWE

CR 4 Swedish Institute of Computer
Science

SICS SWE

CR 5 Institute of Communication
and Computer Systems

ICCS GR

CR 6 University of Piraeus
Research Center

UPRC GR

CR 7 Universitat Politècnica de
Catalunya

UPC ES

CR 8 ANTARES Produccion &
Distribution S.L.

ANTARES ES

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 5

1. Executive Summary

This document is part of a research project partially funded by the IST programme of the Commission of the
European Communities as project number IST-FP6-034567. This report is a public version of the document
"D2.1 – Requirements for Grid4All Virtual Organisations and Resource Management and State of art
analysis", as specified in the Grid4All Annex 2 "Description of Work". The objective of Grid4All is to provide
middleware support and higher level services for the creation and maintenance of virtual organisations
formed of autonomous entities in an open environment. This aim of this project is to address non-
conventional Grid users, that is, not just large enterprises and scientific institutions, but small organisations,
and individual users on the Internet. This report corresponding to Deliverable report D2.1 presents the
requirements, detailed state of art analysis, and architectures for both the management middleware and
higher level services required to support maintenance and evolution of virtual organisations. This report is
structured in four major parts. Open and volatile environments require middleware with self-management
and self-organisation capabilities. The first chapter presents an architecture based framework that takes its
source from autonomic computing and addresses essentially creation, deployment, and maintenance of
virtual organisations. The second chapter addresses allocation of computational resources with an approach
based on open resource markets. Information and discovery services are essential for the operation of virtual
organisations. The third chapter addresses the heterogeneity through an approach based on semantics.
Virtual Organisations are created to satisfy specific business and technical objectives. The final and fourth
chapter presents one usage of virtual organisations that targets domestic users. The technical objective is
the development of a scheduling service appropriate to schedule embarrassingly parallel applications such
as video transcoders, using resources on the Internet.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 6

2. Autonomic VO management framework – requirements,
state of art, and architecture

2.1 Introduction

In their “Anatomy of the Grid” article [18], Foster and al. defined the “real and specific problem that underlies
the Grid concept” as the “coordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations”. “Resource sharing” in this paper refers to access by multiple users to all manners of
processing, storage, and communication resources, as well as software, data, and other resources required
by collaborative problem solving in different domains. Also according to this paper, a virtual organization
(VO) can be understood as a set of individuals and/or institutions that pool resources and collaborate in
order to achieve a common goal. A virtual organization defines and manages the resources available for the
participants, the rules for accessing and using the resources, and the conditions under which the resources
can be used. This view of the Grid concept, which has potentially strong impacts on Grid architectures (for
instance, by emphasizing the management of brokering relationships and rules between VO participants and
contributed resources), has been widely adopted by the Grid community (see for instance a recent survey on
Data Grids [53]). Furthermore, it resonates nicely with notions of virtual organization developed by the
information management systems community [28], where the emphasis is placed on the management of
requests for services (e.g. information, advice, transactions), and their satisfaction through available services
(e.g. databases, expert systems, human experts).

This notion of virtual organization is at the core of the Grid4All project, whose goal is in part to provide
automated support for the creation and operation of virtual organizations, involving individuals and different
types of organizations (including small and non-commercial ones such as schools, local councils, or
families), and the pooling of resources from these potentially very diverse origins. This goal raises a number
of issues concerning the management of dynamic virtual organizations. A discussion of these issues can be
found e.g. in [41, 42]. We can summarize them as two broad questions:

• How is a virtual organization established/terminated and configured, including the identification of
pooled resources and participating organizations, the definition of its objectives and policies, and the
set up of its operational activities?

• What management functions are required to support the operation of a virtual organization, including
operations for dealing with memberships, access control and authorization, resource allocation and
management, monitoring and control of operational activities, negotiation and provisioning of Service
Level Agreements (SLA), dynamic federation of multiple virtual organizations?

These questions need to be answered in the context of general requirements pertaining to the relationships
between virtual organizations and their participants. For instance, from [18, 44, 56], we can identify the
following:

• Users may be members of one or more virtual organizations. A resource can be used in one or more
virtual organizations.

• Users may have several roles within a given virtual organization. Virtual organization policies may
constrain access to a resource and operations that can be carried out on a resource, based on user
identities or user roles.

• It should be possible to list resources and operations to which a virtual organization member or role
has access

In the context of the Grid4All project, target application scenarios imply non-professional users in positions of
virtual organization administrators. This, coupled with the heterogeneity, dynamism and varying scale of the
target environments, calls for an “autonomic” approach [26] to virtual organization management where the
presence of humans in the system management loop is minimized (ideally limited to the statement and
supervision of high-level goals and policies). We summarize this under a third broad question:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 7

• How may management functions of a virtual organization automated, to minimize the intervention of
human administrators, and to allow self-configuration, self-healing, and self-optimization on the basis
of high-level virtual organization management goals and policies?

We describe in this document the first elements of an architectural and software engineering framework for
the construction and management of virtual organizations. The framework is intended as a first step towards
the systematic handling of the above issues, adopting what we describe below as a control-based and
architecture-based approach to distributed system and dynamic virtual organization management. The key
elements of our approach to virtual organization management, detailed below, are the following:

• Domain structure Virtual organizations are identified with management domains (in the sense of
domain and policy-based system management, see e.g. [50]), which can be hierarchically organized
and federated. Each virtual organization encompasses an overlay network connecting participating
nodes and resources.

• Architecture basis Managed resources, as well as management functions, are modelled and/or
implemented as components with explicit dependencies, according to software architecture concepts
(as presented and motivated, e.g., in [47]).

• Control basis Management functions are conceived as distributed feedback control loops (following
e.g. the general outline in [13]), organized according to the so-called MAPE-K (Monitor, Analyze, Plan,
Execute – Knowledge)1 model [26].

The document is organized as follows. Section 2.2 reviews related work. Section 2.3 discusses the main
elements of our approach, including a view of virtual organization as autonomic systems, and the notion of
architecture-based management. Section 2.3 presents the main elements of our proposed framework for
virtual organization management. Section 2.4 focuses on the design and implementation of a key
management service in or framework: the deployment service. Section 2.6 concludes the document.

2.2 Related work

The development of a framework for virtual organization management in a highly distributed environment
relates to many different areas of research. We single out (and discuss relevant works in) two broad areas
which are directly relevant to the work reported in this document and to Grid4All objectives: (1) Grid
infrastructure services, and in particular virtual organization management services; (2) Autonomic systems.

Concerning Grid infrastructure the reference specification is the Open Grid Services Architecture
(OGSA) [19], and the reference implementation is the Globus Toolkit (see e.g. [17] for a recent overview,
and references to more detailed descriptions of specific capabilities). Although the OGSA reference
architecture mentions self-management as capabilities expected from an open grid infrastructure, the
supporting Globus toolkit mostly provides a set of specific capabilities with some elements of automated
management operation (e.g. with resource management and execution management services, and, more
recently, for dynamic deployment [38]). Several elements of the Globus toolkit can however be exploited in
our framework for the provision of so-called management services, i.e. functions required in the
implementation of VO-wide automated management functions. For instance, monitoring and discovery
services in the Globus toolkit could contribute in our framework to the implementation of membership,
resource management, and monitoring services. Overall, the current Globus toolkit falls short of providing an
adequate basis for the construction of autonomic VO-management. First, its reliance of Web Services (in the
spirit of Web Services Distributed Management (WSDM) [9, 10, 55]) does not provide the comprehensive
view and configurability provided by our architecture-based approach and its reliance on a reflective

1The different “tiers” of feedback control loops can be characterized as follows. The Monitor tier collects data
that characterize the behaviour of the managed system. The Analyze tier interprets the data, using
knowledge of the managed system (e.g. for diagnosis purposes). The Plan tier determines a course of
action, based on the results of the analysis. The Execute tier implements the plan, by sending commands to
actuators of the managed systems. We sometimes refer to the Analyze and Plan tiers collectively as the
Decision tier.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 8

component-based model. Second, the basic capabilities provided by the Globus toolkit must at a minimum
be complemented with a proper framework for the construction of VO-wide management functions and their
automation, addressing in particular the broad questions identified in the introduction of this document.

The recent survey on data grids [53] provides a useful taxonomy to characterize both the architecture and
the capabilities provided by various data grid infrastructures. Interestingly, the survey points out that none of
the studied data grid infrastructures, including those such as that of the EGEE project [15] that rely on the
Globus toolkit and the OGSA reference architecture, qualifies as supporting autonomic management. They
all are classified as being managed, i.e. as requiring a lot of human intervention for a variety of VO-wide
management activities, including resource monitoring, user authorization, and data replication. Several
recent works have targeted the development of VO management infrastructure and services. A number of
them target principally security issues and/or the creation of virtual organizations construed mostly as access
control and authorization domains. Such works include e.g. ICENI from the EGEE project [15], the
extensions to the PERMIS [11] authorization software developed by the DyVOSE project [48], the VOMS
membership service from the European DataGrid project [2, 32], the organization-based access control for
virtual organizations presented in [30, 31]. Other work emphasize different capabilities to support virtual
organizations, such as e.g. policy management [54], service-level resource management [23, 39],
membership and authorization management [27, 56], service deployment [20, 38], configuration
management [12], trust management [43, 57]. Overall frameworks for supporting and managing virtual
organizations are less common: one can mention the generic DVO framework outlined in [42], the reference
architecture developed by the TrustCom project [43], the VGrid and MiG frameworks [25], the virtual
organization framework built on top of the Vinca service composition language [45], the VRM framework
(which targets principally the support of business transactions and business-oriented virtual organizations)
[40], and the agent-based framework of the CONOISE-G project [35]. Also relevant, though targeting
principally secure collaboration and the sharing of application objects is the work on Secure Virtual Enclaves
[46]. These different works, however, to the exception of [42] (but which reports a design only, and does not
explain how automated management functions are to be supported), focus mostly on issues dealing with
membership, support for virtual organization contracts, authorization and access control management.
Support for an automation of VO-wide management functions (such as e.g. deployment and configuration
management, failure management) is not discussed.

This is in contrast with work on autonomic systems, which strive, by definition, to build such support. There is
a growing literature on autonomic systems (see e.g. [29] for a survey), but we can single out four different
works which are closer to the framework proposed in this document, since they also adopt a similar control-
based and component-based approach to autonomic systems construction. These are: the AutoMate system
[1, 33] developed at Rutgers University and the University of Arizona, the KX system [24, 34] developed at
Columbia University, the Rainbow system [21] developed at Carnegie Mellon University, and the work on
architecture-based and planning-based deployment and automatic fault recovery at the University of
Colorado [4, 3]. The latter work exploits software architecture descriptions and an AI planner for automating
deployment and fault recovery. The control architecture is similar to that presented in this document and the
other works above, and the component model this work relies on can be seen as a subset of the Fractal
component model adopted in this document (see below). This work targets mostly single domain and cluster-
size systems, and does not consider the range of services required for the autonomous operation of a virtual
organization. One could probably adapt this planning approach to extend the decision element in our
framework, but it is not clear how scalable it is. The KX system has been developed as a generic framework
for “autonomizing legacy systems”, i.e. adding autonomic capabilities to target legacy systems. The KX
architecture comprises: sensors and effectors that use a set of generic primitives for observation and
actuation [52], an event bus that transports notifications from sensors to the control part of the architecture, a
control part that comprises an event distiller for performing temporal event pattern analysis and correlation
between multiple event streams, and a workflow engine, called Workflakes [51], that constitutes a
decentralized process enactment engine. The overall KX architecture is similar to that presented in this
document, but differs on several points, notably: its underlying component model and supporting actuation
primitives are more limited than the Fractal model used in this document and its reflective capabilities, and it
does not encompass management services required for the operation of virtual organizations. The Rainbow
architecture is organized in three main layers: a system layer provides basic sensors and effectors on the
managed system; an architecture layer that implements the decision tier of a feedback control loop, using a
software architecture model of the managed system that provides a global perspective on the managed

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 9

system; and a translation layer that translates between system layer events and architectural layer events. In
contrast to Rainbow, we advocate in our framework a component-based system construction or a
component-wrapping approach to the handling of legacy systems. This makes the development of an
autonomic structure more uniform, since the same component model can be used both for the construction
or abstraction of the managed system, and for the construction of autonomic managers (implementing the
decision tier of management control loops), and allows a uniform handling of deployment and configuration
management. The AutoMate framework comprises four different layers: the system layer extends core
OGSA services (security, resource and data management) to support autonomic behaviour, and contains
specialized services including a peer-to-peer messaging service; the component layer supports the
execution of autonomic components, providing services such as discovery, factory, lifecycle, context, which
also build on OGSA services; the application layer builds to the component and system layer to support
component composition and interaction; the agent layer comprises decentralized peer agents that support
autonomic behaviours, including context-awareness agents, deductive agents whose rule-based collective
behaviour provide the decision making capability to enable autonomic behaviour, and trust and access
control agents. The framework presented in this document shares several elements with AutoMate, however
we rely on a domain structure to provide scope for VO-wide management policies, and we make a more
systematic use of (hierarchical) component-based construction, which leads to a more uniform and more
scalable design. In particular, our design makes effective the construction of self-healing systems, as
reported in [6].

The framework described in this document is an outgrowth of the Jade framework developed by the authors
[6]. Compared to the original Jade framework, the current document considers potentially multi-domain
structure for virtual organizations, considers management services (membership and security) that caters to
the need of virtual organizations (which the original single domain Jade framework did not consider), and
refines the design of the so-called autonomic manager component with the addition of rule-based decision
making and workflow coordination for decision enactment.

2.3 Approach

2.3.1 Virtual organizations as autonomic systems

A virtual organisation integrates services and resources across distributed, heterogeneous, dynamic
organisations to allow service and resource sharing when cooperating on the realisation of a joint goal. Each
of these organisations is a management domain under the control of another management domain which
represents the virtual organisation. Thus a virtual organisation is primarily a management domain that
controls and coordinates the services and resources provided by others management domains to achieve a
common goal.

The goal of autonomic computing is to automate, at least in part, the functions related to systems
administration. This effort is motivated by the increasing size and complexity of the systems and
applications, which has two consequences: (i) the costs related to administration are taking a major part of
the total information processing budgets; and (ii) the difficulty of the administration tasks tends to approach
the limits of the administrators’ skills.

Autonomic computing aims to provide systems and applications with self-management capabilities. Self-
configuration is achieved through automatic configuration according to specified policies, self-optimization
through continuous performance monitoring, self-healing through detection of defects and failures, and
taking corrective actions, and self-protection by taking preventive measures and defending against malicious
attacks. Currently, human administrators perform management actions to ensure the desired operation of the
system, using appropriate tools. One approach to autonomic computing, which we can call the control
approach to autonomic computing, views the functioning of an autonomic computing system as an evolution
of this practice, along the following lines:

• The overall management goals are expressed at a high level, and their translation into technical terms
is performed by the management system.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 10

• The management system observes and monitors the managed system; the observation may be active
(triggered by the observer) or passive (triggered by the observed element).

• On the base of the observation results, the management system takes appropriate steps to ensure
that the preset goals are met. This may entail both preventive and defensive actions, and may
necessitate some degree of planning.

In a more detailed view, an autonomic computing system is organized according to the above overall
scheme, sketched on Figure 1.

Figure 1 Overall view of an autonomic element

In this approach, autonomic computing is closely related to control. More precisely, an autonomic system is
governed by a feedback control loop (feedback is preferred to feed-forward because it takes into account
disturbances in the expected behaviour of the controlled system). In the following we describe the design
principles used to provide a virtual organization management framework.

2.3.2 Architecture-Based Management

The notion of a system model is taking an increasing importance in the design, the development and the
management of software systems. A system model is a formal or semi-formal description of a system’s
organization and operation, which serves as a base for understanding the system and predicting its
behaviour, as well as for its design and implementation. The goal of current models of systems architecture
is to describe a complex system as an assembly of elementary parts, using the notions of components,
connectors, and configurations. These entities have different concrete representations according to the
specific architectural model being used, but share common properties.

As system architecture is pervading the area of systems design, it has been realized that its constructs also
form an adequate base for systems management. In particular, components may be conveniently used as
units of deployment, of fault diagnosis, of fault isolation, as well as domains of trust; reconfiguration is
adequately represented by component replacement and connector rebinding. The notion of architecture-
based management captures this trend. It promotes the use of architectural models and formal or semi-
formal system descriptions as guidelines for various management functions. Such descriptions are becoming
commonly available, e.g. in the form of an Architecture Description Language (ADL), a framework for a
formal description of a system conforming to an architectural system model.

2.3.3 Fractal-based Autonomic Computing

Our approach to an architecture-based, control approach to the design and construction of autonomic
systems relies first on the choice of an appropriate component model. The component model we use is the
Fractal model. The Fractal component model [7] is a reflective component model intended for the
construction of dynamically configurable and monitorable systems. Its main features include: composite
components (to obtain a uniform view of applications at various levels of abstractions), binding components

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 11

(to reify arbitrary connections and communication semantics between components), and introspection and
reconfiguration capabilities (to monitor, control and modify the execution of a running system).

The choice of Fractal is motivated by several considerations:

• Fractal supports a hierarchical modelling of systems, allowing descriptions of a system at different
levels of abstractions.

• Fractal supports software architecture descriptions with component sharing (where components may
belong to different component hierarchies), which allows more natural specifications of system
structures, and a separation of concerns in architecture descriptions.

• Fractal supports reflective components, i.e. components equipped with a meta-level structure that
allows monitoring and controlling the execution of a component. The interfaces that make up a
reflective component meta-object protocol in effect provide management interfaces for the
component.

• Fractal is an open model, which makes no predefined choice concerning the semantics of component
composition. This allows a system designer to define the semantics of a component binding or of a
component meta-level best suited to its design.

• Fractal comes equipped with an extensible architecture description language (ADL) that can be used
as a pivot language for capturing information related to different management concerns, and for
expressing management actions.

We briefly present in the rest of this section the main features of the Fractal component model. More details
on the Fractal model can be found in [7, 8].

A Fractal component is a run-time entity that is encapsulated and communicates with its environment
through well-defined access points called interfaces. The Fractal component model defines two kinds of
components: primitive and composite. Composite components encapsulate a group of other components
which allows dealing with them as a unique entity.

Fractal components communicate through explicit bindings. A binding corresponds to a communication path
between two or more components. Bindings are reified as first class components in Fractal, which allows for
the construction of bindings as composite components, and with different communication semantics.

Composite components in Fractal have a reflective structure that is organized into membrane and content.
The content of a composite component corresponds to the base level of the composite, and comprises all its
subcomponents. The membrane of a composite corresponds to the meta-level of the composite. Elements of
the membrane are called controllers. A controller is a meta-level object in charge of some aspect of control
of the composite execution. Importantly, the structure of a membrane in Fractal is not fixed. New controllers
can be defined by a Fractal designer or programmer to fit the needs of an application or system.

The Fractal specification defines several useful controllers: the content controller allows listing, adding, and
removing subcomponents in the parent component; the binding controller allows binding a component
interfaces to enable communication through binding components; the life-cycle controller allows starting and
stopping the component; the Attribute controller allows setting and getting configuration attributes.

2.4 Virtual Organization Management Framework

This section describes a framework which can be reused and specialized for specific use cases. The goal of
this framework is to ease the construction of a virtual organization as an autonomic system while reusing a
set of common management services. The framework comprises several elements: (1) a domain structure,
which provides scope for VO policies, and allows for the construction of virtual organizations as hierarchies
and federations of virtual organizations; (2) a component-based notion of resource, which subsumes notions
of information processing resources and services in other virtual organization and grid frameworks; (3) a set
of core management services which provide basic infrastructure functions for the construction of virtual
organizations; (4) a notion of autonomic manager for the construction of automated management functions
within virtual organizations. We consider these different elements in turn.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 12

2.4.1 Domain structure

The notion of virtual organization is primarily associated with the management of relationships between
users, organizations and resources. It is then only natural to associate a virtual organization to a
management domain. The notion of management domain has been introduced in [49] to provide an explicit
scope for the definition of management policies and management operations. In particular, a management
domain constitutes a naming context for the entities that belong to the domain and that can be the objects or
the principals of management operations. As our first design decision, therefore, we associate a VO with a
single management domain that encompasses as its entities all the (physical or software) resources pooled
by the VO, the users and the organizations participating in the VO, the latter being themselves modelled,
recursively, as VOs. Following our component-based approach, all the entities in a VO and its associated
management domain, are modelled or implemented as components.

Figure 2 illustrates that a VO comprises components of three different kinds: managed resources,
autonomic managers and management services. The extent of a VO management domain is given by a set
of physical nodes (i.e. computers running VO components), called managed nodes. Note that, because of
self-management in a VO, managed nodes can support the execution of both managed components, and
management components (i.e. components involved in the implementation of management functions).
Managed nodes themselves are examples of managed resources in a VO management domain. In the rest
of this report, we use the term node for managed node, unless explicitly specified (e.g. physical node). To
enable self-management functions, autonomic managers and components that provide core management
services can themselves be managed resources in our VO architecture. To allow a VO management domain
to scale with the number of managed nodes, the managed nodes in a VO management domain are
organized as an overlay network.

Figure 2 A virtual organisation management system

One can envision three different kinds of relationships between VOs and their associated management
domain:

1. a delegation relationship [22], allowing in particular the construction of hierarchically organized VOs,
with subordinate VOs being delegated responsibility for managing a subset of the parent VO
resources.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 13

2. a peering relationship, allowing in particular the construction of a VO as a federation of cooperating
VOs.

3. a participant relationship, where a VO is a contributing resources to another VO.

2.4.2 Resources

 A Resource is any piece of a system required to provide a service. It can be a hardware element such as a
cluster node, or software element such as a middleware running on a node or an application running on the
middleware.

Our framework is based on an architecture description language to describe resources. From this
description, the management system will update a runtime system representation which represents the
current system infrastructure in terms of resources and their relationships. The system will also create a
runtime entity which represents the managed resource and which provides a management interface to
control the resource.

Resource description

In order to be manageable by humans or by VOs, a resource has to provide some information about itself.
This information comes from a resource description which describes meta information about the resource.
Such descriptions include the following data:

• Resource attributes represent any kinds of property regarding the local execution of the resource such
as configuration properties and environment variables.

• Resource relationships represent dependencies between resources. These dependencies are
represented as a binding between the resources. For instance a web server is a resource that
depends on another resource which represents a database.

• Resource containment represents the resources embedded in another resource. For instance a virtual
machine which embeds a tomcat server is represented by a resource (the virtual machine) which
contains another resource (the tomcat).

• Resource interfaces represent the functional interface of the resource (if the resource had one) and its
management interface.

• Resource names identify resources.

A resource can provide additional information specific to the resource if necessary. Resources are

described using an architecture description language. We choose to describe resources using the Fractal
ADL because it provides the required construction for resources description: (i) type definition, (ii) type
inheritance, (iii) properties configuration and introspection, (iv) containment relation, (v) binding relation, (vi)
control operations definitions. Furthermore from such description, the ADL factory can deploy the runtime
entity that will implement resource description and control. This means that resources are remotely managed
at runtime by a component that represents the resource. Implementing resource description and
management as component is a key to the decentralize resources management and control.

From a language point of view, the ADL language is not a fixed language, but a set of ADL modules from
which various ADLs can be constructed. The idea is to do aspect oriented "programming" at the ADL level:
each module is intended to correspond to an ADL "aspect". Since the Fractal ADL does not impose a
concrete syntax, the common representation used for interoperability between Fractal ADL tools is abstract
syntax trees (AST). An AST provides both a generic API, similar to DOM (but not DOM itself, in order to be
independent of XML), and a typed API. In our case, specialization of the Fractal ADL will be done to allow
resources description. Each module represents a part of a resource description.

Notice that resources can have various level of granularity (e.g., a processor, a virtual machine, a
physical machine, a cluster, a router, a network, a web server, etc.). Whereas resources can be classified in
hardware resources, middle-ware resources and application resources, the language used to describe
resource is unified thank to Fractal ADL. Furthermore from an ADL description a runtime element can be
generated to hide resources heterogeneity from the management point of view. Figure 3 gives an example of

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 14

three complex resources: (i) a network composed by an internet gateway, gigabit switch and nodes, (ii) a
cluster composed by nodes, (iii) a J2EE infrastructure composed by web server, EJB server and database.

Figure 3 A complex system description

In the following we give some examples of resources descriptions. The description of a resource requires
two steps:

• The description of the resource’s type. This description can specify the management interfaces
provided by the resource as well as its functional interfaces (provided and required) by the resource
(the interface tag). In the current Fractal ADL, interface’s signature is given by using java interfaces.
However, this is not mandatory. The signature of services can be of any kind. In the case of Grid4All,
we can use the WSDL language to describe such interfaces. Furthermore a type description can also
contain the class providing the implementation of the management operations provided by the
resource (content tag). It may also contain the definition of attributes which will be inherited by all the
instance of the resource.

• The description of an "instance" of resource. This description specifies the name of the resource and
some runtime properties related this particular instance. In the following we describe an instance of
web server resource called "apache1". In this example we set the local working directory (/tmp/j2ee)
for the web server and its port (8081). Furthermore we describe via the package tag the binary unit
required to install the webserver (this information will be used by the deployment service to deploy this
resource if necessary).

In the following, we give the description of a type for node.

<resourceType name="node" controller="ParametricCom positeResource">

 <resource name="ram1">
 <resourceType name="ram"/>

 </resource>
<resource name="disk1">

<resourceType name="disk"/>

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 15

</resource>
 <resource name="proc1">

 <resourceType name="processor"/>
 </resource>
 <resource name="OS1">

 <resourceType name="system"/>
 </resource>

</resourceType>

The following gives an example of resource instances:

<resource name="node1" definition="node">

 <resource name="OS1" definition="system">
 <type name="Windows" />
 <resource name="filesystem1"
 definition="FileSystem">

 <attributes>
 <attribute name="type" value="FAT "/>

 <attribute name="dir" value=”/school/”/>
 <attribute name="amount" value="2 000"/>
 </attributes>

 </resource>
 </resource >
 <resource name="proc1" definition="processor">

 <type name="intel"/>
 </resource >
 <resource name="ram1" definition="ram">

 <attributes>
 <attribute name="type" value="ddr"/>
 <attribute name="amount" value="2000"/>

 </attributes>
 </resource>
 <resource name="disk1" definition="disk">

 <attributes>
 <attribute name="type" value="scsi"/>
 <attribute name="amount" value="2000"/>

 </attributes>
</resource>

 </resource>

Resource Wrapping

Wrapping is one of the common services of the Grid4All architecture. Wrappers can be used to encapsulate
diverse software resources so that they all present a common and simplified interface. Software wrapping is

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 16

a technique in which an interface is created around an existing piece of software, providing a new view of the
software to external systems, objects, or users. Using wrapping techniques, legacy software (e.g. Apache,
Tomcat, MySQL etc) can be changed to software components that can be integrated (to new computing
environment), manipulated (installed, configured, re-configured), controlled and maintained (repaired)
automatically and in efficient manner. In the context of Grid4All, wrapping helps developing an environment
whereby a potentially large number of existing legacy software components can be adapted for use within a
new software administration framework. Wrapping facilitates self-managing capabilities such as self-
configuration, self-optimization, self-healing, and self-protection which are very important properties of
autonomic computing.

Basic principles of wrapping

The aim of wrapping, in the context of Grid4All, is to encapsulate the different legacy software platforms in
order to develop administration systems with capabilities of performing the resources management activities
in automatic, efficient and dynamic fashion. The basic idea of wrapping is to provide control mechanism to
do the above activities by the system. The internal activities of the legacy systems or the interactions/calls
between them are not intercepted or controlled by the system. The system facilitates only the configuration
of the different components.

Fractal model and wrappers

Since the Grid4All system is built on the Fractal component model, the purpose of the wrappers is to create
a corresponding Fractal component for each component of the legacy software. The Fractal model provides
adequate support to develop wrappers for legacy software components because it provides well-defined
interfaces such as attribute controller, binding controller, content controller and lifecycle controller which can
easily be mapped to the installation, deployment, configuration and maintenance activities in the legacy
software. Once one legacy software component is wrapped into a Fractal component, the manipulation of
the legacy software is done through the different control interfaces of the Fractal component.

Consider a clustered J2EE architecture composed of Apache, Tomcat and MySQL components. In such
a scenario, normally, a human administrator configures the architecture by accessing the configuration files
associated with each component. For example, to configure the port of the Apache server and to define the
binding or connection of the Apache server with other components, this requires the modification by the
administrator of the httpd.conf and the worker.properties files respectively. With the Grid4All infrastructure,
by wrapping each of the legacy software into Fractal components, those activities can be done in an
automatic and dynamic manner by an administration system.

For example by creating a Fractal wrapper for the Apache server, the attribute controller interface is used
to configure the properties of the Apache server and the binding controller interface is used to define the
connection of the Apache server with other components of the system, in this case Tomcat servers. At the
same time the life cycle controller interface is used to start, stop and read the state (running or stopped) of
the server.

Related work on wrappers

We identify the following related works on wrapper development, which is a potential source of inspiration.

• Kilim (http://kilim.objectweb.org/). Kilim is a configuration framework based on the Fractal component
model that provides a generic model, a powerful language and tools (a parser, a runtime configuration
viewer) to facilitate, automate and control the configuration process of arbitrary complex applications.
Kilim enables definition of composable abstractions called templates, capturing encapsulated sub-
systems, defining their properties and their connectivity (slots), defining the mapping of these
abstractions to existing code in terms of constructors used to create the various instances they may
contain and setters/methods used to configure and to connect them; and the recursive assembly of
these components allowing to build complex systems. Here, to build a complex system a template is
created by assembling existing templates. Kilim creates components from Java code using the
templates.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 17

• Cargo (http://cargo.codehaus.org/Home). Cargo is a thin wrapper around existing containers (e.g.
J2EE containers). It provides different Java APIs to easily manipulate containers: starting/stopping
containers, configuring containers for deployment on any user-specified directory, deploying WAR and
EAR components on these containers.

Requirements

We aim at providing a wrapping service with two components: a wrapper description language (WDL) for the
specification of the wrapper associated with a legacy component, and a wrapper generator (WG) which
generates the wrapping software from the WDL description. The specification provides vital information that
is required to generate the wrapper of the legacy software. The wrapper generator creates the appropriate
Fractal component that corresponds to the legacy software based on the specification/description.

To aid the development of an appropriate scheme for the wrapping activity, the following requirements
should taken be into account.

• Dedicated language: To facilitate the definition of wrappers, a dedicated language is required to
specify the translation of administration interfaces into legacy software administration functions (which
are proprietary). The administration interfaces of the wrappers are used by the system to control and
configure the legacy software.

• Extensibility: Since the wrapped legacy software is very heterogeneous (very different administration
functions), the WDL should be extensible in order to accommodate very different classes of legacy
software (and classes of administration functions). However, we believe that few personalities of WDL
should cover most of the application domains.

• Generate Fractal components: The Grid4All platform is based on the Fractal component model.
From a WDL specification, we must automatically generate the Fractal component that corresponds to
the wrapped legacy software.

If the wrapper specification languages are generic, it has a wide applicability to different application domains
but requires more effort from developers to program wrappers. More specialized languages require less
programming effort but have limited applicability. The good trade-off is probably to provide a wrapping
framework for defining specialized WDL languages (and their associated generators) for different
applications domains.

2.4.3 Management Services Overview

This section gives an overview of the management services provided by the Virtual
Organization. We depict the management services from a functional point of view.

Membership

The aim of the membership service is to manage users’ registration and login. It keeps track of who is
member of a VO, and of the current status of the users. In the context of P2P systems, a membership
management algorithm, which provides each node with run-time peer sampling service, is essential for many
peer-to-peer (p2p) network applications, such as gossip based broadcast algorithms, distributed hash tables,
dynamic load balancing, random sampling, and network topology construction. Full membership
management maintains the complete list of all network members at each node.

Membership in the Grid4All context

In the context of virtual organisations, the membership service (i) keeps track of who is member of a VO, and
(ii) allows looking up users and their presence. The membership service provides operations for two kinds of

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 18

users: standard members and VO administrators. It allows administrators to grant/revoke permission for
users to become members. It allows users to register, to log in, and log out. Users select their own
usernames, which should be valid email addresses in order to be unique. When a user wants to become a
member, the VO checks the user’s authorization. By becoming a member, the user accepts its role and the
policy related to it. When registering, the user provides a profile with information on itself and on the
resources provided when the user logs in. The user also sets up a password maintained by the VO for the
login step. This supposes that a user has obtained 1) the software package: Grid4AllBoot and 2) a ticket
(e.g. web page e-mail, etc). The software is installed and provides a local proxy object that is used for further
communication.

Requirements

The storage and communication requirements of full membership management algorithms grow linearly with
the network size, which is prohibitive for large-scale applications. Furthermore, the membership service must
check users’ credentials and roles. Thus, the main requirements for this service are decentralisation and
security.

Life Cycle

The aim of this management service is to control the lifecycle of the VO and the lifecycle of the resources
belonging to the VO. This service is very important since it will coordinate the creation of a VO and the
availability of all the VO’s services. In the following paragraph we describe the basic states related to
lifecycle. These states are both valid for the VO software and resources:

• Deployed: Means that the VO is deployed but the services provided by the VO are not available yet.

• Manageable: Means that the VO is deployed and the management services are available.

• Started: Means that the VO is fully operational and all the services are available.

• Stopped: Means that the all services except the management services are stopped. A stopped service
is unavailable.

• Updated: Means that the VO software has been successfully updated.

Requirements

This lifecycle has to be provided by resources at various level of granularity. For instance, we can remotely
stop (i) a machine which implies stopping all the software running on the machine, or (ii) a whole cluster
which implies stopping all the machines belonging to the cluster. This is a stringent requirement because
implementing lifecycle operations on a complex resource (such as a cluster) requires implementing
distributed workflow, potentially on a large-scale environment.

Resource management

Resource Management is a central component of a VO. It involves managing resources in the system.
Resources include traditional resources like compute cycles, network bandwidth, space or a storage system
and also services like data transfer, simulation etc. Its basic responsibility is to provide resources discovery
and resources allocation. Resources customers can be either the VO’s members or the VO runtime itself.
This service keeps track of the resources provided and used by members. The customers essentially interact
with the resource manager that hides the complexities of grid computing. The resource manager (i)
discovers resources that the customer can use, and (ii) allocates the resources that match some constraints,
such as job execution deadline, and the maximum cost of execution. If the allocation constraints cannot be
fulfilled because there are not enough resources, the resource manager has two basic policies:

• It can propagate the request to the resource market. Thus the basic policy of the allocation subsystem
is to allocate resources belonging to VO’s members before requesting from the market. All

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 19

interactions between the resource manager and the market go through a "buyer agent" embedded in
the resource manager.

• It can allocate part of the resources that are currently available. It will notify the resource customer
when additional resources that match the constraints become available. This policy uses a call-back
API that has to be implemented by resource customers.

Requirements

Resource Management in Grid systems is complex due to various factors discussed in the following. Grid
resource management systems have to deal with different site authorities. Traditional resource management
systems work under the assumption that they have complete control on the resource and thus can
implement the mechanisms and policies needed for effective use of that resource. But in Grid systems
resources are distributed across separate administrative domains. This results in a complex environment
owned by different individuals/organizations, each having:

• Their own resource management policies and different access-and-cost models. Different local
resource managements systems like NQE, LSF etc can be employed. A Grid resource management
system should be able to interface and interoperate with these local resource managements.

• Their own machine, network and system. Thus the resources management have to interoperate with
very heterogeneous environment and resources.

• Their own security mechanisms.

Another major issue to designing a resources management service is the dynamicity and the scale of the
environment. Resource management has to deal with a huge number of resources with a high dynamicity in
resource presence. Maintaining a full map of available resources is not obvious. The design of the resource
management service should make a trade-off between consistency of resources management information
and the efficiency of the resources discovery and allocation. To deal with the heterogeneity of the Grid4All
environment, we propose to use a wrapping layer to have a homogeneous view of managed resources in
terms of control operations that can be applied on the resource.

To summarize, the resource management service provides the following features:

• Discovery: It provides the functionalities to lookup resources according to some constraints. In a first
step, these constraints are expressed as a set of attributes that must match resource descriptions. We
have currently two kinds of constraints: constraints on the resource type (for instance a node with
5GO of RAM), and on the period of time the resource needs to be allocated (the lease).

• Allocation: It provides the remote ability to allocate a resource for the need of the VO. The resource
manager can be configured (i) to request resources to the market if there is not enough resource in
the VO (ii) to fulfil an allocation request in multiple steps by notifying resources customer when more
resources become available.

• Resource addition/deletion: it provides the ability for a resource owner to add new resource to the VO
and to remove a resource from a VO. A resource owner is typically a member of the VO.

Deployment

The goal of the deployment service is to install and configure applications in the VO as well as to undeploy
them. The deployment service will deploy application’s components according to (i) the resources provided
by members and (ii) some constraints related to the application (for instance, locality constraints). In this
section we provide a functional description of the deployment service.

The deployment service is architecture-based. This means that given a description of the software
architecture, the deployment service is capable of installing, instantiating and executing software
components described by this architecture. Moreover, the deployment system allows for component
versioning and dynamic updates; several versions of software components can coexist, and components can
also be replaced with newer versions.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 20

The software elements to be deployed must be described using an ADL as shown in section 4. The next
section presents the requirements of the deployment service. Using a standard ADL factory does not
currently fulfil all these requirements.

Requirements

 • The user can insert or remove a component into an existing component structure.

• The configuration of a component can be explicit or implicit.

• The deployment service must be able to deploy complex component structures which can be made of
legacy components.

• Non functional properties can be easily plugged in the deployment process. For instance an
interesting property is to ensure the atomicity of deployment orders.

• The deployment service must be fully specializable. In particular, the implementation and the
scheduling of the deployment orders can be controlled by the user.

Deployment API

The API of this service is the following:

 Object newComponent (final String name) // name is the filename of the ADL file

Deployment workflow

This service is implemented using an ADL Factory. The deployment algorithm requires that physical nodes
are wrapped as managed elements and provide (i) an installation API to install software on the node and (ii)
a component factory API to create managed elements. The algorithm of the newComponent method is
summarized below:

� Lookup the node where the component must be deployed.

� Install the component package on the target node

� Instantiate the component on the target node

� Configure the component (i.e., set its attributes and its external bindings). This step uses the managed
element API.

� Process recursively the sub-components, if necessary.

The basic deployment steps are depicted on Figure 4. The design of the deployment system will be detailed
in a following section.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 21

Figure 4 The steps of the deployment process

Monitoring

This service aims at defining the monitoring requirements for the Grid4All platform in terms of system
observation and information feedback. These requirements come from the project’s autonomic scenarios in
the fields of self-repair, self-configuration and self-optimization. Roughly, the Grid4All autonomic
infrastructure needs to know what the system it is managing is made of, and what is the state of this system.
This information quest may follow a variety of modalities according to the target resources (software
elements, hardware elements, network, execution support abstractions, etc.) and the target features
(deployment, configuration, repair, or optimization). One of the key ideas behind this requirement is that it
should also benefit from the autonomic management features of the Grid4All platform.

Required features

The monitoring feature aims at observing the managed system and delivering the observation results to the
autonomic control features, either by broadcasting events (push mode), or by keeping the information that
will be picked by the interested elements when needed (pull mode). For instance, an autonomic control
element may be interested in receiving an event when a system load threshold is reached, while periodically
checking the availability of a computer on the network.

Elements of the monitoring functionality, that we will call probes, are likely to be active, possibly to get
information (observation, measurement), and possibly to send the extracted information. Probes may also
require a memory feature to keep the extracted information during a certain amount of time, either as raw
data or as statistical values on sliding time frames.

Scenarios about self-repair basically need fault detectors, such as heart beat (I’m alive!) or ping (are you
alive?). Self-optimization scenarios need:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 22

• System load measurements (CPU consumption, RAM utilization, disk and network transfer rates,
etc.),

• Observation of middleware and applications involved in scenarios.

Aggregated observations

Beyond those basic observations that are obtained from basic probes dedicated to specific software or
hardware elements of the managed system, there is also a need for more elaborate, higher level indicators
computed from the basic observations. For instance:

• A system load or an application server load metric

• An aggregation of CPU loads for a given cluster of computers

Both kinds of observation may be required at the same time, and may evolve in time. Moreover, it might be
necessary, or at least convenient, to share probes among several combinations. For instance, a CPU probe
may be used as is, for local CPU observation, as well as simultaneously in a local system load aggregation
and a CPU load aggregation for a cluster of computers. Finally, probes and aggregations should be
reconfigurable.

Uniform probe representation

The architecture should feature a uniform representation of all probes. This means that all probes must
expose identical interfaces, even when they were in charge of monitoring different system properties and/or
heterogeneous resources. The monitoring framework should support various probe types for monitoring
different system resources and properties, at different abstraction levels. For example, probes could be
available for monitoring a system’s CPU, a JVM’s memory, an application’s workload, or a cluster’s general
load. However, all probes should be equally accessible via identical interfaces, in order to retrieve monitoring
data or apply control commands.

More generally, the monitoring functionality must be deployable and manageable similarly to any other
element in the Grid4All platform. As a consequence, we must rely on a uniform architecture based on Fractal
components.

Recursive, hierarchical probe composition

The architecture must support probe organisation into recursive, hierarchical constructs. This allows system
managers to build arbitrary monitoring hierarchies based on individual probes. Probes can be basic or
composite. Basic probes extract actual data from the monitored system elements and represent leaf nodes
in the monitoring hierarchy. Composite probes collect data from lower-level probes, which can be in turn
basic or composite. Collected data is being processed so as to provide a higher-level monitoring view of the
corresponding resources.

Scalability

The monitoring framework should scale gracefully with the number of monitored resources and aggregated
data sources. This means that the overall monitoring hierarchy should withstand increasing numbers of
monitoring nodes and that each composite probe should be able to handle large numbers of data sources.

Performance

The performance overheads induced by monitoring probes on the managed systems should be minimized. A
popular approach is to minimize overheads caused by instrumentation code (i.e. for basic probes) on the
actual monitored nodes and to use separate stations for performing the remaining data processing and
management functions. In addition, the performance of data transmission and processing procedures should
be such that the Grid4All framework can effectively learn of relevant system changes and react in due time.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 23

Component-based architecture

The monitoring service by itself is likely to become a complex, distributed infrastructure by itself that would
deserve relying on the autonomic services of the platform. To achieve this, the monitoring service shall be
based on components that conform to the Manageable component type. Moreover, functional requirements
in terms of composition (for aggregate observations), sharing and runtime reconfiguration also advocate for
an advanced component model featuring recursion, sharing and reflection.

2.4.4 Autonomic Manager

An autonomic element implements a control loop that regulates a part of the system, which we call the
managed system. The managed system consists of a collection of managed elements. A managed element
(ME) may in turn consist of a single elementary hardware or software component, or may be a complex
system in itself, such as a cluster of machines, or a middleware system. In order to be included in a control
loop, a managed element must provide management interfaces, which include sensor interfaces and
actuator interfaces2 . These are used by a controller, also called an autonomic manager (AM), to regulate the
managed system through a feedback control loop. The autonomic element (AE) is the ensemble including
the managed elements and the control loop, i.e. the controller and the communication system that it uses to
access the management interfaces (Figure 5).

Figure 5 An autonomic element
An autonomic manager may itself be equipped with management interfaces, thus becoming in effect a
managed element. This allows a hierarchical organization of AMs. In the same vein, an elementary managed
element, such a hardware device like a disk unit, may itself include embedded, built-in control loops, making
it an autonomic system, even if these control loops are not directly accessible through the ME’s management
interfaces.

The controller that regulates a ME in an autonomic element usually deals with a single control aspect, e.g.
security, fault tolerance or performance. A given ME may then be part of several AEs, each of which deals
with a specific aspect; each of these AEs has a specific AM and may be regarded as a different
management domain (Figure 6).

2The complexity of these interfaces depends on that of the managed element.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 24

Figure 6 Multiple domains for autonomic management
The AMs managing different aspects of a common element have different criteria and may take conflicting
decisions. An approach to resolving such conflicts is to coordinate the AMs that manage different aspects
through a new AM (the coordinator), which applies a conflict management policy (Figure 6). An example of
such a policy might be as follows, to arbitrate between a repair manager and a performance optimizing
manager: give priority to the repair manager, except when this would degrade the quality of service of a
specified client. Typically, the coordinator controls the decision making of managers, which then act directly
on the managed system. Alternatively, the coordinator may intercept actuator commands initiated from
managers and then decide whether/how to perform them on the managed system.

The notion of an autonomic element is thus seen to cover a wide range of situations, at different levels of
granularity. In the above discussion, we came across three typical levels, in increasing order of abstraction:

• An elementary component, with embedded internal control.

• A mid-level manager, at the application or middleware level, controlling an aspect such as QoS,
security, or fault tolerance.

• A coordination manager, whose role is to arbitrate between several aspect-specific managers in
charge of a common set of resources (a shared ME).

Autonomic Manager Framework

An autonomic manager (AM) is a component that implements the analysis, planning and execution stages of
a control loop: it monitors a set of managed elements, analyzes notifications coming from managed element
sensors, diagnoses the state of the system, decides on or plans a course of action in response to the
diagnosis and according to high-level administration policies, and executes the corresponding command
plan. The managed elements controlled by an autonomic manager may be designed implicitly or explicitly.

We define an autonomic manager by specifying:

• A set of event-condition-action (ECA) rules. These rules are implemented as control loops embedded
in autonomic managers.

• The collection of elements placed under the control of a manager. These elements correspond to
Grid4All resources. Thus a managed element (ME) may consist of a single elementary hardware or
software resource, or may be a complex system in itself, such as a cluster of machines, or a
middleware system.

In order to be included in a control loop, a resource must provide management interfaces, which include
sensor interfaces and actuator interfaces3 . These are used by the autonomic manager to regulate the
managed system. A manager may contain rules for emitting events and processing events to/from other
managers, thus enabling a hierarchical organisation of managers.

3The complexity of these interfaces depends on that of the resource.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 25

As a first step to designing the autonomic manager, we evaluate rule engines for interpreting the global
management rules that will be expressed in a high-level language close a natural language. We also
consider workflow engines since the manager will use such an engine for implementing the plan function.
The following sections give an overview of rules engines and workflow engines.

Rules engines

The underlying idea of a rule engine is to externalize the business or application logic. A rule engine can be
viewed as a sophisticated interpreter of if-then statements. The if-then statements are the rules. A rule is
composed of two parts, a condition and an action: When the condition is met, the action is executed. The if
portion contains conditions (such as amount ≥$100), and the then portion contains actions (such as offer
discount 5%). The inputs to a rule engine are a collection of rules called a rule execution set and data
objects. The outputs are determined by the inputs and may include the original input data objects with
modifications, new data objects, and possible side effects (such as sending email to the customer). Rule
engines should be used for applications with highly dynamic business logic and for applications that allow
end users to author business rules. A rule engine is a great tool for efficient decision-making because it can
make decisions based on thousands of facts quickly, reliably, and repeatedly. Adopting a rule-based
approach for an application has the following advantages:

• Rules that represent policies are easily communicated and understood.

• Rules retain a higher level of independence than conventional programming languages.

• Rules separate knowledge from its implementation logic.

• Rules can be changed without changing source code; thus, there is no need to recompile the
application’s code.

• Speed and Scalability: The Rete algorithm [16], Leaps algorithm [5], and its descendents such as
ReteOO provide very efficient ways of matching rule patterns to domain object data. These battle-
proven algorithms are especially efficient when datasets do not change entirely (as the rule engine
can remember past matches).

Related work
There exist several Rule Engine implementations on the market. The following ones were considered for
Grid4All because of their popularity, and varied target audience:

• JBoss Rules [16], which is free, open source, and distributable,

• Jess [36], which is free for personal usage and not distributable,

• Mandarax [37], which is open source.

They all implement the JSR-94 specification, which allows avoiding vendor lock-in. The specification does
not encompass the expression language used to define the rules. Although this means that rules are
expressed in different formats, the same concept is applied everywhere: conditions are expressed as
properties of Java objects, and actions are expressed as Java code. There is currently some ongoing work
to propose a common rule format. W3C is working on the Rule Interchange Format (RIF), and OMG is
working on a standard format based on RuleML.

JBoss Rules is selected for the following advantages:

• Open source (required)

• Better performance compared to Mandarax

• Active and dynamic community of developers

• Eclipse plugin for editing the rules

JBoss Rules
JBoss Rules [16](formerly Drools) is a rule engine that uses the rule based approach to implement an expert
system and is more correctly classified as a production rule system. The term "production rule" originates
from formal grammar, where it is described as "an abstract structure that describes a formal language

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 26

precisely, i.e., a set of rules that mathematically delineates a (usually infinite) set of finite-length strings over
a (usually finite) alphabet" (Wikipedia).

JBoss Rules has implementations for both the Rete and Leaps algorithms. The Rete implementation, called
ReteOO, is an enhanced and optimised implementation of the algorithm for object-oriented systems. Other
Rete-based engines also have marketing terms for their proprietary enhancements to Rete, like RetePlus
and Rete III. It is important to understand that names like Rete III are purely marketing where, unlike the
original published Rete algorithm [16], no details of implementation are published. The most common
enhancements to Rete are covered in [14].

The engine is composed of three parts: the production memory, the inference engine, and the working
memory. The production memory stores the production rules, and the inference engine matches the rules
against facts. Facts are asserted into the working memory, where they may then be modified or retracted. A
system with a large number of rules and facts may result in many rules being true for the same fact
assertion; these rules are said to be in conflict. The inference engine manages the execution order of these
conflicting rules using a conflict resolution strategy.

There are two methods of execution for a production rule systems: forward chaining and backward chaining;
systems that implement both are called hybrid production rule systems. Forward chaining is ’data-driven’ and
thus reactionary - facts are asserted into the working memory which results in one or more rules being
concurrently true and scheduled for execution - we start with a fact, it propagates, and we end in a
conclusion. JBoss Rules is a forward chaining engine. A rule has the following rough structure:

rule "name"

ATTRIBUTES
when

LHS
then

RHS
end

LHS (Left Hand Side) is the conditional parts of the rule. RHS (Right Hand Side) is a block that allows Java
semantic code to be executed

Workflow engines

A workflow engine, sometimes referred as a BPM (Business Process Management) engine, is a software
component that breaks a work process down into tasks. A basic example of such a process is an approval
workflow process, in which an employee needs a manager’s permission before running an application. A
workflow engine provides an infrastructure to model this workflow, execute it, assign the tasks to its
participants, and monitor it. To achieve the desired results, it may interact with humans or machines through,
for example, Web services. This enables integration with platforms different from Java, like mainframes or
.NET.

Bonita workflow
Bonita is a workflow solution for handing long-running, user-oriented workflows providing out of the box
workflow functionalities to handle business processes. Bonita is Open Source and is downloadable under the
LGPL License (http://bonita.objectweb.org). Its main key benefits are:

• A comprehensive set of integrated graphical tools for performing the process conception and
definition, the instantiation and control of this process, and the interaction with the users and other
applications.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 27

• 100% browser-based environment with Web Services integration that uses SOAP and XML Data
binding technologies in order to encapsulate existing workflow business methods and publish them as
JavaEE-based web services.

• A Third Generation Workflow engine based in the activity anticipation model. This flexibility allows a
considerable increase of speed in the design and development phases of cooperative applications.

• Support of the XPDL standard, backed by the WfMC (Workflow Management Coalition).

The following section discusses the issues related to the use of the tools described just above in the context
of Grid4All.

Issues
Designing autonomic managers raises the following major issues:

• The size of the system: The decision system has to enforce policy onto a large number of resources,
members, and application service. Clearly a centralized decision system cannot fit the requirement of
Grid4All context. A major issue is to scale the decision tools (such as JBoss Rules) onto this
environment.

• The coordination of multiple policies: The autonomic manager that regulates managed elements
usually deals with a single control aspect, e.g. security, fault tolerance or performance. The AMs
managing different aspects of a common element have different criteria and may take conflicting
decisions. This requires a way to coordinate decision and reaction in a wide environment. Since full
coordination and consistency seems difficult to achieve in large-scale system, we have to identify the
set of policies that require minimum coordination.

Policy Management in Grid4All

Autonomic managers are the basic tool (language and runtime) that can be used to implement the decision
rules used to enforce VO’s policies. A policy is the expression of an event-condition-action (ECA) rule. Policy
management is distributed across the different functions of the architecture of autonomic managers as
follows:

• Within the monitor function for extracting the relevant information. A part of the filtering and
aggregation task can have been done in the monitoring feature.

• Within the analyse function for providing the mechanisms that correlate and model complex situations
(for example, time-series forecasting and queuing models). These mechanisms allow the autonomic
manager to learn about the IT environment, about the members and help predict future situations. The
analyse function evaluates the different conditions that aims to update the global state of the system.
This state and its changes are used as inputs in the condition part of the plan’s rules.

• Within the plan function for providing the mechanisms that construct the actions needed to achieve
goals and objectives and to enforce the VO’s global policies. The plan function applies the adaptation
policy and fires the rules acting on the system. Depending of the complexity of the operation, the
number of steps, actions can be organized in a workflow process. In this case, the plan rules throws
an action part that creates an instance of a process. The different interactions at each task can be
held by others rules instead of human.

• Within the execute function by providing the mechanisms that control the execution of a plan.

2.5 Deployment Service Design

The goal of the deployment service is to install and configure applications in the VO as well as to remove
applications. As discussed in section 2.2, this service deploys the components of the application according to
(i) the resources provided by members and (ii) application constraints, such as locality constraints. The
service relies on architecture descriptions, and supports component versioning and dynamic component
update. In this section, we focus on the design of the deployment service.

Figure 7 presents the general architecture of the deployment system which is composed of four principal
elements: (1) the configuration and deployment description , (2) the targets , (3) the package
repository , and (4) the deployment engine .

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 28

Figure 7 An overview of the deployment system
The configuration and deployment description specifies the applications that must be deployed within the
VO. The targets represent the resources provided by members to the VO. The basic resources used by the
deployment service are represented by the user’s node. The package repository contains the bundles
corresponding to the software to install. The deployment engine is the main deployment service. Below we
describe in details all of those elements.

2.5.1 Configuration and deployment description

Configuration and deployment description is an input for the deployment system. It contains all the
information needed by the deployment system to instantiate (deploy) a given application. A minimum set of
such information is the following:

• Architecture of the application to be deployed i.e. components and their relation in terms of hierarchy
and interconnections,

• Configuration of the components — values of their attributes,

• Placement information, i.e. placement constraints,

• Packaging information, i.e. in which software package is the code of a given component.

In the following we depict how to use our ADL to describe complex software configuration that can be
deployed by the deployment service.

2.5.2 Complex software structure

The following Architecture Description Language (ADL) is an extension of the Fractal ADL. Therefore, it is
XML-based and provides a static description of the complex system we want to deploy. Below is an example
of a deployment file:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 29

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

 "classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<!-- ================================== -->

<!-- J2EE ARCHITECTURE -->

<!-- ================================== -->

<definition name="J2EE">

 <interface name="service" role="server"

 signature="fr.jade.service.Service" />

 <!-- ================================== -->

 <!-- START -->

 <!-- ================================== -->

 <component name="start"

 definition="fr.jade.resource.start.StartType">

 <virtual-node name="node1" />

 </component>

 <!-- ================================== -->

 <!-- APACHE -->

 <!-- ================================== -->

 <component name="apache"

 definition="fr.jade.resource.j2ee.apache.ApacheResourceType">

 <attributes

 signature="fr.jade.fractal.api.control.GenericAttributeController">

 <attribute name="resourceName" value="apache" />

 <attribute name="dirLocal" value="/tmp/j2ee" />

 <attribute name="user" value="jlegrand" />

 <attribute name="group" value="jlegrand" />

 <attribute name="port" value="8081" />

 <attribute name="serverAdmin" value="julien.legrand@inrialpes.fr" />

 <attribute name="jkMounts" value="servlet" />

 </attributes>

 <virtual-node name="node1" />

 <packages>

 <package name="Apache HTTP server v1.3.29 (linux x86)" />

 <package name="Apache Wrapper" />

 </packages>

 </component>

 <!-- ================================== -->

 <!-- TOMCAT -->

 <!-- ================================== -->

 <component name="tomcat"

 definition="fr.jade.resource.j2ee.tomcat.TomcatResourceType">

 <attributes

 signature="fr.jade.fractal.api.control.GenericAttributeController">

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 30

 <attribute name="resourceName" value="tomcat" />

 <attribute name="dirLocal" value="/tmp/j2ee" />

 <attribute name="javaHome" value="/usr/local/java/jdk1.5.0_05" />

 <attribute name="workerPort" value="8098" />

 </attributes>

 <virtual-node name="node2" />

 <packages>

 <package name="Tomcat (linux x86)" />

 <package name="Tomcat Wrapper" />

 </packages>

 </component>

 <!-- ================================== -->

 <!-- MYSQL -->

 <!-- ================================== -->

 <component name="mysql"

 definition="fr.jade.resource.j2ee.mysql.MysqlResourceType">

 <attributes

 signature="fr.jade.fractal.api.control.GenericAttributeController">

 <attribute name="resourceName" value="mysql" />

 <attribute name="dirLocal" value="/tmp/j2ee" />

 <attribute name="user" value="jlegrand" />

 </attributes>

 <virtual-node name="node3" />

 <packages>

 <package name="MySql (linux x86)" />

 <package name="MySql Wrapper" />

 </packages>

 </component>

 <!-- ================================== -->

 <!-- BINDING -->

 <!-- ================================== -->

 <binding client="this.service" server="start.service" />

 <binding client="apache.worker" server="tomcat.resource" />

 <binding client="tomcat.jdbc" server="mysql.resource" />

 <binding client="start.rsrc_mysql" server="mysql.resource" />

 <binding client="start.rsrc_tomcat" server="tomcat.resource" />

 <binding client="start.rsrc_apache" server="apache.resource" />

 <virtual-node name="node1" />

</definition>

The description above defines a simple 3-tier architecture, which is built by Apache, Tomcat and MySQL
servers. As specified by the virtual-node tag, each of the tiers should be deployed on a separate target
machine. The virtual-node tag provides only collocation information, i.e. it does not provide information on
the exact name/IP of the target machine, but only says which components should be placed together, and
which should not. The only "dynamic" aspect of this description is the order in which the tiers are started.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 31

MySQL needs to be started before Tomcat, which in turn needs to be launched before the Apache server.
Since Fractal by default does not allow specifying the order in which components are started, Jade uses a
specific component, called start, to achieve this goal. The start component launches all the components
bound to it in an order equal to the one of bindings. Therefore, in the example above, starter will first launch
MySQL, then Tomcat and finally Apache.

Information about component packages is provided through the package XML element. Each component
can specify zero or more package elements, which are String package identifiers. Depending on the
implementation of the package repository from which the packages are obtained, package identifiers can
have different forms. At present we reuse the identifiers from OSGi Bundle Repository (OBR), as explained
later. The rest of Deployment ADL is the standard elements found in Fractal ADL.

2.5.3 Architecture of the deployment service

Figure 8 presents the different layers of the deployment system, with well-defined interfaces between them.

Figure 8 Architecture of the deployment system

Layer 3 consists of a (potentially distributed) application to be deployed.

Layer 2 is responsible for parsing the deployment descriptor; it interfaces with (i) the resource management
service to allocate the required resources and (ii) the nodes (Layer 1) to deploy individual components. The
main component of this layer is the deployment engine, which is detailed below.

Layer 1 is the local deployment environment for components. It provides support for component installation,
instantiation, versioning, update, and removal. It exposes a local deployment API to the Layer 2, which hides
the underlying installation environment. This API defines programming language independent abstractions,
whose interactions are depicted in Figure 9. Currently, we are wrapping the OSGi environment behind these
abstractions. This requires several modifications to the default Fractal component factory and some
modifications to OSGi.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 32

Figure 9 Interactions in Layer 1

The Jade deployment engine belongs to the Layer 2 in the deployment architecture. Given the Jade
deployment description file as an input, the engine installs, instantiates, configures, and starts the
components described by this file. In the current implementation, the engine is a largely modified Fractal
ADL factory4.

4http://fractal.objectweb.org/current/doc/javadoc/fr actal-adl/overview-
summary.html

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 33

Figure 10 Jade deployment engine

The deployment engine is itself structured as a Fractal-based system that consists of three composite
components, (1) the loader, (2) the compiler, and (3) the backend, each of them containing a set of primitive
components. The loader component is responsible for verifying the correctness of the deployment file. The
compiler component creates tasks that are executed by the backend component. The compiler component
consists of several primitive components, which are executed in a top-down order; for example, the package
compiler is executed before the type compiler. Each backend component implements a remote deployment
command (AllocateResource, createComponent, setAttribute, Bind, addSubcomponent, Start).

As a first experiment, the deployment engine is not distributed; it resides entirely on a single machine. We
plan to decentralize the engine using the component overlay services defined in the WP1 of the Grid4All
project.

2.6 Conclusion and future work

We have presented in this document a general framework for the construction of virtual organizations as
management domains. The framework comprises four main elements: a management domain structure, a
notion of resource as controlled component, a set of core management services, and a notion of autonomic
manager implementing automated management functions. Parts of this framework have already been
implemented, as an outgrowth of previous work on the Jade autonomic management framework [6]. Further
work will include: refining the framework to explain how it can make use of e.g. OGSA-compliant [19] and
WSDM-compliant [9, 10, 55] services; extending the framework to include core security functions, such as
role-based access control and trust management, probably along the lines of the TrustCom reference
architecture [43]; specifying and implementing core management services in the context of a structured P2P
overlay network, exploiting in particular the P2P programming interface defined as part of WP1 in the
Grid4All project.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 34

References
[1] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang, L. Zhen, M. Parashar,

B. Khargharia, and S. Hariri. Automate: Enabling autonomic applications on the grid. In 5th Annual
International Workshop on Active Middleware Services (AMS 2003). IEEE Computer Society,
2003.

[2] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, A Gianoli, K. Lorentey, and
F. Spataro. VOMS, an Authorization System for Virtual Organizations. In 1st European Across
Grids Conference, 2003.

[3] N. Arshad. A Planning-Based Approach to Failure Recovery in Distributed Systems. PhD thesis,
University of Colorado, USA, 2006.

[4] N. Arshad, D. Heimbigner, and A. Wolf. Deployment and Dynamic Reconfiguration Planning for
Distributed Software Systems. In 15th IEEE Int. Conf. on Tools with Artifical Intelligence (ICTAI).
IEEE, 2003.

[5] Don Batory. The LEAPS algorithm. Technical Report CS-TR-94-28, 1, 1994.

[6] S. Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. Mos, N. De Palma, V. Quéma, and J.B.
Stefani. Architecture-Based Autonomous Repair Management: An Application to J2EE Clusters. In
24th IEEE Symposium on Reliable Distributed Systems (SRDS 2005). IEEE Computer Society,
2005.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.B. Stefani. The Fractal Component Model
and its Support in Java. Software - Practice and Experience, 36(11-12), 2006.

[8] E. Bruneton, T. Coupaye, and J.-B. Stefani. The Fractal Component Model, The ObjectWeb
Consortium, http://www.objectweb.org , 2004.

[9] V. Bullard and W. Vambenepe (eds). Web Services Distributed Management: Management Using
Web Services (MUWS 1.1 part 1. Technical Report wsdm-muws1-1.1-spec-os-01, Oasis
Consortium, 2006.

[10] V. Bullard and W. Vambenepe (eds). Web Services Distributed Management: Management Using
Web Services (MUWS 1.1 part 2. Technical Report wsdm-muws2-1.1-spec-os-01, Oasis
Consortium, 2006.

[11] D. Chadwick, A. Otenko, and E. Ball. Role-based Access Control with X.509 Attribute Certificates.
IEEE Internet Computing, March-April, 2003.

[12] L. Cons and P. Poznanski. Pan: A High-Level Configuration Language. In 16th Systems
Administration Conference (LISA). Usenix, 2002.

[13] Y. Diao, J.L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung. A Control Theory
Foundation for Self-Managing Computing Systems. IEEE Journal on Selected Areas in
Communications, 23(12), 2005.

[14] Robert B. Doorenbos. Production matching for large learning systems. PhD thesis, Pittsburgh, PA,
USA, 1995.

[15] Enabling Grids for E-sciencE (EGEE) project, 2005. URL: http://public.eu-egee.org/.

[16] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem. In
J. Mylopoulos and M. L. Brodie, editors, Artificial Intelligence & Databases, pages 547–557.
Kaufmann Publishers, INC., San Mateo, CA, 1989.

[17] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. J. Comput. Sci. &
Technology, 21(4), 2006.

[18] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications, 15(3), 2001.

[19] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,
F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich. The Open Grid Services
Architecture, Version 1.0. Technical Report GFD-I.030, Global Grid Forum (GGF), 2005.

[20] T. Friese, M. Smith, and B. Freisleben. Hot service deployment in an ad hoc grid environment. In
Second International Conference Service-Oriented Computing (ICSOC). ACM, 2004.

[21] D. Garlan, S.W. Cheng, A.C. Huang, B. R. Schmerl, and P. Steenkiste. Rainbow: Architecture-
based self-adaptation with reusable infrastructure. IEEE Computer, 37(10), 2004.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 35

[22] G. Goldszmidt and Y. Yemini. Distributed management by delegation. In 15th International
Conference on Distributed Computing Systems (ICDCS). IEEE Computer Society, 1995.

[23] P. Hasselmeyer, B. Koller, L. Schubert, and P. Wieder. Towards sla-supported resource
management. In Second International Conference High Performance Computing and
Communications (HPCC), volume 4208 of Lecture Notes in Computer Science. Springer, 2006.

[24] G. E. Kaiser, J. J. Parekh, P. Gross, and G. Valetto. Kinesthetics extreme: An external
infrastructure for monitoring distributed legacy systems. In 5th Annual International Workshop on
Active Middleware Services (AMS 2003). IEEE Computer Society, 2003.

[25] H. Karlsen and B. Vinter. Vgrids as an implementation of virtual organizations in grid computing. In
15th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE 2006). IEEE Computer Society, 2006.

[26] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE Computer 36(1), 2003.

[27] F. Massaci, J. Mylopoulos, and N. Zannone. Hierarchical hippocratic databases with minimal
disclosure for virtual organizations. The VLDB Journal, 15, 2006.

[28] A. Mowshowitz. Virtual organization. Commun. ACM, 40(9), 1997.

[29] H.A. Muller, L. O’Brien, M. Klein, and B. Wood. Autonomic Computing. Technical Report Technical
Note CMU/SEI-2006-TN-006, Carnegie Mellon University – Software Engineering Institute, 2006.

[30] B. Nasser, A. Benzekri, R. Laborde, F. Grasset, and F. Barrère. Access control model for grid
virtual organizations. In Seventh International Conference on Enterprise Information Systems
(ICEIS), 2005.

[31] B. Nasser, R. Laborde, A. Benzekri, F. Barrère, and M. Kamel. Dynamic creation of inter-
organizational grid virtual organizations. In First International Conference on e-Science and Grid
Technologies (e-Science 2005). IEEE, 2005.

[32] M. Niinimaki, J. White, W. Som de Cerff, J. Hahkala, T. Niemi, and M. Pitkanen. Using Virtual
Organizations Membership System with EDG’s Grid Security and Database Access. In 15th Int.
Workshop on Databases and Expert Systems (DEXA). IEEE, 2004.

[33] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri. Automate: Enabling
autonomic applications on the grid. Cluster Computing, 9(2), 2006.

[34] J. J. Parekh, G. E. Kaiser, P. Gross, and G. Valetto. Retrofitting autonomic capabilities onto legacy
systems. Cluster Computing, 9(2), 2006.

[35] J. Patel, W. T. Luke Teacy, N. R. Jennings, M. Luck, S. Chalmers, N. Oren, T. J. Norman, A. D.
Preece, P. M. D. Gray, G. Shercliff, P. J. Stockreisser, J. Shao, W. A. Gray, N. J. Fiddian, and
S. G. Thompson. Agent-based virtual organisations for the grid. In 4rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). ACM, 2005.

[36] Jess project, 2007. URL: http://www.jessrules.com/jess.

[37] Mandarax project, 2007. URL: http://mandarax.sourceforge.net/.

[38] L. Qi, H. Jin, I. Foster, and J. Gawor. Hand: Highly available dynamic deployment infrastructure for
globus toolkit 4. In 15th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP 2007). IEEE Computer Society, 2007.

[39] K. Ravindran and A. Mowshowitz. ‘virtual organization’: a Service-level Resource Management
Framework for Distributed Network Infrastructures. In Globecom ‘03. IEEE, 2003.

[40] P. Robinson, Y. Karabulut, and J. Haller. Dynamic virtual organization management for service
oriented enterprise applications. In 1st International Conference on Collaborative Computing:
Networking, Applications and Worksharing. IEEE, 2005.

[41] G.D. Rodosek, H.G. Hegering, and B. Stiller. Dynamic Virtual Organizations as Enablers for
Managed Invisible Grids. Technical Report 2005.09, Dep. of Informatics, University of Zurich,
Switzerland, 2005.

[42] G.D. Rodosek, H.G. Hegering, and B. Stiller. Dynamic Virtual Organizations as Enablers for
Managed Invisible Grids. In 10th IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2006.

[43] L. Schubert, M. Wilson, J. Haller, A. Arenas, A. Svirkas, P. Giambiagi, J. Doser, E. Lupu,
N. Tuptuk, and L. Martino. TrustCom Reference Architecture. Technical Report Deliverable D09,
TrustCom Project IST-2002-01945, 2005.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 36

[44] DataGrid WP07 Network Services. Security Requirements and Testbed 1 Security
Implementation. Technical Report DataGrid-07-D7.5-0111-4-0, DataGrid Project IST-2001-25182,
2002.

[45] B. Shan, Y. Han, and H. Wang. Enabling virtual organizations with an agent-mediated service
framework. In 10th International Conference on CSCW in Design, CSCWD 2006. IEEE, 2006.

[46] D. Shands, J. Jacobs, R. Yee, and E. John Sebes. Secure virtual enclaves: Supporting coalition
use of distributed application technologies. ACM Trans. Inf. Syst. Secur., 4(2), 2001.

[47] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall, 1996.

[48] R. Sinnott, D. Chadwick, J. Koetsier, O. Otenko, J. Watt, and T. Nguyen. Supporting
Decentralized, Security focused Dynamic Virtual Organizations across the Grid. In 2nd IEEE Int.
Conf. on e-Science and Grid Computing (e-Science). IEEE, 2006.

[49] M. Sloman and K. Twidle. Domains: A Framework for Structuring Management Policy. In Morris
Sloman, editor, Network and Distributed Systems Management, Chapter 16. Addison-Wesley,
1994.

[50] Morris Sloman. Policy driven management for distributed systems. J. Network Syst. Management,
2(4), 1994.

[51] G. Valetto. Orchestrating the Dynamic Adaptation of Distributed Software with Process
Technology. PhD thesis, Columbia University, USA, 2004.

[52] G. Valetto, G. Kaiser, and D. Phung. A Uniform Programming Abstraction for Effecting Autonomic
Adaptation onto Software Systems. In 2nd Int. Conf. on Autonomic Computing (ICAC ‘05), 2005.

[53] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of data grids for distributed data
sharing, management, and processing. ACM Comput. Surv., 38(1), 2006.

[54] G. Wasson and M. Humphrey. Toward Explicit Policy Management for Virtual Organizations. In 4th
Int. Workshop on Policies for Distributed Systems and Networks (POLICY). IEEE, 2003.

[55] K. Wilson and I. Sedukhin (eds). Web Services Distributed Management: Management of Web
Services (MOWS 1.1. Technical Report wsdm-mows-1.1-spec-os-01, Oasis Consortium, 2006.

[56] L. J. Winton. A Simple Virtual Organisation Model and Practical Implementation. In ACSW
Frontiers – Australasian Workshop on Grid Computing and e-Research (AusGrid 2005), volume 44
of CRPIT. Australian Computer Society, 2005.

[57] Y. Zuo and B. Panda. Component Based Trust Management in the Context of a Virtual
Organization. In ACM Symposium on Applied Computing (SAC), 2005.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 37

3. Grid4All Market – requirements, state of art, architecture

Grids are distributed computing infrastructures that enable sharing of resources. Grid4All focuses on
consumer and neighbour-hood Grids, as a peer and small-organization based counter-part to current
computational and data Grids that focus on large organizations. The proliferation of affordable yet powerful
desk-top computers capable of an appreciable computing and storage capacity backed by the growth of
high-speed networks has made Internet computing pervasive.

Chapter 1 has addressed the creation and management of spontaneous and ad-hoc virtual organisations
that may be created any actor within the Internet – schools, domestic users, internet clubs, and even small
enterprises. Deliverables 4.1 and 4.2 from WP4 describe applications and provide motivating use scenarios
that show the need to provide management support to operate virtual organisations in an open and dynamic
environment.

The management concern addressed in this chapter is that of on-demand resource allocation to virtual
organisations. Internet-connected computer systems possess surplus bandwidth, storage, and computational
resources. Resources are pervasive and inexpensive, and we would like to render their provision
dependable and consistent and satisfy the resource needs of virtual organisations. This is motivated by the
need to permit small organisations to access managed IT resources without needing to increase their
investment in capital and operational expenses.

The first question to address is why Internet users should provide their resources to others? Projects such as
[SETI] and successors rely on the sensibility of Internet resource owners towards scientific and other
applications of benefit to society. More recently peer-to-peer applications and particularly file sharing
networks propose co-operative usage models where peers trade resources between themselves – this
rupture is mainly thwarts commercial service providers. It relies on the members of collaborating
communities to mutually provision resources.

On the industrial side, utility computing is establishing itself as a business model whereby computer
resources are provided on an on-demand basis. Even large enterprises are moving to this model as a means
to realize economies in investment on IT infrastructure and in technical expertise needed to maintain and
manage such infrastructures. An abstraction adopted in this context is to consider provisioning of
computational resources as a service. [FK02] defines computer and storage resources and in general any
Grid application, as a service that may be accessed through the network. The convergence of Grid
computing with Web Services has taken this even further. Grid services are considered as Web Services
that are accessible over the network.

Virtual organisations are formed by users that have common goals and need to collaborate to achieve their
technical or business objectives. Such virtual organisations require computational resources to satisfy the
needs of members and applications. These requirements may typically vary over the life-time of the virtual
organisations. Allocation of computational resources on-demand from the Internet will permit the participating
organisations to reduce their internal investments. However relying on voluntary donations of resources is
not viable. Approaches to resource sharing that are based on co-operation, such as within peer-to-peer
networks has shown its limitation; tension exists between individual rationality and collective welfare
[FECH05] as shown by the free-riding phenomena in P2P systems that threatens the viability of these
systems. An alternative approach is that of establishing Grid resource markets. Markets have proven their
ability to allocate resources efficiently; markets allocate resources to who needs them the most and
importantly provide mechanisms through which the need may be correctly elicited and quantified. Markets
also promote incentives to resource owners to provide or trade their resources. In computing environments,
resources that are traded are processing time, storage, or applications, where examples of the last may be
an efficient codec, a parallelizing compiler. In this work package (WP2) we advocate markets to allocate
resources to satisfy the needs of virtual organisations.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 38

3.1 Motivation for market based Grid resource management

Virtual organisations are coordinated groups of individuals and institutions that have common interests and
objectives. They share, on the basis of some policies, a set of resources. Participating entities are self-
interested but realize the potential benefits from pooling resources. Members may be geographically
distributed and can access to the resources any time they are allowed. Organisations entering in
collaboration, such as for a long running scientific project, create a planned and pooled infrastructure. Local
administrators are responsible to manage the local resources and shared services.

In current Grid computing, the term virtual organisation mainly refers to security domains. Chapter 1 extends
this definition. A virtual organisation is put in par with Grid – it is the ambition to build an organisation with
many functional properties of a real organisation. Concerning the object of this task, we are interested in how
resources are accessed in such organisations – resources are transformed as a product or service.

Service oriented grid computing virtualizes resources and by this significantly increases the versatility of the
Grid. Moving from the context of large enterprises and academic institutions, within Grid4All we envisage
formation and the run-time management of VOs – targeting even small organisations such as schools or
domestic providers and consumers of resources. These structures should be able to harness unused
networked resources on demand and access Grid resources as any other service on the Internet. At creation
the VOs operate with the minimum needed computing resources contributed by the member organisations.
At run time resources are acquired on-demand from resource providers, thus enabling these virtual
organisations to perform computational tasks using leased resources. This extends the notion of utility
computing to virtual organisations.

The typical scenario that is envisaged in Grid4All is a set of schools that join together to form a VO: some of
their students jointly participate in a large science fair and collaborate to design and develop the
experiments, the necessary scientific software. At a later stage they need to execute the software and gather
results. Here, computer resources should be accessible in analogy to the power grid in a plug-and-play
manner. The school VO should seamlessly be extended to use virtualized compute resources on the
Internet. In order to describe the needs and behaviour of the system, a development team – here at the
school, will define the system components and applications needed to achieve the required functionality.
Chapter 1 has proposed an Architecture Description Language by which a formal description of the system is
specified based on which management services deploy and configure applications. Dynamic application and
service deployment on newly acquired resources is an essential feature needed to enable utility computing.

Logically, the organisation that we envisage is that the computational resources on the network are
partitioned across virtual organisations. Allocated resources belong to one or other of the virtual
organisations whose configuration adapts dynamically to change in load. VOs allocate resources from
resource markets when there is a need. This is similar to recent approaches in resource management and
provisioning that takes roots from utility computing. [CHI03] presents Cluster-On-Demand (COD), a resource
management system that allocates servers from a common pool of clustered resources to multiple virtual
clusters. Each virtual cluster has independently configured software environments, names spaces, user
accounts, and networked storage volumes. Resources are allocated to virtual clusters dynamically on-
demand based on sharing policies and adaptive provisioning -- the node allotments to virtual clusters change
according to competing demands and resource availability.

Shirako [ICH06], a successor of Cluster-On-Demand (COD) extends these principles to resources on a wide-
area network, through brokered leasing of resources. Resources contributed by autonomous sites –
resource providers -- are pooled and managed by lease brokers. The clients of the leasing service are guest
applications – each application is managed by a Service manager that is responsible to negotiate the leases
with the brokers on behalf of the guest application.

These architectures show a "two-level" management of resources: each virtual cluster determines internally
the mapping of its resources to its applications based on internal objectives and policies. The choice of the
internal scheduler and work load management system depends on the type of applications. At the higher
level, brokers arbitrate the allocation of global resources to each of these virtual clusters. Virtual clusters

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 39

respond to load surges by leasing additional resources. It may also react to external resource contentions by
accepting reduced service levels and hence free resources.

We have adopted this two-level management for Grid4All virtual organisations. From clusters of [CHI03] we
transpose to a heterogeneous network of computers on the Internet and from virtual clusters to virtual
organisations. VOs adapt to changing conditions such as load surges or failures by leasing resources.

From whom may resources be leased or allocated? Major firms in the computing industry such as IBM, HP,
and SUN Microsystems are focusing on agility and flexibility of computing resources and gearing their
versions of on-demand computing and IT outsourcing solutions. Utility providers i.e., operators such as
Amazon sell raw computing power at fixed prices. Such operators have invested on resources such as
cluster farms to furnish utility computing services. But, there are also a large number of idling resources on
the Internet. Could we use these resources to offer a utility computing service? Incentives to contribute
resources have been driven by public good or collaborative advantage. This is manifested in test-beds such
as [SETI]. These cannot be generalized since the motivations of contributors are not amenable to
generalized models of sharing; so what other incentives for these resource owners and how to arbitrate their
allocation. Can a market based approach provide a solution?

[DWP86] defines a market as a context in which the sale and purchase of goods and services take place.
[DR92] suggests a definition by which market is a medium of exchanges between buyers and sellers. A good
is the economic abstraction for a thing that imparts utility to its possessor or recipient. A market transaction
takes place when all parties perceive that their own utility will not decrease by their participation, relative to
not participating. We consider that [TUCKER98], "a market is a medium in which autonomous agents
exchange goods under the guidance of price in order to maximize their own utility".

Markets rely on consumers to set a value on the resources that they want and based on these values
provide optimal allocations. Consumers are endowed with a budget and seek a quantity of resource that
maximizes their internal utility, given the current prices. Trade occurs at a clearing price that balances supply
and demand – such allocations are also economically efficient, that is, no reallocation can make one better
off without making another worse off. By Adam Smith's invisible hand [SMI79], perfect competition where
buyers and sellers act independently and selfishly, channel scarce resources to economically efficient users.
The invisible hand that guides buyers and sellers is the market price – users buy until their marginal benefit
equals price. Pricing of resources becomes the regulatory mechanism that addresses fluctuations in supply
and demand. Price evolves according to market dynamics and is indicator of demand, higher the demand,
higher the price. This information is used by agents to decide on the quantity of resources that they acquire
and when they acquire them.

[BAG00] have formulated a set of questions whose answers help to decide if an economy driven resource
management system is warranted. We answer some of these questions within the context of Grid4All.

Who are the resource providers and the resource con sumers?
Majority of the expected resource providers and consumers are domestic owners of computers. Small
enterprises and organizations such as local schools may also provide resources, but more often consume
resources. Most of these are now connected to the Internet through broad-band access networks.

These consumers do not in general expect free resources, but low cost access to resources. Such
consumers seek to reduce their initial IT investment and also running costs. They may be prepared to
sacrifice on quality of service, nevertheless do demand an acceptable level of consistency and dependability.

What motivates one to contribute their resource to the Grid?
Not all VOs search for extra-terrestrial intelligence! Resource owners will contribute resources for a correct
compensation. Compensations may be reductions on tariffs of broad-band access, or perks on other
services that they access through their Internet operator – such as video-on-demand, television over
Internet. Within Grid4All we expect that most members are more self-interested rather than altruist and
expect some benefits in return to the resources that they contribute.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 40

How can users solve there problems within a minimum cost?
In general, users can reduce their costs by reducing their investment, both capital and operational
expenditure, by considering computational resources as a Utility. Users adjust to market conditions; for
example relax dead-lines if this enables them to acquire cheaper resources.

Is access cost the same for peak and off-peak hours ? Accessorily what to do when there are more
requests than available resources?
In the case of excess demand, requests cannot be prioritized – how to give priorities in the Internet?
However costs are dissuasive. Basing prices on supply and demand will necessarily motivate rational users
to adjust their demand, thus reducing congestion.

How can resource owners maximize profit?
They can maximize profit by contributing resources to who value them most, that is, to who pay the most.

Users create and form VOs so as to reach a set of objectives. VOs execute applications and services that
allow the creators to achieve their goals. The principle issue is that of arbitration when there is excess
demand. Straightforward allocation policies are essentially based on priorities perhaps subject to constraints
on quota of utilisation. If self-interested participants are free to set their own priorities then they will each
specify the maximum priority since they do not have the incentive to do the contrary. Moreover this approach
does not provide incentives to owners to share their resources unless of course the each provider is also a
consumer.

Thus market-based resource management is expected to be the most satisfactory when participants are
dominantly self-interested. Resource providers or owners have incentives to share their resources if they are
adequately compensated. Pricing of resources establishes a common scale of value across various
resources and resources are allocated to those who value them the most.

3.2 State of art of market based resource management systems

3.2.1 Related work on market based resource allocation

Market based systems are dominantly classified by the market models that they use. [BY06] provides a
detailed taxonomy differentiating the market models that may be applied in market-based systems.

The phrase market mechanism is encountered in connection with problems of distributed resource
allocation. Mechanism in the context of markets refers to a structure of economic organization that helps to
shape outcomes. Intuitively [NiRo99] a mechanism solves a problem by assuring that the required allocation
occurs when agents choose their strategies to maximize their own utility. A mechanism also needs to ensure
that the agents reported utilities are compatible with the algorithm implementing the mechanism. Economic
mechanisms propose a procedure by which a set of resources may be distributed amongst the different
participants and a scheme for pricing of the traded resources. The allocation is constrained by the
preferences of the participants expressed in monetary terms.

The annex 3.10.1 presents a classification of market models.

Auction markets for single type of resource

• SPAWN [WALD92] was designed to tap in unused and wasted cycles in networked servers. Each
participating server runs an auction process to trade the CPU time in fixed time-slices. Spawn uses a
sealed bid second-price auction, known also as the Vickrey auction. Vickrey auction is incentive
compatibility, i.e. the best strategy that the bidders may practise is to reveal their true valuations. This
system is not generalized to multiple resources and multiple resource units – considering time-slices as a
resource unit; this implies an auction for each time-slice.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 41

• [PLA06] presents a trading platform for storage services. The platform implements a centralized storage
exchange that implements a double-auction; the exchange accepts sealed offers from providers and
consumers and periodically allocates trades by employing an algorithm that maximises surplus, that is,
the difference between the consumer's price and the seller's cost. Double auctions are adapted to trading
of a single type of homogeneous resources. These have the benefit of reducing communication costs
(single bids), and with suitable pricing policies are also incentive compatible.

Auction markets for multiple types of resources

Combinatorial auction model has received a lot of attention in recent years; to address trading multiple
resource types in bundles; this has two implications: (i) prices are expressed for bundles and (ii) a bundle if
allocated should be completely satisfied.

• [CHUN04] presents a resource discovery and allocation system where users may express preferences
using a bidding language that supports XOR bids implying that at most one of the preferences is to be
allocated. Multiple resources may be requested to a central auction server that clears periodically.
Resources are requested for fixed time durations and users may specify the time ranges. A greedy
algorithm clears the combinatorial auction. This algorithm privileges execution time over efficiency of
allocation – bids are ordered by decreasing values where the value is obtained by dividing the bid price
by the product of total number of resources and the duration of request.

• [SCH06] presents an iterative combinatorial auction that maximizes seller revenues. Bids are presented
as a two-dimensional matrix; one dimension represents the time in fixed time slots and the other
dimension the resources (CPU, Disk, and network). The auction server executes periodically and invites
bids from the participants. Shadow prices are calculated for individual items (resource) and the buyers
are requested to iterate on their bids based on the current estimation of prices. The clearing algorithm is
implemented as a linear program optimizing the revenue. Prices are calculated using the approach
presented within [KWAS05] – prices are the dual solution to the primal LP.

• [SCH05] presents a multi-attribute combinatorial auction that maximizes the surplus – the difference
between the buyer's price and seller's cost. Resources are traded in fixed time-slots and buyers send
XOR bids specifying the quality and the number of time-slots within a specified time range. The Vickrey
pricing policy is applied to provide incentive compatibility. Simulation results show that the allocation
problem is computationally demanding but feasible in the case where the number of participants and bids
are reasonably small.

Even though the above approaches indicate the computational complexity of combinatorial auctions, they
nevertheless are extremely important demonstrators. Combinatorial auctions are important mechanisms for
Grid resource markets since typically Grid applications need to allocate resources in bundles and
furthermore Grid resource requests represent complementarities.

Commodity markets

• [WOLSKI01] presents G-Commerce which provides a framework for trading computational and storage
resources through commodity markets. Commodity markets allow applications to treat disparate
resources as inter-changeable. Commodity market operates through an adjustment scheme that
approximates the prices to equilibrium making the assumption that the commodities are inter-related.

Bargaining

• [CBF02] presents Stanford Peers which is a peer-to-peer storage system where each peer acts both as a
consumer and provider of storage. It can be considered to be a cooperative sharing environment that
swaps resources between peers. The amount of storage is considered as the 'price' in the system. At the
simplest level peers swap equal amounts of storage. It uses auction like methods to implement swapping
– consumers call for auctions and wait for proposals. A number of policies are proposed for both bidding
and bid selection. One policy is that the amount of space that is bid by a given provider site is equal to
the amount of space provided by the consumer site to this provider.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 42

Proportional sharing markets for divisible resource s

Market based proportional sharing models are one of the most popular approach in problem-solving
environments. Basically this approach consists of allocating to users a percentage of the resource that is
proportional to the amount of the bid submitted by the user. This may be considered as a fair model of
allocation and is typically employed in cooperative environments employed in systems where resources are
considered as divisible.

• [FLZ05] presents Tycoon is a system designed for time-sharing networked nodes such as in PlanetLab;
an environment where users of resources are also providers of resources. Resource nodes execute an
auction process to which users may send their bids. Tycoon implements a proportional sharing [KEL97]
auction where each user is attributed a capacity proportional to its bid. Users are price-anticipating in that
the ratio that they receive is a proportion of their bid over the sum of all bids for a given resource -- users
may anticipate the effect of their bids on the clearing price. Each user has a utility function; a weighted
sum of the resource fraction that it receives from each node. Users bid to those nodes that maximize
their utility. This system is intrinsically decentralized as the maximization of utility is done locally at each
user. This system is appropriate for divisible usage of CPU, an assumption that may not be acceptable to
a wide range of applications.

3.2.2 Related work on architecture of computational resource markets

Computational economic frameworks have adapted the paradigm of societal economies to allocate
resources in distributed systems. Current state-of-art projects are mainly proof-of-concept demonstrators that
show the potential of this approach to allocate computational resources. [BAV04] summarizes some
important benefits of a Grid Economy:

� It helps in realizing large-scale Grids as it offers incentives for resource owners to contribute their
resources,

� It regulates supply and demand and resolves conflicts,
� It helps to build scalable systems since the decision making process may be distributed to all users

and resource owners,
� It places the power in the hands of both resource owners and users – they make their own decisions

to maximize the utility gained and profit.

Efforts in standardisation for Grid Economics were started by Grid Economy Services Architecture [GESA03]
working group of the Global Grid Forum that specified a set of mechanisms (protocols and service
interfaces) to enable Grid Economies. The proposed architecture is based on the now out-dated Open Grid
Services Infrastructure (OGSI). The GESA consisted of service interfaces and definitions for three key
elements within an economic architecture (i) account resource usage (ii) present the conditions of access to
a Grid Service through a notion of Chargeable Grid Service and (iii) and finally provide a payment
infrastructure through the Grid Banking Service.

There has been a considerable progress since these early efforts; two representative architectures are
summarized below.

GRACE
[BAV04] is one of the first to propose a comprehensive architecture to promote the Economy based Grid. It
has established some requisites for any economy-based Grid system:

� Information and market directory for publishing Grid entities
� Models for establishing the value of resources
� Resource pricing schemes
� Economic models and negotiation protocols
� Mediators to act as a regulatory agency to establish resource values and currency standards
� Accounting, Billing, and Payment mechanisms

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 43

Figure 1 presents the functional Grid Architecture for Computational Economy (GRACE) [BV04] which has
come to be considered the reference architecture within some Grid communities.

Grid Node N

GRACE: A Reference
Grid Architecture for Computational Economy

Grid User

Application

Grid Resource Broker

Grid Service Providers

Grid Explorer

Schedule Advisor

Trade Manager

Job
Control
Agent

Deployment Agent

Trade Server

Resource Allocation

Resource
Reservation

R1

Misc. services

Information
Server(s)

R2 Rm
…

Pricing
Algorithms

Accounting

Grid Node1

…

Grid Middleware
Services

…

…

Health
Monitor

Grid Market
Services

JobExec

Info ?

Secure

Trading

QoS

Storage

Sign-on

Grid Bank

See PDPTA 2000 paper!

Figure 11 Reference Economic Grid Architecture (cou rtesy Buyya)

The Trade Manager represents end applications that require resources and is responsible to interact with
trade servers and negotiate access to the resources. Its objective is to minimize the cost to applications. The
Trade Server is an agent that executes on behalf of a resource owner and sells access to resources. Its
objective is to maximize the profit to its owners. Grace defines the rules and formats for exchanging
negotiation messages between these two agents through the Trading Protocol. Trade Servers are designed
to allow pluggable pricing policies; they are accessed through open trading APIs that hide the choice of the
underlying pricing schemes.

Albeit being a comprehensive architecture, there are nevertheless some points to note:

• The system is based on bi-lateral negotiations between consumer and provider. This leads to problems
of exposure when resources may need to be allocated from multiple providers.

• The software architecture of the Trade Manager and the Trade Server is not open.
o It is not clear how amenable the Trade Server is to supporting multiple market mechanisms even

at design.
o Reciprocally, the assumption that a few defined utility/demand functions may be valid for a large

range of application.
• Adaptation of Trade Managers in face of different negotiation protocols is inadequately supported.
• Resource providers are assumed to be job schedulers. It is not trivial to extend to different types of

resources.
• Finally, it is not clear whether this architecture can be easily extended to incorporate new functionality.

Commercialization of Grid resources needs to incorporate aspects such as service level contract
management, reputation etc. that are mandatory within economic architectures

OCEAN
[PP03] presents an open software infrastructure to automate trading of heterogeneous computing resources
on the Internet. In contrast to GRACE, this infrastructure aims at completely decentralized architecture
facilitated through a peer-to-peer search protocol that can quickly find suitable matches among large number
of providers and consumers. The multi-layered OCEAN infrastructure is architected to be portable over
various cluster and Grid infrastructures.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 44

The economic services of the OCEAN architecture are encapsulated within a trading services layer that
provides the following functionalities:

• The Auctioning component focuses on locating suitable trading partner for nodes in the OCEAN network
by executing a distributed double-auction mechanism. This component provides a trading proposal API
that allows buyers and sellers to generate XML documents describing the resource requirements and
availability.

• The negotiation component provides the means for traders to agree in the terms of a contract document
based on XML schemas. The negotiator bases its search for peers based on the policies set by the
trader layer. This layer currently does not support simultaneous negotiation among multiple nodes.

• The accounting component logs all successful negotiations and the resulting transactions at a centralized
accounting system.

The main feature of the OCEAN architecture is the peer-to-peer based directory service and matching
network that determines a candidate list of peer nodes for each node. This list represents the potential
negotiation partners and is based on status information such as the availability, inter-node bandwidth. This
layer provides query mechanisms to obtain the configuration information of peer resources. The main
limitation is that of the lack of adaptability of the architecture to support multiple auction mechanisms.
Moreover a syntactic resource description framework is restrictive to implement open market places.

CATNETS
[EYM03] presents the middleware architecture that purports to provide to build economic and market based
resource management systems. It uses the notion of Application Layer Networks (ALN) that integrates
different overlay approaches – Grid or peer-to-peer systems, on top of the Internet. The architecture is driven
by needs for (i) scalability (ii) self-organization and self-adaptation, (iii) openness. Scale is addressed by
restricting requirements for the maintenance of global state – this is infeasible on large ALNs that could
contain thousands of nodes. Self-organization is addressed through an approach based completely on
decentralized negotiations; this avoids centralized co-ordination and allows peers to continue to obtain
services even on conditions of failure and volatility that is to be expected in large-scale peer-to-peer
networks. Finally an open architecture is important for Internet scale resource management systems; this is
addressed through a layered software architecture that isolates economic agents from the underlying ALN,
by providing support for pluggable mechanisms and strategies, and by taking an approach based on
specification of messages using XML – this last renders language and platform independence.

Discussion
The important lesson learnt from each of these architectures is the requirement for open APIs and layered
software architecture. OCEAN and CATNETS focus on a completely decentralized system based on direct
negotiations between peers. This nevertheless renders allocation of bundled resources difficult. The GRACE
architecture is more adapted to Grid systems formed of a small number of nodes – where each node
represents a large clustered system. OCEAN lacks support for the implementation of multiple auction
mechanisms, and in fact does not address this need. An open market place for Internet level Grids needs to
address both in terms of development and run-time co-habitation of multiple market mechanisms. Even
though CATNETS and GRACE demonstrate the need to provide support for multiple market mechanisms,
the aspect of inter-operability of agents in the face of multiple market negotiation protocols is not addressed.

3.2.3 Related work on currency and payment

Currency serves as an element to assign value or generic capacity to consumers, to facilitate and delegate
actions/uses, to account for usage of services and resources, and to support the regulation of a system by
enabling or limiting the generic capacity of consumers in respect to the capacity of providers and also limiting
the storage of value.

Virtual currency has arisen as a necessity to apply economic policies in the scope of the regulation in
distributed systems. Every system based on economic models has defined some type of currency in an
explicit or implicit way. The interesting properties currencies have are:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 45

•••• Common unit of accounting: A common unit to value goods traded in a system.

•••• Purchase power: A mechanism to prioritize the use of different goods based on their necessities.

The design of a currency system is bound by trade-offs between security, scalability and availability. This
section defines a classification and the design of some major currency systems, both from economic aspects
and that of system aspects such as security.

Multiplicity of currencies : An economic system may be populated either by a single currency or by a
multiplicity of currencies. Typically a currency has a region within which it is dominant. For example, in
Europe there is the Euro; in the United States is the Dollar, etc.

Electronic payment systems such as PayPal or e-Gold implement exchanges between different real monies.
Most of the distributed computing systems using currency management implement a single monetary unit as
exemplified by systems such as Ppay, Tycoon, Karma, SecondLife, and World of Warcraft.

Currency Market : Currency market is the entity by which one currency is traded against another at a set
price or rate, called an exchange rate, required when there is more than one circulating currency. Two issues
addressed in Grid4All are (i) an exchange mechanism and (ii) control on circulation of virtual currency.

Currency representation: Two basic abstractions are used to represent the value of currency: account
balance based and token based. In account balance based systems, peers maintain an account with a bank.
Payments are effected as bank transactions between accounts. Centralized implementations [Lai05],
[Rege98] face issues of load and availability. Decentralized implementations [Vish03], [Garc04], [Haus05]
need to address presence of malicious users.

Token based systems issue tokens to peers that they use to obtain services from other peers. Clients
transfer tokens to suppliers of service. This is similar to cash and similar to cash counterfeiting needs to be
detected. PPay [Yang03] based on a DHT implementation allows each peer to manage its tokens. [Lieb04]
proposes a secure protocol to perform token transfer. [Chau90, Okam92, NuNg01, Brand93] maintain the
privacy and security of the users involved in a transaction at the cost of complex implementations. Token
based systems need to implement algorithms to avoid (or detect) malicious behaviour such as double-
spending, counterfeiting

Currency storage : A currency system may store currency either locally or remotely. Remote storage may
be centralized or distributed. Token based systems such as [Fu03, Chau90] allow each user is in charge of
storing his currencies (tokens) in a local persistent device like a wallet. Central remote storage based
systems introduce the notion a bank that regulates behaviors of users. Tycoon [Lai05], PopCorn Market
[Rege98] and GridBank [Barm02] follow this approach. They focus on heuristics to reduce the number of
transactions that require the intervention of the bank thus reducing the computational load of the bank.

In remote distributed storage based systems, transaction and account management is distributed between
the participants. PeerMint [Haus05] and Karma [Vish03, Garc04] implement a distributed bank where each
peer (account holder) is responsible for the account of another peer (account owner). Accounts may be
replicated to guarantee availability.

Bank intervention degree : Currency transaction or payment protocols are classified based on the degree of
intervention of the bank. Off-line payment protocols execute payments directly between customer and
provider and the role of the bank is to issue currency. Malicious behavior such as double-spending is not
prevented, but detected lazily (after fraud has been committed). [Okam92, MuNg01, Brand93] implement this
solution at the cost of delayed detection of multiple spending. On-line payment protocols [Garc04, Haus05]
are safer since each transaction involves the bank, a trusted entity that verifies correct behavior.

Ordering of transactions : Atomicity may not be guaranteed when transacting Grid goods; one of the two
operations, pay and acquire will always precede the other. Nevertheless participants should be able to agree
on the protocol: pay before acquire, pay during acquire, pay after acquire. Paying before acquiring the goods
does not guarantee the customer and paying after acquiring the goods does not guarantee the supplier,
requiring mechanisms that allow providers and consumers to reclaim their dues. Paying during acquiring the
goods is a compromise. Payments need to be done continuously and regularly during the usage of
resources. Either party may terminate the contract in case of default in payment or default in provision of
service. This mechanism is adapted when resources are used over a long period. GridBank [Barm02]
proposes all three mechanisms and allow the parties to negotiate one, based on their preferences.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 46

Transactions are categorized as low-value or mid-high value based on the amount of each transaction.
Using public key cryptography penalizes operation costs when the real value of the transaction is low – the
cost of public key operation exceeds the value of the payment rendering the transaction economically
unfeasible.

Low-value transactions, also known in the literature as micro-payments, are payments involving small
quantities; from a few cents to a Euro. These systems minimize the cost of transactions by using hash
functions. One of the earliest such systems is PayWord [Rive96]. This is based on unidirectional properties
of hash functions and implements a mechanism called hash-chains. Micro-payments are widely used in
electronic commerce such as accessing web pages or pay-based online documents.

Mid-high value transactions are payments where the value of the transaction is high. Security is important
since the falsification of even a single transaction represents a considerable loss. Such systems use
mechanisms such as public key cryptography, replication etc to achieve desired levels of security and surety.

Security considerations : Currency management should provide mechanisms to resolve payment disputes.
Two malicious behaviors that need to be addressed are: authenticity and counterfeiting. The former has two
aspects: Authentication of the user and integrity of messages, that is, verification the messages have not
been modified. Counterfeiting occurs when unauthorized entities issue and circulate currency. Public key
cryptography is the most well known method to address these two aspects of security by encrypting data
(against counterfeiting) and signing the encryption (authentication). [Okam92, MuNg01, Brand93] use
Chaum's proposal [Chau90] to ensure authenticity and non-counterfeiting as well as maintaining anonymity
of users. This increases the cost of each transaction.

3.2.4 Lessons learnt

Allocation is the process of distributing a finite amount of resources amongst a set of needful agents.
Efficient allocation, both in terms of the solution quality (who gets which resources) and the computational
efficiency, is a fundamental problem especially in large scale systems. A typical objective is to choose
metrics that guide decisions and then develop procedures to determine allocations that are optimal with
respect to the chosen metrics. Markets allocate resources to who value them the most. They also
decentralize control, that is, participants make their own decisions and the system does not rely on
centralized decision making. Allocation of resources is dictated by the price system and the control of
computation resources is exchanged between applications according to market-derived prices.
Consequently markets have received a lot of attention over the recent years and have been applied to the
allocation of resources such as network, storage, processing time, and scheduling of computational tasks.

Systems such as [FLZ05] assume a closed system model where the set of users (or consumers) and the set
of resources are tightly bound. They assume that the provider of a given type of resource is also a consumer
of the same type of resource and propose a closed economy of Grid markets. This is an assumption that
may not be made within Grid4All, for example, providers of CPU may want to consume storage or data.

Such systems also assume that resources are divisible; a compute node is time-shared amongst a number
of competing applications. This is valid in a number of usage categories, but insufficient to provide a utility-
model for VOs since issues such as isolation and security render sharing of compute nodes impractical.

Few systems address co-allocation or the guaranteed allocation of a bundle of resources. Most of the
systems exhibit an architecture where each resource provider (in general assumed to be large clusters),
auctions its own resources. Co-allocation implies simultaneous negotiations at multiple auctions (equivalently
where a consumer engages in multiple bi-lateral negotiations with many providers) and may lead to an
exposure problem where consumers have been able to allocate only a subset of the total bundle of required
resources. Requests for bundles may also show complementarities; in this case, engaging in simultaneous
negotiations increases the complexity for such consumers.

Systems are either completely centralized [CHUN04], providers and consumers trade at a centralized and
long-living market place which matches offers and requests, or completely decentralized [FLZ05] [EYM03]
[RV04]. The latter organizes bi-lateral negotiations between providers and consumers. This is perfectly
acceptable in environments where there are a reasonably small number of 'large' providers owning cluster

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 47

farms. Neither fit our requirements because centralized systems are neither tolerant to fault nor scalable and
a completely decentralized system is not scalable.

Analysis of existing literature shows that market mechanisms need to be appropriately chosen to meet the
demands of the targeted system requirements. [FLZ05] has chosen proportional sharing approach due to the
system model where allocation of similar divisible resources (CPU), needs to be arbitrated amongst multiple
price-anticipating users. The choice is based on criteria such as economic, computation performances and
the ability to predict market behaviour. The choice of a mechanism and the rules governing the allocation is
guided by the nature of resources, the number of different resource types and the demand function of the
application. For example, consider a network routing model where the objective of the operator is to allocate
resources such that the total cost of delay over all consumers is minimized. It is the interest of the operator to
choose a mechanism that provides incentives to consumers to submit truthful preferences. This is because
message sizes and resulting costs to the consumer when messages are delayed are information private to
the consumer. Truthful extraction of this information helps computation of an optimal solution.

Flexibility : The first objective is to focus on a flexible framework that allows
isolation of the market algorithms from the market place architecture. The
architecture should provide support for design and development of different market
mechanisms, support cohabitation of multiple market instances where the different
instances may be governed by possibly different market rules and mechanisms.

Sustainability of a Grid economy based on Internet markets depends on providing incentives to both
consumers and providers. [KLAI05] doubts the usefulness of markets when real money is not involved
arguing thus the failure of a number of approaches to transcend towards Internet settings. Effective currency
management based on an open-loop economy gives incentives to providers to share their resources and
gives incentives consumers to truthfully reveal their values.

Recent studies on the usefulness of market based resource allocation that does not use 'real' money, show
degeneration to situations noticed within traditional systems based on priorities and resource shares, that of
gaming the system [SNP05]. Closed loop environments [FLZ05] where a virtual currency is used as a
mechanism to regulate bartering, is not appropriate for Grid4All. Closed-loop assumptions are valid when
providers are also consumers and all users have (more or less) similar applications and usage patterns.

Openness: Grid4All needs an open economy based on a currency system backed
by real money.

In decentralized systems allocations are negotiated bi-laterally between consumers and providers. This has
a disadvantage within Grid4All. The feeble quantity of resources owned by a given provider may in most
cases not satisfy the needs of consumers. The other extreme is that of centralized and monolithic single
markets. Such markets implement a specific market mechanism such as combinatorial or double auction
mechanism. The logically centralized market place receives bids and offers from all the participants and
employ algorithms to decide on optimal allocations. This solution is limited in the number of items and
number of bids. Moreover it is impractical given the Grid4All context and environment where there may be no
rigid and simplifying assumptions on when resources may be available.

Grid4All seeks a compromise between the two ends of this design space. This can be achieved through a
market place that allows spontaneous creation and management of markets. There is also a second
motivation. Formally a market describes the rules of participation, the rules by which prices are formed and
rules that decide the allocation. The latter is referred to as the process of winner determination and can be
assimilated to problems of optimization, in general complex. Recent years have seen the surge of research
in this area; new formats and algorithms that allow matching buyer's preferences to that of seller's offerings
have emerged. There is a large design space for allocation algorithms, and this dependent on the specific
needs, in terms of traded resources, number of participants. Hence this project aims at developing
necessary tools to support the emergence of structured electronic marketplaces for computational resources.
Participants should be able to create markets (for example auctions) on demand, choosing the market
mechanism and structure that suits their needs. The market place services should enable participants to

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 48

create markets on demand (here markets are intended as mediators such as auctioneers where participants
may meet and trade).

Dynamic : Grid4All should provide tools and services to enable spontaneous
creation and management of markets.

3.2.5 Grid4All and Markets

The main objective of this task is to address the allocation of resources through markets. Market is a
mechanism to coordinate and to match supply and demand. Within Grid4All, markets are used by owners of
computational resources to sell and by consumers to buy resources such as processing time and storage.
The organisation that we foresee is that interested parties (humans) create VOs that will execute specific
applications and services to achieve the technical objectives of the creating parties. This has given the
motivation for the work presented in Chapter 1 that describes a virtual organisation (in Grid4All context) as a
first class and managed run-time entity. Section 3.3.1 presents some motivating use cases and scenarios
that illustrate some objectives for creation of virtual organisations which are the consumers of raw
computational resources (such as CPU, storage). VOs use these resources to execute applications that in
their turn render services to end users.

The vision that we have for Grid4All is a system where not only resource providers and consumers but also
3rd party agents may spontaneously create small markets on demand. Small is characterized by the number
of participants, the duration of a market, and the total volume of trade. The electronic resource market place
should offer tools that enable the instantiation of markets and the discovery of these markets so as to be
able to participate.

Successful operation of resource markets may also imply the involvement of other actors within the
environment of the virtual organisation:

• Application developers: Our current belief is that applications need not be aware of the economic
environment on which they execute. However it is expected that correct understanding of application
performance and behaviour is essential for a correct usage of market based allocation. For example,
video transcoding applications are easily parallelized by dividing the video file into video segments of
appropriate lengths. Understanding of the behaviour of the application as more processors are added to
it is essential to evaluate the correct quantity of CPU resources that should be allocated. Trade-offs may
need to be done between the quantity bought and the price paid.

• VO administrators, initiators, and users: VOs acquire resources to execute its applications. Attribution of
budgets to applications may imply the intervention of administrators and initiators. Users may also be
required to contribute to the budgets of the virtual organisations. The budget and account management
internal to VOs is an issue that we currently consider out of scope.

• Applications: The VO management handles applications as a managed element whose run-time
requirements for resources may be directed through policies set by users and/or administrators. So we
expect that allocation of resources through markets is transparent to applications.

The technical objective of this task is to provide services and software tools that enable the construction of
open Grid resource market places. Consumers and providers of resources are the ultimate users of the
market place and its services. Without prescribing specific behaviours for these roles, our objective is to
develop proof-of-concept minimal automated buyer and seller agents that use the market place services to
procure resources for the use scenarios that we plan to demonstrate within Grid4All.

This document presents the main requirements, state of art, and the architecture for open resource market
places.

3.2.6 Organisation of the document

The section presents the organisation of the subsequent sections of this chapter. Section 3.3 presents the
essentially non-functional issues and requirements that raise from the environment that Grid4All targets. It
then presents a set of use scenarios and an analysis of the nature and properties of computational
resources. Section 4 presents an analysis of market mechanisms, in particular auction-based mechanisms. It

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 49

then provides a classification of some important mechanisms and matches the targeted use scenarios to
suitable market mechanisms. Section 5 presents the system architecture for the Grid4All market place
emphasizing on requirements for an open platform. Section 6 presents a component based framework that
for the design of the auctioneer (or mediator) role within a market place. This is driven by our assumptions
that essential interactions between sellers and buyers of resource are mediated through an instance such as
an auctioneer. Section 7 presents two major services: market information service that is an essential
component for a large-scale system and a decentralized currency management service providing bank and
accounting facilities. This chapter terminates with an analysis on the relationships with other main tasks of
this work package that are essential to implement and deploy the market place services and a discussion on
the future work.

3.3 Grid4All specific issues and requirements

The specific issues and requirements for a Grid4All market are derived from the project vision of a
"democratic" Grid as a ubiquitous utility whereby domestic users, small organizations, and SMEs may decide
to share resources by offering, selling or donating computing resources on the Internet. While some users
may specialize in selling these resources, some others may offer and at the same time draw on resources,
and some others may work without having to individually invest and manage computing and IT resources.

Dynamic virtual organizations may span multiple management domains, where each domain belongs to
either a user member of the virtual organization and who has contributed its resources, or those of resources
acquired from the resource market. Our goal is to support a large number of such simultaneous collaborative
communities on the Internet; though the size of any one specific virtual community to be of a small or
medium size.

Our objective is to enable on-demand delivery of resources to virtual organizations; computing in the Internet
needs to be as ubiquitous as a utility. Implementation of resource market places in open environments such
take into account major non-functional requirements described below.

Scale : considering a population in the scale of millions of users sharing their resources across the Internet
either on a for-profit or a non-profit basis becomes a challenge in handling the complexity that derives from
the quantity of resources, users and numbers of concurrent actions (for example requests for resources).

Heterogeneity : Open systems consist of a diverse range of resources (for example different processor
architectures, speeds, middleware etc.), diverse range of applications and application demand functions
(such as elastic demand for resources, real-time), diverse usage patterns, resource owner behaviors (for
example may decide to trade resources at different times), and consumer endowments.

Dynamicity : Grid4All shall support the on-the-fly creation of highly dynamic virtual organizations where
participants and resources can join and leave at will. The lifetime of a Grid service or collaboration might
range from a few hours (e.g. an e-learning interactive session) to several years (e.g. twinned schools
cooperating on an educational project).

The central issue in resource allocation is the nature of resources itself. The section 3.3.1 presents some
motivating use scenarios to show the flow and interactions between the participants or actors in the trade for
goods and later parts of this section give an overview and abstract properties of different types of resources.
Later sections of this report show how the main requirements are being addressed:

- Heterogeneity: This is addressed through the use of ontology to describe resources and markets,
through generic bidding specification, by providing an infrastructure that enables the cohabitation of
different types of auctions. Furthermore we also address the interoperability issue raised by the
presence of multiple auction (or market) types. Section 4 describes the generic bidding specification that
has been designed within Grid4All. It also discusses the rationale behind the need to provide support for
cohabitation of multiple market mechanisms (such as different types of auctions).

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 50

- Scale and dynamicity is addressed through spontaneous creation and dissolution of markets. This is
accompanied by enabling services such as the market information service that allows for aggregation
and scaleable dissemination of market related information. Section 5 describes the overall system
architecture and in particular presents the enabling services to support open, scaleable, and dynamic
market places.

3.3.1 Use case scenarios

The use case scenarios are useful to define the scope of market-based resource allocation in dynamic ad-
hoc Grids; identify components and services that are essential for market-based resource management in
different types of Grids (e.g. utility Grids, data Grids, computational Grids) and for different Grid applications,
specify functionalities of those components and services and the interrelationships among them.

The main actors that are involved in these scenarios are: buyers representing virtual organizations, sellers
representing resource owners, and also 3rd party actors such as market makers or market analysers. This
section presents a market-oriented view of some use case scenarios, some of which are also described in
some other tasks in WP2 (task scheduling in T2.2), and collaborative applications in WP4 and presents a
market oriented view of these specific scenarios: sellers and buyers interested in acquiring or selling
resources, market initiators and market designers.

Actors

An organized group of people constitute a virtual organisation: it can be defined as a rather stable collection
of members such as users or administrators, policies, resources and applications or services that are
executed within the context of the organisation. The virtual organisation can act as a buyer or a seller.

The group of people constituting a virtual organization use software applications to do their work that are
more or less aware of the infrastructure; they can directly or indirectly interact with the Grid4All API and
components. Applications require resources or services (goods in the market) on which they may execute
and which they may use. Some goods might be acquired in the market and incorporated into the VO.
Therefore the VO management system must sense the demand, evaluate the need, bid, and incorporate and
later discard external goods. Therefore the VO management system is the ultimate buyer agent.

A person or organization may also decide to offer/sell goods (computational resources or services): it is
represented by a seller agent. Goods have an owner and are traded (or in fact leased) by these owners at
resource markets. Related to these mechanisms, there must be the role of market designers or engineers
who are in charge of designing, implementing or adjusting new or existing market mechanisms. Furthermore,
there might be other third party actors such as market makers, market analysers.

Generic scenario: Utility computing

Utility computing is a business model whereby computer resources are provided on an on-demand and pay-
per-use basis. As the Utility Computing service is based on usage, computing resources are metered, and
the user charged on that basis. Utility computing is sometimes also called On Demand Computing. Similarly
applications executing within a VO consume the resources currently available to the VO.

Some examples are: An application is writing to a file until the currently available storage is nearly
exhausted. As a result, additional storage is acquired and incorporated into the VO, transparently to the
application that can continue writing (until the VO budget is exhausted). The same example could be applied
to processing (machine capacity), where a node could be incorporated into the VO, or to services that could
also be incorporated into the VO (for instance a service for the conversion for a new video format).

In this scenario, the interaction between the allocation request and the trading for additional resources could
be more or less transparent: the affected component (the VOFS reported in D3.2 in the case of file storage)
will request the VO management to incorporate additional goods (storage) into the VO, or in an more indirect
model, a VO policy would define the threshold and mechanism for when and which amount of goods
(storage) are acquired in the market.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 51

Generic scenario: Batch computing

In the context of batch computing, a user agent submits a job specification to a job scheduler. The scheduler
has to obtain the required resources (or otherwise fail the application). Some part of these resources may be
available inside the VO, but for some other part the consumer agent may need to trade for additional
resources and bind them to the VO for subsequent use by the scheduler (Task 2.4). This acquisition is
mediated through the resource management component of the framework presented in Chapter 1.

The interaction between the resource manager (the allocation component) and the consumer agent might
follow the same principles as in the utility computing scenario. After the binding of new resources to the VO,
typically the scheduling service will then map application tasks to resources within the VO.

Application scenario: Collaborative Network Simulat or

The Collaborative Network Simulator Environment (CNSE) application can be used to support the scenario
“collaborative simulation of computer networks” described in section 4.1.3 of Deliverable 4.1. As stated there,
the usage of this application within a grid context will allow overcoming several problems: first, the
processing resources available will be arbitrarily large, and thus the complexity of the simulations will not be
limited by this factor; further, storage will also be available on demand, and thus the number of simulations
and visualizations can be that required by the educational objectives, and not restricted by locally available
disks. Therefore this scenario can be seen as a combination of on-demand storage (group repository
service) and task scheduling (simulation service).

Application scenario: task scheduling

Chapter 4 presents a task scheduling service where one typical example is to execute a video conversion
task: a user wants to change format of a local video or perform some processing to the whole video (e.g.
quality enhancement). Having a broadband connection but very limited local processing capacity, the
application needs to divide the video in pieces and ship them to remote processors. For that, the scheduler
needs first to know the resources available (which combinations are possible) and then obtain a certain
combination of resources to proceed with the execution of the task. To obtain these resources, the buyer has
to buy access to a set of computing resources. First it uses the market information service to know the status
of available resources (volume, price, etc), then that information is passed to the scheduler who determines
a few resource sets, decides, and then the buyer agent is instructed to purchase leases for the required
resources. The purchase of these resources implies finding, joining and participating in markets, in multiple
bids or in a bid requiring co-allocation.

Application scenario: supply of a video film

Another typical application scenario is the supply of a video film in a video-on-demand (VOD) service over
the Internet where there are a set of subscribers that they can access through broadband connections. They
choose a film and then the VOD service pipes the films to other users who want to watch the same video.

The buyer wants to buy access to a film. The buyer contacts its local market agent to start an auction. The
buyer agent specifies the parameters – the type of auction that it requires, the schedule times, and the
resource that it seeks – here the film. The buyer (the initiator) of the auction is given back a handle to later
control the instantiated auction. The buyer also specifies the desired locations for the potential suppliers.

The local agents contact the market factory, and a market session for conducting the auction is created. The
market session is regulated by two time-outs, a period for registration, and a period to receive bids. Once
started the market session advertises itself at the semantic information service. It then waits for the suppliers
to register. It registers only those suppliers who satisfy the constraints of the buyer (such as location of
supplier). Once the time interval to collect bids has been reached, then it processes them and selects the
winning supplier. In a sealed bid auction, no feedback info is sent to the participants via the MIS.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 52

The market process prepares an Agreement and verifies that the winning seller and the initiating buyer
accept the agreement through a message that is sent to both the winner and the initiating buyer.. The market
session then terminates, and the agreement phase starts.

In the agreement phase, an Agreement Manager entity will handle all details required to make the
agreement effective, including payment and providing access to use the resource. In this process, several
actions are performed: resource access, where a reference to the good (a video film in this case) is obtained;
billing; logging; payment: transfer of funds; and reporting via the MIS.

Video Supplier (bidder)
In this scenario, there is also the viewpoint of the (video) supplier. Supplier agents subscribe for market (for
example auction) advertisements at the SIS. They can subscribe by a number of criteria. Interested supplier
agents register and once authorized, they can participate. A supplier may (if needed) also download a
Market Protocol from the Market factory the (auction) protocol that corresponds to the market process at
which it has registered to participate. Each supplier then sends its sell bid to the market process and then
waits either for a refusal or for the agreement.

Specific scenario: Buyer agent interested in acquir ing resources

This scenario describes the typical course of action that a buyer agent will follow, but the description will be
based on the task scheduling scenario.

The buyer agent wants to buy access to a set of computing resources to schedule a task such as a video
conversion task. First it uses the market information service to query about the status of available resources
(volume, price, etc), and that information is passed to the scheduler (application) who determines a few
resource sets, decides, and then the buyer agent is instructed to purchase leases for the required resources.

The purchase of these resources implies:

- finding and selecting appropriate markets (involving a query to the Semantic Information Service), the
most adequate market process may need to be instantiated from a Market Factory service,

- joining and participating in markets: registering and interacting with a market (a specific mediator
process),

- Submit a bid expressed in a bidding language capable to describe a collection of resources demanded.

Specific scenario: Supplier agent offers resources

This scenario describes the typical course of action that a buyer agent will follow, but the description will be
based on the video supply scenario. Supplier agents can sell their resources by expressing a sell bid (or
offer). This sell bid can be sent to a specific mediator process by either joining a selected process [a] or
created on-demand [b]).

Anyway, the supplier agent must first use the Market Information Service to query about the status of
available resources (volume, price, etc), and that information will be used to construct a sell bid.

In case [a] the supplier agent would subscribe to marketplace advertisements (auctions) at the Semantic
Information Service and wait for notifications of them. Interested supplier agents register at a Mediator
Process (MP). Once authenticated and authorized, they can participate in the MP. A supplier may (if needed)
also download from the Market factory the (auction) protocol that corresponds to that mediator process at
which it has registered to participate.

Each supplier submits its sell bid to a market process by sending a message and then waits or query for that
information. The information can arrive during the process (depending on the visibility rule of the auction
mechanism, or at the end: containing a termination of the market or informing of an agreement. In case [b]
the supplier agent will contact the marketplace to start (create) an auction.

Specific scenario: Intermediary creates market

This scenario describes the typical course of action that a third party agent (an intermediary) will follow to
initiate a market. An intermediary can be simple (just act as a third party to initiate and drive a mediator

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 53

process) or complex (an intelligent market maker that also acts as buyer agent to resell (and aggregate)
other resources).

It will have to choose the parameters for the market process, create and configure the market process,
define type of resources to trade, and start the market process (this implies selecting the protocol). In case of
a complex intermediary, it will also register as participant (seller).

Specific scenario: Market designer

This scenario describes the typical course of action followed to create a new market process. It essentially
involves creating the market process description or template that should include the behaviour (protocol) of
all parties (buyers, sellers, and auctioneers) to ensure the interactions work as expected. This template
should be described and formally specified. Then the template should be registered and stored at the
market factory and registered at the Semantic Information Service to be discovered. Any negotiation process
in the marketplace will be configured based on one process template, determining the behaviour of each
participant on that process.

3.3.2 Resources in Grid4All

It is clear that the resources that are traded within Grid4All are computational resources, that is, processing
time, storage, and access to applications. The structure and choice of a market model is guided by the type
and properties of the resources that are traded. Thus, it is important to understand the nature of the
resources and their main properties. As an example, auctions for perishable resources such as for example
flowers need to terminate quickly. The Dutch auction is typically chosen since its bidding rules favour early
termination. Here the property of the resource helps sellers to choose the pertinent auction mechanism.

This section presents an analysis of the main properties of Grid Resources so as to understand the nature of
the resources and identify those properties that may affect the choice of market mechanisms. Basing
ourselves on analysis of literature we identify the correspondences between the resources and properties
and the ideal allocation mechanism. Properties may be either intrinsic characteristics or a system choice. For
example CPU is a resource that is divisible. If the system choice is to allow shared access (time-sharing
mode) then a mechanism that allocates a percentage proportional to the bid is desirable.

Resource and request characterisation

Continuous or Discrete: Continuous resources are regarded as being (infinitely) divisible. Continuous or
discrete is an inherent property of a resource. For example, time and energy are continuous resources given
that they can be divided infinitely. Individual units of discrete resources are considered atomic units since
they are not divisible. The CPU is a continuous resource in the sense that can be divided in infinite portions
(percentage of CPU) though of course infinite divisibility is practically infeasible due to overheads. In fact,
many systems trade CPU as a discrete resource, that is, CPU is traded in distinct time-slots where each
time-slot is allocated to only one bidder.

Divisible or indivisible: Divisible goods are those resources that can be allocated partially. In the case that
the bidder wants the entire good or nothing, then its bid is considered indivisible. This classification is
symmetric to the continuous and discrete resources discussed above. However, divisible or indivisible
resources are a matter of the resource allocation mechanism itself rather than a resource property. For
example, network bandwidth is typically considered as divisible since it multiplexes the different flows at
negotiated rates whereas storage units are traded as discrete units.

Single unit or Multiple unit: In a multi-unit setting the different instances of one type of resource are
indistinguishable. In a single unit setting every item traded at the market is distinguishable from another. For
example a provider may trade its 10 CPU units are indistinguishable units or decide to start a market that
trades in 10 distinguishable CPUs (CPU1, CPU2 …). The choice of what the unit represents is a decision
that the seller needs to make. It may decide to trade its processing time in units of two CPUs (here a buyer
may buy only 2, 4, 6 … CPUs). Bidding specification needs to provide compact ways to represent the
preferences of both buyers and sellers.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 54

Single items or Multiple items: A single item refers to a resource that is traded as one atomic item. The
granularity, that is, the definition of the 'item' is dependent on the market. For example, four CPUs may be
traded in as an atomic item that may not be disaggregated. Grids also introduce the notion of composite
resources (or items). Bidding specification should allow the expression of composite resources or services.
For example, in practice it does not make sense to trade CPU and volatile memory as separate resources.
Practically applications cannot use the one without the other and procuring them independently poses the
exposure problem.

Sharable or not: Divisible resources may be either shared, that is, allocated to more than one consumer at
a given time, or not. It is the choice of the market initiator to decide if resources are to be shared or not.
Nevertheless as in the case of divisible resources, selection of an appropriate market mechanism needs to
take into account this property.

Time factor: Grid resources are leased. Consumers may have constraints on when the resources are
needed and the duration of allocation; similarly providers (especially within Grid4All) may trade their
resources only for specific times. Hence the bid (and offer) must be able to specify the time ranges within
which resources are required and their duration. A typical bid that needs to be supported is that of a
consumer that requires two CPUs satisfying attribute description = {CPU>1 GHz, mem>1 GB, disk>20 GB}
for 10 time slots between 10:00 and 18:00 assuming that time-slots are defined to be of 30 minutes. This
needs combinatorial auctions. Within single item auctions, the time-slot may also be considered as the item.

Complementarities: The use of bundles allows bidding for combinations of resources. Consumer
requirements are usually complementary, for example, a CPU and memory may not be disassociated.
Complementarities are typically goods with super-additive valuations (v (A) +v (B) < v (AB)), since the sum of
the valuations for the single resources is less than the valuation for the whole bundle.

Substitutes: A resource (or service) is a substitute resource for another insofar as the two kinds of goods
may be consumed or used in place of another. Typically substitutes have sub-additive valuations (v (A) + v
(B) > v (AB)). One good is a perfect substitute for another only if it can be used in exactly the same way, at
exactly the same cost, and with exactly the same quality of outcome; that is, when there is no particular
incentive for a customer to prefer one over the other. The notion of substitute is tightly related to the
resource. For example, if an application requires one hour of CPU and is indifferent to the time of day when it
needs the resource, then the time-slot may be considered as a substitute in a market that trades CPU
resources in time-slots.

Linear Pricing or Bundle Pricing: Linear pricing sets the same price for each item of resource; bundle
pricing sets the price for the entire bundle. Bundle pricing increases the complexity since allocation must
choose those bundles that maximize the objective function. Bundled allocations need to be addressed by a
combinatorial auction mechanism.

Resource properties and attributes

This section is based on the previous characterization and lists the main properties addressed in Grid4All.
Resources are considered as discrete and non-shareable items – resources are traded in non-shareable
units. Continuous resources such as CPU are allocated in discrete and atomic time-units. A resource is in
characterized in multiple dimensions – by attributes specific to the resource (such as the CPU clock speed)
and also that of time. Resources may be traded at a specific wall-clock time – through auctioning of the time-
slots; in this case, the definition of the traded item is characterized also by the time attribute. Some
combinatorial auction mechanisms do not require this; constraints may be introduced in the optimization
problem formulation to ensure that a given resource is indeed allocated to only one bid for a given time
range. One issue is that of the length of the time-slot. It is clear that a fast CPU will be required for a lesser
duration than a slow CPU; in the first specification we require that consumers specify the required duration.

Bidding refers to the preferences that buyers and sellers send to the markets. The bidding specification
allowed by the market should allow a compact bidding for aggregation of resources and composition of

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 55

resources. Buyers (and sellers) may also want to acquire more than one type of resource, for example, an
application may need CPU and storage resources. Bids that express more than one type are referred to as
bundles.

Consumers (and also providers) may have constraints on the allocation; applications may be agile and
adaptive to variable quantities of CPUs, however may have preferences (or even hard constraints) on the
number of CPUs allocated and also where they are allocated from. Some parallel applications may only
tolerate allocations that are multiples of 2; some applications may tolerate only shared memory multi-
processors, in which case all CPUs need to be co-located on the same physical machine. Finally within
Grid4All we aim at 'localizing' allocations when possible. Consumers should also be able to choose
resources based on their locations. The bidding language should allow specification of such constraints.

Grid4All traded resources

The Grid4All marketplace is organized to trade raw computational resources and applications. At this stage
of the project we address only the former, i.e., CPU and storage. Whether it be computational resource or
applications, providers trade their resources as services. The section 4.3.4 provides the formal specification
for the bids for resources such as CPU and storage. Specification of applications is a future work.

Bidding specification requirements

In single-item auctions only a single value, the price is communicated. Multi-unit, multi-item, and
combinatorial auctions require generic preference structures. This section discusses the requirements and
the design of bidding specification for Grid4All market place.

• Bundles: Typical applications require more than one type of resource (for example, CPU and storage),
and also multiple quantities of each type of resource, bids should be able to convey preferences on
bundles of resources.

• Substitutes: Typical Grid applications are malleable. Four CPUs of 3 GZ may be equivalently acceptable
as eight CPUs of 1, 5 GZ (assuming that the application may terminate within its deadline in either of the
two configurations). Two relevant class of languages are OR and XOR [Chev06]. OR bids allow
consumers to allocate maximum valuation bundles over disjoint goods. An OR bid may submit multiple
preferences; the valuation of the bid is the maximal sum of all contained disjoint bundles. This language
can however not represent sub-additive valuations. XOR (exclusive or) bids also allow consumers to
submit multiple and exclusive preferences (or bundles). XOR bids express the set of substitutes that a
consumer is willing to accept.

[Chun04] describes a language that allows fine-grained resource allocation; bids may specify percentages of
each type of required resource (40% CPU, 80% memory, 20% network, and 10% disk resources). A variant
is to specify a uniform share of each resource in the bundle (40% share of all node resources: CPU,
memory, network, disk). Consumers first discover resources by their configuration and bid for a specific
node. Without precluding these scenarios, we favour bidding on absolute quantities rather than for shares.
Sharing of compute nodes amongst multiple virtual organisations is complex in terms of security and
management. An elegant way to address this is through the use of virtual machines instead of shares.

The bidding specification needs to capture participant's constraints (buying or selling) and their preferences
– such as co-location of the allocated resources at the same provider, or in general restrictions on the
minimum and maximum number of offers (from providers) that satisfy a bid (from a buyer). Proximity
constraints can also be used to allocate resources from the same sub-network. Participants should also be
able to specify that the time-ranges and time durations within which the resources are needed (so as to
satisfy internal deadlines).

Two notions have been introduced in the bidding specification: composite and aggregate. An aggregate
represents multiple units of the same type of resource. A composite represents bundling of different resource
types. Aggregates may be conjunctive, the entire request quantity should be allocated or disjunctive -- it is
sufficient to allocate a subset. For example, a compute node is a composite (CPU+Storage) and four
Compute Nodes is described as a conjunctive or disjunctive aggregate.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 56

A bid encapsulates the (i) description of the resource (i) quantities (ii) time ranges and duration (iv) the prices
and the (v) constraints in allocation. The following code snippet shows how a resource is represented and
figure 13 represents a traded item.

 Figure 12 Aggregates or composites of resources

The current bidding specification in Grid4All has some limitations that hamper its reusability:

− Specific constraints are hard coded within the schema and there is no generic add new constraints,
− Pricing does not support complex schemas such as volume discounts,
− Time specification does not permit specification of constraints in the allocation of time slots; for

example, a bidder cannot ask for CPU1 at TSa and CPU2 at TSb, where TSb = TSa + 2.

namespace a = "http://relaxng.org/ns/compatibility/ annotations/1.0"
namespace f = "http://axkit.org/NS/xsp/perform/v1"
namespace s = "http://www.ascc.net/xml/schematron"
namespace xsp = "http://apache.org/xsp/core/v1"

start = Resources

Resources = element Resources{ composite |aggregate
}
composite = element composite {
(element item {xsd:string},
element quantity {xsd:nonNegativeInteger})+
}
aggregate = element aggregate {
element item {xsd:string},
element quantity {xsd:nonNegativeInteger}
}

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 57

Figure 13 Item specification

Related Work
This section presents the type of bidding and market structure that is derived from the system model of some
of the better known market-based resource management systems that have been reviewed in section 3.2.

namespace a = "http://relaxng.org/ns/compatibility/ annotations/1.0"
namespace f = "http://axkit.org/NS/xsp/perform/v1"
namespace s = "http://www.ascc.net/xml/schematron"
namespace xsp = "http://apache.org/xsp/core/v1"

start = item
item =
 element item {
 element Id { xsd:nonNegativeInteger }
 | element nature { Storage | CPU }
 }
Storage =
 element Size {
 element Min {
 attribute value { xsd:decimal },
 attribute unit { xsd:string "MB" | xsd:string "GB" | xsd:string "TB" }
 },
 element Max {
 attribute value { xsd:decimal },
 attribute unit { xsd:string "MB" | xsd:string "GB" | xsd:string "TB" }
 }
 },
 element Throughput {
 element Min {
 attribute value { xsd:decimal },
 attribute units { xsd:string "Mbps" | xsd:str ing "Kbps" }
 },
 element Max {
 attribute value { xsd:decimal },
 attribute units { xsd:string "Mbps" | xsd:str ing "Kbps" }
 }
 }
CPU =
 element Memory {
 element Min {
 attribute value { xsd:decimal },
 attribute units { xsd:string "MB" | xsd:strin g "GB" }
 },
 element Max {
 attribute value { xsd:decimal },
 attribute units { xsd:string "MB" | xsd:strin g "GB" }
 }
 },
 element ClockSpeed {
 element Min {
 attribute value { xsd:decimal },
 attribute units { xsd:string "MHz" | xsd:stri ng "GHz" }
 },
 element Max {
 attribute value { xsd:decimal },
 attribute units { xsd:string "MHz" | xsd:stri ng "GHz" }
 }
 },
 element FLOPS {
 element Min {
 attribute value { xsd:decimal }
 },
 element Max {
 attribute value { xsd:decimal }
 }

 }

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 58

 Tycoon Mirage Sharp Grosu’s Catnets Bellagio Grid4A ll

Continuous or
Discrete Cont. Discrete Discrete Discrete Discrete Discrete Discrete

Single Unit or
Multiple Unit Single Multiple Single Multiple Multiple Multiple Multiple

Single Item or
Multiple Item Single Single Single Single Multiple Multiple Multiple

Divisible or Not Divisible Non-
Divisible

Non-
Divisible

Non-Divisible Non-
Divisible

Non-
Divisible

Non-Divisible

Shareable or Not Shareable Non-
Shareable

Non-
Shareable Non- Shareable Non-

Shareable
Non-
Shareable Non-Shareable

Time factor Start Time+
Budget

Start time +
Duration

Lease
Millions of
instructions
+Budget

Allocation
time

Start time +
Duration

Allocation time
+ Availability
time

Complementarities No No No No No Yes Yes

Substitutes No No No No No Yes Yes

Type of Pricing Linear Bundle Linear Linear Linear Bundle
Linear

Bundle

Table 1 Bidding capabilities of some market-based r esource allocation systems

Tycoon allocated CPU resources proportional to the bids. The price of the resource is determined by the
total bids placed and each participant is allocated a share of the resource in proportion to its bid. Here CPU
is shared (divided) between the bidders. Most other systems allocate resources in discrete time units. Sharp
implements a commodity market in which agents negotiate for a single unit of resource, for example, a given
compute node at a given time and for a fixed duration. Many systems allow requests for multiple units of
multiple items and also specify preferences of agents over alternative bundles. Mirage allows bids on
multiple units of each requested resource.

Grid4All, Bellagio and Catnets allow bundle bids (bids on multiple items). Bundle bids are needed to allocate
heterogeneous resources provided by possibly different suppliers. These need combinatorial auctions.

Time constraint is handled in one of the two ways according to the allocation mechanism: the unit allocated
is a time-slot (of a resource such as CPU), that is, the market trades in time-slots of computational
resources, or it is implemented as a constraint in the allocation in the case of combinatorial auctions.

In Tycoon bids specify a budget for the time interval when resources are required. Each bidder is allocated a
percentage proportional to the total bids received for that time interval. Sharp allocates leases within the
desired time range (the bid specifies the time range and duration that resources are required in that range).
Bellagio, Mirage, Catnets and Grid4All include time in the bid specification. In Grid4All, sellers specify the
time range within which their resources are available, and buyers specify the range within which they require
the resources.

As far as we know, only Grid4All and Bellagio provide bidding support for substitutes and complementary
resources. Consumers can specify the different bundles they prefer using XOR bids. Only Mirage, Bellagio
and Grid4All provide bundle pricing whereas Tycoon, Mercatus, Sharp and Catnets request bidders to give
per-unit of item prices.

3.4 Market mechanisms for Grid4All

This section focuses on market mechanisms and in particular discusses market models that match the
requirements established in sections 3.2 and 3.3.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 59

3.4.1 Background

Some definitions first; a mechanism defines a set of feasible strategies, which restrict the kinds of messages
that agents can send to the mechanism and makes a commitment to use a particular allocation rule to select
an outcome and a particular payment rule to determine agent payments, as a function of their strategies
[Kal03]. Intuitively a mechanism design problem has two components: the algorithmic output specification
and descriptions of what the participating agents require, given as utility functions over the set of possible
outputs. A mechanism solves a given problem by assuring that some acceptable output occurs. In Grid4All
we study auctions as mechanisms to solve resource allocation problems amongst suppliers and consumers.

There are two design goals in the application of mechanism design to auctions and markets. The first is
allocative efficiency that seeks to maximize the total payoff across all agents. The second goal is payoff
maximization that seeks to maximize the payoff to a particular agent (typically the seller). This is the optimal
mechanism design problem.

The space of possible mechanisms is large. Mechanism also allow for multiple rounds of interaction between
agents and the mechanism, and for arbitrarily complex allocation and payment rules. Given this, the problem
of determining the best mechanism from the space of all possible mechanisms can appear impossibly
difficult.

The revelation principle [Gib73, GJJ77, Mye81] allows an important simplification. The revelation principle
states that it is sufficient to restrict attention to incentive compatible direct-revelation mechanisms. In a direct-
revelation mechanism (DRM) each agent is simultaneously asked to report its type. In an incentive-
compatible (IC) mechanism each agent finds it in their own best interest to report its type truthfully. The
mechanism design problem reduces to defining functions that map types to outcomes, subject to constraints
that ensure that the mechanism is incentive-compatible. However, the revelation principle ignores
computation and communication complexity, and should not be taken as a statement that “only direct
revelation mechanisms matter in practical mechanism design”.

The design of a computational economy involves tradeoffs between often conflicting design goals. For
example, on one hand, we might wish to allow users to express very complex descriptions of resources they
wish to acquire in the economy. On the other, computing efficient resource allocations over such resource
descriptions could algorithmically be very expensive and hence untenable.

Markets furnish a solution to the non-functional requirements that have been set in section 4. The main
system properties that are addressed through markets are:

• Decentralization : Auctions are decentralized in nature.
• Distribution : Processes can be distributed amongst participants.
• Scalability : Auctions require little global information.
• Adaptability : Mechanism can be adapted to allocate different items.
• Efficiency : Auctions have been proven to be efficient allocation mechanisms.
• Fairness : Auctions are perceived as fair mechanisms by users.

Our objective is to experiment with different market mechanisms, selected to satisfy the set of applications
and use scenarios that we envisage for the proof-of-concept demonstration; first an expressiveness bidding
language that allows agents to build complex bids is developed. Then, a set of allocations mechanisms that
best match the requirements of applications are studied, designed, and validated across the target set of use
scenarios. The choice of mechanism is based on the property that they satisfy (that are required by
applications) and the trade-off on complexity. Typical properties are: satisfaction (full or partial), support for
bundles and complementarities, support for expression of multiple preferences through XOR bids.

Auctions match bids (from buyers) to offers (from suppliers). Resources are leased to consumers for time
durations where start and end times are specified by the. Bids and offers are sent to an auctioneer that
determines the allocations; winning allocations satisfy the objective of the mediator process (revenue or
surplus maximization). Bids and offers specify the time range within which the resource is requested (sold)

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 60

and the duration. Markets are inherently decentralized allocation mechanisms since each participant decides
locally on how to bid, on what resources to bid, and which market to participate.

We focus mainly on auction mechanisms since the competitive process of auction mechanisms serves to
aggregate the information about bidder's valuation and to derive the trade prices. The auction process
consists of three main steps: bid reception, bid evaluation, and calculation of settlement prices. Iterative
auctions conduct this process in rounds; each round refines the prices based on the current aggregate of
supply and demand. The price feedback allows bidders to learn about the competition and reformulate their
bids based on the current market prices. The literature on auctions identifies a wide variety of auction types,
which we discuss below. One of the main issues in auction theory is the performance comparison of different
auction formulations. Two main criteria when choosing an auction are revenue and efficiency – sellers
typically choose an auction that maximizes the expected revenue. [WWW01] presents a complete
characterization of auctions and proposes a classification schema for different auction mechanisms, based
on different properties and capabilities of the mechanisms. The annex 3.10.1 summarizes this taxonomy the
short discussion that follows is based on this taxonomy.

Discussion
The annex 1 has described different auction formats. The next step is to identify some of their capabilities.
The English and Vickrey auctions are generally used to trade single items. Double auctions allow both
sellers and buyers to submit bids at the same time; in general double auction trade multiple units of a single
item. Combinatorial auctions allow bundled bids and guarantees complete satisfaction.

Incentive compatibility is desirable property that ensures that participants have an incentive to report
truthfully their preferences and in general is determined by the pricing policy used. Pricing policies where the
buyer's payment is independent of its valuations are incentive compatible.

The objective function determining the winning allocations is chosen based on the direction of the auction.
Cost minimization is a common objective in (reverse) auctions to buy, such as procurement auctions, in
which the auctioneer minimizes the cost of acquiring the items. Revenue maximization is a common
objective in (forward) auctions to sell, in which the auctioneer maximizes the revenue obtained for the items.
Surplus maximization, that is, the difference between payment collected and the amount paid to the sellers is
typically an objective of exchange markets.

Continuous double auctions (or exchanges) are relevant to applications that require immediate allocation of
resources as against clearing auctions that are more pertinent for applications that plan their resource
requirements over time. The following table summarizes the auctions studied so far and the type of trading
they permit. In the next section we evaluate Grid4All scenarios with respect to the mechanism
characterization provided in table 2.

Type of Resources
Auctions

Items Units

Satisfactio
n

Clearing
Period

Iteration
s

Structur
e

Econ.Propertie
s Objective

English -Single
-Single

-Multiple
-Full -Scheduled Single

round
One
sided

IC (only if Single
unit or non –
uniform price)

-Revenue
maximization

-Cost
minimization

Vickrey -Single
-Single

-Multiple
-Full -Scheduled Single

round
One
sided

IC (only if Single
unit or non –
uniform price)

-Revenue
maximization

-Cost
minimization

Iterative
-Single

-Multiple

-Single

-Multiple

-Full

-Partial
-Scheduled Iterative One

sided IC

-Revenue
maximization

-Cost
minimization

Double
-Single

-Multiple

-Single

-Multiple

-Full

-Partial

-Scheduled

-Continuous
Single
round

Two
sided

-IC depending
on the pricing
policy.

- No IC to both
sellers and

-Revenue
maximization

-Cost
minimization

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 61

Type of Resources
Auctions

Items Units

Satisfactio
n

Clearing
Period

Iteration
s

Structur
e

Econ.Propertie
s Objective

buyers

Combinatori
al

-Single

-Multiple

-Single

-Multiple

-Full

-Partial

-Scheduled

-Continuous
Single
round

Two
sided

IC

-Revenue
maximization

-Cost
minimization

Table 2 Auction characterization

3.4.2 Application scenarios

This section chooses three application scenarios from those earlier presented in chapter 4 in order to
illustrate which of the above auction mechanisms (or combination) is the most appropriate and how the
auction mechanisms can be used in each of the application scenarios.

Scenario 1: Image processing, an embarrassingly par allel application
Schedulers are a base for the Grid Computing. The chapter 4 presents the design of a scheduling service for
a category of applications that are referred to as embarrassingly parallel – applications that may be
decomposed into a set of independent tasks, each processing one part of the input data. Given a set of
resources, the scheduling service provides an execution plan that minimizes the makespan. The targeted
applications are photography batch processing and video encoding. The photography batch processing will
use a recently developed algorithm for de-blurring photographs resulting from camera shake during
exposure [Fer06]. The video encoding, the service will use the open-source MPEG-4 encoder mencoder
[Mphq].

For our purposes, we refer to the three software modules – scheduling service, scheduled application (tasks
of), and the Grid middleware that manages the application workflow as application scheduler (AS). The AS
requires the buyer agent to find suitable sets of CPU resources, given a maximum budget. The AS then
evaluates the different CPU configurations (configurations are discriminated by attributes such as number of
CPU, CPU speed, network closeness of CPU) to determine those that satisfy the user set deadline. The
buyer agent acquires CPU resources conforming to the retained configuration from the resource market.
These are then used to deploy and execute the target application.

The scenario requires a mechanism that provides allocations of multiple units of single resources. The
application being elastic, it is not necessary that the employed mechanism guarantees full satisfaction
(allocation of the total quantity of resources). A pricing mechanism that induces truthful bidding removes
needs for strategic bidding by the application. The k-Double auction described in the section above turns out
to be an adequate mechanism that matches this application. It is not computationally intensive as the
combinatorial auction and may be implemented through simple sorting based algorithms.

Scenario 2: Network simulation, a computationally i ntensive application
Simulators are nowadays usually employed with educational purposes in many Computer Network courses.
Use of simulators within the context of educational institutions is sometimes hampered by the following two
problems. First, the computer resources available are sometimes not enough to carry out in a reasonable
period of time the many simulations that can be launched simultaneously by the students. This limits the
complexity of the simulations that can be carried out and, as a consequence, the possibility of illustrating
many network scenarios that could be of interest for students. Besides, the storage resources available are
sometimes scarce. However, the amount of data generated by some simulations may be very large. Again,
this implies that this type of simulations cannot be carried in order to foster the reflections of students on
many network scenarios. Here the requirement is for allocation of bundled resources to multiple students in a
classroom.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 62

Network simulators require bundles of CPU and storage resources for variable periods of time. A
Combinatorial reverse auction with multiple suppliers allocate combinations of resources within required time
slots to applications and provide complete satisfaction.

Scenario 3: A replica management service
In a virtual organization implementing a data storage and retrieval service, data object replication is a
method to improve performance and data accessibility for the totality of clients on the network. Replica
schemes need to determine how many replicas of each object are to be created, and to which nodes on the
network they are to be assigned. Replica schemes affect performance of the distributed system and the
choice of the replica site is of primal importance. Replica placement techniques should determine the
network dynamics, specify objects that needs to be replicated, obtain access frequencies and patterns on
the data object. Based on the above information the replica placement system determines replica allocation
that maintains high data availability and accessibility for the users in the whole network.

The problem confronted is that of allocation of storage space for the replica. Market based controls of replica
allocation is one family of methods that are being increasing used [Car02, Sam06]. In the auction setup
each primary copy of a replica is a buyer. These agents perform auctions on need – as a response to replica
placement needs and perform auctions to allocate appropriate storage. In this scenario, the traded item is
storage. The relevant attributes are the quantity of available storage and the preferred network location of
the storage.

This scenario motivates us towards an iterative auction implementing winner determination of one or more
items amongst multiple objects for trade. There are many goods, but all goods are substitutes in some
proportion -- one item (storage unit) may differ from another due to the capacity and also the network
distance. Buyer bidding language requirements are mainly to express allocations (OR) of one or more
storage units. Valuation of buyers will include the costs of transfer of data items to the storage and also the
location of the storage unit in the network. Iteration allows the storage buyers to get a better understanding
of the likely price for relevant sets of storage. An assumption that can be made is that of monotonic quantity
changes – as prices rise, quantities cannot increase.

A summary of the chosen mechanism for each scenario is presented below:

• Scenario 1: Elastic consumers (VOs) desiring multiple units of CPU resource desiring an incentive
compatible auction. Multiple virtual organisations seek to acquire resources in such a seller initiated
auction

• Given this scenario, its requirements are matched with the table 2. The k-double auction with
pricing set to k at 0, is adapted.

• Scenario 2: Consumers (VOs) needing a complete allocation of a bundle of resources (CPU and
Storage) required for variable number of time-slots

• Combinatorial reverse auction with multiple suppliers, or combinatorial exchange auction (in
case of opened to multiple buyers)

• Scenario 3: Seller desires to trade multiple units of storage. Storage units differ due to capacity and also
network distance to consumers. Sellers seek to find an optimal allocation and aim to adaptively obtain
information about bidder's preferences. Consumers have an elastic demand curve and full satisfaction is
not a desired property

• An appropriate multi-unit ascending auction needs to be selected.

3.4.3 Bidding specification

The Grid4All bidding specification is an XML encoded schema that represents bids that may be generated by
buyers and sellers and submitted to the auction markets. A bid is expressed as a tree that consists of nodes
that may be either: NonPrimitiveBids or PrimitiveBids. The root of the tree is a NonPrimitiveBid and each
child may be either a NonPrimitiveBid or a PrimitiveBid.

PrimitiveBids are leaf nodes and represents an item (a grid resource) of bid. The leaf node includes

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 63

attributes to indicate the desired quantity of the item, the leasing attributes (start time, end time, and
duration) and the price. The item may be either a simple resource, a composite, or an aggregated resource.
Non-primitive nodes represent the relation between its children nodes, i.e., XOR, AND, OR. Figure 14
represents a bid structure, currently with definitions for storage and CPU resources.

Figure 14 Bid structure

The example in figure 14 presents a bid for one of two configurations of resources to be used for a specified
period of time (3 hours from 12:00 to 15:00). The bid expresses that the buyer requires one of the following:
one CPU of 400 FLOPS, 2 CPUs of 300 FLOPS, or one CPU of 600 FLOPS. The following example
illustrates the use of the bidding schema of a buyer's bid:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 64

B =(B1 XOR B2)

B1=(B3 AND B4)

B2=(B3 AND B5)

B3 : 1CPU(1GB, 1GHz, 400FLOPS) from 12:00 to 15:00 for 1timeslot,
a timeslot=1hour. I'll pay 15euros.

B4 : 2CPU(1GB, 2GHz, 300FLOPS); Storage(20GB) from 12:00 to 15:00
for 1timeslot, a timeslot=1hour. I'll pay 20euros.

B5 : 1CPU(2GB, 2GHz, 600FLOPS); 2 Storage(10GB) fro m 12:00 to
15:00 for 1timeslot, a timeslot=1hour. I'll pay 30e uros.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 65

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 66

3.4.4 Selection of market mechanisms

The choice of a target market mechanism is driven by the environment and usage for which the mechanism
is intended – the selected mechanism must match the needs of the participants within that market. The
selection criteria begin with the understanding of the requirements of the participants and the economic
problems that the market should solve.

We address this by considering a set of application and use scenarios, identifying the type of resources, and
the preferences on the resources that the applications may have, so as to retain a set of pertinent market
mechanisms. The process we follow is summarized below:

Development Stages Description

1-Analysis of the use scenario � Identification of the desired properties.

2-Choice of suitable auction mechanisms
based on

� Types of resources (multi-unit, multi-
item)

� Need for immediate allocation or
scheduled allocation

� Partial satisfaction acceptable
� Expected structure (how many sellers,

how many buyers)?

3- Implementation � Implemented in the framework described
in section 3.6.

4-Experimental evaluation � Iterative: Tuning of parameters and re-
running of benchmarks

5- Understanding of allocation efficiency � Analysis based on input data (bids)

Section 3.3 has presented a set of use scenarios that have been retained for experimentation within
Grid4All. Section 3.4.2, has summarized the set of applications. This section selects an adequate auction
design that responds to the requirements of these applications

� The single unit multiple item auction, where the auctioneer wants to sell a set M of resources
maximizing the profit. The goods are distinguishable and each bidder may propose a bid on the
subset of items (iterative auction on multiple objects)

� The multi unit single item double auction where the auctioneer wants to buy and sell a set M of
resources and for each resource a number of indistinguishable units, maximizing the surplus. Each
bidder posts a bid on the traded resource by specifying the desired quantity. The bidder provides a
price one unit of the resource. (double auction on multiple units of a single resource)

� The combinatorial exchanges are particular auctions where the bidders can buy and sell
resources/services. Each bidder posts a bid comprising of the set of items, the quantity for each
item, and the price for the bundle of desired items. The price may be expressed either as a bundled
price or as individual item prices. (double combinatorial auction)

Double auction design choice

The scenario 1 presenting an embarrassingly parallel multimedia application (Section 3.4.2) will use a k-
Double Auction mechanism (k-DA) [WuWaWe98]. In this scenario multiple units of CPU need to be
allocated, where each CPU may be requested for multiple time-slots. The traded items are in fact the time
slots since each unit is bound to several time slots, i.e., a unit can be offered for multiple time slots. In a k-
DA market resources are leased and the market is initialised by setting the minimum number of time-slots to
be sold in the market (at least one) and the time ranges for which resources are to be traded. Bids specify
the desired starting time, ending time, quantity of resources and the number of time slots of each resource.
The application specifies the price of one unit of resource for one time-slot.

It is assumed that the market is configured to clear at a specified time and bids are accepted until this time.
Participants may also withdraw their bids, but only before the clearing starts. The k-DA mechanism allocates
(matches bids and offers) in granularity of a single unit. Hence complete satisfaction cannot be guaranteed in

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 67

the case where consumers require more than one unit of resource (or more than one time-slot). The only
intrinsic guarantee is that at-most the maximum number of desired units are indeed allocated – resources
may be partially allocated. We plan to extend this basic algorithm to impose complete satisfaction.

The introduction of multiple time-slots alters the notion of a 'single type of item': in fact an item (according to
the basic k-DA) should be the CPU resource at a specified time-slot. Our intention is to extend this basic k-
DA to allow participants to bid for resources over multiple time-slots, i.e., conduct the auction for not just one
time-slot but a contiguous range. Since we extend to trade over multiple time slots, the basic k-DA needs to
be extended.

An extended k-DA mechanism is presented below. The proposed mechanism is the first attempt to extend k-
DA; it is rather straightforward and inefficient, as it may result in wasted allocation. For example, assume a
buyer B1 who needs to allocate one a buyer B1 that needs to allocate one CPU for time-slots 1 and 2, and a
second buyer B2 that needs to allocate one CPU for any two time-slots between the pre-defined start and
end-time (start and end times of availability/requirement for CPU resources). Now seller S1 proposes one
CPU that is available completely between the start and end time. Allocation of the first two time-slots of the
CPU to buyer B2 results in wasted allocation. Based on experimentation on the first version that is described
below, we plan to study and propose some heuristics that improves the efficiency.

The assumption is that there is one type of resource and the resource is traded in fixed time durations within
a time range; for example, CPU resource traded between 12:00 and 18:00 in one hour units. For simplicity
we consider that the time range is divided into a set of time-slots starting at 1, that is, the first time-slot starts
at 12:00 and terminates at 13:00. The k-DA mechanism is divided in three phases:

Phase one: Generation of time-slot bundles

Bidders may request multiple units of the resource for multiple time-slots e.g., 1 CPU for any 2 time-slots
within the first T time-slots. This is possible by the bidding specification described in the previous section.
The first step of the mechanism (computed once at the initialization) consists of the generation of all
combinations of time-slots across which the bid may be posted. If there are a total of T time-slots, the
possible combinations are:

 ∑∑
=

=

=

= −×
=







 Ti

i

Ti

i iTi

T

i

T

11)!(!

!

For example, if there are totally four time-slots numbered 1, 2, 3, and 4, and we allow bidders to bid for any
combination, then potentially bidders may bid for (eliminating non-contiguous slots), implying that the market
conducts auctions for each of these time-slot bundles.

1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234

Phase two: Pre-Processing of composite bids

A generic bid is pre-processed to generate specific bids that can be posted across the possible time-slots.
This step computes all the possible sub-bids that may be generated from the generic bid. The number of
partial bids is: q * N where N is the number of requested time slots and q represents the number of
requested units in the bid; a bid for 2 resources and 3 time slots gets pre-processed a set of sub-bids bidXY
where the first index X represents the unit number and the second index Y represents the time-slot number
of the bid (and not the time-slot number for the auction itself):

{{bid11} {bid12} {bid13} {bid21} {bid22} {bid23}}

Each sub-bid of a bid from a bidder is posted against the possible time-slot bundles generated at phase 1
according to the following rules:

1. A sub-bid is posted against a time-slot bundle of size 1 if:
o If the time-slot number respects the time constraints of the bid

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 68

o The required initial time of the sub bid is less or equal than the initial time of the time
range that represents the key.

o There is no other bid for the same unit number from the same bidder
2. A sub-bid is posted against a time-slot bundle of size greater than 1 if:

o At least on of the time-slots in the bundle satisfies the time constraints of the bid
o There is no other bid for the same unit number

An example of posting of sub-bids is presented below for a generic bid by a buyer that requires 2 resources
for three time-slots each. It is assumed that the bidder required the time-slots between 12:00 and 16:00. The
sub-bids generated previously are posted against appropriate time-slot bundles as follows:

Time-slot bundle Value

1={12:00-13:00} {bid11}{bid21}

2={13:00-14:00} {bid12}{bid22}

…

234={13:00-16:00}
{{bid11-bid12-bid13}}

{{bid21-bid22-bid23}}

1234={12:00-16:00} {}

Phase three: Clearing - Winner determination.

This phase clears the bids for each time-slot bundle and calculates the winners by using the K-DA algorithm:
find the clearing price and then determine matching buyers and sellers. The clearing price is determined by
aggregating the supply and demand at each price. The price at which the curves intersect is the clearing
price. The bids from sellers below this price and the bids from buyers above this price are the winners. In fact
a sorting algorithm is used to obtain the set of winning bids (and asks) [Bao03]. The winning sub-bids are
removed from all the other time-slots at which they were posted in phase 2.

This phase progresses by computing winners for each time-slot combination; the important issue is the order
of time-slot bundles to clear. A simple algorithm proceeds by numerical order of the time-slot bundles. This
approach is neither economical efficient nor provides a fair allocation. Our objective is to study and propose
heuristics for the clearing order.

The K-DA mechanism and its clearing algorithms will be implemented using the framework described in
section 3.6.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 69

Related work on double auctions
The literature survey presents several algorithms for winner determination in k-double auctions. [Bao03]
provides a comparison of two implementations. The first algorithm makes use of four heap data structures.
Heaps maintain the buy bids and the asks bids and offers operations to calculate the Mth and (M+1)st price.
Clearing the auction is simply a matter of deconstructing the appropriate heaps. The second algorithm is
based on the construction of an IPR-tree and maintaining two pointers (to the Mth and (M+1)st bid). The
clearing process traverses the tree and inspects the bid at each node. If the bid should clear, the algorithm
removes the node, an action that may require that the tree be re-balanced. In general this mechanism is
adapted for single resource types; multiple time-slots imply that there are multiple items. In our case, we
want to allow bids for contiguous time slots (sx,sy) within a time range (s1..sN), where 1≤x≤y≤N. In [Des04] a
mechanism for pricing and clearing continuous double auctions in a peer to peer system is presented. The
main feature is that consumers and providers broadcast bids for resources. Every buyer has incentive to
trade with the announcer of the lowest sell ask that the buyer observed. Similarly, any seller would want to
trade with the announcer of the highest observed bid. Trade is cleared at the middle price. Since peers do
not have a global view of all the trades that occur in the system (when a trade is made between a buyer and
a seller we cannot assume that they will communicate their price to the rest of the bidders), prices are
updated when a peer observes a bid or ask from another peer.

[Bao03] present two efficient k-double auction implementations that allocate single resources for a single
time slot. Grid4All approach allocates single resources for multiple time slots so that Grid4All k-DA can
benefit from [Bao03] efficient implementations at the allocation of each time slot. The approach taken by
[Des04] is fully-decentralized and does not facilitate the competition between providers that will more easily
satisfy the needs of Grid4All consumers.

HashTable cmb,Mbuy,MSell;

timeRange tr;

int tsize;

bid currentB,currentS;

List buy,sell,clear,win,lose,wintotal,losetotal,aux .

Int M,z,x,y;

String key;

tr=BidManager.getInitialOffer().getTimeRange();

tsize=BidManager.getInitialOffer().getTimeSlotSize();

//we get the list of buy and sell bids

buy=BidManager.getBuyBids();

sell= BidManager.getSellBids();

//computes the table that contain all combinations of time slots given a time range

cmb=BidManager.ComputeAllCombinations(tr,tsize);

//initialize the table with all bids/sell asks

while(!buy.isEmpty() && !sell.isEmpty()){

currentB=buy.getFirstAndRemove();

currentS=sell. getFirstAndRemove();

//given a bid(sell ask) computes all combinations f or that bid(ask)

MBuy=currentB. ComputeAllCombinations();

MSell=currentS. ComputeAllCombinations();

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 70

Combinatorial auction design

The majority of auction-based approaches examine scenarios in which typically only one type of resource is
auctioned. Notable exceptions are [CHUN4] [SCH05] and [SCH06], which address allocations of bundles of
resources. The former is also legitimate in that there is a vast range of applications that is typically
dependent on only one resource type that may be storage, computational resource, video streams, or even a
single Grid service, as is shown by the scenario 1 in the previous section. The scenario 2, describes a use
scenario that requires multiple resource types -- computational and storage resource together in a bundle (all
or nothing).

We leverage work from the combinatorial auction literature to allocate resources using a combinatorial
exchange – an exchange is an auction where there are multiple sellers and multiple buyers who submit their
bids. Within Grid4All, the majority of providers are expected to possess and hence trade small quantities of
resources. Hence an exchange or combinatorial reverse auctions are more appropriate.

The requirements that the combinatorial auction model need to satisfy are:

• Suitable allocation of time-slots: Buyers should be able to express the time ranges within which they
require the resources and to also specify the quantity of time slots that they need each of the resource.
Unless other wise specified, the resources should be allocated contiguously in time (other wise
applications may need to be check pointed and restarted).

• Consumer bids specify bundles: some applications may require that resources be co-allocated both in
time and space. A partial allocation may be incompatible and unusable.

• Support for multiple attributes of resources: bids should be allowed to specify the quality and quantity of
resources (such as the speed of the CPU)

• Multiple bundles in a consumer bid: A buyer should be able to express its preferences by submitting one
or more bundles within the bid.

• Complete satisfaction for buyers: the system should allocate the entire bundle or nothing

This section presents a new winner determination model for a combinatorial auction that allocates
contiguous time-slots, with the classical objective of maximizing the surplus -- this is defined as the
difference between the aggregate of the buyer's valuations and that of the seller's reservation prices.

Mixed integer programming (MIP) techniques are powerful tools that allow handling many difficult decision
problems. It is a linear programming technique used to perform optimization of a linear objective function
under linear constraints. MIP is used for optimization problems in which only some of the unknown variables
are required to be integers. These techniques are widely used to address problems in which certain
resources have to be allocated optimally to certain customers, or problems in which facilities have to be
located optimally so that all clients can be served in the best conditions. These tools are generic in the sense
that they allow to model a wide range of problems and the resolution techniques can be adapted more or
less easily to all problems. Although the models obtained are usually NP-hard, there exist many techniques
to solve to optimality instances of reasonable size or to provide very good approximations.

In the Grid Market context, we plan to use mixed integer programming techniques to model the allocation of
the resources to the consumers according to the bids. Several models will be derived in order to integrate in
a progressive fashion the most complex features of the real situation. In the first models, we will first assess
the difficulty of the problem by trying to capture the most important feature of the problem whereas the other
aspects will be either ignored (relaxed) or approximated. In this document, we provide some elements of this
first model.

A first MIP Model

If we assume, as a first approximation, that there is only one type of resource (CPU or storage for instance),
a first model can be derived as follows: we denote by K the set of consumers and by L the set of sellers.

Each seller L∈l sends bids made of several resources l
K mj ,1,= proposed at minimum price

l

jp of

one unit of resource per time-slot, a time interval
ll

jj TT , the resource j is available. Each consumer

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 71

Kk ∈ bids a set of bundles consisting in a set of required resources kni ,1,= K with a maximum price
k

i
p

the consumer i is willing to pay. Each required resource is defined by a duration k
id , the earliest start time

k
iτ , the latest end time

k
iτ . We assume that each interval

ll

jj TT , is divided into periods with equal length

(time slot).

The problem consists in assigning some of the resources offered by the sellers to the consumer while
maximizing the benefit of sellers. This problem can be modelled using the following variables:

 • A binary variable pk
ijx ,l equal to 1 if and only if the resource i required by the consumer k is

satisfied by the resource j offered by the seller l , and if this resource is in position p (corresponding to a

period in interval
ll

jj TT ,).

 • Two continuous variables
k
it and

k
it defining the true starting and ending time of the resource i

required by consumer k .

 • A binary variable p
jy ,l that indicates whether the resource j offered by seller l in position p

has been assigned to a consumer or not.

 A first set of constraints is necessary to specify all relations between the time variables:

)9(,,1,=,,=

)8(,

)7(,

)6(,

)5(,

)4(),(2

)3(),(1

)2(,=

)1(,

,,

,

,

1,,

,

,1

lll

l

l

ll

ll

l
l

Kl mjLyx

pxp

pp

t

t

xxMtt

xMTt

dtt

Txt

p
j

pk
ij

ik

k

i

pk
ij

l
j

j
l
j

k
i

k
i

k
i

k
i

pk
ji

pk
ij

k
i

k
i

pk
ij

p
j

k
i

k
i

kk
i

j
k
ij

k
i

∈

≤

≥

≤

≥

−−≤−

−≤−

+

≥

∑

∑

+′
′

′
′

τ
τ

Constraints (1) state that the starting time of the resource i of consumer k should start after the starting
time of the resource j offered by seller l if i is assigned to j . Constraints (2) state that the ending time of

the resource i of consumer k is equel to its starting time plus its duration. Constraints (3) ensure that the
ending time of resource i (from consumer k) should be less (earlier) than the ending time of the resource
j (offered by seller j) as soon as i is assigned to j at a given position p (the parameter M is a large

value that desactivates the contraints as soon as one of the x variables is not equal to 1). Constraints (4)
ensure that: if both resources i and i ′ (from consumers k and k′) are assigned to the same resource j

(offered by seller l), respectively in position p and 1+p , then the ending time of the first should be less

than the starting time from the second. Constraints (5) ensure that the resource i (of consumer k) start
after the earliest starting time. Finally, constraints (6) ensure that the resource i (of consumer k) ends
before the latest ending time.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 72

We assume that all bids of the consumers should be satisfied and thus include an additional constraint:

 1,=,

,,

pk
ij

pj

x l

l

∑ (10)

for any resource i required by consumer k . Finally, we have to specify some objective function that aims at
minimizing the price paids by all consumers:

 .min ,p
jj

pj

yp ll

l

∑∑∑ (11)

Future work

Of course, this first model is very crude in the sense that it lies on a series of very strong asumptions.
However, it is already a quite difficult problem which practical and theoretical complexity (probably NP-hard)
should first be assessed. Then, some resolution method should be designed in order to solve some
instances as efficiently as possible. After that, some extentions of the model will be considered, as for
instances, cases with several types of resources, and cases where the objective includes some fairness
criteria between the sellers and the consumers.

3.4.5 Conclusions

It is clear from the previous sections that the Grid4All market place needs to provide support for co-habitation
of multiple mechanisms and allow participants to create markets as needed. Within the market place a
number of small markets thrive simultaneously: small in the sense that the number of participants in any
given market is much smaller than the total number of participants in Grid4All; the quantities of resources
required may certainly exceed capacities of providers but are remain in the range of hundreds. Secondly
there may be a large number of types of resources that are traded. Even though we have restricted
discussion on computational and storage resources, our goal is to at a later stage define use scenarios
including other resource objects such as video streams. In any case either type of resource is best allocated
close to the consumer – when possible. Hence our approach to address scalability and heterogeneity is
decentralization through these small and possibly local markets.

Decentralization is achieved by means of spontaneous market creation; i.e. participants should be able to
create markets on demand, choosing the model, type and structure based on their own needs. Multiple small
markets do not mean complete fragmentation or segmentation. We propose the implementation of a
powerful market information service that gives participants awareness of the market activity and situation.

The second aspect of this approach addresses requirements to the market framework (presented in Section
7). Auctions are similar in their structure. The figure 6 indicates the flow of the bids within a simplified
iterative auction process where the rules of a given auction mechanism governs the behaviour of each of the
activities. Of course in the degenerate case, the number of iteration is 1. The differentiating rules apply to:

� Controlling the type of bids submitted – constrains of the bidding language allowed by the
mechanism,

� The price updating rules,
� The termination conditions,
� The eligibility of the bids or the bid improvement rule,
� The feedback furnished to the participants (and also potentially the external world).

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 73

Figure 15 Auction process pipeline

The following aspects play an important role in the design of the market framework:

− The pre and post auction phase that consists of the initiation, the choice of auction rules, and the
business transaction management functionality.

− The design of the auction allocation (or clearing) module, especially for the case of combinatorial
auctions. A large number of variants exist – there is no universal support tool for the implementation
of CAs.

− The bid construction and management plays a large role in the auction design. Some auctions may
allow automatic generation of bids (similar to using of proxy agents), that pre-process and expand
bids according to valid combinations permitted by the auction. Even though we currently focus only
on price as an attribute determining the valuation, in the future it should be possible to integrate
multi-attribute valuations, depending on the properties of the bundles.

− The process flow and control of the market/auction related activities: timing of bidding sequences,
closing, clearing times are important parameters.

− System issues such as security.

The GRIMP (Grid4All Market Place) component based market framework governs the structure, control,
communication, interactions of the components: (a) the framework should provide an easy-to-use and
flexible interface to design and plug-in the rules of iterative different auction mechanisms. (b)The basic data
structures and algorithms should be reusable in different environments and applications. (c) Allow for easy
configuration and activity-control of the market process.

3.5 GRIMP System Architecture

This section presents an abstract model for the market place architecture. The purpose of this abstract
model is to identify the generic components that are fundamental to implement market based resource
allocations systems, ensuring that the architecture matches the specific requirements that arise from the
addressed objective, that is, the allocation of computational resources to dynamic, ad-hoc virtual
organisations. In the following section we recapitulate the design principles that the Grid4All market place
middleware should satisfy so as to meet the requirements that have been discussed in earlier sections.

3.5.1 Design guidelines

To address the requirements discussed in the section 3.3, we have followed a set of design principles that
allow us to meet them. An 'open' market architecture is essential to address the scale and heterogeneity that
is to be expected for grids on the Internet; the openness qualifies in the following aspects:

− Market mechanisms: no restriction to using a fixed set of market types,
− Market structures: markets may be forward, reverse, double,
− Market creation times: markets may be created when needed by any participant,
− Traded grid resources (and services): do not limit the set of resource types that may be traded.

Our first focus is on the architecture; architecture is concerned with the selection of architectural elements,
their interaction, and the constraints on these elements and their interactions [PW92] and goes beyond the

Submission Evaluation Price update

Feedback

Check end

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 74

algorithms and data structures of a specific computation, by focusing on the externally visible properties of
software components [BCK98]. Abstraction aids in extracting the essential aspects of artefacts while hiding
the irrelevant properties. Reuse is fostered by providing the essential framework that can be customized to
produce several different artefact instances meeting different requirements.

We start by identifying the main components of the market system and the problems that they should solve.
Then we abstract the design of the system as a generic architecture that may be customized to address a
specific problem. We believe that 'Software Architecture' through decomposition of the system into
components that perform elementary tasks and connectors that ensure that they interact is essential to
address the requirements of Grid4All.

� Extensibility and adaptation

As discussed in section 3.3, the market place architecture should address different usage scenarios.
Applying the principle of 'one shoe does not fit all' in the context of market mechanisms, it is clear that there
is a need for separation of framework from the implementation of specific policies. Resource allocations and
resource discovery are some components that need to strictly separate mechanism from policy.

� Standards when possible

An open environment implies adaptation to different platforms, a diversity of applications, and technologies.
Usage of standards (when available) facilitates extensions and reuse; for example, usage of XML will be
preferred to describe messages, configuration files, parameters to interface methods since this is flexible and
language independent.

� Reusability and Encapsulation

In an open environment new market mechanisms and protocols will be designed or existing ones will be
adapted to handle computational resources. This should not imply that designers rewrite from scratch their
protocols.

� Layered approach -- from simple towards complex functionality

Traditional approach for resource allocation within Grid systems concentrated on furnishing a complex
monolithic service – for example the implementation of inflexible protocols for co-allocation of resources.
This approach implies that 'heavy' APIs and interfaces are furnished (system commands) that implement a
specific behaviour. The system nevertheless is not tolerant to changes – or implies a major re-design. We
take the approach to start from components providing basic services through basic interfaces. Complex
behaviours may be achieved through the composition of simple behaviours [ZaP03]. This approach also
facilitates the deployment of the services offered by the market place. Components may be deployed either
locally or distributed amongst multiple nodes.

3.5.2 System Architecture

The Grid4All Market Place (GRIMP) architecture relies on the basic middleware services provided by WP1 to
provide abstractions and hide the heterogeneity and distribution of the underlying fabric. GRIMP provides the
market domain specific middleware to facilitate the development of Grid resource markets and market
applications.

The main lesson that we have learnt from the existing market based Grid resource management systems is
the need for adaptation and openness: (i) We should not restrict to complete decentralized bargaining based
negotiations between interested parties (between a pair of provider and consumer) as has been the
approach within [EY05], nor can we propose a system based on operating centralized markets – even if
segmented over attributes such as resource types, users, locality etc. (ii) a great amount of progress has
been made in market design and many forms of markets have been developed and experimented in the last
years; the selection of a market design needs to be made based on the environment that it targets. These
have given us the driving principle – that of a design incorporating open interfaces – to facilitate
interoperability and flexible components – to facilitate development and deployment.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 75

traders market protocol factorymediators market information

peer-to-peer overlay

autonomic virtual organisation management framework

collaboration data sharing multimedia scientific

execution security pub/sub information service

payment account market
toolkit

market ontology trade agent bid language

management
layer

fabric layer

applications

infrastructure
services

core market
tools/services

market place
servicesmarket apps

Figure 16 system architecture

This architecture shown in Figure 16 is composed of different layers:

• Application layer: this layer contains the end user applications such as virtual learning, simulation
applications etc. Applications are hosted within virtual organisations – that is, the applications execute
within the resources provided by the virtual organisations so as to satisfy the objectives of the VO.

• Market place services layer: this layer consists of implementations of specific market protocols and
trading agents within the framework provided by the infrastructure layers. This layer also consists of
market specific applications that may be developed using the functionalities provided by the
infrastructure layer.

• Market infrastructure layer: this layer provides the basic functionalities to implement electronic market
places. This layer also provides toolkits and frameworks to develop specific market mechanisms and
algorithms.

• Infrastructure and services layer: this layer provides generic infrastructure required to implement large
scale loosely-coupled distributed systems. This layer is not specific to GRIMP.

• Autonomic VO management layer: this layer provides the architecture based autonomic framework to
construct self-managing and self-organizing virtual organisations.

• Fabric layer: this layer provides connectivity, communication, and low level discovery of the resources
within the platform.

The open market place should provide the tools and services to create 'spontaneous' markets. Markets are
initiated by the participants – providers, consumers (or also 3rd party mediators) on need. Such markets are
typically short-lived and terminate once its objectives attained; Participants – much like within eBay [EBAY]
should be allowed to create market sessions when needed.

Application layer

Consumers of the resource market are virtual organisations. These acquire resources that are required for
the correct execution of its applications. Applications and services execute on the resources which are
leased to the VO. The framework presented in detail in chapter 1 provides a certain number of architectural
elements to implement management functions. Two important functions that are of relevance are:

• Installation, Deployment and Configuration of applications,

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 76

• Resource allocation.

Trading agents

Computational resources (processing time, storage) are acquired and sold by trading agents whose role is to
negotiate. The negotiations are carried out between consumer agents on behalf of virtual organisations and
seller agents representing providers that own resources. The essential actions of the consumer agent are
resumed in the figure 17 and described below:

Specify bid

Market
creation

Found market
Bid submission

Initial bid
specification

Market selectionDetermine market
situation

Refine initial
bid

Successful

AgreementInitialize and send
Request

Successful

END

Figure 17 Main actions of the consumer trading agen t

� Initial bid generation: This action is triggered in response to internal requirements for new
resources. It consists of understanding the requirements of the application in terms of the type
and quantity of resources, the deadlines, and the importance of the resources. As described in
Chapter 1, the resource management provides a framework that implements a control loop based
on sensors (monitoring the managed element), decision logic, and actuators. Monitors trigger
events on detection of need for resources (such as CPU, storage). Decisions to allocate
resources are based on this run-time information on the managed application. The consumer (or
buyer) agent is invoked when resources need to be allocated from the market.The initial bid
generation takes into account: (i) the current market situation (such as prices) obtained through
queries to the market information service (ii) constraints on resources such as the quality of
service attributes, the type of resources, their quantity, and (iii) policies internal to the VO such as
those that decide on the budget. The generated bid is the service request that needs to be
satisfied. To capture the information, we rely on the Grid and Market ontology that has been
designed using the OWL [OWL] Ontology Language within this work package (Chapter 3).

� Market selection: Buyers (or sellers) select markets at which they may participate. They select
markets that trade in resources that are compatible to their requirement and whose current prices
are within their budget. Semantic representation (Chapter 3) of resources and bids are required to
query and reason about the information during run-time.

� Market creation: This action is triggered if buyers do not find active markets that match. It
consists of instantiating a new market session in a procedure that is similar to the well known
'request for proposals'. The objective of this action is to create and instantiate a new reverse
market.

� Determination of market situation: Agents needs to understand the factors that favour its
trading opportunity. They may query the market information service to obtain information such as
the current prices (or price curves) for the type of resources that it requires such that it can obtain
information such as the initial price range. As an example, a VO that has a preference for locality
of resources may choose to bid at markets situated outside of its preferred zones, if it
understands that 'local' resources are in high demand.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 77

� Compilation of bids: This action consists of compiling precise bids that may be submitted at a

given market session. That is, the previous steps have identified markets where the consumer
agent may participate. At this step, the initial bid is refined to comply with the constraints of the
selected markets.

� Bid submission and concessions: The flow of this action is determined by the nature of the
market at which the agent participates. For example, markets may be either iterative or non-
iterative. In the latter case, bids are submitted once. In the former case, agents may need to make
concessions in its bidding and evaluate an optimal strategy to revise their bids. At an incentive-
compatible mechanism, this phase consists of determining the quantities based on the current
prices. Consumers adjust their demands to current prices such that the utility is maximized. Within
the generic framework we do not conclude on a single utility function – since this depends on the
objective of the virtual organisations and the nature of the applications that execute within. In
general (other than at incentive compatible markets) this action can be considered to be part of
the strategy of the trading agent. Strategy consists of devising optimal moves in a negotiation and
in general construction of strategy considers history of interactions, behaviour of participants, and
understanding of market situation.

� Agreement: This final step is reached if the agent has succeeded. This step consists of accepting
the agreement (Section 3.6), and complying with the requirements of the agreement protocol.

The dominant issues in the processes involving the consumer agent are (i) selection of an appropriate
market session and (ii) bid evaluation. The three main interactions to be noted are:

• with markets: market learning (up) – partner selection, bid generation, market interaction (down),
• with applications: demand model of applications,
• with VO and its members: VO specific preferences, policies including that of pricing.

Market place layer

The market place is a forum for trade in Grid resources and services. The primary functions of the market
place is to act as a matchmaker, to collect and publish statistics that trading agents decision process,
encapsulate trade sessions and provide trusted third party services such as payment. The market place
offers infrastructure, services, and tools to implement decentralized and independent trading opportunities
between buyers and sellers.

Buyers and sellers need to interact with the market place to obtain the services that have been described in
the previous section. The market place provides two main services: the factory that provides a repository of
executable market protocols and the market information service. Initiating agents interact with the factory to
instantiate trade or market sessions – much in the way that sellers interact with the eBay platform to create
auctions for items that they desire to sell. Active market sessions are advertised at the discovery service
where trading agents may discover them. Market sessions offer a generic interface that is independent of the
market mechanism that they implement.

A common set of independent market infrastructure services facilitates the creation and growth of markets,
by providing a common vocabulary, collecting and disseminating statistical information, by acting as a
trusted intermediary, and by providing higher level services facilitating mediated interactions between
consumer and supplier agents. Mediated interactions may have the following structures:

• Single supplier or forward auction markets normally initiated by a seller,
• Single consumer or reverse market normally initiated by a buyer,
• Double or exchange markets with multiple sellers and buyers that are initiated by a seller, buyer, or

even an entity of neither of these two roles.

These patterns involve a mediator – referred also sometimes as the Auctioneer. The mediatory process
implements the market mechanism, such as an English auction and offers a small set of interfaces to submit
bids, query, and obtain feedback. A trading session can be regarded as an encapsulation of a negotiation
process through which market services are delivered to participating agents. The market place provides a
hub permitting the creation of market trading sessions. For example, a resource provider on a decision to sell
multiple independent time-slots of a single CPU resource should be able to request the market factory to
select suitable auction mechanism and create an instance of the market implementing the selected

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 78

mechanism. Then the provider should be able to configure the market, that is, set properties such as the
type of resource that is traded (here CPU), the quantity, the initial reservation prices, the opening and closing
times.

Protocol factory
In many systems such as [LAI05], [BAG01], the trading agent is designed and tailored to interact with one or
at the most a few types of markets -- the agent is tailored for specific mechanisms, that is,, the buyer or
seller agents is programmed to participate at a specific kind of auction. The objectives of the market protocol
factory are two-fold: provide tools to developers to design market mechanisms and allow trading agents to
access to executable and selectable descriptions of available market mechanisms. Recent years have seen
a number of approaches – within or outside of Grid computing, that promulgates [BAR02], [RLGW06],
[BBG06], unambiguous specifications of auction mechanisms in machine-interpretable forms. These are
based on the foundational analysis on the structures of market negotiation mechanisms [SW03], [WWW01]
that reveals the patterns inherent to negotiation protocols. Protocols are distinguished from negotiation
strategies – the latter is the behaviour of the participant to achieve a desired outcome, where as the former
defines the rules of encounter between the participants.

Figure 18 presents a conceptual architecture of the Grid4All market place; the market process is a mediating
process implementing mechanisms (such as auctions). The process may be initiated by participants such as
sellers or buyers. The market factory maintains a repository of executable market negotiation processes. We
envisage the approach of a Web Services based market place – negotiation processes may be defined in
[BPEL4WS] that can be executed through a process execution engine that enacts the market process.

market process
executable templates

Selection

deployment

SELLER

market process
components

MARKET FACTORY

DEVELOPER

Market process

Workflow
engine

BUYERS

Web Services?

Figure 18 Conceptual architecture of market factory

Section 3.6 describes in greater detail the component based design of the market process and the issues
related to the design of the market factory:

Market sessions
A market session represents an active instance of a market-based negotiation mediating between sellers
and buyers. It is typically a short-lived process that is instantiated on need and terminates once the purpose

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 79

of creation has been reached (or there is complete failure). A market session may be instantiated by a seller
(a forward market), a buyer (a reverse market), or also a 3rd party. In the last case, it is likely that the market
implements an exchange between multiple sellers and multiple buyers. The initiator uses the services of the
market protocol factory to select a specific market process.

To take part at a market requires that the participants have an understanding of its specific terms and
structures -- the underlying market model is defined by the norms and rules that regulate its functioning
[BAR02] – such as the type of bids that it accepts, the rules constraining bids, the visibility that participants
have on the current bidding, and also the internal decision procedures that govern the pricing and allocation.

Section 3.6 discusses in detail the component architecture and framework for the development of different
market models. It proposes a set of interfaces that address different concerns – configuration,
parameterisation, and the different sets of interfaces to access the mediator process. Mediator processes
need to offer interfaces that allow participants to register, to submit offers/bids, to query for current prices,
and to be notified by the market as part of information feedback.

Once the mediator process has decided on the allocations and the transaction prices, the agreement phase
is started. This phase establishes the contracts between each two ends of every finalized transaction.
Agreements [WS-AG] are established through an agreement manager discussed in Section 3.6.

The behaviour of the protocol is determined by the sequence of invocations permitted by the market and the
semantic content of the messages (or bids). Market mediator processes mainly execute the following
activities: (i) receive bids (ii) evaluate bids and determine winners (iii) determine prices and (iv) and feed
back information to participants. Mechanisms differ in the rules that govern these activities. The process may
also iterate [NB06] in markets that determine optimal allocations by iteratively eliciting information from the
participants.

Market Information Service

The Grid4All market place conceives a deployment scenario where there are multiple running 'independent'
markets – each individual market by preference and construction will have a small number of participants
who engage in trade. In this scenario a key aspect is that of dissemination of market related information.
Agents will rely on this information to aid in their internal strategies – where to create a market, what profile
of resources to request, what time to create markets, what guiding prices etc. This requires a performing
market information service that is able to provide statistical and aggregated information to the participants.

Motivating examples of statistical information are:

• Number of suppliers for a given service/resource type
• Level of activity within the market indicated by volume of trade of a given type of resource, service
• For a given service/resource type, the going prices(min/max) on the market by

location/zone/proximity

Section 3.6 presents the component interfaces of the market information service.

Payment and currency
Grid4All consumers may make payments to a provider in a currency accepted by the provider. The payment
service offers a unified interface to payment, isolating the rest of the components from the particularities of
the payment mechanism. It also, generates the required logging/auditing information.

The payment will be made through a Bank service which issues currency and maintains accounts for all
traders who have subscribed (see above). Currency may only be issued by this trusted Bank service.
Currency may only be transferred once – as payment from a consumer to a provider through an account
maintained at the Bank service. Each registered/subscribed provider and consumer will have an account at
the bank.

Section 3.6 presents the detailed architecture and the interfaces of the payment and bank service;

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 80

Bid specification
A bid expresses the preferences of the traders in terms of quantity, quality, and the prices. The bidding
specification that we have designed takes in to account the following requirements which are necessary to
request and offer Grid resources:

• Specification of 'bundles' of goods: Typical applications require a combination of resources, where
the valuation may present complementarities. For example, an application may require both storage
and CPU and not independently one or the other.

• Possibility to specify multiple bundles or configurations: Typical applications may accept one
amongst multiple resource configurations. For example, a given application may adapt itself to (a) A
CPU of 1gz and 2 giga of RAM memory or (b) A CPU of 2gz and 1giga of volatile memory.

• Support for multiple attributes. Some relevant attributes are:
o Specify time ranges within which resources are available and required: Computing

resources are reusable resources – reusable over time. Resources are acquired as leases
covering specific intervals of time. Applications may be constrained by their internal
deadlines on when resources are to be allocated – resources allocated too early or too later
may not be of use

o Specify the quality of the required resource: Resources are heterogeneous in terms of the
amount of work rendered, or the throughput attained. CPU resources range from those that
process billions of instructions per second towards that process a few hundred millions per
second.

o Specify the location of the required resource:
• Constraints on allocation

o A minimum and maximum quantity: Applications may require multiple units of a given
resource and hence would need to specify the desired quantity. This may also be expressed
using XOR bids (multiple exclusive preferences), but nevertheless this constraint give a
compact representation to the bid.

o Minimum and maximum level of aggregation: Applications may require resources by
specifying the aggregated capacity. For example 1000giga of persistent storage.
Nevertheless the performance of the application may be related to the total number of
independent units from which the storage is allocated.

• Specification of per-unit or bundle prices

3.6 Market framework

The Section 3.5 has introduced the different functions and services that need to be provided by the Grid4All
market place platform. One of the functionalities can be compared to that of a traditional auction site or
market portal that allows creation and instantiation of mediated trade sessions. This section describes the
component architecture and framework of mediated markets. A minimum framework should provide the
basic functions and components, that is, market specific such as bid management, clearing mechanisms,
system specific such as market deployment, participant registration, and economic platform specific services
such as agreement contract management.

3.6.1 Approach

We proceed by separating the market design from market mechanisms design. The market framework
design includes the economic and system processes; the former includes the market mechanism that
encodes the market specific rules and protocols. The objective of the framework is reusability, specialization,
and rapid prototyping of new market designs.

Our approach follows a component-based design. Market trading mechanisms can be complex. Their
complexity can be controlled by combining several specialized software components. A component-based
approach promotes distributed and autonomous development as well as flexibility and the reuse of the
developed software components for designing new marketplaces.

Each component has a specified role within the market framework, that is, corresponds to different
functionality, either market specific (for example a given clearing algorithm or pricing) or that of a generic

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 81

infrastructure service (for example registration and authentication). Components encapsulate distinct aspects
of the market so they can be customized and replaced independently. The integral marketplace architecture
can be obtained by assembling the different components and binding their interfaces.

Participants interested acquiring or selling resources need to search for a suitable market where they can
buy/sell, by properties such as type of traded resources, price, quantities. An open and flexible marketplace
should not require that participating agents are hard coded to negotiate and interact with all possible market
structures and mechanisms. They will need some support to adapt to a given market that executes a specific
type of market negotiation mechanism. When trading agents search for suitable marketplaces the only
restriction is to commit to some shared and common knowledge that gives an explicit representation of
negotiation protocols. A neat solution for this is to have a shared factory containing executable negotiation
protocols that may be selected and then instantiated.

This representation must allow participants wishing to get involved in a negotiation process to be aware of
the interaction protocol and the negotiation rules governing the messages exchange through the specified
APIs. The market protocol factory should be designed to meet the following needs.

• Formally specified market negotiation protocols should be made available in a machine-readable format
at the repository.

• The executable negotiation process should allow protocol specific configuration,
• The market initiators should be able to choose from available market protocols,
• Participants at markets must be able to upload the process (protocol) corresponding to their roles so as
to be able to participate at a given market implementing a given protocol or mechanism.

Requirements

Participants wishing to trade on grid resources interact according to a selected market negotiation
mechanism. They may negotiate either through direct interactions or indirectly through a mediating process
(referred to as an auctioneer process). Actors in this process are providers (supplier agents), consumers
(buyer agents) of grid resources, or third party participants (brokers/mediating auctioneers, intelligent market
makers, etc.). They may either participate in running market sessions or may create new market sessions.

According to these requirements, a Grid4All marketplace framework should provide the main following
elements (see figure 10):

� The Semantic Information System (SIS) described in detail in Chapter 3, enables participants to
discover suitable markets where they can trade the desired grid resources. The SIS uses ontology to
model the traded grid resources (computational resources, storage resources and services), the
exchanged messages between the market participants (bids, offers, orders) and the market itself.

� The mediator process , that we will henceforth simply refer to as market, provides some common
specific elements of the market processes (economic and system tasks) in order to achieve design
and implementation of different market behaviours. It enables handling and management of offers
and bids from the participants, as well as considering the different (economic) steps of the used
trading mechanism. Offers and bids are specified using bidding language based on an XML based
schema.

� The Market Process Factory (MPF) is a repository that manages templates of market processes –
these implement different types of mechanisms. The objective is to allow markets initiators to choose
an adequate protocol to execute and allow the other participants pick the correct templates that they
may use to interact with the instantiated market. That is they have to upload the required templates
from the local MPF. Logically each market negotiation protocol can be looked upon to be formed of a
set of templates corresponding to each of the permitted roles within that protocol.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 82

Based on these assessments, our objectives are double: first, we have to focus on the market architecture,
and then the factory of protocols templates has to be specified.

Figure 19 Grid market place architecture

3.6.2 Component based market framework

In this section, we first present the main functional components of the Grid4All marketplace framework. We
give after a detailed presentation of the Fractal component model that will be used to build the described
components.

Basic market components

An abstract view of mediated markets (inspired from the GEM system [Reich 98]) distinguishes mainly three
basic layers: the system layer, the market layer and the participants' layer.

The system layer is the lowest layer in marketplace framework. It provides general infrastructure services to
the upper layers, such as security services for authentication of participants, market recovery mechanisms,
persistence services, and an execution environment.

The market layer deals with "economic" concerns and includes components for basic trading mechanisms:

• Registration and admission control: This layer has two roles, authentication and authorizing
participants. The market accepts incoming orders only if they belong to an authorized participant (for
example registered). Registration can also be constrained through rules limiting number of
participants.

• Validation of offers: Incoming orders are filtered according to bidding rules (exp. In an English
auction, a new bid must be greater than the previous bid) to accept only those that are conformant to
the bidding and activity rules of that market. Accepted bids are organized in a storing structure in
order to be handled by the market to determine winners.

• Determination of winners and prices: The market has to match bids with asks according to its
clearance mechanisms. This component matches bids and orders and determines the prices that will

Provider
Consumers

Marketplace

Semantic
Information System

(SIS)

Discovery
Services

Ontology
engineering

Ontolog
yy

Market

(Mediator process)

Market process
factory

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 83

be paid by the winners. The latter is determined by the pricing policy (best price, second price etc.)
that is active. Once all orders have been handled, the market price quotes are updated.

• Agreement and information feedback: An information component controls information that has to be
available to traders at different stages of an auction and notifies the participants in the transaction
about their order status. At the end of the transaction, the winner is notified and agreement
procedure is triggered.

The Fractal model [Objectweb] has been used to design the mediator framework. It is a modular and
extensible component model that can be used with various programming languages to design, implement,
deploy and reconfigure systems and applications. The goal of Fractal is to reduce the development,
deployment and maintenance costs of software systems. The Fractal model provides support for hierarchical
components (components may be nested), is reflexive and provides full introspection and intercession
capabilities, and is open, that is, extra-functional services may be built through the notion of the control
membrane. Each Fractal component specifies:

• The interfaces that allow access to the components. Each component has a set of interfaces that
can be provided or required by the component. The interfaces define and express the
dependencies between the components in terms of required/client and provided/server interfaces.
Each Fractal interface is associated with one component and has a name and a signature. An
interface can be mandatory or not, simple or multiple (collection).

• Connections or bindings between the components that control the data flow between them. The
use of an architecture description language (ADL) allows the assembling of the market
components according to their specified interfaces. The resulting assembly represents the
software architecture of the market process. The market framework architecture will be designed
using Fractal ADL.

3.6.3 Market process

For the purposes of this section, we define the market process as the mediating process that implements a
market mechanism (such as an auction), and based on the received bids from its participants determines the
final outcome of trade between the buyers and sellers. Markets may be of different structures depending on
the set of participants; forward markets with one seller and multiple buyers, reverse markets with one buyer
and multiple sellers, and exchange markets with multiple buyers and multiple sellers.

The objective of a software framework based on modular components is that it facilitates specialization and
can be used to implement a wide variety of market negotiation mechanisms. [BAR02] has presented a
framework for the description of generic negotiation processes that capture the common aspects of a variety
of types of market based negotiation. They derive that all negotiation processes involve:

• The object of negotiation,
• A set of rules that fully specify the negotiation mechanism and capture the wide variety of mechanisms in

a structured way. [WWW01] and [SW03] have compared and characterised a wide variety of auction and
negotiation mechanisms, paving the way for a structured approach to the design of market negotiation
systems,

• The interaction protocol that defines the permissible flow of messages between the participants.

To illustrate the execution of negotiation processes two types of auction mechanisms are represented
through activity diagrams. Figures 20 and 21 show the negotiation process of two types of auction
mechanisms: a single bid auction and a continuous double auction. The auction process is called the
mediator, since it receives the bids from buyers and sellers, and applies rules to determine the winners.
These diagrams show the process executed by the traders and the mediator. These diagrams assume that
the negotiation initialization has terminated and participants have registered.

Once negotiation has been initiated, the mediator process can accept bids; the auction process executes a
set of activities that are triggered by events such as incoming bids or scheduled time-outs. The conduct of
each activity is regulated by the rules pertaining to that activity. Figure 20 shows a single-shot auction where
the market collects all bids from the registered participants; bid submission rules constrain the preferences
proposed within the bid. Clearing (or the module determining the agreements), is scheduled by the rules

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 84

such as, at a fixed time interval from the opening or when all registered participants have sent their bids. The
clearing module determines the winning bids and pricing rules govern the transaction prices. The results are
announced to the participants, this again condition to the rules of the market (visibility and display rules). The
continuous double auction shown in figure 21, allows participants to send bids at any time – subject to
closing times of the market. Bids are cleared immediately on reception.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 85

Figure 20 Activity diagram of a single-bid auction

Continue bidding

Single bid auction

Winner
determination

Rules Winner
determination

Price
determination

Information

feedback

Agreement

<<datastore>>

Bids list
Clearing

time

Market initiator Mediator process Participants

Start

Initializing negotiation

Send error

message

Time out/
Leave

negotiation

Close negotiation

Submission Rules

Bids Validition

Yes

No
Valid bid

Filtering bids

Correct bid

Yes

No

Pricing Rules

Visibility &
Display Rules

Confirm bid

 No

Prepare bid

Yes

Submit

Obtain market
state

Is winning
participant

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 86

Figure 21 Activity diagram of a continuous double a uction

Continuous double auction

Is winning
partcipant

Matching
proposals

Price
determination

Information feedback

Agreement

Market initiator Mediator process Participants

Start

Initializing negotiation

Proposal
validation

Yes

No

Filtering Proposals

Correct proposal
No

Yes

Valid proposal

No

Yes

Submission
Rules

send error

message

Cleared?

Submit

Display Rules

Validity
Rules

Store with
time out

Remove from BidBook

Continue bidding

Confirm proposal

No

Obtain
market state

Prepare
proposal

yes

Leave
negotiation

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 87

An abstract market negotiation process may be characterized by the following parts:
The protocol represents the valid order for exchanging negotiation primitives of a given protocol such as the
English auction, between participants. This is represented by the set of possible states (a state chart),
possible transitions, and the firing rules. Each transition is guided by a rule that triggers an action or/and a
message transmission.

Governing rules are applicable at different stages and stages of the negotiation process. Referring to the
figure 20 and 21, each transition in the activity diagram is guided by a given rule. The set of rules can be
categorised as:

� Admission rules give authorizations to allowed participants that have valid credentials. After that,
the remaining negotiation rules are made available to all participants.

� Validity rules ensure that received proposals are acceptable in the current market session (for
example, in respect to some domain values).

� Protocol specific rules control the different activities of the market process at different stages and
also constrain the bid proposals that may be sent to the market.

o Posting rules: when a participant can send a proposal (according to the current state of the
negotiation).

o Improvement rules : allow participants to determine the value of the new bid according to
previous ones (supposing that participants have been informed about previous values).

o Withdrawal rules : specifies when a proposal have to be withdrawn (deadline, agreement,
etc.).

o Informing rules determine when participants may view the bids and the when and how the
participants can be notified that a bid has been submitted or an agreement has been
reached.

o Agreement rules : according to proposals evolution, these rules determine how an
agreement can be reached. The market terminology refers to these set of rules as clearing
rules. These rules regulate how the market determines the allocations – that is, the winning
sets of bids from sellers to buyers.

o Termination rules : determines the conditions of termination of the negotiation. For
example, an English auction is terminated when there is no price increase on the traded
item.

Negotiation Object : comprises the range of issues over which agreement needs to be reached. Within a
market based negotiation system, this concerns the set of products that are traded and their negotiable
attributes. Market protocols negotiate on the price (and also in fact on the quantity, since the price that has
been agreed upon has an impact on the quantity desired by the participants).

Market stages

Market negotiation process involves three main steps:

Initialization or pre-negotiation: The initiator of a market, such as a supplier that needs to start a new
auction to trade its CPU resources, specifies its negotiation objects (the offer). Participants (for exp.
consumers) search for active market processes according to some matchmaking procedures. They then
Register at the selected market.

Market negotiation: Participants exchange bids (proposals) through the mediating market negotiation
process. The market rules govern the way that the exchange takes place – that is, contains constraints over
some or all the parameters that are expressed in the bid proposal. This phase starts when the negotiation
object has been initialized; that is, when the initiator has configured the market process with the initial offer.
The market process may be accessed by participants through a minimal set of APIs that permit them to
submit their bids to the mediator process, to query the current market situation, and to eventually withdraw a
bid. This process will also use the APIs of the trading agents to inform them of current market status – that
is, provide the feedback on the current prices at the market.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 88

Post negotiation or agreement: This phase consists of establishing the agreement contracts between the
winning participants (winner pairs of buyers and sellers). The agreement (contract) specifies the rights and
dues of each participant, that is: the characteristics of the negotiation object, the payment features and the
resource access process. When this phase starts depends on the structure and type of the market. In a
continuously clearing market, bids from buyers and sellers are matched when possible – according to the
matching rules of the market. For example, in continuous double auctions, an incoming bid from a buyer is
immediately matched if it proposes a price that is higher than the lowest sell bid present at that time.
Scheduled markets have specific clearing times, once the set of bids that have been received. In the latter
case, the agreement phase starts once the market has cleared and determined all allocations.

3.6.4 Market Auctioneer framework

This section presents first the UML class diagram representing the main components of our market
framework, and then we present a detailed outline of its functional components and their interfaces.

The class diagram in figure 22, describes the main activities of a market process. The trading process

(Market process) is created by some Trading agent that wishes to buy or sell some resource (Trading
objects) to/from another agent. The trading is guided by the rules of the negotiation mechanism
encapsulated by an Auction that can be composed of one or more Rounds. During each round, the objective
Bids are received and stored in a BidBook; at the end of the round the winner determination module
determines the current set of winning allocations and the current prices of the resources. This module also
determines if the stop conditions are attained. The final round calculates the prices to be paid are determined
after applying a Discount policy. At the end of the market process, an Agreement object is created: these
associates matching pairs of bids (from seller and buyer) that have won.

Market
Process

Traded
objects

Trading
agent

Auction

Round

Discount
policy

Winner
determination

BidBook

Bids

Agreement

Involves

Implements
Trades

1..*

Applies Executes

Clears Creates

0..*

Figure 22 Class diagram of the market components

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 89

Functional components

The market framework (mediator process) is formed of four main building blocks (see Fig 23): the Access
control responsible for the participants' admission to the market, the Bid management that receives and
stores bids, the Clearing block that determines the winning bids and the prices to be paid, and the
Agreement part responsible for building contracts between winning participants.

In addition to these components, we also introduced three new structures for storing the data handled in the
market: bids, agreements and orders. These structures are:

o BidBook is responsible for storing the received bids and offers whatever the auction type.
o AgreementBook is responsible for storing the contracts of matching sellers and buyers; this is

prepared on output from winner determination and price determination modules. According to the
rules of the market, may need to implement agreement before passing to Order.

o OrderBook: in the context of Grid4All, an order is the final conclusion which should be executed. It
results from the contract formed once buyers and sellers have agreed.

At the buyer agent side, we focus on its main "economic" task which is the bid specification. In an auction,
participating agents specify bids according to some bidding language that takes into account the auction
requirements. A bidder agent has to specify:

o Resources, by précising the list of resources it is bidding for and their attributes,

o Time attributes, by specifying the duration and the period of attribution he's looking for,

o The price that he's willing to pay for needed services,

o Constraints he needs to express on its bid.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 90

Figure 23 Functional components of market process

Buyer
Agent

Seller

Agent

Buyer Agent

Communication
- Protocol

Bid specification

Price setting

Choose market

Substitute bids

Calculate utility

Find market situation

Budget management

Authenticatio
n

Registration

Bid Management

Evaluation

Mediator process

Winner
determination

Price

determination

BidBook

Information feedback

Agreement &
contract

AgreementBook

OrderBook
Agreement management

Pricing

Validation

Authorization

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 91

Components and interfaces

The components forming the market process reflect the main system and economic activities conducted
from point of view of the initiator of the market and from the point of view of participants.

Figure 24 Main components and interfaces

The mediator process is composed of four main composite components (see fig 24): Registration and
participants' management, Configuration, Auction Trading information and market creator. This implies
several types of (external) interfaces of the mediator process:

Access control component manages the registration, authentication and authorization of market
participants. This offers an interface Registration that allows a Participant to register. It also authenticates
and authorizes the participants if necessary. The registration component also provides information about the
registered participants through the ParticipantManager interface.

Configuration interfaces are mainly used to configure the market parameters (eg. market type, number of
participants), the schedule parameters (eg. opening time, end of registration) and the market events (eg.
market starting, bid reception). Three of the main configuration interfaces are: MarketConfiguration that
allows the initiator to set the structure parameters of the market – such as maximum and minimum number
of traders of a given role; the MarketSchedule interface sets the scheduling parameters such as the opening
and closing times, the bid submission times, the clearing times; the MarketListener configures the

Trading information is a component that allows the initiators of the market to configure the type of
resources that are to be traded within the market, their qualifying attributes (specific to resources) and also
market related configuration such as the reservation prices (or maximum prices). It offers two main
interfaces: MarketQuote and ResourceInfo. The MarketQuote interface allows the other components of the
mediator process to update the current prices – on items or bundles. The ResourceInfo interface allows the
initiator of the market to configure the set of traded resources and all related properties.

Auction interfaces encapsulate the auction specific configuration interfaces – these include both the activity
control and also the parameterisation interfaces: AuctionConfiguration allows the initiator of the market to
parameterize the auction and AuctionRounds allows the market process to control the auction activity cycle.
Each round starts the pipe-line of the three main activities: bid reception, clearance, and information feed-
back.

Taking advantage of the hierarchical component model proposed by Fractal, some market components are
composite (such as the Auction component). In the remaining of this section, we will detail every composite

Auction
participants

Market
creator

Access
control

Auction

Configuration

Trading
information

Market
initiator

Mediator process

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 92

component and give its hierarchical decomposition. A graphic view of all the market framework Fractal
components and their interfaces is presented in figure 25.

Access control

� Registration : registers participants that wish to participate in a given market.
� Authentication : checks according to admission rules if a new participant has valid credentials and

thus it is an authorized trader for a given market.
� Authorization : verifies if a registered and authenticated participant is able to participate to the

current market (max number of traders …).

Market
� Trade information : encapsulates the set of resources traded in the market and their attributes.
� Bid Management : A bid can involve an atomic resource, a composite resource or an aggregation of

resources. The bid management component is responsible of filtering the incoming bids and
preparing them to be processed in the market.

o Pre-processing : This component processes the initial bids of participants in order to make
them exploitable by the market components. For example, if a participant formulates a bid
that has not a primitive structure, it has to be processed in order to decompose it in primitive
bids. A primitive bid is a set of bid attributes, such as the resource (a description the traded
resources), the price (an amount and a currency describes the price proposed), Lease (a
description of time lease of the resource).

o Bid validation : verifies if a proposal is (syntactically) well formed according to some validity
rules. For example it verifies if the bid specifies the adequate transacted resources and
units.

o Bid evaluation : verifies the semantic of the proposals according to bidding (improvement)
rules.

� Auction :
o Clearing : Clearing component determines matching bids, calculates the price to pay and

send this information to the concerned participants.
� Winner determination : This component determines possible allocations according

to the Winner determination rules.
� Price determination : Price determination component decides what each buyer

pays and what each seller is paid. This is based on Price determination rules of the
used auction.

o Discount : This component calculates discount on prices paid by (or to) the participants
o Information feedback : Determines the type of information to publish (current price, winning

price, winning participant ID, etc.), when these information have to be spread (according to
display rules) and the participants that can receive it (according to visibility rules).

Agreement

� Agreement builder : creates an agreement between a bid and the satisfying asks. Agreements are
created once the winner determination module has found the matching sets of bids from sellers and
buyers. Formed Agreements are forwarded to the Agreement Manager, which is responsible for the
generation of the agreement contracts.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 93

Figure 25 Market components in Fractal

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 94

System issues

So far we have mainly discussed the domain specific components. The framework needs to also address
and provide abstractions for system specific concerns: activities, parameterisation and configuration, life-
cycle management, and logging. The main issues that to address are:

• Composition and assembly

This assembly and creation of the market process through the composition of the coherent set of
components that are needed to implement a given market protocol needs to be addressed. A straightforward
approach consists of static specification through the Fractal ADL – the content classes furnishing the needed
implementation needs to be described within the ADL which will then be deployed by the Jade framework
described within Chapter 1. With this assumption, assembly may be looked upon as an off-line issue.
Nevertheless (i) we need to validate this under different requirements to understand if there is a need to
terminate the assembly at run-time and (ii) address linking of orthogonal components, as for example the
winner determination and the discount components; the former does not impose a specific choice of discount
policy.

• Configuration

This relates to the coherent propagation of configuration parameters to the components of an assembled
and deployed market process. The ability to hide configuration details of sub-components, in the case where
the sub-component assembly needs to be visible only at the level of the component is a desired feature. As
an example, the k-double auction mechanism that has been presented in section 4 relies on a specific kind
of sorting algorithm that permits an efficient implementation. Configuration of the sorting algorithm to the
clearing sub-component preserves encapsulation.

• Life-cycle control and activity management

Life-cycle control consists of starting and stopping the execution of the components. This is related to activity
management since components may be either passive or active. Active components in general have tasks
that are executed – reception of bids triggers an activity to validate the bid and verify that it respects the bid
submission rules. Passive components execute their functionality in the context of the calling component and
may themselves invoke other component interfaces in the context of the invoking task. An example of a
passive component is the Solver sub-component of Winner Determination that may be used to find trades
that maximize the value of the market through the execution of an optimization algorithm implemented with a
given optimizer. The Solver component drives the optimizer by building the model providing the variables of
the optimization problem.

Market mediator process as a Web Service

Web services provide the means for software components to communicate with each other on the web.
Within an electronic market place, there are three key roles: buyer, seller, and the mediator, which may in
fact be deployed by participants in the negotiation. The last has been described in detail in this section.
Market negotiation consists of interaction between these roles. We propose that the functionality of each of
these roles be exposed as Web Services. The execution of the processes corresponding to these roles and
in particular that of the mediator may then be modelled as a business process and specified using business
process languages such as BPEL4WS; the resulting executable template can then be deployed within a
business process engine. From the point of view of other roles, there is no difference between the business
process and a Web Services. Messages that can be exchanged with the market process is described using
XML schema – section 3.4 has presented the bid schema defined using XML; The Web Service that
corresponds to the executable business process is described through a generated Web Services Description
Language that provides a list of operations – such as submit, withdraw, query.

The components that have been described in the previous section may indeed be deployed as Web Services
[SCA]. Specification of the market mediating process as a business process through the use of languages
such as BPEL4WS amounts to describing work flows of a specific market negotiation protocol.
Implementation of market mechanisms using BPEL4WS provides interoperable interfaces to interact with
heterogeneous participants. Each process is exposed to the entities taking part in the negotiation process as
generic Web Services APIs (bid, query, etc.) that correspond to negotiation messages.

Summarizing, service-oriented approach for modelling negotiation protocol has the following advantages:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 95

� It enables advertising and using protocols seen as a web service. Hence, they can be deployed,
located and invoked by a negotiation system.

� A web service orchestration language can be suitable to describe a negotiation process.

3.6.5 Agreement management

The last main component related to the framework is that of agreement management. The agreement
manager has the responsibility in the surveillance, and enforcement of the implications of an agreement that
may last for a potentially long time.

Following the negotiation, the market process determines the allocations, i.e., generates the winning pairs of
buyers and sellers – this should be transformed in an agreement. The objective of the agreement
management is the establishment of a bilateral contract between buyer and seller to: (1) ensure payment,
and (2) provide a handle to access the resource involved.

The acceptance of an agreement implies a process, initiated by a call from the winner and price
determination module (clearing component) denoted by call to settleAgreement(handle) to the agreement
manager . The agreement manager receives a handle to that agreement and verifies that the winning seller
and the initiating buyer accept the agreement by sending acceptAgreement messages to both the winner
and the initiating buyer.

Here the agreement contract must be established based on the agreement decision reached at the market
process, and must be enforced. The agreement contact includes:

- Creation of a lease generated by the supplier agent with the capability to access the resources.
- Logging the transaction for auditing purposes (to keep a non-repudiable log of agreements).
- Payment process that can be done before, during or after the use of the goods, and as a result a proof of

payment has to be provided in the form of a payment receipt.

3.6.6 Market protocol factory and repository

This section discusses the rationale, requirements, and the preliminary approach to design the market
protocol factory and repository. A first pre-requisite to the implementation of the repository is the adoption of
methodologies and tools to specify market negotiation protocols. Negotiations are mechanisms that allow a
recursive interaction between a principal and a respondent in the resolution of a deal [OMG99]. Negotiations
proceed by allowing each of the parties involved to make proposals that are beneficial to themselves and
allowing them to incrementally revise their proposals in order to come to an agreement. In order to allow
consumers and suppliers to participate in different types of markets (that may implement different market
negotiation mechanisms), the following key requirements need to be met:

- Shared understanding of the interaction protocol and market rules,
- Common definition of the exchanged messages,
- Executable negotiation processes that can be deployed and configured by the participants.

Problem statement
Current approaches for the construction of Grid resource markets mainly consist of operating central market
servers per segment of Grid resource or service -- this central server may implement one (or a few) type of
market protocol. This is similar to the operation of the eBay auction server. Sellers (or buyers) needing to sell
or buy some resources contact this central server to initiate a new auction instance – they choose one of the
protocols implemented at the server. Agents desiring to participate at this auction are assumed to know and
agree to the implemented protocols.

An open and dynamic environment with different target market segments cannot rely on a single and
immutable negotiation protocol. The environmental factors such as potential number of participants, their
preferences, their urgencies, the types of resources offered/required, their characteristics, and the
endowment of the participants, are factors that affect the choice of a market protocol [KSS00]. [PCr03]

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 96

summarizes this as follows: "Good market design begins with a thorough understanding of the market
participants, their incentives, and the economic problem that the market is trying to solve”.

Recent years have seen a number of attempts to design configurable multi-protocol electronic market
places. AuctionBot [WWW98] supports the configuration of various auctions; eMediator[SAND02-1] allows
participants to setup markets – it offers a wide range of auction mechanisms to choose from and supports
the user in choosing an appropriate market type. [KLS04] report the design of a configurable negotiation
server that supports bargaining, based on a process model that organizes negotiation activities into phases;
and a set of rules that govern the processing, decision-making or strategy, and communication. [MS01]
presents the Silkroad platform designed to support multiple auction protocols.

A protocol may be seen to be a set of rules that participants need to respect during a conversation – the
process that proceeds according to the rules of a given protocol. The rules determine who may take part
within a conversation and how each participant must contribute to its processing. [SRT05] defines
choreography as a description of the peer to peer externally observable interactions that exist between
services. The interactions are described from a global point of view and not from the perspective of a
particular role. Choreography description can be used to generate the necessary behavioural contract for
each of the roles and to verify that all the separate cases are consistent with each other. Once the
choreography definition is created, machine-readable executable forms need to be generated for each role
that may participate within the choreography such that each role may enact its individual process.

Requirements
The component architecture and framework for the developing of market negotiation processes that is
presented in section 3.6 facilitates the design of market mechanisms and trading agents. This by itself is not
sufficient – a protocol designer is also concerned by the practical use of the protocols by the participants so
as to strengthen the interoperability between the participants that assume different roles. In the following we
identify the following main roles:

− The auctioneering or the mediating market process whose responsibility is to initiate a market
session and to collect the bids (proposals) from the participants, that is, the buyers and sellers.

− The initiator of the mediating process is a special participant, who based on internal decisions
decides to and starts a market process. In practice the initiator is typically either a

o Seller who desires to start a new market to trade its resources in a forward market
o Buyer who desires to start a new market to acquire resources. This can be looked upon as a

Request For Quotations (RFQ)
o 3rd party mediator that decides to initiate a market to intermediate between a set of buyers or

sellers
− The participant which may be either a buyer or seller (or both in the case of exchange markets),

whose objective is to send their bids to the market process and to achieve trade(either buy or sell)

Subsidiary roles are played by other services implementing agreement management, bank, payment,
logging etc. Nevertheless for the purposes of discussion it is sufficient to focus on the three main roles.

Participant point of view: Implementing auction mechanisms in an open context requires tools to aid
participants to:

− Find an appropriate auction mechanism
− Obtain the rules and the underlying protocol so as to allow the interaction with the market (auction)

negotiation protocol

The market factory acts as a repository of market protocols that stores a library of developed protocols in an
executable format (or that may be translated on-line to an executable format). A participant, i.e. a buyer,
seller, or a 3rd party broker wishing to start a new market session uses the services of this repository to
choose the executable template of the appropriate market protocol and to instantiate the template
corresponding to that of the mediating market process. It is then assumed that this new market process is
advertised within the information service such that participants may be informed of its existence. To take part

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 97

at a market buyers or sellers need to be able to interact with this auctioneer process – this requires that the
participants be doted with an interactive behaviour that is conformant to the specification given to the role of
seller or buyer with respect to that of the auctioneering process.

In an open world, functional and semantic heterogeneity persist. It is unrealistic to suppose that market
actors (resource provider and consumer) define from scratch (while instantiation of a protocol role) their
behaviours each time they are involved in a negotiation. As discussed in previous sections, it is also
unrealistic to restrict actors to implement a specific negotiation protocol. Being developed separately there is
no reason to assume that any two given actors use the same (i) negotiation protocol (ii) the same design of
a given protocol (iii) abstraction level while implementing roles – and especially for the consumer agents as
is resumed in the figure below.

Here the question is: how to design the structure and behaviour of the participating roles?

Designer point of view: The second aspect is that from the point of view of development of new market
protocols -- developing a new auction based negotiation mechanism should not result in a software
developer having to write the program code entirely by hand – this is long and tedious and error-prone.
Ideally a designer should be presented with a protocol modelling tool that facilitates the design of negotiation
protocols. Pre-defined negotiation templates may aid in the reduction of design time – the developer need
only concentrate on the aspects of design of the market protocol, in particular the rules (and required
algorithms) of the market clearing mechanisms, the bid submission, and the termination rules.

The questions to answer here are:

• How to help the designer produce the interaction protocols given a high abstract and formally
defined process model.

• How to automatically derive the behaviours of each role involved in the interaction

System point of view: [CASS] suggests that an automated negotiation must have four necessary
properties. It must be (1) Correct: the negotiation must not deadlock or incorrectly handle exceptions (2)
Reasonable: it must allow for uncertainties of the wide area network (3) Robust: it should continue to function

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 98

despite improper action by the bidders and (4) Fast: it has to execute and also converge quickly. [BEN04]
also argues that an automated negotiation should also be traceable.

Achieving these five properties necessitate a formal approach towards the specification of negotiation and
market protocols. As [CASS] says "notation with a well-defined, well-formed semantics can facilitate
verification of desirable properties".

Formal specification of interaction protocols allow for the analysis of desirable properties such as safety and
absence of deadlocks. A safe and sound interaction allows no unpredictable states and transitions --
negotiation states that become valid are only those that are defined by the protocol. Proving of live-ness
property ensures that a process will eventually enter a desirable state and that there will be no deadlocks. A
protocol can be ensured to terminate if it can be proved that all paths in a protocol lead to a terminal state.
[SPB06] discusses the importance of termination rules in iterative auctions. They give an illustration of an
example case of bidding where the stopping rules of the RAD design [KWA05] is not sufficient and may lead
to looping. This behaviour is due to the fact that linear prices that are calculated (at the end of each round of
bid submission) are not required to be monotonic.

A negotiation must either eventually terminate after a process or the entire negotiation halts in a state in
which execution of a finite number of actions complete the negotiation. Hence accessorily formal analysis of
protocols may help in the determination of the number of iterations before which the negotiation will
terminate – this feature may be helpful in the design of the parameters of the market/negotiation activity and
bidding rules.

A protocol defines the rules for a conversation and the rules of a chosen protocol have to be conveyed to
each participant. For example, participants need to be informed that the rules of bidding within an English
auction constrain a bid to be superior to the current price by an improvement imposed by the initiator of the
auction. A well defined protocol helps participants to abide by the rules and make progress towards the
consensus.

The questions that are asked here are:

� How to verify properties of the specified negotiation protocol?
� How to validate that a given set of participants are indeed able to enter into a valid negotiation

conversation?

Now to meet the requirements generated from the three points of view within the landscape of service
oriented negotiation architecture, we need to:

− Address capture of behaviour of BPEL in a formal way, since even though BPEL is useful being an
executable language, it does less well as a language for modelling abstract interactions [VDA05].

Conclusion and approach for future work
Market based negotiation systems may be approached from a business process perspective –
negotiation is an inter-organizational process where each of the participants executes internal and external
'business' processes to reach a business objective. The Service Oriented Architecture (SOA) approach is
valid within the e-market place -- market services may be decomposed into elementary services at a lower
level to foster a wide and large number of implementations. The Web Services and WS-based process
definition standards provide mechanisms for defining negotiation processes that can be deployed in a
platform-independent manner.

In SOA, the (business) process view deals with the description of the interactions in which a given service
can engage with other services, as well as the internal steps between these interactions. BPEL4WS has
acquired the momentum to become the Web Services-based process definition standard. Section 5 has
discussed the reasons for which we address the definition of a negotiation process by using BPEL4WS.
However service interactions go beyond simple sequences of requests and responses or involve large
number of participants. Composition deals with the interplay between services and business processes.
Choreography captures collaborative processes involving multiple services where the interactions between

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 99

these services are seen from a global perspective, by describing the collaborations between the services in
order to achieve a common goal. A choreography model captures the interactions in which the participating
services engage in and the dependencies between these interactions, including those of control-flow (which
interaction must occur before what other?). All partners are treated equally and the interactions are captured
from a global perspective.

In the terminology of Web Services, the specification of negotiation protocol corresponds to the definition of
the choreography of the system, expressed in a specification such as WS-CDL. The processes implementing
this choreography that is implemented by each of the roles within the negotiation is defined using a workflow
language. BPEL4WS supports design and implementation of WS-based processes by providing
mechanisms to preserve the state of WS by correlating messages exchanged between WS. BPEL4WS has
the expressive power to support commonly required workflow patterns [WOH03].

From a choreography model, the behavioural interface (for example in BPEL4WS) that each participating
service must provide within a given collaboration may be generated. This behaviour interface may be used to
develop the service – for example to generate the interface that a buyer agent must provide in order to
participate within a choreography describing a given auction protocol.

Even by considering the use of Web services language WS-CDL and BPEL to describe the actors published
protocols heterogeneity problems persist in two specific levels: the first is commonly called functional
heterogeneity, for example is the Grid4all project two actors can exhibit two different roles of two different
negotiation protocols. The second called semantic heterogeneity where in two different protocols we make
two different references to the same concept for example a bid. This heterogeneity persists due to the
symbolic nature of the description language and the lack of a common semantic reference. Hence the two
main challenges that we need to address are:

● Role compatibilities: given a choreography model of a negotiation protocol specification described
using WS-CDL. If we suppose a set of actors: buyers and suppliers where each defines its own
negotiation protocol using a BPEL interface. It's important to hold a method that allow to each
participant to check the compatibility of it protocol with a specific role of the chosen WS-CDL
protocol specification.

● Partner behaviour adaptation: In case of behaviours incompatibilities to a given protocol, methods
must be established for an automatic role instantiation. Generating from WS-CDL protocol
specification a BPEL interface for a specific role. Also we need an automatic method to generate
models for wrapper that adapt a predefined participant negotiation protocol to a specific role of a
negotiation protocol.

WS-CDL is a programming language oriented towards well-structured communication-centered
programming due to its notion of channel types. The choice of WS-CDL is also motivated by the fact that this
choreography language may be considered as an implementation of the pi-calculus, a message-based
formalism that is suitable for the analysis of global perspectives of distributed protocols

The W3C community is very active around WS-CDL both at the formal consideration and also at the
technological level. As has been the case for WS-BPEL, we expect that WS-CDL will be largely adopted as
Internet global communication centered languages – WS-CDL initiative is backed by vendors such as Oracle
Corporation, Sun Microsystems etc.

At the first step, our plans are to evaluate the tools developed by PI4SOA (www.pi4tech.org) which is the
W3C group implementation of WS-CDL. The design and development suite provides a WS-CDL editor that
allows designers to create the choreography model and PI4SOA development tools enable validation of the
choreography description and generate projections of endpoint descriptions. The generated Endpoint called
also skeleton (for each participant) can be either Java code deployable using the Apache Axis or directly as
BPEL services using orchestration engines such as ActiveBPEL.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 100

3.7 Services for the market place

Two main services in the market place, market information and currency management, are described in this
section. The market information service provides market relevant information to market participants. The
currency management provides a payment service for market agreements and accounts for market
participants.

3.7.1 Market information service

The marketplace system, as it has been defined in previous sections, is considered to be a decentralized,
dynamic and large in terms of distance and number of participants where distributing and obtaining
information can be prohibitively costly in terms of traffic and coordination. However, in a changing and
complex environment, agents need information about status and changes to effectively decide. This implies
obtaining information that can be derived from a few to many entities at a reasonable cost. That information
can be detailed or may be aggregated to reduce the effort and cost of distribution. Entities may publish
information without having to consider which entities might be interested. This leads to the need of a service
that mediates, provides indirection and distributed processing (including aggregation, summarization and
other functions) and efficiently routes information between sources and sinks of information. The market
participants, a buyer or seller agent (as defined in section 3.4 and 3.6), could then express interest on some
data that might derive from a large amount of data (e.g. related to a global or regional status). If this
information is progressively aggregated and processed the volume of information is efficiently reduced and
also rendered anonymous. Cost of circulating information is dramatically reduced and the sinks of
information can obtain just the right data with a very low cost about any range of entities, event being able to
provide information on the global status.

The information managed by the market participants falls into two categories:

1. Static information describing resource characteristics which have a very low rate of change. Examples:
CPU frequency, OS version, memory size, etc.

2. Dynamic information which have a relatively high degree of dynamism. Examples: price, load,
availability, performance, etc.

The market agents should be able to publish events each time their internal state changes (price, load,
availability, etc.) or to subscribe for events they are interested in. These exchanged messages consist of
attribute-value pairs. Consumers of information should also be allowed to express filtering constraints over
the attributes of the published messages. The system requires the ability to express aggregated queries by
the use of any SQL-like aggregation function such as MIN, MAX, SUM, COUNT, and AVG.

Queries on index (one-shot-pull):

a) Return the minimum price of seller offers for the good. Example: “CPU time on x86 Linux
machines whose load lies within the interval [0.5,1.0]”

b) Return the maximum price of buyer bids for the good. Example: “CPU time on x86 Linux
machines belonging to the domain /Grid4All/X/Y/Z”

c) Return the average price of seller’s offers for the good. Example: “digital photo processing whose
reliability is greater than 0.8 and which are located in domain /Grid4All/Y”

Notification (subscription):

d) “Notify me any time a new seller’s offer is posted for good X whose price < 60€ per minute”

e) “Notify me when the maximum price of bids for the market named ‘Auction86798’ changes”

f) “Notify me when there is an offer for the good ‘CPU time on x86 Linux machines’, only from
sources at a distance less than D from me.”

The API for the MIS provides the following four methods to get the information of the economic

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 101

requirements:

public void publish(String topic, Object info)
The aim is to make an information object public to the market. Primarily this is the publishing of
information to a group of subscribers with the same topic. But it is also the disseminating of
information within the aggregation mechanisms.

public Object getSummary(String topic, Function fun ction)
This method corresponds to the query on a index. It returns a summary of information belonging to a
certain topic. The data can be aggregated by passing a SQL-like function like “SUM where periods <
x”.

public void subscribe(Subscriber subscriber, EventL istener listener,
 String topic, Function function, long frequency)

Subscribes to a topic to receive updates. The subscriber is notified through the EventListener, when
a new event occures concerning the defined topic.

public void unsubscribe(Subscriber subscriber, Stri ng topic,
 Function function)

Removes the subscription of a client to a topic or content. For example, when it needs no further
information about new products in the market.

Object[] getHistory(String topic,long init, long pe riods, Function function)
An array with summaries occurred on different time is returned. The time is defined by the number of
last periods.

State of art

In order to refine the design of the MIS the literature was explored. There are several recent research studies
on economic information acquisition in auctions, as surveyed in [Berg06]. These studies are mainly based on
theoretical expectations of information acquisition and less on technical implementations. Nevertheless, they
show in a theoretic and analytical way the demand for disclosure of economic information in marketplaces.

From the high level of node churn or failures in a distributed on-line marketplace follows the need for a
robust system. Actually, there are proven solutions providing a structured overlay network based on
Distributed Hash Tables (DHTs). These mechanisms scale with the number of nodes and cope well with the
churn without increasing significantly the network overload.

Publish-subscribe paradigm provides a loosely-couple interaction mode for notification of events in a large
scale environment. Subscribers register to a topic of their interest or to a pattern of events, afterwards they
will receive asynchronously information matching their requests. The strength of this paradigm is the full
decoupling in time, space and communication between subscribers and publishers. There are many
distributed publish-subscribe systems varying widely in their functions and structures. The MIS requires a
content-based subscription model.

Data aggregation is indispensable in large scale systems to handle the volume of information, which grows
exponentially. Moreover, aggregation services allow querying an index considering basic functionalities in
distributed systems like load balancing. The aggregation abstraction combines the necessary information
from various sources in order to provide a coarse-grained summary of the required information without
having to be aware of every detail. The gathering can be based on topics or patterns, which are already
applied in publish-subscribe systems.

Research in aggregation of events and dissemination of aggregated information is still immature. Few
publish-subscribe based systems implement aggregation. Willow [Rene04] proposes an aggregation system
with publish-subscribe model combined in one DHT-based protocol. Another approach for data aggregation
is the Scalable Distributed Information Management System (SDMIS) [Yala04].

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 102

Requirements for economic information acquisition will be met by the MIS combining different existing
technologies. The aggregation mechanism provides an efficient summary of the market and its participants.
Time-sensitive market data will be obtained by the publish-subscribe model. Building these two approaches
on top of a DHT-based structured overlay network, allows coping with technical challenges of the
requirements for the distributed economic information system.

3.7.2 Currency management

In this section we define the currency management used within Grid4All in terms of the concepts explained
in earlier sections. Grid4All will have a unique virtual currency (g-currency) that serves as a medium of
exchange between all trading agents (buyers and sellers) managed by the currency system. This
assumption simplifies currency management and does not imply any loss of functionality. Any transfer
outside will require exchanging to real money.

For simplicity, efficiency and for security reasons we implement the currency as an account balance-based
system . This means that there is a trusted entity that manages user accounts. Every transaction should use
this trusted service in order to carry out the transaction. GRIMP has unique service that mints and sells
specific g-currency.

User accounts are kept in a central banking service. The word central should be understood as
administratively centralized. The implementation of this service is distributed over multiple nodes organized
organize as an overlay using a DHT (Distributed Hash Table) in a way that each node is responsible for a
subset of accounts. This helps to balance loads and renders the service reliable and dependable. All nodes
forming the central service should be considered trusted.

This banking service will be the responsible to store a log with the different transactions in order to solve
disputes between traders. The resolution of the dispute might not be done automatically and might need a
third entity capable to solve it. The transaction protocol implemented is an on-line payment protocol, that is,
users are authenticated and identified before transactions are accepted.

Finally, the Grid4All banking service will provide a general enough API in order to allow different kind of
transaction orders as for example pay before, during or after use.

Currency market definition
The decision of having a banking service for managing accounts and payments is not bound to the currency
market that will be employed. That is, this is independent to how currency is issued and managed from the
economical point of view. There are two approaches as described in previous sections: a closed currency
market and an open currency market.

The closed currency market can be defined as the market where there is only one currency and the direct
exchange real currency against virtual currency is not allowed. Therefore, it arises all the problems related to
managing a real currency (i.e. inflation, deflation, interest rates, etc.). The currency management system
should provide mechanisms to control the amount of circulating currencies in order to maintain a stable
relationship between circulating currency and traded goods. Therefore some policies should be defined to
drive currency to equilibrium and the exchange between real and virtual currencies.

On the other hand, the open currency market can be defined as the market where the virtual currency is only
an intermediate representation for real currency. In this sense, a fixed exchange rate can be performed
(against the floating one of the closed currency market) and the banking service should only be used as an
intermediate payment service without incurring with a real banking payment in each Grid4All transaction.
This definition allows the currency management system to delegate all the problems related to currency
management to the real institutions which manages real currency.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 103

Security issues
As long as a customer needs to maintain an account with the banking service to perform payments, an
authentication and authorization mechanism is needed to avoid impersonation as well as counterfeiting.
Therefore, the banking service needs mechanisms to issue non-repudiable documents to report to both
customer and supplier that a transaction has been made. This could allow users to perform reclamations
against the other part of the transaction if the agreement is broken in payment terms.

Requirements for the Banking Service
In this section we introduce preliminary requirements for the Grid4All Banking Service. The banking service
is a key component in market transactions and needs to be robust and reliable.

The goal is to provide a dependable component on which other components (such as the payment
component) can rely. To achieve the previous mentioned properties our choice is to deploy the banking
service on top of a DHT. This way the banking service can take profit of the self-* properties provided by the
DHT and therefore avoid any single point of failure. We assume that peers are trusted and there is a DHT
private to the banking service. Otherwise, there are additional security issues (e.g. privacy, tamper
resistance, non-repudiation) that will require signing and encryption of the stored data.

Current DHT implementations suffer from the lack of a consistency model and support for mutable consistent
data. Furthermore, banking and payment operations need transactional semantics in order to provide
consistent results. For example, the operation transferFunds implies the atomic modification of two accounts
(query, modify and save) in order to avoid inconsistencies in user account balances when concurrent
modifications against the same account are executed. A transaction should assure that either both accounts
are modified or none at all.

The key concept to achieve mutable consistent data is that no more than one peer should be responsible for
a single identifier at a certain time (also called lookup consistency). Despite it is not a widely required
property from DHTs, the overlay network infrastructure in Grid4All, namely DKS, guarantees this property.
Considering a DHT infrastructure which solves the consistent data issue, solving the second requirement
(ACID transactions) can be achieved locking the object and serializing different operations against the same
object in its object responsible node.

The next figure shows an overall architectural view of the different components of the Currency Management
System, the interactions between the clients and the banking service through the CMS API and overall view
of different layers of a node belonging to the currency management network.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 104

Figure 26 Architectural view of the Currency Manage ment System

Banking service API
This section presents the current API for the banking service which is capable of managing accounts
(creation and deletion) as well as operations to transfer funds from one account to another one. All the
returned Receipts are unforgeable objects by means of some security mechanisms still to decide.

AccountID openAccount(Credentials user)

Create a new account and relate it with the given Grid4All credentials. It returns an AccountID
specifying its ID which will be unique in the system.

CancelAccountReceipt closeAccount(AccountID id, Credentials user)

Close and delete the account from the bank system given an identity within Grid4All and an
AccountID.

Account queryAccount(AccountID account, Credentials user)

Returns the associated account with a given AccountID and an identity within Grid4All. This account
maintains a log with all the transactions performed within this account as well as the balance and
reserved balance at query time.

TransferReceipt transferFunds(AccountID source,

AccountID dest,

int amount,

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 105

Credentials user)

Transfer an amount of currency from the source account to the destination account. This operation is
atomic in the sense that both accounts are modified or none of them.

ReserveReceipt reserveCurrency(AccountID source,

 AccountID dest,

 int amount,

 Credentials user)

Allow the owner of an account to reserve the amount specified for a future payment against the
destination amount. This operation does not imply a real transfer of funds since the destination
account is not modified. This method assures that the reserved funds cannot be spent in another
transaction.

TransferReceipt commitReservation(ReserveReceipt receipt,

 Credentials user)

Finishes the reservation of funds transferring the reserved funds specified in the ReserveReceipt to
the provider’s account specified in the receipt.

CancelPaymentReceipt cancelReservation(ReserveReceipt receipt,

 Credentials user)

Cancels the reservation of funds made before due to some reason. Once the reservation is
cancelled the funds are again available for spending.

3.8 Relation with other work packages and tasks

3.8.1 Semantic information service

In recent years it has become clear that there is overlap between grid computing and the benefits of a
service oriented architecture based on Web Services [CZA04] [FK02]; services provide virtualization of
resources and also that of grid functionality. We have in earlier sections presented the resource market as
trading in resource services, where a resource service is a computing resource that encapsulates
computational capabilities as a service.

Section 3.6 has presented our approach where a market service is represented as a Web service; that is,
market mechanisms such as auctions are developed as services and are executed as a business process.
The service interface of the market is represented through a WSDL comprising of a list of operations and
messages that these operations accept and return. Traders discover the advertised markets and they access
the market using the exported Web Service operations. Traders select markets based on both the
characteristics of the market and also on the characteristics of the Grid services that are being traded at the
market, that is, the services being offered (requested) at a forward (reverse) market should match the bid
that the trader needs to be satisfied.

In an open market place, a meaningful matchmaking of orders (offers/requests) should be realized to allow
matching of services based on their semantics instead of their syntactical representation; for example, a
request for computational resource may specify a quality of service measure expressed in FLOPS (floating
point instructions per second) that has been measured using the Linpack benchmark. A meaningful
matchmaking service should find compatible resources whose rate of work capacity has been measured with
equivalent benchmarks. Grid services may also have complementarities, meaning that they may need to be
traded as a composite service. Matching of requests for {CPU, Storage} should select markets trading {CPU,
Storage} and not otherwise.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 106

Realizing of matchmaking in an open market place requires rich knowledge representations for services,
capabilities, qualities. We are closely working with the task 3 (of work package 2) so as to provide the
requirements for the design of ontology for Grid services and markets – so as to provide a shared ontology
for the basic vocabulary that the participants and the market place must share. In particular our aim was to
enrich the concepts of offer, bid, and request in order to enrich their expressiveness required by real-world
constraints. The chapter 3 describes in detail the current status of work within Grid4All. Future work will
investigate the possibility of extensions to the market ontology so as to be able to represent a set of useful
economic properties.

3.8.2 VO management framework

Section 3.6 has presented the architecture of the Grid4All market place and section 3.5 has argued for a
model of markets for Grid resources that addresses scale -- creation of 'local' spontaneous markets naturally
tends to segregate the space of market participants. Section 7 has also addressed the establishment and
management of agreement contracts that bind the provider and consumer of resources.

In this section we address two issues:

− Where will the services Grid4All market place be executed and where will a newly instantiated
mediator (market) process execute?

− How will the virtual organisations that allocate resources at the market place access and obtain use
of the resources?

Resource execution management

As has been described in the Chapter 1 on the framework for autonomic management of virtual
organisations, one of the principal issues that are addressed within Grid4All is that of deployment – that is,
the installation of application software, its configuration, and finally manages the life-cycle of the software
components forming the application. At the fabric layer, the physical computing nodes forming a Grid4All
virtual organisation are organized as a peer-to-peer overlay using technology provided by WP1. This overlay
provides messaging and communication primitives and also serves to implement the functions -- discovery of
resources, monitoring, fault detection that are required for autonomic management.

We envisage a utility model for virtual organisations where newly acquired resources are 'integrated'
seamlessly into this management overlay. That is, resources are leased from the market by a virtual
organisation for some time interval – the lease is a contract between a provider and the virtual organisation.
During the period of lease, the resources are configured such that they belong within the target virtual
organisation.

Minimal software set needs to be installed on the target nodes such that the following two actions may be
executed:

− Join : Nodes that are allocated to execute applications and services for a given virtual organisation
will join the underlying management overlay. They use the API of the overlay services provided by
WP1 to effect this operation.

o The pre-installed software is required for the join operation.
− Provision : The management framework detects a newly joined node and deploys the needed

application software on this node.
o The pre-installed software permits the deployment of new application components specific to

the hosting virtual organisation, on the node through a basic set of operations: install ,
uninstall , start , and stop .

A key issue that will be addressed within the VO framework is that of lease management. Compute (or
storage) resources are allocated at the Grid4All market for determined periods of time. VO management
needs to ensure that the resources acquired through the market will be freed at the end of the period of use
– unless the lease has been upgraded through further negotiation at the market.

Deployment model

The second issue that needs to be addressed is that of deployment:

− Of the software components implementing Grid4All market place services

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 107

− Of the mediating market process that is created on-demand by a participant acting as the initiator

We believe that the Jade management framework provided by T2.1 of this work package satisfies this
purpose. The deployment model that we envisage is that of considering that the market place services
execute over a peer-to-peer overlay that is managed by Jade (extended to peer-to-peer overlay based
fabrics within Grid4All). This allows the deployment of software components of distributed applications on to
a set of nodes – the Architecture Description Language furnished by T2.1 allows describing the different
market place components and their bindings. The exact deployment architecture will be the subject for future
work.

One of the services offered by the market place is that of selection of and deployment of a market process
(as a mediator for market negotiations). A key issue that needs to be addressed is that of the selection of a
node within the overlay on which the mediator will be instantiated. The choice of the node (or at least its
characteristics such as location etc) may either be made by the initiator or may be subject to policies of the
market place. We will address this in the future work.

3.9 Conclusions

The key issue of this task is the identification of requirements to implement markets for overlay based
neighbourhood Grids.

We have focused on Grid resource markets and the architecture to design and develop open market places
for trading of Grid resources. One consequence of open market places is the need to provide support for
both designers of market protocols and for participants at the market place. This will be realized through the
market factory or repository.

We have taken the approach to define the markets in a structured way; this is a requirement to match
mechanisms to application scenarios and to provide methodologies and tools to designers of market
negotiation protocols.

Future

The next steps consist of terminating the specification of the component framework for mediated market
processes and to demonstrate proof-of-concept implementations of three types of market mechanisms within
this framework. These prototypes will then be used to evaluate with the applications provided by WP4.

The design of the market protocol factory will be addressed following the approach that has been discussed
in section 3.6.

Finally we focus on the integration with other Grid4All system components: (i) trading agents within the
autonomic virtual organization framework that has been described in Chapter 1, (ii) semantic based selection
of resource markets as described in Chapter 3 and finally (iii) with the component-based overlay services
provided by WP1, in particular for the deployment of the market place services.

References

[Alp06] P. Alper, O. Corcho, I. Kotsiopoulos, P. Missier, S. Bechhofer, D. Kuo, and C. Goble. S-
OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid. The 3rd GGF Semantic Grid
Workshop, GGF16, 2006.

[AUS06] L Ausubel et al., "The clock-proxy auction: A practical combinatorial auction design.", P
Crampton, Y Shoham, R Steinberg, eds., Combinatorial auctions, MIT Press, Cambridge, MA, 2006

[Au04] A. AuYoung, B. N. Chun, A. C. Snoeren, and A. Vahdat, "Resource allocation in federated
distributed computing infrastructures", in Proceedings of the 1st Workshop on Operating System and
Architectural Support for the Ondemand IT InfraStructure, October 2004.

[AWS-ECC] Amazon web services – elastic compute cloud aws.amazon.com

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 108

[Baude et al. 06] Baude F., Baduel L., Caromel D., Contes A., Huet F., Morel M. and Quilici R.,
"Programming, Composing, Deploying for the Grid" in GRID COMPUTING: Software Environments and
Tools, Jose C. Cunha and Omer F. Rana (Eds), Springer Verlag, January 2006.

[BAGS02] R. Buyya et al. "Economic models for resource management and scheduling in Grid
computing", Concurrency and Computation: practice and experience, (14), 2002

[BAG01] R Buyya, D Abramson, J Giddy, "A case for Economy Grid Architecture for Service
Oriented Grid computing" in Proceedings of the 10th Heterogeneous Computing Workshop, HCW 2001

[BAG00] R Buyya, D Abramson, J Giddy, "An economy driven resource management
architecture for global computational power grids" in Intl. conference on parallel and distributed processing
techniques and applications (PDPTA2000), Las Vegas, USA, 2000

[Bao03] Bao, S. and Wurman, P. R. 2003, "A comparison of two algorithms for multi-unit k-
double auctions.", In Proceedings of the 5th international Conference on Electronic Commerce (Pittsburgh,
Pennsylvania, September 30 - October 03, 2003). ICEC '03, vol. 50. ACM Press, New York, NY, 47-52.

[Barm02] A. Barmouta, R. Buyya, "GridBank: A Grid Accounting Services Architecture (GASA)
for Distributed Systems Sharing and Integration", 2002 .

[BAR02] Bartolini. C., Preist, C., and Jennings, N. R., Architecting for reuse: A software
framework for automated negotiation. In Proceedings of the 3rd International Workshop on Agent-Oriented
Software Engineering, Bologna, Italy

[BAV05] Buyya R, Abramson D, Venugopal S. "The Grid economy". Proceedings of the IEEE
2005; 93(3)

[BBG06] C Badica et al., "Implementing rule-based mechanisms for agent-based price
negotiations", Proceedings of the ACM Symposium on Applied Computing, 2006

 [BCK98] L. Bass, P. Clements, R. Kazman, "Software architecture in Practice", Reading MA:
Addison-Wesley Longman, Inc.

[Bella95] M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik,
and M. Waidner, "iKP - a family of secure electronic payment protocols", pp. 89-106, 1995.

[Berg06] D. Bergemann and J. Valimaki, "Information in Mechanism Design.", Proceedings of
the 9th World Congress of the Econometric Society, 2006.

[Bernhard 01] Bernhard Bauer, Jörg P. Müller, James Odell, "Agent UML: A Formalism for
Specifying Multiagent Interaction", Agent-Oriented Software Engineering, Paolo Ciancarini and Michael
Wooldridge eds., Springer-Verlag, Berlin, pp. 91-103, 2001.

[BEN04] M. Benyoucef, R. Keller, "An evaluation of formalisms for negotiations in e-
commerce", in Third Intl. Workshop of Distributed Communities on the Web, Quebec City, Canada, June
2000

[Benyoucef & Rinderle 05] Morad Benyoucef, Stefanie Rinderle: A Model-Driven Approach for the
Rapid Development of E-Negotiation Systems. EMISA 2005: 80-93

[BGW06] C Badica et al., "Using Rules and R2ML for Modeling Negotiation mechanisms in E-
commerce agent systems", in Proceedings of 2nd Intl. conference on Enterprise Application Architecture,
Berlin, 2006

[BH01] C Boutilier, H Hoos "Bidding languages for combinatorial auctions", in Proceedings
of the 17th International Joint Conference on Artificial Intelligence, 2001

[Brand93] S. Brands, "Untraceable off-line cash in wallet with observers (extended abstract),"
in Advances in Cryptology - CRYPTO '93 (D. R. Stinson, ed.), vol. 773 of Lecture Notes in Computer
Science, pp. 302-318, Springer-Verlag, 22-26 August 1993.

[BV04] Buyya R, Venugopal S. "The gridbus toolkit for service oriented grid and utility
computing: an overview and status report," 1st IEEE Int. Workshop Grid Economics and Business Models,
Seoul, 2004

[BY06] R Buyya, C Yeo "A taxonomy of market-based resource management systems for
utility-driven cluster computing", Software – practice and experience, 2006, Wiley InterScience

 [CA05] R Cavallo et al., "TBBL: A tree-based bidding language for iterative combinatorial
exchanges" in Intl. Joint Conferences on Artificial Intelligence, 2005

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 109

[CASS] Aaron Cass et al, "Formally defining coordination processes to support contract negotiation",
Technical report

[CBF02] Cooper B.F, Garcia-Molina H, "Bidding for storage space in a peer-to-peer data preservation
system", Proceedings of the 22nd Int. Conf. on Distributed Computing Systems, Vienna, July 2002, IEEE
CSP, 2002

[CHAO02] K-M Chao et. al. "Negotiating agents in a market-oriented grid, Proceedings of the 2nd
IEEE/ACM Int. Sym. On cluster computing and the Grid, 2002

 [Car02] M. Carman, F. Zini, L. Serafini, K. Stockinger, Towards an Economy-Based Optimisation of
File Access and Replication on a Data Grid, submitted for publication.
http://citeseer.ist.psu.edu/carman02towards.html. 2002

 [Cat05] Catnets Consortium: (Deliverable d3.1: Implementation of additional services for the
economic enhanced platforms in grid/p2p platform: Preparation of the concepts and mechanisms for
implementation (gmm))

[Cha04] Chase, J., Chun, B., Fu, Y., Schwab, S., Vahdat, A.: (Sharp: An architecture for secure
resource peering).2004

[Chau90] D. Chaum, A. Fiat, and M. Naor, "Untraceable electronic cash," in Proceedings of the 8th
Annual International Cryptology Conference on Advances in Crytology, (London, UK), pp. 319-327, Springer-
Verlang, 1990.

[Chev06] Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemaître, N. Maudet, J. Padget, S.
Phelps, J.A. Rodriguez-Aguilar, P. Sousa. Issues in Multiagent Resource Allocation, Informatica 30 (2006)

[CHI03] J Chase et al, "Dynamic Virtual Clusters in a Grid Site Manager", In the 12th IEEE
Symposium on high performance distributed computing, Seattle WA, June 2003

[Chun05] Chun, B.N., Buonadonna, P., AuYoung, A., Ng, C., Parkes, D.C., Shneidman, J., Snoeren,
A.C., Vahdat, A.: Mirage: A microeconomic resource allocation system for sensornet testbeds. In:
Proceedings of 2nd IEEEWorkshop on Embedded Networked Sensors (EmNetsII). (2005)

[Chun04] B. Chun, C. Ng, J. Albrecht, D. Parkes, and A. Vahdat. Computational resource exchanges
for distributed resource allocation, 2004.

[CHUN04] B.N Chun et al, "Resource allocation in federated distributed computing infrastructures",
Proceedings of the 1st workshop on operating system and architectural support for the on demand IT
infrastructure, Boston MA, October 2004

[CHYM06] M Carbone, K Honda, N Yoshida, R Milner, "A theoretical basis of communication centred
concurrent programming", WCD-Working note, 2006

[CK03] Grid Resource Commercialization, Chris Kenyon, in Grid Resource Management: State of
the Art and Research Issues, Editors J.Nabrzyski et al Kluwer, 2003

 [CoTy95] B. Cox, J. Tygar, and M. Sirbu, "Netbill security and transaction protocol," pp. 77-88, July
1995.

[CRA98] P Cramton,"Ascending Auctions" in European Economic Review 42, 1998

[CSS06] "Combinatorial Auctions" edited by P. Crampton, Y. Shalom, R. Steinberg, MIT Press,
Cambridge, 2006

[CWS89] C.W. Smith, "The social construction of value", University of California Press, 1989

[CZA04] K Czajkowski et al., "The WS-Resource Framework", July 2004

[DES03] L de Silva et al., "Extending agents by transmitting protocols in open systems", in
proceedings of 2nd Intl. workshop on challenges in open agent environments, AAMAS03, Melbourne,
Australia, 2003

[Delivrable FT 06] "Component Reliability Extensions for Fractal component model " at
http://kraken.cs.cas.cz/ft/doc/manual/main-2006-05-16.html#id2451615

[Des04] Z. Despotovic, J.-C. Usunier, K. Aberer: "Towards Peer-to-Peer Double Auctioning",
Proceedings of the 37th International Hawaiian Conference on System Sciences, Maui, USA, 2004.
[DR92] Dictionary of economics, Routledge, 1992

[DVS06] de Vries, S et al., "On ascending Vickrey auctions for heterogeneous objects", Journal of
economic theory, 2006

[DWP86] The MIT dictionary of modern economics, David W. Pearce editor, MIT Press 1986

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 110

[EBAY] www.ebay.com
[EYM03] T. Eymann et. al, "Decentralized resource allocation in application layer networks" in
Proceedings of the 3rd Int. Symp. On Cluster Computing and the Grid. Tokyo, Japan, IEEE Computer Society
Press: 2003

[EY05] T Eymann et al. "Catallaxy-based Grid markets", in Multiagent and Grid systems", 1(4)
December 2005

[FECH05] M Feldman, J Chuang, "Overcoming Free-riding behaviour in peer-to-peer systems",
ACM SIGecom Exchanges, 5(4), 2005

[Fer06] Fergus, R., et al., "Removing Camera Shake From A Single Photograph.", ACM Transactions on
Graphics, SIGGRAPH 2006 Conference Proceedings, 2006. 25(3): p. 787-794.

[FIPA02] "FIPA Contract Net Interaction Protocol Specification", SC0029H, 2002

[FK02] I. Foster et al., "The physiology of the grid: An Open Grid Services Architecture for
Distribued Systems Integration", Globus Project, 2002

[FLZ05] Feldman M, Kevin Lai, Li Zhang, "A price-anticipating resource allocation mechanism for
distributed shared clusters", Proceedings of the 6th ACM conference on Electronic Commerce, Vancouver,
Canada, 2005

[Fu03] Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat, "Sharp: an architecture for secure
resource peering," in SOSP '03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, (New York, NY, USA), pp. 133-148, ACM Press, 2003.

[Garc04] F. D. Garcia and J.-H. Hoepman, "Off-line karma: A decentralized currency for peer-to-peer
and grid applications," November 2004.

[Gib73] Alan Gibbard, "Manipulation of voting schemes: A general result", Econometrica,
41:587.602, 1973.

[GJJ77] Jerry Green and Jean-JacquesLaffont, "Characterization of satisfactory mechanisms for the
revelation of preferences for public goods.", Econometrica, 45:427–438, 1977.

[Grosu04a] Grosu, D., Kant, U.: Mercatus: A toolkit for the simulation of market-based resource
allocation protocols in grids. In: SAG. (2004) 176–187

[Gruber 93] Gruber, T.R. “A Translation Approach to PortableOntology
Specification.KnowledgeAcquisition 5: 199-220. 1993.

[HAR98] D Harel, M Politi, "Modeling reactive systems with Statecharts: the statemate approach",
McGraw-Hill 1998

[HaSt05] D Hausheer, B Stiller, "Peermart: the technology for a distributed auction-based market for
peer-to-peer services", in IEEE International Conference on Communications, 2005

[Haus05] D. Hausheer and B. Stiller, "Peermint: Decentralized and secure accounting for peer-to-peer
applications.," in NETWORKING, pp. 40-52, 2005.

[ICH06] D Irwin, J Chase et al., "Sharing Networked Resources with Brokered Leases", USENIX
Technical Conference, June 2006

[IrCh05] D. Irwin, J. Chase, L. Grit, and A. Yumerefendi, "Self-recharging virtual currency," in
P2PECON '05: Proceeding of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems,
(New York, NY, USA), pp. 93-98, ACM Press, 2005.

[James Benson al. 2006] Services and Components Based Architectures, White paper from the Federal
Enterprise Architecture Program Management Office, USA, January 2006.

[Kal03] Kalagnanam, J., Parkes, D.: Auctions, Bidding and Exchange Design. In: Simchi-Levi, Wu,
Shen: Supply Chain Analysis in the eBusiness Area, Kluwer Academic Publishers, 2003

[KEL97] F.P Kelly, "Charging and rate control for elastic traffic." European transactions on
telecommunications, 1997

[KEN94] Kennedy, G. "Field guide to negotiation", Cambridge, Harvard Business School Press, 1994

[Kev04] Kevin Lai, B.A.H., Fine, L.: Tycoon: A Distributed Market-based Resource Allocation System.
Technical Report arXiv:cs.DC/0404013, HP Labs, Palo Alto, CA, USA (2004)

[Kim & Segev] J. B. Kim and A. Segev: A Web Services-Enables Marketplace Architecture for Negotiation
Process Management. Int’l Journal on Decision Support Systems. Special Issue on Web Services and
Process Management 40(1):71-87 (2005)

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 111

[KLAI05] K Lai, "Markets are Dead, long live markets", in ACM SIGecom Exchanges, 5(4),
2005

[KLS04] G Kersten, K.P Law, S Strecker, "A Software platform for multiprotocol e-negotiations",
InterNeg Research Paper, 2004

[KN00] G Kersten, S Noronha, "Are all e-commerce negotiations, auctions?", in Proceedings of the
4th Intl. conference on the design of cooperative systems, France, 2000

[KRAU02] Krauter et al, "A taxonomy and survey of Grid resource management systems for distributed
computing", Software: practice and experience 2002; 32(2)

[Kri02] Vijay Krishna, "Auction Theory", Academic Press, 2002.

[KSS00] Katrina Stanoevska-Slabeva and Beat F. Schmid. Requirements Analysis for Community
Supporting Platforms based on the Media Reference Model. Electronic Markets, 10(4):250–257, 2000].

[KWAS05] Kwasnica, A.M, et al, "A new and improved design for multi-objective iterative auctions".
Management Science 51(3)

[LAI05] K. Lai et al., "Tycoon: An implementation of a distributed, market-based resource allocation
system", Multiagent and Grid Systems – An International Journal 1 (2005)

[Leh02] Lehmann, D., Oćallaghan, L. I., and Shoham, Y. 2002. Truth revelation in approximately
efficient combinatorial auctions. J. ACM 49, 5 (Sep. 2002), 577-602.

[Lieb04] N. C. Liebau, V. Darlagiannis, A. Mauthe, and R. Steinmetz, "A token-based accounting
scheme for p2p-systems," tech. rep., May 2004.

[Li et al. 05] Li Guo, David Robertson and Yun-Heh Chen-Burger, "A Novel Approach for Enacting the
Distributed BusinessWorkflows Using BPEL4WS on the Multi-Agent Platform", Proceedings of the 2005
IEEE International Conference on e-Business Engineering (CEBE’05) Beijing, China, October 2005.
[Li 06] Guo Li, "Enacting a Decentralised Workflow Management System on a Multi-agent
Platform", PhD thesis from the Artificial Intelligence Applications Institute (AIAI), Informatics , The University
of Edinburgh. 2006.

[MCA87] Auctions and Bidding, McAfee and McMillan 1987

[Michael Beisiegel et al. 05] Service component architecture. A Joint Whitepaper by BEA, IBM, Interface21,
IONA, Oracle, SAP, Siebel, Sybase., Novembre 2005.

[Mica02] S. Micali and R. L. Rivest, "Micropayments revisited," in CT-RSA, pp. 149-163, 2002.

[MIL89] Auctions and Bidding: A Primer Milgrom 1989

[MKS03] M Bichler, G Kersten, S Strecker, "Towards a structured design of electronic negotiations", in
Group Decision and Negotiation, 2003, 12(4)

[MS01] M. Strobel, "Design of Roles and Protocols for Electronic Negotiations", in Electronic
Commerce Research, Special Issue on Market Design 1(3) 2001

[MoP05] P Motty, R Philip, "An efficient multi-unit ascending auction", The Review of Economic
Studies, 72(2) April 2005

[Mphq] Mencoder media player, http://www.mplayerhq.hu
[Mur06] Muralidhar V Narumanchi, J.M Vidal, "Algorithms for Distributed Winner Determination in
Combinatorial Auctions.", In Agent-Mediated Electronic Commerce, Designing Trading Agents and
Mechanisms, Springer 2006

 [MuNg01] Y. Mu, K. Q. Nguyen, and V. Varadharajan, "A fair electronic cash scheme," in ISEC '01:
 Proceedings of the Second International Symposium on Topics in Electronic Commerce, (London,
UK), pp. 20-32, Springer-Verlag, 2001.

[Mye81] Robert B Myerson, "Optimal auction design.", Mathematics of Operation Research, 6:58:73,
1981.

[NB06] L Blumrosen, N Nisan, "On the computational power of iterative auctions", in Proceedings of
the 6th ACM conference on Electronic Commerce, Canada 2005

[NiRo99] N Nisan, A Ronen, "Algorithmic mechanism design", in Proceedings of the 31st Annual ACM
symposium on Theory of Computing, 1999

[NISAN] N Nisan, L Blumrosen, "On the Computational power of iterative auctions", Proceedings of
the 6th ACM conference on Electronic Commerce, Canada, 2005

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 112

[NIS06] N Nisan, "Bidding languages for combinatorial auctions", In P.Cramton et al., editors,
Combinatorial Auctions, MIT Press, 2006

[NPC01] M Nowostawski, M Purvis, S Cranefield, "Modelling and Visualizing Agent Conversations",
Intl. Conference on autonomous agents, Quebec, Canada, 2001

[Objectweb]http://fractal.objectweb.org/

[Okam92] T. Okamoto and K. Ohta, "Universal electronic cash," in CRYPTO '91: Proceedings of the
 11th Annual International Cryptology Conference on Advances in Cryptology, (London, UK), pp. 324-
337, Springer-Verlag, 1992.

[OMG99] Object Management Group Negotiation Facility final revised submission

[Parnas 02] David Parnas, The secret history of information hiding. In Software Pioneers: Contributions
To Software Engineering, M. Broy and E. Denert, Eds. Springer-Verlag New York, New York, NY, 399-409,
2002.

[PAR99] D Parkes, L Ungar, "iBundle: an efficient ascending price bundle auction", in Proceedings of
the 1st ACM conference on Electronic Commerce, 1999

[Pat04] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax. World Wide Web Consortium, February 2004.

[Paurobally 03] S. Paurobally and J. Cunningham. "Achieving common interaction protocols in open agent
environments". In Proceedings of the 2nd international workshop on Challenges in Open Agent
Environments, Melbourne, Australia, 2003.

[PCr03] P. Crampton, "Electricity Market Design: the good, the bad, and the ugly", in the Hawaii
International Conference on System Sciences, January 2003

[Philippe Collet et al. 07] Components and services: A marriage of reason. Technical paper France
Telecom, 2007.

[PLA06] Placek et al, "Storage Exchange: a global trading platform for storage services"

[PORT03] D Porter et al., "Combinatorial auction design", Proceedings of the National Academy of
Sciences of the United States of America (PNAS)", 100? 2003

[PP03] P Padala et al. "OCEAN: The Open Computation Exchange and arbitration network, a
market approach to meta computing", in the proceedings of the Intl. Symposium on Parallel and Distributed
Computing, 2003

[PW92] Perry, Wolf, "Foundation for the study of software architecture.", ACM SIGSOFT Software
engineering notes 17(4), 1992

[Rege98] O. Regev and N. Nisan, "The popcorn market: an online market for computational
resources," in Proceedings of the first international conference on Information and computation economies,
(New York, NY, USA), pp. 148--157, ACM Press, 1998

[REIN05] M Benyoucef, S Reinderle, "Towards the automation of e-negotiation processes based on
Web Services", WISE 2005

[Rene04] R. van Renesse and A. Bozdog, "Willow: DHT, Aggregation, and Publish/Subscribe in One
Protocol.", Proc. 3rd Int. Workshop on Peer-To-Peer Systems (IPTPS) 2004.

[Rive04] R. Rivest, "Peppercoin micropayments," in Financial Cryptography (A. Juels, ed.), vol. 3110,
pp. 2-8, 2004.

[Rive96] R. L. Rivest and A. Shamir, "Payword and micromint: Two simple micropayment schemes,"
in Security Protocols Workshop, pp. 69-87, 1996.

[Rive97] R. L. Rivest, "Electronic lottery tickets as micropayments," in Financial Cryptography
 (R. Hirschfeld, ed.), (Anguilla, British West Indies), pp. 307-314, Springer, 1997.

[RLGW06] D Rolli, "A Descriptive Auction Language", in Electronic Markets, 16(1), Febraury 2006,
Routledge

[R2ML] The REWERSE 11 Rule Markup Language

[Rot98] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad, "Computationally
manageable combinatorial auctions.", Management Science, 44:1131--1147, 1998.
http://citeseer.ist.psu.edu/rothkopf98computationally.html

[RUB82] Rubenstein, "Perfect equilibrium in a bargaining model", Econometrica 50(1), 1982

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 113

[Sam06] Samee Ullah Khan and I. Ahmad, "Replicating Data Objects in Large-scale Distributed
Computing Systems using Extended Vickrey Auction," Intl. J. Computational Intelligence, vol. 3, no. 1, pp.
14-22, 2006.

[SAND02] T Sandholm, W Conen, "Preference elicitation in combinatorial auctions", in Proceedings of
the 3rd ACM conference on Electronic Commerce, USA, 2001

[SAND02-1] T Sandholm, "eMediator: A Next Generation Electronic Commerce Server", Computational
Intelligence, 18(4), 2002

[San02] Sandholm, T., Suri, S., Gilpin, A., and Levine, D, "Winner Determination in Combinatorial
Auction Generalizations.", In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS). 2002

[SCA] Service Component Architecture – Building Systems using a Service Oriented Architecture,
Beisiegel

[SCH05] Schnizler et al. "A multiattribute combinatorial exchange for trading grid resources",
proceedings of the 12th research symposium on emerging electronic markets (RSEEM), Amsterdam, 2005

[SCH06] Schwind M, "Dynamic resource prices in a combinatorial grid system", The 8th IEEE
International conference on e-commerce technology (CEC/EEE'06)

[SEG05] J B Baek, A Segev "A Web Services-enabled market place architecture for negotiation
process management", Decision Support Systems 40(1), July 2005

[SETI] http://setiathome.ssl.berkeley.edu/

[ScSc02] Richard E. Schantz and Douglas C. Schmidt, "Middleware for Distributed Systems: Evolving
the Common Structure for Network-centric Applications," in Encyclopedia of Software Engineering, John
Marciniak and George Telecki, Eds. Wiley & Sons, New York, 2002.

[SHCL96] S.H. Clearwater, "Market-based control: A paradigm for distributed resource allocation.",
World Scientific, Singapore, 1996

[SIM04] K.M Sim, "Market-driven agents e-negotiation agents to market-driven g-negotiation agents",
Proceedings of the IEEE Int. Conf on e-technology, e-commerce and e-services, HK 2005

[SMI79] A Smith, "An inquiry into the nature and causes of the wealth of nations." W. Straham and T.
Cadell, 1779

[SNAP] K Czajkowski et al. "SNAP: A protocol for negotiation of Service Leevel Agreements and
coordinated resource management in distributed systems". Job Scheduling Strategies for Parallel
Processing: 8th int. workshop Edinburgh 2002

[SNP05] J Shneidman et al. "Why Markets Could (But Don't Currently) Solve Resource Allocation
Problems in Systems, USENIX, HotOS'05

[SRT05] S. Ross-Talbot, "Orchestration and choreography: standards, tools and technologies for
distributed workflows", NETTAB, 2005

[SW03] M Strobel, C Weinhardt, "The Montreal taxonomy for electronic negotiations", Group
Decision and Negotiations, 12(2) Springer Netherlands, 2003

[SunG] Sun Grid Utility http://www.sun.com/service/sungrid/index.jsp

[VDA00] Van der Aalst, "Making work flow: On the application of Petri nets to business process
management"

[VDA05] Van der Aalst et al., "Life after BPEL?", in Proceedings of Intl. Workshop on Web Services
and Formal Methods (WS-FM), 2005

[Vick61] William Vickrey, "Counterspeculation, Auctions, and Competitive Sealed Tenders", The
Journal of Finance, Vol. 16, No. 1. (Mar., 1961), pp. 8-37.

[Vish03] V. Vishnumurthy, S. Chandrakumar, and E. Sirer, "Karma : A secure economic framework
for peer-to-peer resource sharing," in Proceedings of the Workshop on the Economics of Peer-to- Peer
Systems, June 2003.

[Vri00] Sven de Vries and Rakesh Vohra. "Combinatorial Auctions: A Survey", Kellogg School of
Management, Northwestern University. Evanston, IL, Department of Managerial Economics and Decision
Sciences, 2000.

[WAL54] L. Walras, "Elements of pure economics", Allen and Unwin (1954)

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 114

[WALD92] C.A Waldspurger et al "Spawn: A distributed computational economy". IEEE Transactions on
Software Engineering, 18(2), 1992

[W3CCDL] W3C WS-CDL Working Group. Web services choreography description languages version
1.0

[web 1] W3C’s website at www.w3.org/2002/ws/desc/

[web 2] The ebXML Collaboration Protocol Profile at www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ebxml-cppa

[web 3] The OASIS UDDI technical specification at www.oasis-
open.org/committees/tc_home.php?wg_abbrev=uddi-spec

[Web 4] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

[Szyperski 98] Clemens Szyperski, Component Software, ACM Press/Addison-Wesley, England, 1998

 [WOH03] P Wohed, et al., Pattern Based Analysis of BPEL4WS. Technical report, Department of
Computer and Systems Sciences Stockholm University/The Royal Institute of Technology, Sweden, Nov.
2003

[WOLSKI01] R Wolski, et al, "Analyzing market-based resource allocation strategies for the computational
grid", Intl. Journal of high performance computing applications 2001, (15)3.

[WuWaWe98] P.R Wurman, W.E. Walsh, M.P Wellman, "Flexible double auction for electronic commerce:
theory and implementation", Decision Support Systems, Volume 24, 1998

[WWW98] P.R Wurman, M.P Wellman, W.E Walsh, "The Michigan Internet AuctionBot: a configurable
auction server for human and software agents", in Intl. conference on autonomous agents, 1998

[WWW01] P.R Wurman, M.P Wellman, W.E Walsh, "A parametrization of the auction design space",
Games and Economic Behaviour, Volume 35, 2001

[Yala04] P. Yalagandula and M. Dahlin, "A scalable distributed information management system.",
SIGCOMM '04: Proceedings of the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 379-390, 2004.

[Yang03] B. Yang and H. Garcia-Molina, "Ppay: micropayments for peer-to-peer systems," tech. rep.,
Stanford University, 2003. http://dbpubs.stanford.edu/pub/2003-31.

[ZaP03] F Zambonelli, H. Parunak, "Towards a paradigm change in computer science and software
engineering: a synthesis", The Knowledge Engineering Review, 18(4), Cambridge University Press, 2003

[ZiTi05] Z. Jia, S. Tiange, H. Liansheng, and D. Yiqi, "A new micro-payment protocol based on p2p
networks," in e-Business Engineering, 2005. ICEBE 2005. IEEE International Conference, October 2005.

[Zu01] E Zurel, N Nisan, "An Efficient Approximate Allocation Algorithm for Combinatorial Auctions",
In Proceedings of the ACM Conference on Electronic Commerce, 2001.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 115

Annexes

3.9.1 Market and auction taxonomy

In posted price models, prices are fixed by the provider. Providers may also make special offers such as
discounts for new clients; differentiate prices across peak and off-peak hours. Prices do not vary relative to
the current supply and demand but are fixed over a period of time. Commercial utility service offers such the
[SunG] and [AWSECC] may be considered as posted price models. The limitation of this model is due to lack
of adjustment to fluctuating supply and demand – the behaviour in face of excess demand is not clear.

Bargaining models are employed in bi-lateral negotiations between providers and consumers and do not
rely on 3rd parties to mediate the negotiation. Such systems employ strategies that search for joint gains
[KEN94]; typically each partner applies concessions until a mutually acceptable utility is reached by
alternating offers [RUB82]. Few systems implement bargaining models due to its intrinsic complexity – the
success of the model is based on the ability of a consumer to conduct multiple simultaneous negotiations; in
general Grid applications require a quantity of resources that exceed the capacity of a single supplier.
[SNAP] is a protocol that had been studied in the context of Grids. This protocol addresses the issue of co-
allocation, through simultaneous negotiations. In a wide-area network, resources come and go frequently,
thus node connectivity and service demands vary frequently [CHAO02]. Efficient resource allocation is
aggravated by the volatility of supply and demand [EYM03]. Some projects [CBF02] advocate bartering as
being the most appropriate in co-operative peer-to-peer networks that eschew central entities.

Commodity markets use a third party termed market that sets prices based on aggregated supply and
demand. These are based on well-founded economic models that determine clearing prices – market
equilibrium consists of finding a set of prices and allocation of goods to economic agents such that each
maximizes her utility. Markets clear at this price. The "Tatonnement" procedure [WAL54] is the precursor to a
number of algorithms that have been investigated in the context of markets for computational resources; with
an assumption that the demand for each good is equal to its supply. [WOLSKI01] investigates allocation
based on commodity markets reasoning that Grids allow applications to treat disparate resources as
interchangeable commodities. It determines the price vector of the interrelated commodities at which the
excess demand is zero. This approach does not take into account complementarities in resource requests.

Tender model is one of the most used market protocol. Consumers advertise demands, invite providers to
submit proposals and consolidate all the proposals to select the most favourable. The Contract Net Protocol
[FIPA02] is based on this model is widely used in a large range of electronic negotiations.

An Auction is the process of trading resources by offering them up for bid and selling the items to the
highest bidder. In economic terms it is also a method to determine the value of a resource whose price is
unknown. A large amount of research studies bidding strategies and also mechanisms that are incentive
compatible. Well known auctions that have been applied in the context of resource management systems
are the English, Vickrey, First-price sealed bid, and the Dutch auction [KRAU02]. Combinatorial auctions and
double-auctions are also widely studied in the context of computational resources.

Single item auctions: A vast majority of on-line auction sites implement a variant of the English open-outcry
auction. Here, the auctioneer begins the auction with a reserve price (lowest acceptable price). Auction
continues in rounds with increasing bid prices, until there is no price increase. The item is then sold to the
highest bidder. There are many variations on this auction system. Sometimes, the reserve price is not
revealed. The auctioneer might do this to prevent rings, groups of bidders who promise not to outbid each
other, lowering the final price.
A Vickrey auction is a sealed-bid auction, where bidders submit sealed bids. The highest bidder wins, paying
the price of the second highest bid. This gives bidders incentives to bid their true value. When multiple
identical units are auctioned, one obvious generalization is to have all bidders pay the amount of the highest
non-winning bid. This is known as a uniform-price auction. The uniform-price auction does not, however,

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 116

result in bidders bidding their true valuations as they do in a second-price auction unless each bidder only
has demand for a single unit.

Single item double auctions: Auctions that simultaneously mediate among multiple buyers and multiple
sellers are generically referred to as double auctions. There exist two main institutions for double auctions. (i)
The clearing house or call auction, which clears periodically and (ii) the continuous double auction (CDA).
The CDA matches buyers and sellers continuously as bids arrive. For homogeneous items, a simple CDA
implementation may maintain a queue of bids sorted in increasing order of price and a queue of offers in
decreasing order of price. If an incoming bid is greater than the head of the offer queue it is matched to that
offer, or otherwise inserted in the bid queue. There are different strategies to set the price for that match. The
k-double auction uses a parameter k ∈ (0, 1) that determines how trades are priced. In that case the
transaction price is set at

 price_askk) - (1price_bidk t_price ×+×=

The Mth and (M+1)st double auction computes the Mth and (M+1)st prices where M is the number of sell
bids. Such prices may be computed by sorting the bids in descending order and identifying the Mth and
(M+1)st elements in the list. The prices between Mth and (M+1)st bids inclusively represent the range of
prices for which supply balances demand. [Vick61] demonstrates that the M+1 double auction is incentive
compatible for buyers and M double auction is incentive compatible for sellers.

Combinatorial auctions and exchanges: Call markets are appropriate when bids and asks are bundles of
heterogeneous items. Winner determination problem in call markets depend on different aspects such as
aggregation, resource divisibility and if goods are homogeneous or are heterogeneous. Aggregation can
come from the supplier side or from the buyer side. If no aggregation is allowed then each bid can be exactly
matched to one ask. Divisible goods can be allocated partially. In the case that the bidder wants the entire
good or nothing then its bid is considered indivisible.

For call markets a general linear formulation can be written that captures all the different market structures in
terms of aggregation, divisibility and differentiation.

(3) ji, , 1 0

 (2) B i 1

(1) A j i .

)(max

x

x

qxq

xqpp

ij

ain j
ij

j
Bin i

ij

ijiji

ii

j

∀≤≤

∈∀≤

∈∀≤

−

∑

∑

∑∑

ts

iinA iinB

(1) Indicates that the quantity allocated to buyers cannot exceed the quantity offered by the seller.

(2) Indicates that no more than the entire good can be allocated.

(3) Specifies that goods are divisible and a portion of them can be allocated.

Combinatorial auction [San02, Zu01, Mur06] is an auction where bidders can bid (sell) entire bundles, that is,
combinations of items of goods. This has the advantage of eliminating the risk of a bidder of not being able
to obtain complementary (sum of valuations of items is less than the valuation of the entire bundle) items.
Market participants express their preferences as bundles of resources that need to be matched. CA is
computationally complex. Formally the combinatorial auction problem can be expressed as a special variant
of the weighted set packing problem (WSPP) [Vri00].

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 117

(3) NjM,S

 (2) N 1

(1) M i .

 max

0,1j)y(S,

j)y(S,

1j)y(S,

j)y(S,p

M S

Nin j Sin i

j

∈⊆∀=

∈∀≤

∈∀≤

∑

∑∑

∑∑

⊆

j

ts

jinN SinM

Pj indicates how bidder j values each subset of objects S

(1) Indicates that overlapping sets of goods are never assigned.

(2) Indicates that no bidder receives more than one subset.

(3) Indicates that the subset is indivisible.

The winner determination problem is to label bids as winning or losing so as to maximize the auctioneer's
revenue (under the constraint that each item can be allocated to at most one bidder). This NP-complete
problem can be solved with dynamic programming techniques that are time intensive. With restrictions on
the combinations of bids, winners can be determined in polynomial time – this gives rise to economic
inefficiencies since bidders may not be able bid on their preferred combinations. Search algorithms have
been investigated to find revenue maximizing allocations – these use bid ordering heuristics, such as
ordering bids by their contribution to revenue. A typical bid ordering criteria is the average price per good.

Iterative multi-item auctions
Reasons that motivate the interest in iterative auctions to resolve the resource allocation problem within
wide-area distributed computational systems are:

− That the burden of computation is distributed amongst the participants. Based on the feedback on
the current prices participants reformulate a bid that maximize their local utility

− It is sufficient for bidders to submit bids only on a small number of bundles within each round.

The approach of iterative auctions is also appealing since it is a straightforward way to trade resources: ask
bidders what they would like to buy under certain prices, and increase the prices of over-demanded
resources. Bidders at combinatorial auctions are exposed to computational complexity – they need to
determine the valuations for all the subset of items that they are interested in, and formulate an optimal
bidding strategy given these valuations. Incomplete or incorrect valuations may result in inefficient
allocations or reduce the revenues of the auction. Iterative auctions promote the idea that bidders need to
only submit the necessary valuations based on the feedback that they receive from the auction.

3.9.2 Rationale for market protocol adaptation

The relations between the concepts of [MKS03] negotiations and auctions need to be clarified before we go
further. Traditional auctions are market institutions “with an explicit set of rules determining resource
allocation and prices on the basis of bids from the market agents” [MCA87] while the bids indicate the
bidder’s willingness-to-pay for the object [MIL89]. These represent a multi-lateral negotiation process based
on a fixed-pie assumption [KN00]. In negotiations each party engages in the process to achieve the best
possible settlement for them selves and each party seeks to learn the preference structure of the other so as
to allow for trade-offs and compromises. The issues (negotiation object) over which negotiations are
conducted are composed of multiple criteria and preferences indicate the importance of an objective in
comparison with another (for example that reputation is twice as important as the price).

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 118

[CWS89] argues that “Real auctions are not exclusively or even primarily exchange processes. They are
rather processes for managing the ambiguity and uncertainty of value by establishing social meanings and
consensus.” Auctions focus on determining the value of objects of unknown value while negotiations are
about co-operating to create value. Auctions deal with known and well defined objects while negotiations
may be about defining these objects and collaborating in order to obtain a common definition. Traditional
auctions do not force participants to reveal their utility and preferences – only bids representing the single
issue, that is, the price is communicated.

There are two reasons for which we orient ourselves to the negotiation community to address the question of
multi-auction support:

− Single-issue auctions are unsatisfactory within Grid resource markets. Recent years have seen
efforts to extend traditional auction to address multiple issue auctions and combinatory auctions
including iterative auctions that address preference revelations.

− The experience and results generated from the body of research within electronic negotiation
platforms are convincing approaches that we can apply within the area of auction mechanisms

In markets, principals and respondents are buyers and sellers that negotiate a price – with or without a
mediating process, and goods are allocated at equilibrium prices. The auction protocol repeatedly interacts
with the participants and aims to adaptively elicit their preferences [SAND02] so as find an optimal allocation
that maximizes the social welfare. These protocols proceed by maintaining temporary prices for the bundles
of items and repeatedly querying the bidders as to their preferences between the bundles of resources under
the current set of prices and then updates the prices based on the current set of bids.

In practice a number of mechanisms exist – these differentiate themselves in the process of price formation,
the feedback generated to the participants, when bids may be generated, and the constraints on the bid itself
– the attributes of negotiation (quantity, price) should respect the rules of a given auction design [WWW01],
[SPB06], [CSS06].

State of art

Many translations of BPEL into models supporting analysis and verification (process algebras, Petri nets,
and finite state machines/statecharts) are currently under investigation.

WS-CDL

The web services technologies framework proposes a specification language called WS-CDL which stands
for Web services Choreography Description Languages. [W3CCDL] is an XML-based language that
describes peer-to-peer collaborations of parties by defining, from a global point of view, their interaction (in
term of ordered message exchange) in order to accomplish a common business goal. WS-CDL offers
possibilities to define the cooperation between a set of abstract roles. In this project we investigate the use of
such specification language to define negotiation protocols (roles, interactions, rules termination conditions,
etc.). WS-CDL has a well-defined semantics that may allow an automatic verification of the auction systems
properties such as termination securities, etc. thus can avoid ad-hoc negotiation protocols only well defined
negotiation protocols can be injected in the e-market. WS-CDL is now beyond standardisation by the W3C,
its symbolic XML can be used by the market to manage or by the actors to share a common understanding
of a negotiation protocol.

The WS-CDL describes the protocol by describing the overall interaction between a set of abstract partner
(roles). The roles are defined as the observable behaviour of each involved partner type. Commonly the
partner observable behaviour is expressed using an abstract version of BPEL. Executing a negotiation
protocol consists in composing a set of BPEL Web services in such way to be conform to the WS-CDL
protocol specification.

WS-CDL [W3CCDL] was developed by W3C's WS-CDL working group in collaboration with pi-calculus
experts as scientific advisors. This describes global information flow and their interaction structures, offering
a fully expressive description language for channel based communication.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 119

WS-CDL choreography includes a minimum a set of roles that are defined as some sort of behaviour (i.e. a
WSDL description or Abstract BPEL). The roles descriptions represent the notion of a service in the WS-
CDL. Relationships between those roles are then defined using channels. Channels allow defining the
choreography as a set of typed and unambiguous service connections that enable the various roles to
collaborate in order to achieve some common goal. The global view of the roles interaction is defined by
using structured composition allowing interactions to be combined into sequences, parallel or conditional
activities. The branching condition can be explicit when based on interaction shared data so one can express
some data-oriented behaviours rules (of course the conditional behaviours must involve participant who have
access to the used data).

The WS-CDL language presents a specific interest for the two main reasons:

● A global description of communication behavior arguably offers conceptual clarity. The natural
perspective of a global behavior ensures that the common collaborative observable behavior is not
biased towards the view of any one of the participant. This makes it implementation independent.

● Typed nature allow to identify or to specify specific interaction between partners
● The language can support also global behaviors based on exchanged data values this is a central

point to complete the negotiation mechanism description by specify constraint (or data oriented
rules) on interaction (e.g. a session bid values must be greater than the session open value
otherwise a reject message is send back to the participant).

The pi-calculus [CHYM06] experts involved in the WS-CDL working group propose a global description
language including, but not limited to, WS-CDL. They have established a well defined operational semantics.
They propose formal semantics of a global description language (and by the same to WS-CDL) by an End-
Point Project (EPP) to typed pi-calculus. The intuition behind the EPP is that the semantic of a global system
behaviors description is given by a sound and complete set of pi-calculus specification called endpoints --
one for each role in the choreography, in the sense that all and only globally described behavior is realized
as communications among those endpoints specifications. WS-CDL, being based on the pi-calculus, can be
used to show that participant will behave correctly based on advanced static behavioral type checking. From
a practical side, the EPP notion also leads as well to significant engineering usage from the global
description:

Code generation: Given a global description of a negotiation protocol with full algorithmic details, one can
create a (perhaps multi-language) complete distributed application by projecting it to each of its endpoints.

Compatibility checking: this point is consequence of the previous Point. Given a WS-CDL protocol
description an agent with a specific behavior can check whether its behavior is compatible to play a desired
role is the negotiation protocol. The compatibility checking can be performed on the fly (on line) for dynamic
instantiation.

Model checking : Both the global description or the an EPP can be translated to one of the pre-cited formal
model (FSM or Petri nets see next section) in order to perform model checking, to verify negotiation protocol
properties.

Statecharts and Petri nets

A finite state machine (FSM) is a model of behaviour composed of finite states, transitions between those
states, and actions. FSM may be represented using a state diagram. The states of the FSM are the states of
the negotiation and its input alphabet is the set of messages sent by the participants. The process flow of the
negotiation maps into transitions of the FSM. The messages take the negotiation from one state to another.
[BEN04] argues that FSM is not sufficient to capture a negotiation process and that it needs to be
complemented to answer specific questions concerning the rules and configuration of a given auction
protocol such as what is the minimum bid, what is the information that needs to be conveyed to participants;
moreover [CASS] argues that FSM is mainly useful to classify negotiations. They describe the changes in

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 120

response to events, but fail to describe the order of events. Moreover this notation does not provide an
executable form.

Statecharts [HAR98] are gaining more widespread usage since this allows modelling activities as part of a
state and to represent concurrent state diagrams. The latter is essential since a negotiation protocol may be
considered as the interaction between multiple FSMs. [REIN05] proposes a service oriented negotiation
framework where the Statecharts are used to specify protocols. The transitions represent the act of sending
and receiving messages – the auctioneer or mediator process waits for an incoming message sent by one of
the participants, or by itself sends a message or also that of assignment of a process variable. They use a
web service orchestration language based on a reduced subset of BPEL4WS and establish a complete
mapping from Statecharts to BPEL4WS. Secondly they also identify commonly used patterns within the
models and elaborate corresponding BPEL4WS patterns (such as choice pattern, a pattern consisting of a
sequence of message reception and emission etc.). A mapping algorithm then traverses the Statechart
graph and maps them to associated BPEL4WS patterns. They have developed a first prototype based on
Oracle technology Oracle JDeveloper 10g.

A Petri net also known as place/transition net is one well used mathematical tool to represent distributed
systems. A Petri net has place nodes, transition nodes and directed arcs connecting places with transitions.
Business process management systems are driven by models of processes and organisations. The process
perspective describes the flow of control or the ordering of tasks. [VDA00] promotes the usage of Petri nets
to describe work flows. Petri nets allow graphical yet precise specification, offer a number of analysis
techniques, and treat states as first class citizens.

[DES03] selects the Petri Net notation to represent local protocols due most of all its ability to represent
concurrency in conversations. Petri nets are used to represent the behaviour of each role within the
negotiation protocol. This work extends Petri net models to represent external events – messages to send
and receive and also internal actions -- useful for modelling local policies and strategies of a participant.

A conversation is a whole Petri Net composed of a set of subnets where at least one role is the privileged
initiator. Petri net based approach has nevertheless its limitations – a different net has to be assigned to
each agent role, raising questions about how the entire protocol is inferred. [NPC01] presents a layered
approach where over and above the net representing the actions of a single role, a conversation layer
represents the ongoing sequence of messages exchanged between participants.

We need also to cite AUML [BAU99] for Agent UML that extends UML with agent related modelling
techniques in particular to represent interactions between agents. It specifies interactions in the form of a
UML sequence diagram with extensions. An interaction protocol consists of a number of lifelines and
messages are depicted as labelled arrows between lifelines. The lifeline indicates flow of time. Even though
AUML has advantages due to the visual representation, representation of global views of multi-lateral
interactions requires substantial efforts.

3.9.3 Design and Methodology

This section describes the rationale and the technological choice for the design of the Grid4All market place
services

Requirements

The Grid poses new challenges in terms of programmability, interoperability, code reuse and efficiency.
These challenges mainly arise from the features that are peculiar to Grid, namely heterogeneity and
dynamicity as has been discussed in Section 4. Grid4All virtual organizations trade grid resources and
services in electronic marketplaces. In this chapter, we focus on the design approach of markets framework
for Grid4All.

We first of all need to identify common domain-specific elements of a market process to facilitate the design
and implementation of different market behaviours. The design should facilitate reusability, extensibility, and
facilitate development of different market mechanisms.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 121

Another requirement for Grid resources market is to support the possibility to externalize services and allow
participants to interact with several external infrastructure services (such as discovery services, payment,
banking, logging, etc.). Thus, the market framework needs also to ensure dynamicity and interoperability
between participants, market services and external ones using standardized and flexible technology.

Finally, in order to enable market participants to publish and discover the traded Grid resources, they need to
have at their disposal a formal and semantic description of these resources. This resource description should
also support and ensure a common understanding among the trade participants and be able to entitle tools
for assisting resource storing and matchmaking (to discover markets, resource availability, etc.).

In the next sub-sections, we will present some proposed solutions that can meet the previous requirements,
notably Component Based Software Engineering (CBSE) and Service Oriented Architectures (SOA) for
designing the market framework and ontologies for modelling Grid resources.

Component-based approach

A component-based approach meets the previous requirements. The advantages are manifold. Market
trading mechanisms can be very complex. Their complexity can be tamed by combining several specialized
software components. Component-based approach promotes distributed and autonomous development as
well as the reuse of the developed software components for designing new market mechanisms and higher
level market services.

Each component has a specified role within the market process, that is, corresponds to different functionality,
either market specific or that of a generic infrastructure service. Components encapsulate distinct aspects of
the market that may be customized and replaced independently. Due to these advantages, a component-
based approach will be used for the design of the Grid4All marketplace. This section, gives first the definition
and the main features of components. The possible bridge between components and grid computing is
presented after as well as some well known component models.

a. Definition and features
Component-based Software Engineering (CBSE) is concerned with the development of reusable parts, the
development of systems from these parts (components), and system maintenance and improvement by
means of components replacement or customization. According to [Szyperski 98], a software component is a
“unit of composition with contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third parties".

The main features of component-based development are the following:

• Information hiding: Every module hides an important design decision as well as its implementation
behind a well-defined interface which does not change when the design decision or the
implementation changes [Parnas 02].

• Context independence: Components are easily transferable into different application contexts. As a
consequence, components need to be self-contained software elements, independent from any
other components.

• Implicit invocation: To render components exchangeable, components may ideally not address one
another directly, but through an indirection mechanism.

b. Component based approach for Grid Computing
In the context of Grid Computing characterized by highly dynamic, heterogeneous and networked target
architectures, it is required that the programming paradigm provides several levels of autonomic
management and take care of the functional and non functional features of the architecture building blocks.

Components suitably meet these requirements as they offer the possibility of a reactive control, hierarchical
management and contractual specification of the interfaces. Moreover, for the design of a Grid oriented
framework, the composing component need to be bound in order to link their provided and required
functionalities. To do so a component-based architecture can be described using an ADL (Architecture
Description Language) that describes the component system using composition and binding of sub-
components. ADL decouples functional program development from the tasks needed to deploy, run and
control the components on the component framework.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 122

c. Component models
We present an overview of Fractal [Objectweb], the component model that we have used to specify the
market mediator (or auctioneer) process.

• Fractal [Objectweb] is a modular and extensible component model that can be used with various
programming languages to design, implement, deploy and reconfigure systems and applications. It
enforces separation of concerns, and separation between interfaces and implementation. Components
are runtime entities and the interfaces are the only interaction points between components.
Dependencies between components are expressed by specifying both the required interfaces and
offered interfaces. Fractal provides the notions of a membrane and content. Membranes permit
exercising control over the contents of a component; membranes are implemented as a set of
controllers. A Fractal component can export this interfaces to allow introspection of their external
features. Four default controllers are specified: binding (bind, unbind client interfaces), attribute (read
and write component properties), content (add and remove sub-components), and life-cycle (start, stop
interfaces belonging to a component). A second important aspect of Fractal is that the model is
recursive. A component may be shared by multiple enclosing components.

The main goals of the Fractal component model are facilitate development and deployment of complex
software systems and provide autonomic self-management capabilities. These goals motivate the main
features of the Fractal model: composite components (to have a uniform view of applications at various
abstraction levels), shared components (to model resources), introspection capabilities (to monitor a
running system), and configuration and reconfiguration capabilities (to deploy and dynamically
reconfigure an application).

Service-oriented architecture for market places

Why SOA for Grid resources markets?

Grid resources markets involve different actors which interact in order to achieve trade of these resources.
Trade relies on infra-structure services such as information services for dissemination of market situations,
discovery services, payments, agreement, etc. That's why, in addition to the component-based architecture
for the Grid4All marketplace, a service-oriented approach is also needed. In fact, the use of services for the
design of the marketplace helps meeting the following requirements:

- Tolerate and respect the dynamicity negotiating participants relationships between,
- Allow interoperability between the market services and the external ones,
- Use a standardized and flexible integration technology that no organization can afford to ignore if

it wants to interact with its partners [SEG05].

In a nutshell, for the development of the Grid4All marketplace, the coexistence of a component-based
approach and service oriented architecture (SOA) seems to be suitable. The advantage of combining both
approaches is manifold, particularly as web services provide the means for software components to
communicate with each other on the web using platform and language independent means.

In the next sub-sections, we present the definition and principals of services, techniques and standards of
SOA. Next, we present some state of arts about the convergence between SOA and components. At the
end, we introduce the point of view considering markets as business-oriented processes and present some
state of arts about business processes modelling languages.

Definition and principals

Service orientation is a paradigm for organizing and utilizing distributed capabilities that may be under the
control of different ownership domains. It provides a uniform means to offer, discover, interact with and use
capabilities to produce desired effects consistent with measurable preconditions and expectations.

SOA (Service Oriented Architectures) can be regarded as an information systems architecture that enables
the creation of applications that are built by combining loosely coupled and interoperable services. These
services interoperate based on a formal definition (or contract) that is independent of the underlying platform
and programming language. The interface definition hides the implementation of the language-specific

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 123

service. SOA-based systems can therefore be independent of development technologies and platforms
(such as Java, .NET etc).

The development, maintenance and usage of SOA are conducted according to the following guiding
principles:

• Reuse, granularity, modularity, composition, componentization and interoperability,
• Compliance to standards,
• Service identification and categorization, provisioning and delivery, and monitoring and tracking.

SOA techniques and standards

In SOA architectures, a service is a contractually defined behaviour that can be implemented and provided
by a component web services as well as J2EE and .NET components. Each service has self-describing
interfaces in platform-independent XML documents. Service descriptions consist of the technical parameters,
constraints and policies that define the terms to invoke the service. Each service should include a service
definition in a standardized format such as W3C’s Web Services Description Language (WSDL) [web 1] and
ebXML’s Collaboration Protocol Profile [web 2].

Communication among consumers and providers or services typically happens in heterogeneous
environments -with little or no knowledge about the provider- using formally defined messages via XML
Schema (also called XSD [web5]).

Services are maintained in the enterprise by a registry that acts as a directory listing. The advertising and
discovery components of SOA can be implemented using a registry/repository or a services directory. The
most relevant standard for registry and directory implementations is the Universal Description and Discovery
Interface (UDDI) [web 3].

Each SOA service has a quality of service (QoS) associated with it. Some of the key QoS elements are
security requirements, such as authentication and authorization, reliable messaging, and policies regarding
who can invoke services.

Convergence between SOA and components

CBSE is used to implement the business components; SOA is used to integrate these components by giving
an agglomerative view. Within Grid4All, we use component models to design market place services and
envisage orchestrating the components using BPEL4WS. We need to understand the integration of CBSE
and SOA. Two relevant approaches to integrate the two technologies are SCA and Fractal SCA.

• Service Component Architecture (SCA) [Beisiegel 05] is a set of specifications which describe a model
for building applications using component-based model for Service-Oriented Architecture. SCA divides
up the steps in building a service-oriented application into two major parts whose result may be a mixture
of concepts and mechanisms that are not always homogeneous: (1) The implementation of service
components which provide services and consume other services. (2) The assembly of sets of
components to build business applications, through the wiring of service references to services

• Fractal WS [Collet 07] is an implementation of services compliant with the Fractal component model in
addition to some mechanisms to export components as services: Fractal Toolkit. It is proposed for
making compatibility between Fractal components and the web services technology. It transforms
interfaces the Fractal components interfaces into web services in order to become accessible through
web services protocols. Fractal WS makes also web services accessible inside an assembly of Fractal
components using a dedicated proxy component.

From components and services to processes

The Business Process Execution Language for Web Services [Web4] is a notation for specifying business
process behaviour based on Web Services. Processes in BPEL4WS export and import functionality by using
Web Service interfaces. Business processes can be described in two ways: (1) Executable business
processes model the behaviour of a participant in a business interaction. (2) Business protocols use process
descriptions that specify the mutually visible message exchange behaviour of each of the parties involved in
the protocol, without revealing their internal behaviour. The process descriptions for business protocols are
called abstract processes. BPEL4WS is meant to be used to model the behaviour of both executable and
abstract processes. It provides a language for the formal specification of business processes and business
interaction protocols. By doing so, it extends the Web Services interaction model and enables it to support
business transactions. BPEL4WS defines an inter-operable integration model that should facilitate the
expansion of automated process integration in both the intra-corporate and the business-to-business spaces.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 124

BPEL4WS fits into the core Web service architecture since it is built on top of XML, XML Schema, WSDL,
and UDDI.

By using BPEL4WS, market negotiation mechanism (auction for example) may be specified as a service that
can be executed by an orchestration engine. A market negotiation protocol for trading grid resources is
modelled as a business process that executes a set of activities performed conforming to a set of rules
(negotiation rules). These negotiation processes are asynchronous and may also be long-running [Seg03];
partners are not always connected, and the business negotiation can last a while until reaching a final
agreement. Market negotiation processes involve coordinated interactions with other internal and external
services. An example of an internal service may be that of optimization engine software required to solve the
combinatorial auction problem that is expressed as a linear program. An external service may be the
information service to which the market process disseminates information when final prices have been
determined.

Thus, market negotiation protocols are ideally expressed in terms of executable templates that have some
generic APIs. These templates can be implemented as executable business processes using BPEL4WS
[Web 4] which is a standard for process modelling based on the Web Services.

Participants may discover the service, and interact with it by sending SOAP messages. From the point of
view of participants (buyers, sellers, and other market place service), the BPEL process is seen as a Web
Service. Section 8 describes in detail the service operations and messages that are accepted by these
operations.

Implementation of market mechanisms using BPEL4WS provides interoperable interfaces to interact with
heterogeneous participants. Each process is exposed to the entities taking part in the negotiation process as
generic Web Services APIs (bid, query, etc.) that correspond to negotiation messages.

Ontologies for Grid resources description

In the context of Grid4All project, grid resources are heterogeneous and geographically distributed with
varying availability and variety of usage for diverse users at different times. In order to enable trade of these
resources (computational resources, storage resources) between providers and consumers, they need to be
modelled using a formalism that allows their semantic description, for their publishing, storing, and discovery.
Besides, the required resource description should support and ensure a common understanding (about
resources availability, location, performance, economic characteristics, etc.) among the trade participants as
well as the different services (such as resource advertising, retrieving, etc.) contributing to their
interoperability.

To enable participants in a trading to share a semantic description of grid resources via a formal language an
ontology-based approach seems to be suitable.

Ontology, a definition

An ontology [Gruber 93] is a formal explicit description of concepts in a domain of discourse (concepts),
properties of each concept describing various features and attributes of the concept (roles or properties), and
restrictions on slots (role restrictions). Ontology is used in order to:

• Share common understanding of the structure of information among people or software agents

• Enable reuse of domain knowledge

• Make domain assumptions explicit

• Separate domain knowledge from the operational knowledge

• Analyze domain knowledge

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 125

How ontologies meet our requirements?

The Grid4All resources ontology aims at the description –at an abstract level- of the traded resources
(physical resources, computational resources, etc.). This ontology has to sketch out the principal classes and
properties of the traded grid resources.

Resources are traded by applying economic models: They are traded as goods, in markets, based on the
supply and demand law. An explicit and commonly agreed formal description of resources and their
exchange (trading) among information consumers and resource providers is needed in highly distributed and
heterogeneous Grid environments.

This shared description should support and ensure a common understanding (communication of knowledge
about resources availability and needs) of members (resource consumers and providers) within a market.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 126

4. Semantic discovery – state of art, first architecture

In a market-based environment as envisaged by the Grid4All project, grid resources and services are made
available through peer-initiated markets in a distributed manner. The Semantic Information System (SIS)
within Grid4All will provide a matching service between peers willing to offer or use resources and services
within a Virtual Organization (VO). Grid4all adopts a distributed market model where (resource) consumers
and providers negotiate on certain traded entities in auctions initiated by providers, consumers or by third
party entities. In order for an auction to take place and given the distributed nature of market creation and
management, markets must be discovered by potential participants. A Semantic Information System (SIS)
will be a component of the Market-Based Resource Management System (RMS) of Grid4All. The SIS will
provide a directory of resources, services and markets, that is, a registry of descriptions of resources and
services. By searching though this registry, peers can allocate available resources and services and
negotiate through forthcoming or ongoing markets. Markets themselves can be advertised. Provisional
provider/consumer software agents and human users will be able to query the SIS registry for available
service descriptions that match certain attributes and criteria concerning price, time of availability, quality of a
service, etc. The query results shall be ranked according to the capacity of resources, the preferences and
intentions of providers and consumers in a selection process.

The SIS will use Semantic Web technologies to facilitate the discovery, matching and selection of services
and resources. Semantic descriptions of entities to be discovered shall be stored into the registry. These
descriptions will be instances of an ontology that will be developed and used within the SIS. Furthermore,
semantic technologies are used for querying and retrieving information from the system. The system will be
implemented as a web-based portal.

SIS will implement a service discovery mechanism within the Grid4all. It will provide a registry for performing
queries in the purpose of discovering available services that fulfill certain criteria imposed by peers within the
Grid4All environment. These services are:

• services that expose grid hardware and software resources;

• market services, where grid resources and services are traded;

• services that provide information about other peers that offer or request tradable goods within the
Grid4All.

The SIS is not accountable for

• the creation, management and monitoring of markets within the Grid4All environment;

• the creation, management and scheduling of grid services within the Grid4All;

• the invocation of discovered services and matched markets.

The rest of this document aims at specifying the requirements and provide a state of the art of existing
approaches related to the Semantic Information System (SIS). In Section 4.1 some background knowledge
is provided related to grid resources, grid services and grid economy. In the following Section 4.2, the
requirements of the SIS portal are specified, together with a description of available systems for resource
and service discovery based on Semantic Web technologies. Section 4.3 describes the requirements and
state of the art for the ontology for the description of services and resources, for the semantic matching
related to resources and services and for semantic-based service discovery. A description of requirements
and related work on the selection service follows in Section 4.5 and the document ends with some
conclusions.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 127

4.1 Background Knowledge

4.1.1 Grid Resources

Solving the problem of describing resources/services in a grid, demands considering the dynamic nature of
the system (as nodes join or leave the system), of the resources themselves (as these are being allocated to
services, being de-allocated, being registered as new nodes appear, or de-registered as nodes leave),
specifying resources aggregation (provided by a VO as a whole) and partitioning (for security reasons) at
different levels, so as to preserve site autonomy, support policies extensibility, co-allocation of resources
and on-line control of the system functions, in conjunction to effectiveness and system efficiency.

Aggregating resources concerns uniting different types of resources to a single whole that can be utilized for
supporting one or more services. Aggregation can happen at the level of a single node, at a single VO or at
multiple VOs. Pooling of resources concerns gathering a set of available resources, rather than aggregation
to a single whole. Partitioning concerns the virtualization of resources (i.e isolation among the jobs and the
required resources for fair resource management and secure operation). Autonomy refers to the fact that
resources are typically owned and operated (via services) by different organizations, in different
administrative domains (a VO is considered to form an administered organization). Therefore it is difficult to
expect commonality in an acceptable use policy, preferences on sharing resources etc between users and
VOs.

Policy extensibility arises because VOs operate on a range of domains, each with its own requirements. Co-
allocation arises because many applications/services have resource requirements that can be satisfied only
by using resources simultaneously at different sites. The on-line control problem arises because substantial
negotiation can be required to adapt application/service requirements to resource availability, particularly
when requirements and resource characteristics change during execution.

Effectiveness concerns the management of resources (status update, monitoring, sampling on their provision
and usage, planning, allocation and de-allocation, registering and de-registering, scheduling, discovery,
policies adaptation and application requirements etc) so as virtual organizations to provide reliable and
trustworthy services. Efficiency concerns the efficiency of resources’ management tasks in VOs.

Considering the above issues on resource management in the context of distributed computing systems and
virtual organizations, the major issues that we deal with are

� “what types of resources/services have to be described”,

� “what are the properties/characteristics of resources/services that have to be represented and be
exploited during reasoning and query-answering”,

� “what description facilities exist for the types of resources/services we have to consider and what
reasoning can be performed for supporting effective and efficient management of resources in these
settings”.

A resource may be either continuous (e.g. time) or discrete (e.g. a unit of storage space). This “physical”
property will typically influence how the resource is being traded within a Grid economy, although this need
not be the case. For instance, a continuous resource will typically be regarded as being (infinitely) divisible.
Still, in a particular negotiation setting, it may only be possible to buy or sell a certain quantity of such a
continuous resource as a whole. Individual units of a discrete resource, however, are always indivisible. In a
setting with several continuous resources, a bundle can be represented as a vector of nonnegative reals (or,
alternatively, numbers in the interval [0, 1] to denote the proportion of a particular resource owned by the
agent receiving the bundle). Bundles of discrete resources can be represented as vectors of non-negative
integers. If there is just a single item of each resource in the system, then vectors over the set {0, 1} suffice.
A continuous resource (e.g. storage space) may be discredited by dividing it into a number of smaller parts
to be traded as indivisible units.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 128

As discussed above, resources may be treated as being either divisible or indivisible. While being either
continuous or discrete is a property of resources themselves, the distinction between divisible and indivisible
resources is made at the level of the allocation mechanism.

A sharable resource can be allocated to a number of different users at the same time. A resource may be
consumable in the sense that the agent holding the resource may use up the resource when performing a
particular action. For instance, fuel is consumable. Also, resources may be perishable, in the sense that they
may vanish or lose their value when held over an extended period of time.

We call static resources the resources that do not change their properties during a negotiation process. In
general, resources cannot be assumed to be static. It is often assumed that they are (that is, those resources
are neither consumable nor perishable). The rationale behind this stance is the fact that the negotiation
process is not really concerned with the actions agents may undertake outside the process itself. That is,
even if a resource is either consumable or perishable, we can often assume that it remains static throughout
a particular negotiation process.

Distinguishing between single-unit and multi-unit resources, in a multi-unit setting it is possible to have many
resources of the same type and to refer to these resources using the same name. Suppose, for instance,
there are a number of bottles of champagne available in the system, but one cannot distinguish between
these bottles. In a single-unit setting, on the other hand, every item to be allocated is distinguishable from the
other resources and has a unique name. The differentiation between single- and multiunit settings is a matter
of representation.

At a sufficiently high level of abstraction, a service allocation problem can be reduced to a resource
allocation problem. Indeed, services may be considered resources to which agents assign a negative utility.
However, an important characteristic of services as opposed to resources is the fact that services are often
coupled with constraints regarding their coherent combination. For instance, a service may require the
execution of another service as a precondition.

4.1.2 Grid Economy

Grid computing environments can be based on competitive economic models that provide algorithms/policies
and tools for more effective and dynamic resource sharing/allocation [5]. Resources should be able to be
traded within e-Markets (by resource providers to resource consumers).

The allocation of resources within Grid computing environments, apart from “conventional style” system-
centric scheduling and resource management approaches where a scheduling component decides which
jobs can be executed at which site (based on certain static cost functions), can be based on several
economic models that provide algorithms/policies and tools for more effective and dynamic resource
sharing/allocation. These models, more often, are price-based (as opposed to bartering/exchange-based),
where the resources are priced, based on demand, supply, value, and the wealth of economic systems.

Most existing Grid computing environments treat resources as if they all cost the same price even when this
is not the case. The end user does not want to pay the highest price but wants to negotiate a particular price
based on the demand, value, priority, and available budget. In an economics approach, the scheduling
decision is not done statically by a single scheduling entity but directed by the end users requirements.
Whereas a conventional cost model often deals with software and hardware costs for running applications,
the economic model primarily charges the end user for services that they consume based on the value they
derive from it.

Trading based on the demand of users and the available resources is the main driver in the competitive,
economic market model: A single user is in competition with other users and resource owners with Grid
service providers. In this report we focus on the trading of resource entities in a Grid4All market.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 129

Numerous economic theories including microeconomics and macroeconomics have been proposed in the
literature. Some of the commonly used economic models for selling goods and services that can be
employed as service price negotiation protocols in Grid computing include [5]:

• Commodity Market Model: resource providers specify their service price and charge users
according the amount of resource they consume.

• Posted Price Models : similar to the commodity market model, except that it advertises special
offers in order to attract (new) consumers to establish market share or motivate users to consider
using cheaper slots.

• Bargaining Model: resource consumers (or their brokers) bargain with providers for lower access
price and higher usage duration. Both consumers and providers have their own specific objectives
and they negotiate with each other as long as their objectives are met.

• Tendering/Contract-Net Model : the most widely used models for service negotiation in a
distributed problem solving environment. It is modelled on the contracting mechanism used by
businesses to govern the exchange of goods and services. If the provider is unable to provide a
satisfactory service or deliver a solution, the Grid resource broker can seek other providers for the
service. A task however might be allocated to a less capable provider if a more capable one is busy
at allocation time.

• Auction Model: supports one-to-many negotiation, between a service/resource provider (seller)
and many consumers (buyers), and reduces negotiation to a single value (i.e., price). The auctioneer
sets the rules of auction, acceptable for the consumers. Auctions basically use market forces to
negotiate a clearing price for the service. Auctions can be conducted as open or closed depending
on whether they allow back-and-forth offers and counter offers. The consumer may update the bid
and the provider may update the offered sale price. Depending on these parameters, auctions can
be classified into four main types:

• English auction (first-price open cry): all bidders are free to increase their bids exceeding
others offers. When none of the bidders are willing to raise the price anymore, the auction
ends, and the highest bidder wins the item at the price of his bid.

• First-price sealed-bid auction: each bidder submits one bid without knowing the others’ bids.
The highest bidder wins the item at the price of his bid.

• Vickrey (Second-price sealed-bid) auction: each bidder submits one bid without knowing the
others’ bids. The highest bidder wins the item at the price of the second highest bidder.

• Dutch Auction: the auctioneer starts with a high bid/price and continuously lowers the price
until one of the bidders takes the item at the current price.

(Note that for reverse auctions, the roles of provider and consumer is reversed.)

• Bid-based Proportional Resource Sharing Model : quite popular in cooperative problem-solving
environments like clusters (in single administrative domain). In this model, the percentage of
resource share allocated to the user application is proportional to the bid value in comparison to
other users’ bids. The users are allocated credits or tokens, which they can use for having access to
resources. The value of each credit depends on the resource demand and the value that other users
place on the resource at the time of usage.

• Community/Coalition/Bartering Model : A community of individuals shares each other’s
resources to create a cooperative computing environment. Those who are contributing their
resources to a common pool can get access to that pool. It can involve credits that one can earn by
sharing resource, which can them be used when needed.

• Monopoly/Oligopoly : a single provider dominates the market and is the single provider of a
particular service. Users cannot influence the prices of services (no possibility to negotiate prices)
and have to choose the service at the price given by the single provider who monopolized the Grid
marketplace. In some cases, a small number of providers (instead of one) dominate the market and
set the prices (oligopoly).

4.1.3 Services Description

WSRF (Web Service Resource Framework) [48] specifications, which have recently been adopted by the
Grid community, provide a common basis between Grid and Web services. Thus, in a Grid setting, resources

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 130

are exposed through Web services which act as their interface. In Web Services community, a Web service
is selected after performing a matchmaking process on services’ capabilities. Service capabilities are the
actions performed or the information delivered by the web service. Unfortunately, services matchmaking is
not adequate in cases where grid resources (hereafter resource) need to be discovered. In such cases,
resources matchmaking mechanisms arises which intent to perform matchmaking on resources
characteristics. As already explained, resource characteristics are the set of attributes of a resource along
with their values. For example, a Hard Disk resource has attribute “capacity” and “model” which have values
“50GB” and “SQ-99998”, respectively. Therefore, the matchmaking process in a grid setting that adopts the
WSRF specifications is characterized as a resource/service matchmaking process. Moreover, an indicated
difference between Web and Grid services is that the latter ones are potentially transient and stateful, in
contrast to web services that are stateless and non-transient.

A typical grid resource/service matchmaking mechanism involves 3 steps:

1. Resource/Service Advertisement . An offer of a grid trade-able resource is made available to the grid
via a registry mechanism (resource/service repository). The description of this resource is named
resource advertisement.

2. Resource/Service Request . A request for a particular trade-able resource/service is posed to the grid.
The request is an expression based on the context of the trade-able resource that will be evaluated in
the next step. For example, an expression could be: a Compute Node with more than 2 CPUs of at least
2Gflops each one and a Hard Disk of 80Gbs.

3. Resource/Service Matching and Response . The request is evaluated by the matchmaking mechanism
which responds with a list of resources/services that have been matched in some degree (this is relative
to the method used for the matchmaking).

Existing approaches for the description and matchmaking of grid resources is achieved on syntactic level
based on simple attribute-value pairs with limited flexibility to what can be described. Although, OGSA
facilitates interoperability and uniform access to Grid services, OGSA-compliant services are described on
syntactic level only.

The Web Services Community aiming to overcome these shortcomings incorporates semantic information to
Web services’ description resulting in Semantic Web Services technology [45]. Hence, ontologies are
exploited for services capabilities understanding in order to bootstrap service matchmaking (selection),
composition and monitoring of services. The matchmaking is performed on inputs and outputs parameters of
the advertised and requested descriptions of web services based on the available ontologies. There are
three main approaches that aim to incorporate semantics in Web services.

1. OWL-S. It is an agent oriented approach to SWS that has been evolved from DAML-S [11]. It provides
an upper level ontology (namely OWL-S) for describing the capabilities of Web services in unambiguous,
semantically enriched and computer interpretable way.

2. Web Services Modeling Framework [46]. It provides the WSMO [47] conceptual formal model for the
description and annotation of all the relevant aspects of services. This approach introduces the notion of
mediation between the components realized in an e-commerce application. The approach is consistent
with the principle of maximal decoupling and scalable mediation.

3. WSDL-S. This approach is the evolution of the METEOR-S [28] project aiming at allowing semantics
descriptions of Web services on the ground level. Hence, this approach does not separate service
grounding from service profile. The WSDL is augmented with semantics resulting in WSDL-S language.
This is performed by linking the WSDL’s elements to concepts of externally defined ontologies.

The last one is a bottom-up approach, providing semantic at the lower level of a service, in contrast to the
first two one which characterized as top-down approaches. In the literature, only the presented approach
implements the bottom-up incorporation of semantics in Web services.

In the following lines we place important questions regarding the matchmaking process:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 131

i. Does the resource request and offer use a common-shared ontology for their description? If this
is not the case then what type of techniques and methods are used to overcome this type of
heterogeneity?

ii. Is the matchmaking process performed only on IOEP service’s attributes? If this is not the case
what other information is used. For example, quality of services information or usage polices can
be exploited in matchmaking.

iii. How ontology is used in the matchmaking process? For example, is it used
a. as common vocabulary for describing resource requests and offers,
b. for inference and what type of inference,
c. queries (e.g. SPARQL) expressed on ontology,
d. in any other way

iv. What degree of matching is supported? For example, exact match (true or false on matching) or
confidence match (range of match) etc.

v. Is uncertainty on service’s attribute values handled? For example, a service request may not
specify values on some attributes.

vi. Does the matchmaking process support any matching preferences? For example, restriction on
the number of result matches etc.

4.2 Semantic Information System Requirements and related work

This section describes the functional and the non functional requirements of the Semantic Information
System. It describes the relationship of the SIS with other components in the Grid4All, the types of entities
(actors) that interact with the system, the functionality that the system exposes to its users and the
characteristics of this functionality. The description focuses on the interaction of the SIS with its users rather
than the description of the information that is exchanged during SIS-user interaction. This information is
described in detail in Section 4.3.4 where the ontology and the matchmaking process requirements are
presented.

4.2.1 Semantic Information System Requirements

Relationship with the Resource Management System

Within the Grid4All, a Market-based Resource Management System is responsible for the creation and
management of markets in a distributed manner. Potential users of grid services and resources, that is,
resource consumers, must discover the providers (owners) of intended services and resources. Conversely,
consumers must discover providers that offer resources and services they need. In a distributed market
environment, consumers and providers must discover markets where appropriate resources/services are
being traded. The Resource Management System depends on the Semantic Information System for the
discovery, matching and selection of traded resources and services.

A market in the RMS has the following states: First the market is created, or initiated by, either a provider
who wants to trade an entity in a forward market, or a consumer that wants to buy an entity. In the latter case
it is called a reverse market. Then, an offer is specified by the initiator of the market. Next, the market
together with the corresponding offer is advertised in the SIS. The offer is discovered by potential
participants in the market by using the SIS. The market is activated by the initiator and closed after the
completion of the auction process. The main role of the SIS is the advertisement and the discovery of
markets. There are three kinds of markets:

• Provider-initiated markets

• Consumer-initiated markets

• Third party-initiated markets.

The SIS is used for the discovery of markets and services that trade or expose grid resources and services
with desirable characteristics. Service discovery and matching between requests and offers is performed
based on static information, that is, information provided before the actual trading processes are activated in

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 132

the context of the Resource Management System. Thus, the SIS shall not handle updated/dynamic
information on ongoing markets.

Updated information concerning market/auction status will be stored in the Market Information Service (MIS)
component of the Resource Management System. The MIS is a service in charge of aggregating information
of the markets. Another function of the MIS is to deal with dynamic information such as resource availability
or price changes. Thus, the SIS must provide an appropriate API for the interoperation with the Resource
Management System to facilitate the synchronization of information between SIS and RMS. This API will be
specified in later stages of the SIS development.

The market factory component of the resource management system creates trading sessions (markets) and
advertises the opened sessions at the SIS registry. This service provides a set of administrator interfaces to
allow the creation of market/trade sessions. Market sessions may be initiated by registered/authorized
consumers, suppliers, or by 3rd party mediating services. Auctions created by the Market factory can be
advertised into the SIS by the factory. That is, the market factory can insert descriptions about created
markets into the SIS. The SIS must provide an API in order to facilitate the advertisement of market
descriptions from the market factory.

SIS Actors

SIS actors are entities external to the SIS which interact with the system. Such entities are human and
software agents, or external components and services. The SIS is expected to interact with the following
actors:

� Provider : The owner of a specific resource or service. Providers trade their services or resources
though a market auction initiated either by them or by another entity. A provider, also named ‘Seller’
or ‘Supplier’, can be both a human user and an agent acting in the context of the Resource
Management System.

� Consumer : An entity which intends to acquire a specific service or resource with predefined
technical characteristics, capacity and quality of service measures. A consumer, also named ‘Buyer’,
can be a human or a software agent acting in the context of the Resource Management System.

� Market factory : The market factory is an RMS service described above. It interacts with the SIS for
advertising/registering markets initiated by providers and consumers.

� MIS: The MIS is an RMS service described above.

User Interfaces

The SIS shall be implemented as a portal accessible though the WWW by a web browser. The user interface
will be composed of web-based forms. The users are not intended to directly manipulate ontologies
according to which market specific information concerning tradable resources and services is going to be
specified. That is, formal ontology descriptions must be transparent to the users of the system. This will be
achieved by providing templates or wizard-driven interfaces that will be automatically created (on-the-fly)
from the ontology schema descriptions. This mechanism will also support the dynamic evolution of the
ontology without being necessary to concern about the evolution of the SIS interface itself. An additional
model is needed for providing information concerning the position or presentation sequence of the formal
descriptions in the SIS GUI.

Software Interfaces

The SIS will provide both a user interface and a corresponding API, exported as a set of web services. The
purpose for a web service implementation is:

� to provide access to the system features by agents acting in the context of the Market-based RMS,
i.e. consumers and providers,

� to facilitate interoperation with Market factory and MIS,
� to facilitate the automation of system testing and benchmarking.

System Features

The functionality of the SIS is described as a set of features provided by the system. The major features
provided by the SIS are:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 133

� publishing or advertising of market-related request or offer information, as well as information about
traded resources and services,

� editing/deleting (canceling) requests or offers and
� querying in order to obtain a list of relevant markets according to the resource/service ordered (as a

consumer request or as a seller offer), as well as market characteristics.

System features are described in the following section in terms of user interaction, input and output,
prerequisites (pre-conditions) and results (post-conditions).

Publishing/advertisement

The purpose of this feature is the insertion into the SIS registry of a specific offer or request by a provider or
consumer. These descriptions contain information about the entities that are traded by the associated
markets, that is, resources and services, as well as information about the related markets, the participants,
providers and prospective consumers of resources and services. Descriptions will be instances of the
ontology schema that will be developed in the context of the SIS. The description will be in the form of
object-property-value triples. As mentioned above, publishing will be supported by a web-based user
interface for human users. No authoring of formal descriptions of the input information will be required from
the human users in order to create and submit an ontology instance. A corresponding API will be available
as a web service for the automatic publishing of descriptions by agents and the Market factory service.

Advertisement will be supported in different ways for consumers and providers.

Providers will advertise into the SIS registry descriptions of markets that will sell resources/services. These
are descriptions of forward markets in which providers will sell resources/services to potential costumers. As
already pointed, advertised information from a provider is called an offer. The exact form of data that
constitute an advertisement is described in sections 4.3.2 and 4.3.3. Providers shall be able to advertise a
list of XOR offerings, that is, alternative service/resource configurations at different prices, availability times
etc.

Consumers will advertise into the SIS descriptions of markets in which they will call for resources/services of
given characteristics. A market advertisement from a consumer refers to a reverse market which is initiated
by a request or RFQ (Request for Quotation). Reverse markets are initiated by Consumers in the context of
the Market-based Resource Management System. The information must be an instance of the Ontology
description for reverse auction markets.

A market is to be advertised directly by its initiator, Provider or Consumer, or through the Market factory
which instantiates this market.

Offers and requests are market orders and contain the following information:

� Market related information: The description of a market where the resource/service is going to be
traded: This includes location of market, start and closing time of market.

� Traded resource/service related information: The description of the technical characteristics of the
traded services or resources in terms of capacity, quality of service, time of availability, etc.

� Offer/request related information: The description of pricing policy (type of related market auction),
initial price auction price (minimum price for a forward auction and maximum for a reverse auction).

� Contact information: Information about the provider or consumer.

System Use Case description

The following steps describe the interaction between a user, either provider or consumer, and the SIS portal
user interface during the advertisement of a market order:

� The SIS shall check whether a user has successfully logged into the web-based system.
� The user selects whether he/she wants to insert a market request or a market offer.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 134

� The system displays the appropriate forms depending on whether the advertisement is related to an
offer or to a request.

� The user inserts information related to the market order: Information about market orders contain
locality, time of availability, type and quality of resources, type of auction, initial price of the auction.
In the case that the user is a consumer, he or she may not provide exact information but desirable
constraints about the resources/services that he wants to buy. Given that the advertiser is
authenticated into the system, information about the initiator of the market is automatically added
into the advertisement. Price units are inserted in a defined form of virtual currency.

� The user inserts a description of the resources and services that are traded in a particular market.
This description contains information on capacity, QoS, configuration of the traded resources and
characteristics of services. The user interface shall provide tools for the adequate description of
complex resource configurations and aggregations, as well as descriptions of services as they are
described in sections 4.3.2 and 4.3.3. Alternatively, market-related information can be automatically
provided by the Market factory.

� The user submits the offer or request.
� The system translates the information into appropriate SIS ontology classes and instances. The

system validates the inserted data. In case of inconsistent data it returns an error message, else, a
confirmation message is presented to the user.

� The system notifies subscribed users interested in the particular type of advertisement. The
subscription mechanism is described later in this document.

Input and output

The input data format for this feature is a description of a Market Order. A Market Order is an Offer made by
a Provider or a Request made by a Consumer.

There is no output data related to this feature. The SIS returns an acknowledgement in case of a successful
Market description advertisement. In case of an unsuccessful advertisement the system throws a software
exception and displays appropriate error messages in the user interface.

Restrictions

Precondition

In order to be advertised, a market must have been created by its initiator in the Resource Management
System.

Postcondition

After that scenario, a market description for the specified resources exists in the SIS registry. The query is
stored in the log of the SIS.

Querying of resources/services

In the context of Grid4All, service/resource providers try to find appropriate consumers and, respectively,
consumers try to find appropriate providers.

The purpose of query feature of the SIS is to provide to prospective providers/consumers an ordered list of
available markets, already published into the system, that fulfill certain criteria concerning their own
characteristics, as well as the characteristics of the traded goods: performance and QoS characteristics of a
service, or the configuration of resources, pricing, market and location of markets, resources and services
criteria. Querying answering is based on matching and selection. Matching is the identification of a set of
semantic descriptions of markets that fulfill the criteria imposed by the query. The requirements of the
matching sub-feature are presented in Section 4.3.3. Selection refers to the ordering of the advertised
matched markets according to certain characteristics including the capacity of resources, preferences and
intentions of providers and consumers. The requirements of the selection sub-feature are presented in
Section 4.4.4.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 135

A provider or a consumer (human or software) agent submits query data in the form of query attribute
values. A particular query constitutes a class or instance of the SIS ontology schema. This instance is
matched over the ontology instances that are already advertised in the SIS repository. Queries are inserted
by users using an appropriate web-based user interface and the users do not need to know any ontology
specific query language. The result of a query is an ordered list of market descriptions that the searcher
(provider or consumer) can exploit in order to acquire the corresponding resource/service. The result of a
query can also be a list of providers or consumers.

Queries in SIS will be authenticated. Only registered users who have successfully logged into the system
can use the query functionality.

Providers and consumers can also subscribe to the SIS by submitting a query with the intended traded entity
information. In this case, whenever a new market advertisement takes place, if this advertisement matches
with the query data, the SIS notifies the interested provider or consumer. This notification service can take
place synchronously, on the time of the advertisement submission, or asynchronously, for example on a
periodic basis.

Consumers perform queries in order to obtain information about available resources and services. There are
various scenarios for consumer search:

A consumer wants to apply a bid to a market initiated by a provider. The consumer provides a set of attribute
values that describe the intended configuration and/or characteristics of the services/resources that she
needs. These attributes are related to price intervals (maximum and minimum), quantity and quality of
service, service capacity, local deadlines, and time intervals. The exact information related to requests and
offers is specified in Section 4.3.3. As an example of simple case, a consumer may need a resource with the
following characteristics:

� A compute node with CPU resources of an Intel32 compatible processor with at least 1 giga memory
� the consumer needs the resources between 7:00 and 17:00 hours Athens local time
� the consumer needs the Compute nodes for 2 hours
� the consumer may not want to specify the real total number of CPUs, but only that a minimum and

maximum number of CPUs are required.

The services/resources are going to be traded in a provider (or third-party) initiated market. Attributes of such
a market may also be specified in the search query. The system returns a list of advertised markets. The
consumer selects one or more market services from the list and submits a bid to one of these markets. The
consumer may also provide an XOR query, in which one request in a set of alternatives should be allocated.

A consumer may want to start a private reverse market. In this case the consumer wants to discover a set of
providers according to certain constraints: As another example, a consumer may ask for a minimum of 4
compute nodes and a maximum of 6 compute nodes where every compute node should be allocated at the
same starting time and for the same interval duration. The consumer will specify the earliest starting time
and the latest ending time as well. The query will result in a set of contact information about matched
providers. The consumer will use this contact information in order to invite a selected subset of the matched
providers to participate in the reverse market initiated by the consumer.

Resource/service providers will perform queries in order to discover consumer-initiated markets (reverse
auction markets). An example scenario is the following:

A Provider wants to discover all Requests for Quotations that try to acquire 10M instructions in no more than
three Grid Compute Node Resources from the same provider with a 32-bit processor with ram no less than
1GB and speed at least 1.0 GHz starting all at the same time and starting no later than 10 minutes past now
in Barcelona.

User subscription/un-subscription . An agent, provider or consumer, may want to be notified when market
descriptions that match query criteria are advertised into the SIS. On this purpose, the provider submits the
query information to the SIS. As a result, the SIS returns a list of matching market order descriptions. The
user then may subscribe to the SIS in order to be notified when market orders matching the above criteria

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 136

are advertised into the SIS. The user can cancel the subscription at a later time. Both subscription and un-
subscription can be considered as extensions of the query feature/use case.

Use Case description

The following steps describe the querying functionality of the SIS.

� The SIS shall check whether a user has successfully logged into the system.
� The user specifies whether he/she wants to perform a query as a provider or as a consumer of a

tradable entity.
� The system displays the appropriate forms depending on the type of the user.
� The user inserts information related to the query. The query can be based upon a combination of

conditions that specify the desirable features of services, resources and markets, including locality,
availability time intervals, type and quality of resources, type of auction, initial price of the auction,
type of market and corresponding auction, that is, is the maximum price for a reverse auction and a
minimum price for a forward auction. Price units are inserted in a defined form of virtual currency.

� The user inserts a description of the desirable resource and service characteristics that will be
traded in a particular market. As in the case of advertisement, if the user is a consumer, he or she
may not provide exact information but only desirable constraints about the resources/services that
he wants to buy. The user interface shall provide tools for the adequate insertion of complex
resource and service configurations, that is, aggregations and compositions of resources and
services as they are described in Section 4.3.2.

� If the user is a consumer, he or she can impose certain constraints on the resource configuration
and market related characteristics.

� The user submits the query.
� The system translates the information into an appropriate SIS ontology query. The system validates

the inserted data. In case of inconsistent data it returns an error message, else, a confirmation
message is presented to the user.

� As mentioned before, the user may determine whether he/she wants to be notified when matching
advertisements are registered into the SIS.

Input and output

Query information of users is the input for this feature. The output is either a list of market descriptions either
a list of market initiator contact information.

Restrictions

Preconditions

No preconditions exist for submitting a query. If no matches are found, the returned list is empty.

Postconditions

The query is logged into the system.

Browse/list available services/resources

The SIS will provide a directory index i.e. a visual representation of a list of available service/resource and
market descriptions for browsing. The descriptions shall be categorized according to the type of the
described entity, hardware or software resource, application domain, etc, according to their descriptions. An
indicative hierarchy of categories is the following

� Resource

o CPU Resource

o Storage Resource

o Compute Node

o Cluster

� Application

o Multimedia

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 137

o Scientific computation

Alternative browsing by market characteristics shall be available. The service/resource consumers/providers
will select their preferred categories and be navigated through the service catalog through a web-based user
interface.

Authentication/ authorization

The SIS portal shall provide a login mechanism for human users. For software agents, the access to SIS
services API shall be controlled by using a web service security mechanism such as HTTP-based security,
SSL or WS-Security.

User Management

The SIS portal shall provide user management functionality. Privileged portal users (administrators) shall be
able to

� Add a user to the system
� Modify user information
� Delete user information.

The users themselves should be able to modify their profile into the portal. Registered users can be both
resource/ service providers and consumers.

Logging

The SIS shall provide a logging feature. Advertisements and queries shall be recorded into the system.
Logging shall be used for system evaluation and monitoring purposes.

4.2.2 State of the art of Semantic Information Systems for the grid

In the following paragraphs available systems and software frameworks that provide matching of resources
and services in grid environments are described. The provided descriptions focus on the requirements and
features provided by these systems and frameworks as well as on the use of semantic technologies in order
to meet these requirements.

In [15] a system for matching resources to requests (applications) of users and agents in a grid environment
is presented. The OMMS (Ontology-based Matchmaker System) adopts an extensible approach for
performing Grid resource selection that uses separate ontologies to declaratively describe resources and job
requests. Thus, the matching between job requests and available resources is performed in a semantic
rather than in syntactical level. Matched resources are ranked according to user preference using a ranking
function, which is an arithmetic expression expressed in terms of resource properties. The OMMS service
dynamically discovers and updates information about available resources utilizing two mechanisms: The
subscription/notification mechanism which is provided by the Grid infrastructure (Globus Toolkit) and a
polling mechanism of available resources with incremental description updates.

In [26] a matchmaking framework for semantic service discovery in Grid environments and a portal system
which implements this framework are defined. The aim of the framework is to provide matches between
applications and available services. Semantic matchmaking is based on reasoning based on structured
information about available services and applications, rather than mere syntactic matching based on
service/application attribute name comparison. The framework fulfils a number of requirements such as high
degree of flexibility and expressiveness, support for subsumption (reasoning), support for datatypes,
efficiency, compliance with existing Grid technologies and capability of lookup and invocation of matched
services. The proposed matchmaking is based on a shared ontology and is defined in three stages: Context
selection, where the appropriate context ontology is chosen, semantic selection, where requests are
matched to services according to the metadata descriptions of services, and registry selection, where
services are looked up in a UDDI registry. Service descriptions are defined in the DAML+OIL ontology
language. A service discovery portal implements the framework, supporting the advertising, viewing and
searching of services. The framework provides a similarity metric for avoiding the exploitation of the

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 138

matching mechanism by too generic advertisements or requests that attempt to maximize the likelihood of
matching and for facilitating ranking of selected services.

In [31] a solution for web service advertisement and matching based on a semantic description of web
services is described. This description consists of a combination of DAML-S and UDDI. The requirements for
this matching services are flexibility, minimization of false positive and negative matches, and efficiency.
DAML-S descriptions are used for formalizing the functionality of the advertised web services using service
profiles, while UDDI is used for syntactic keyword-based matching. An implementation, of a DAML-S/UDDI
Matchmaker is provided. An algorithm for matching of DAML-S descriptions of services is proposed and
implemented.

A number of systems have been developed for the discovery of domain-specific Grid resources and services
based on semantic descriptions for specific application domains such as Computer-supported Collaborative
Learning [43], Bioinformatics [44] and Meterology [35]. These systems are based on Semantic Web
formalisms for the annotation of resources and services such as OWL-S and DAML+OIL. The ontologies on
which they are based are domain specific, that is, they define concepts that have a specific meaning in the
specific context of the application, and thus support refined queries, meaningful for experts in the specific
field.

In [43] a system for the discovery of learning services in the context of Computer Supported Collaborative
Learning (CSCL) is described. This discovery service is a component of a grid-based CSCL system named
Gridcole. A semantic approach is adopted in order to overcome the shortcomings of keyword-based
matching approaches such as UDDI. Users of the Gridcole system are practitioners in university education,
which build CSCL scenarios by setting up educational activities. These activities are supported by specific
collaborative learning tools which are implemented as grid services. Examples of such tools are e-mail, chat
and news for communication, collaborative editors and argumentation tools and shared repositories for
knowledge sharing. Users query the discovery service in order to locate such tools. The users may, for
example, search for a chat, a simulator for a specific course, a tool for a collaborative editing of an MS Word
document by a group of four members, a tool for document exchange.

In order to facilitate such queries, an ontology which incorporates concepts from the specific field of
collaborative tools to enable their discovery by educators is developed. This can be used to annotate any
type of CSCL tool, implemented as a grid service, a web service, or a collection of Java classes.

The ontology is defined using OWL. Ontology consistency is checked with the Racer reasoner. The
descriptions of available services are stored as ontology instances in a central repository. Queries are
performed used the Racer Query Language (RQL). It is envisaged that the system should provide an
appropriate user interface so as that no knowledge of RQL is needed for forming queries without limit the
expressivity of RQL and OWL.

In [35] a semantic framework for a grid meteorology computing environment is described. The framework
supports the discovery, selection and workflow composition of meteorological services. In this framework
semantic matchmaking is based on an OWL inference mechanism based on the JESS [17] rule-based
engine. During semantic matchmaking, submitted requests are matched to advertised service descriptions.
Advertised services are described by a combination of UDDI and OWL. The ontology used, which is
described in OWL, refers to the domain of meteorology. The ranking of matched services is based on a
quality of service model.The framework also supports service composition, that is, the combination of several
services in order to provide some functionality required by the user. Composition is supported in design time,
when a user can define a sequence of services that will be executed upon demand, or in run-time, when
services that match certain criteria are automatically combined, transparently from the point of view of the
user. Combined services are discovered using the semantic matching facilities of the framework. Submitted
request descriptions conform to the WSDL-S specification.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 139

4.3 Grid4All Ontologies and matchmaking for the Grid:
Requirements and Related Work

4.3.1 Introduction

Many types of Grid systems aim to support remote and/or concurrent use of geographically distributed and
heterogeneous resources. Such systems usually use a resource management system for assembling and
using collections of computational and/or storage resources on an as-needed basis. In the context of the
Grid4All project, where the Grid is seen as a ubiquitous utility for users and small organizations, such Grids
are considered to form one or more virtual organizations (VO). A VO is considered to form a “wrapper” for
resources on which services are deployed and which will be exposed to the users.

In the view of a Grid4All VO, a resource is anything the members offer (sell) to the VO that other members
can request (buy). A service on the other hand is how the VO provides access to these resources brought in
by its members, and how the VO provides access to their discovery, management, scheduling and
monitoring. In the Grid4All view, resources are traded by applying economic models: They are traded as
goods, in markets, based on the supply and demand law.

An explicit and commonly agreed formal description of resources and their exchange (trading) among
information consumers and resource providers is needed in highly distributed and heterogeneous Grid
environments. This shared description should support and ensure a common understanding (communication
of knowledge about resources availability and needs) of members (resource consumers and providers)
within a VO, but also between different Grid infrastructures by contributing to their interoperability.

In the following paragraphs we first outline the requirements for service/resource ontologies in the frame of
Grid4All project. We then provide the requirements of the technological aspects concerning the
implementation of such an ontology, as well as the matchmaking of resources request/offers at the semantic
level. Next we provide an extended review of state-of-the-art related approaches on a) resource ontologies
and related aspects, b) grid economy and c) semantic matchmaking, and also technologies that support the
development, reasoning, querying and storing of ontologies. In the following subsections we present
available QoS and policy related to web services ontologies. This section ends with state of the art on
resources/services matchmaking.

4.3.2 Requirements for a Grid4All Services Ontology

Recently, Open Grid Service Architecture (OGSA) [29] has adopted the service-oriented architecture based
on Web services concepts. The result of this adoption is the WS Resource Framework (WSRF) which re-
factors and evolves the Open Grid Service Infrastructure (OGSI) [14] and constitutes a common base
between Grid and Web services communities. OGSI introduced the idea of stateful Web Services and
defines the approaches for creating, naming, and managing lifetime of service instances. This notion, as well
as all the functional capabilities presented in OGSI, has been retained by WSRF. In a Grid setting, Web
services may act as interfaces for the exposition of grid resources. Moreover, resources are not restricted to
application software as is the case of a regular Web Services. WSRF is a suite of specifications that defines
Web Services interfaces for creating/destroying resources, managing their lifecycle, inspecting and
disseminating their properties.

Although, OGSA facilitates interoperability and uniform access to Grid services, OGSA-compliant services
are described on syntactic level only. Also, this characteristic has great impact on the performance of the
service discovery mechanism. To successfully find a particular Grid Service, one must know the exact
names of the service, its operations and data types.

In the Grid4all context a service should be able to expose the following types of resources:

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 140

1. Compute Nodes and aggregation of Compute Nodes (namely Clusters),

2. Software, applications that are able to run in grid environment,

3. Markets, where grid resources and services are traded

4. Services that provide information about other peers that offer or request tradable goods.

An Application is a program that can be moved to and executed by any Compute Node (CN) of the grid. On
the other hand, a Service is heavily coupled with a CN and its resources (software), which in most of the
times are not visible to the grid. For example, an “avi2mpeg” application can run in any CN but a “book a
room” service cannot since it needs resources that cannot be found in other CNs. A Market is a
specialization of Service since it aims to provide a service mechanism for trading resource/services.

Also, Grid4All service description must conform to:

a) Data Semantics. The meaning of the data should be semantically specified. For example, the input
and output data of the service’s operations should be semantically described.

b) Functional Semantics. Services operations, i.e. the transformation of input data to output data,
should be semantically specified.

c) Execution Semantics. Preconditions and effects of services should be semantically specified. For
example, a service that charges consumer’s credit card should be stated at the precondition as well
as that the verification of the consumer that will have erased the result data after reading it should be
stated at the post-conditions constraints.

d) Quality of Services (QoS) and their Semantics. Services should be associated with QoS aspects and
their semantics. Availability and level of trust are some examples of QoS metrics.

e) Authorizations Policies and their Semantics. Services should be able to incorporate authorization
policy aspects. For example, what group of users can access a specific resource or a group of
resource?

f) Usage Policies and their Semantics. Services should be able to incorporate usage policy aspects.
For example, what time is the resource available for a specific group of users?

g) Easy extensibility of services’ characteristics. Characteristics and concepts that used in the
description of a service should be extensible.

h) Support of describing Resources’ states and their Semantics. Services should be able to provide
access to the semantic descriptions of the states of a resource.

i) WSRF specification grounding. The description of service should conform to WSRF specifications
and W3C standards.

In addition, several thematic sub-ontologies (described in other sections) should be developed for or adopted
to Grid4all requirements in order to support Grid4all services’ requirements semantics.

Service Matchmaking

Resource discovery (and as a consequence) service discovery is an important issue in the Grid environment,
since it facilitates the search of a service that meets some specific requirements and its successful
exploitation.

A service matchmaking mechanism should support:

1. the asymmetric matchmaking of offers and requests.
2. the inference of subsumption relations between descriptions.
3. the use of custom data types for values.
4. the exploitation of QoS aspects.
5. the use of Polices’ aspects.
6. the discovery of services that expose particular type of trade-able resource.
7. the discovery of services that expose arbitrary number of trade-able resources.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 141

8. the discovery of services that exposes arbitrary configuration of trade-able resources.
9. the ability to describe matching preferences. Both request and resource can specify their

preferences when multiple matches are found.
10. the ability to answer complex resource matching. It must support partial specifications and/or

creation of requests/offers that synthesize many concepts.
11. unify advertisement view of services and resources (web services and web services that expose

resources)
12. representation and exploitation of resources’ state
13. Association between a stateful resource and a stateless service (WS_Resource).
14. Manage life-time and properties of these associations

15. Realize the instantiation of WS-Resources

16. The integrity checking of results

4.3.3 Requirements for a Grid4All Resources Ontology

As already pointed in section 4.2.1, resource providers need to express multiple kinds of constraints on
resource usage. Services/resources need to be described using a flexible framework permitting evolution.
Grid4All resources will be located via a personalized, semantic rich discovery process relying on storage of
metadata originating from providers and consumers (sellers and buyers of resources/services respectively)
where metadata include aspects such as QoS data, resource pricing, economic models for trading
resources, time/geographical location/machine allocation constraints, etc.

In general, modelling of the Grid resources (computational resources entities, storage resources entities) in
the context of Grid4All project must allow their semantic description, for publishing, storing, and discovery,
and must include many aspects ranging from resource configuration to performance metrics, location,
availability, economic parameters such as prices, user's history, constraints (number of machines allocated,
number of (sub)resources comprised by, number of providers offering specific types of resources), etc. A
shared ontology providing semantic descriptions of the above aspects must be provided, enabling retrieval of
resource instances based on exact or partial information about them.

Queries through a Grid4All service/resource information system should be able to search for properties of a
resource in terms of concrete instance data such as ownership, location, pricing, availability, etc. For
example, a) what resources are provided by a specific provider, b) which provider has available specific resources
(i.e. with a specific configuration) for a specific price and period of time? Queries should be able to be formulated
over resources’ properties described using a consistent formal schema. Queries (i.e. requests for specific
resources) may also involve searching properties provided by other parties such as “find a resource that meet
R functional requirements and advertised at less than a P price” . Moreover typical Grid4All users (resource
consumers) should be able to receive a set of matched (exactly or partially through reasoning) offers, such
that they themselves can experiment with and select one (after biding in an e-Market’s auction system) that
fit their needs. The query problem described in the context of Grid4All is actually a semantic matching
(matchmaking) problem between services/resources’ requests and offers within Grid markets.

The description and discovery of distributed and heterogeneous resources among many participants
requires a common formal language for adding semantics. An ontology-based semantic description and
discovery of resources will add a well defined meaning to the stored information, enabling computers and
people to work in cooperation. Traditional matchmaking of resources is based on exact syntactic matching
via symmetric, attribute-based matching [37]. Moreover there is a need for providing reasoning facilities for
discovering also non-exact matches of queries such as subsumed matches [37]. Semantic matching using
terms defined in the resource ontology allows for a loose coupling between resource and request
descriptions, which removes the tight coordination requirements between resource providers and consumers
[15]. For the above solutions to be integrated in Grid systems, several technologies for ontology
development, storing, querying and reasoning are available. Semantic Web technology provides an
adequate set of tools for choosing the most appropriate according to Grid4All services/resources ontology
requirements.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 142

Representing Grid4All Resources

A Grid Resources ontology should represent knowledge about the different types of resources that a Grid
computing environment may need to exchange, manage and allocate for executing services. A resource (in
the context of Grid computing) may be defined as any passive entity required for implementing functionality
(i.e. Services) within a Grid. In the context of Grid4All project, resources are entities that are offered by
resource providers for trading them in e-markets. We do not deal with every type of resource that a grid may
allocate. In Grid4All resources are trading entities that represent computational and storage resources, either
atomic or in sets (composition or aggregation). Resource consumers can use these trading entities by
selecting them from a matching set resulted from their specific requests. Providers and consumers describe
their orders for resources based on certain resource characteristics (e.g. type of resource, resources that is
comprised by, etc) that explicitly describe resources and also based on personal preferences (e.g. price of
resource that sell/buy, time to use it, number of units that need, etc.). The economic/market-related entities
that need to be represented in the Grid4All resource ontology towards trading resources in a grid economy,
will be discussed in the next section.

In Grid4All, resources should be able to be represented not only as atomic resources. Aggregation and
composition of resources should be also represented in order to distinguish between heterogeneous and
homogeneous sets (bundles) of resources:

� A Composite Resource is a resource composed by at least two heterogeneous resources (e.g. a
CPU and Hard Disk).

� An Aggregated Resource is a resource composed by at least two homogeneous resources (e.g. a
Cluster of compute nodes).

In the frame of Grid4All project, two main types of resources need to be represented: a) Computational
Resource and b) Storage Resource:

� A Computational Resource is comprised by at least one CPU, one volatile memory and one
operating system. A specific computational resource can reside on at least one machine (we can
have one of its CPUs working on a machine and another on a different machine). A computational
resource is a composite resource since it is composed by more than two other resource types i.e. it
cannot be just a CPU or just a volatile memory or just an operating system.

� A Storage Resource can be a Hard Disk or any other type of permanent storage. A Storage
Resource resides on a single machine. In case of representing a bundle of more than one (minimum
of 2) Storage Resources, we introduce the entity Storage Aggregated Resource. Different Storage
Resources that comprise a Storage Aggregated Resource may reside on different machines.

In addition to these resources, applications or services may also be needed to become available through
markets, i.e. to be traded. For this reason, additional representations should be provided in the ontology as
software resources representations.

A Compute Node is a composite resource that comprises exactly one computational resource and any
number of storage resources. A Compute Node and aggregations of compute nodes i.e. Clusters, are the
only tradable resources in the context of Grid4All Grid economy. A Compute Node is not an aggregated
resource type since it is composed of heterogeneous resources.

The following requirements must be also met for Grid4All resources:

• Resources should be identified by a specific identification number and must be related to a specific
service via which it is exposed to any (human or software) agent.

• Resources that are Hardware Resources should be described in respect to capacity attribute i.e. the
unit of measurement for a resource’s capacity e.g. “Mb” for a Volatile memory, “Gb” for a Hard Disk,
“GHz” for a CPU.

• Hardware or Software resources should be described in respect to a Machine entity, in order to
represent the allocation of resources to one or more machines. A Machine instance can host one or
more Grid4All resources, given that they are all Atomic resources (they are not composite or

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 143

aggregated resources). Composite or Aggregated resources can be located in more than one
machine depending on which machines their resources reside on.

• Resources should be described in respect to where they are placed, i.e. in one or more geographical
locations, depending on the location of the machines they reside on.

• Resources should be described in respect to specific QoS requirements which will be discussed in a
separate paragraph of this report.

Trading of Resources in Grid4All

A Market entity in the Grid4All ontology represents a mechanism which allows people to trade, normally
governed by the theory of supply and demand, allocating resources through a price mechanism and bid
matching, so that those willing to pay a price for (buy) a service/resource meet those willing to sell it. A
Market instance can be started by either a resource Seller (provider), a Buyer (consumer), or from other third
parties (e.g. a broker). Grid4All markets should be discovered by Buyers or Sellers, depending on their
status (e.g. initiated, active, closed) and their type (e.g. Consumer-initiated, Provider-initiated, bi-directional
exchange market).

Trading resources based on economic models require the representation of a marketplace and some players
(market roles). The key players that drive a marketplace are: the Providers (sellers) and the Consumers
(buyers). In most related works, Consumers are represented in the market by Brokers, playing the key role of
generating strategies for choosing providers based on their customers’ (consumers) requirements. In
markets where brokers are absent, this key role is transferred to consumers. The consumers need to have a
utility model, i.e. a model that represents the way consumers demand resources and specify their preference
parameters. Providers need to obtain economic models, i.e. models that represent mechanisms of assigning
prices to resources with the aim to offer a market price at which the supply of a service equals the quantity
demanded (reaching equilibrium price).

As in the conventional marketplace, the user community (buyers) specify the demand, whereas the resource
owners’ community (sellers) specify the supply. In the economic model, emphasis must be put on the user
community and how they can influence the pricing of Grid resources (via their brokers). The resource
providers and consumers interact in a competitive market environment for resource trading and access. The
resource providers try to maximize their resource utilization by offering a competitive resource access cost in
order to attract consumers. The resource consumers have an option of choosing the providers that best
meet their requirements (exact or partial matchmaking of offers/request). Any of them (consumer or provider)
can initiate a resource trading in a market like environment (consumer-initiated market or provider-initiated
market) and participate in the negotiation (e.g. using an Auction) depending on their objectives. Providers
should be able to invite (requests) bids from a number of providers and select those that meet their
requirements (that are driven by requirements, as well as by deadline and budget). Providers can also invite
bids in an auction by offering resources to consumers as long as their objectives are met. Both of them have
their own utility model that have to be satisfied and maximized. The consumers perform a cost-benefit
analysis depending on the deadline (by which results are required) and budget available (the amount of
money the user is willing to invest for solving the problem). The resource owners may charge different prices
for different users for the same service or it can vary depending on the specific user demands. Resources
may have different prices based on the environmental influences.

In the context of the Grid4All the traded entities are Compute Node and Cluster resources. Consumers and
providers specify their needs for the trading resources by placing market orders. As already pointed in
section 1, such an order can be either an offer (by providers) or a request (by consumers). A request
describes the resource needs (type, quantity, lease time/date) of the consumer and the price she is willing to
pay for those resources. In Grid4All the minimum quality of resources expected by the consumer or provider
must be explicitly specified in the request. For instance, a computing resource node can be characterized by
some attributes such as CPU speed (in MHz), MIPS, L2 cache size (in Kilobyte (Kb)), Memory (in Megabyte
(MB)), storage capacity (in Gigabyte (GB)), access time (in milliseconds (ms)), and data throughput (in bits
per second (bits/s)). Similar resources (satisfying the above requirements) can differ in their quality, thus the
offer/request matchmaking specification should provide expressiveness to allow quality specification and
other, such as location and time specific, constraints.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 144

In Grid4All market, multiple orders may be connected using an XOR (exclusive OR) connector. An XOR
allows consumers and providers to order for multiple bundles. In an XOR order (request or offer) only one of
the specified bundles is finally allocated. In Grid4All seems necessary to make use of XOR bids to allow
consumers express multiple bundle needs. In Grid4All, consumers and providers will request for entire
resources and sets of resources, not a percentage of them (for instance, they cannot request for the 40% of
a Hard Disk resource). Bundle orders allow consumers and providers to indicate their needs for
composite/sets of resources.

When consumers and providers have to allocate resources within a period of time, requests need to allow
the specification of time intervals. In Grid4All, consumers will specify a time range within which the resources
have to be allocated. In addition they need to allocate resources for some time slots. In most of the
situations, the consumer may be indifferent when the allocation takes place. The consumer should only
acquire the resource before a given deadline, i.e., boundaries of a time/date interval that a corresponding
offer has presented. When consumers and providers need to allocate a resource during a continuous period
of time, requests should allow duration specification. Time duration could be expressed in either time slots,
time units (seconds, minutes, hours) or time ranges.

In many cases resources cannot be traded individually since the use of single atomic resources makes no
sense. For example, the atomic resource CPU is not usable because another resource i.e. memory is
needed in order to execute a task. In that case bundles are an adequate solution. Although in several
systems, it could be adequate to use bundles of heterogeneous resources (composites) from different
providers, for instance {CPU, Volatile Memory, Hard Disk} each one supplied by a different provider, this
approach could not be useful in terms of QoS. Thus in Grid4All, a single bundle unit is represented by a
Compute Node entity as an atomic unit of resource allocation through markets. A more complex bundle can
be expressed as: {2 Compute Nodes satisfying attribute description = {CPU>1 GHz, mem>1 GB, disk>20
GB} for 10 time-slots (10 minutes each) between 10:00 and 18:00 where both compute nodes have to be
available at the same starting time}.

Aggregated resources in a request specification are important for efficient resource allocation given that
requests can be matched to equivalent resource configurations. One way to allow Consumers to request for
any of the equivalent resource configurations consist in the formulation of XOR offers with multiple
equivalent configurations. This choice requires the matchmaking service to search for multiple alternatives.
Another way is to make use of time and space allocation units such as time-slots and number of CPU. A
consumer should specify that she requires M time-slots of N CPU. Thus, different configurations apply to
consumer needs.

The offer/request matchmaking specification also needs to provide flexibility in order to express conditions of
trade. For example, a Consumer may need to specify whether the allocated resources come from the same
Provider or from different Providers. Also it should be needed to specify that the allocation has to be
completed by a specific deadline. In case that a bundle of resources has to be allocated, the minimum or
maximum number of providers that may be aggregated to satisfy the resource bundle of one consumer
should also be provided.

Matchmaking of resources (semantic matchmaking)

Grids join geographically distributed and/or heterogeneous computational and storage resources, and deliver
them to distributed and/or heterogeneous user communities. These resources may belong to different
organizations, have different usage policies and pose different requirements on acceptable requests. Grid
applications, at the same time, may have different constraints that can only be satisfied by certain types of
resources with specific characteristics. A user or a software agent must select resources appropriate to the
requirements of the application. This process of selecting resources is called “resource matching” [15]. In a
dynamic Grid environment, where resources may come and go, it is necessary to automate the resource
matching to robustly meet application requirements.

For maintaining a loose coupling between resources/service requester and provider, dynamic discovery
plays a crucial role [22]. Several algorithms and frameworks have been proposed to tackle this problem.
Some of them are based on syntactic service descriptions, like description repository UDDI or the discovery

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 145

protocol WS-Discovery and feature symmetric and attribute-based matching of service descriptions. This is
inflexible and difficult to extend to new characteristics or concepts. Others, like [39][9][24], suggest to adopt
semantic service/resource descriptions for matchmaking. However, while providing semantic matching
capabilities, these algorithms use centralized matching components without the employment of prices.

The Grid4All requirements for resource matchmaking are summarized in the following list:

• it is necessary to automate the resource matching to robustly meet application requirements

• adopt semantic service/resource descriptions for matchmaking

• use decentralized matching components

• employ market/price-related properties

• discover/select resources not only based on exact but also on partial information about them

• allow consumers to place any requests. They must not be aware of the exact attribute values of
providers’ offers in order to obtain a match.

• Reasoning engines running on resources’ offer/request semantic specifications should produce a
matching based on reasoning (subsumption axioms). For instance, an offer of 4 Compute Nodes will
be matched with a request that is looking for a Cluster that comprises at least 2 and maximum 5
Compute Nodes.

To implement the semantic matchmaking of resources with the above requirements, an ontology
specification language should be used to describe the Grid4All resources and an effective reasoning engine
to compute the subsumption axioms. The automatic classification of requests (queries in the SIS) is a strong
mechanism provided by reasoners for the matching of offered resource instances to the requested ones.

Examples of request/offer matchmaking
The offer/request matchmaking specification should be able to meet the above requirements and provide
consistent result data. More specific it should be able to represent and reason with information as described
in the following example:

Notation:

R1 = Computational Resource

R2 = Storage Resource

CR1R2 = a Compute Node comprised by R1 and R2 resources

ACR1R2 = a Cluster (an aggregated resource) comprised by CR1R2 Compute Node types.

Request = {(buyer: buyer-id),

 (ACR1R2, (has_Compute_Node:

 (CR1R2, (has_computational_resource:

(R1, (cpu-qos-attributes:

(cpu-speed range:[1gz, 2gz])

)

)

)

 (has_storage_resource:

(R2, (storage-qos-attributes:

(throughput: 40Mbs))

(storage-capacity: =<100Gb)

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 146

)

)

)

)

)

 (has_Compute_Node:

At least 2

)

)

 (ACR1R2 requested between: (start-time: 12:00), (end-time: 18:00))

 (ACR1R2 required for: (time-slots: 3), (time-slot-size=30mts)),

 (ACR1R2 located at: {Place1 OR Place2}),

 (ACR1R2 Quantity: 1),

 (Price: 2 euros)

}

The above request looks for one Cluster resource that comprises at least 2 Compute Nodes with the
following characteristics: they have a computational resource which comprises a CPU with a QoS attribute
“CPU speed range” and values between 1 and 2 GHz, and they have a storage resource with “throughput” of
40Mbs and with a storage capacity of 100 Gb. The Cluster resource is requested for use between 10.00 and
18.00, for 4 time-slots and duration of 30 minutes each. The Cluster resource may be located at Place 1 or at
Place 2. This implies a restriction on the location of Compute Nodes, saying that all the resources that a
compute node comprises must be located at the same place.

The above request can be matched with an Offer such as the one presented in the following example:

Offer= {(seller: seller-id),

 (ACR1R2, (has_Compute_Node:

 (CR1R2, (has_computational_resource:

(R1, (cpu-qos-attributes:

(cpu-speed range:[1gz, 3gz])

)

)

)

 (has_storage_resource:

(R2, (storage-capacity: 200Gb)

)

)

)

)

 (has_Compute_Node:

Exactly 4

)

)

 (ACR1R2 offered between: (start-time: 10:00), (end-time: 18:00))

 (ACR1R2 offered for: (time-slots: 4), (time-slot-size=30mts)),

 (ACR1R2 offered at: {Place1 OR Place2}),

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 147

 (ACR1R2 Quantity: 1),

 (Price: 2 euros)

}

The above Offer will be matched to the Request described earlier although the attribute values are not
exactly the same. For instance, the request asks for a Cluster with at least two Compute Nodes of a specific
type, and the Offer provides exactly 4 instances of that type. The reasoner will infer that the condition of the
request (“at least 2”) can be satisfied by the condition of the offer (“exactly 4”). This is also the case for the
ranges of the “CPU speed” QoS attribute of their CPU; one is subsumed by the other.

The matchmaking of resources’ offers/requests should be able to anticipate inconsistencies of different QoS
and/or resource capacity measurement units that may arise. For instance, the system should identify a
matching between 1024 Mb and 1 Gb when matching storage capacity. Additionally, the system should be
able to represent and/or resolve inconsistencies of other constraints that may be specified in a request/offer
specification, such as the pricing scheme (what is charged and how, currency, price aggregation), the
collocation or not of resources on a single machine, the number of providers that offer a single resource, the
time space that a resource is offered/requested. To be able to resolve inconsistencies and infer matches
between offers and requests specifications, additional models can be used to explicitly specify these
constraints.

A time-related and a QoS-related ontology can prevent and/or resolve inconsistencies related to time and
QoS specification respectively.

Quality of Service Ontology

Quality of Service (QoS) is any non-functional aspect that someone may use to judge quality of a
service/resource.

The QoS Ontology requirement should be driven by the following two principal demands:

� Service/resource consumers aim to experience a good service performance. For example, low
waiting time, good price/quality ratio, high reliability and availability towards a successfully use of the
service/resource at any time.

� Service/resource providers need to formulate QoS-aware offers in order to gain the highest possible
profit from their business. For example, high throughput guarantees and low response time through
resource allocation, and load balancing in order to serve a high number of clients with assured
quality.

The above demands are sufficient for driving our selection of concepts and metrics that should be in the QoS
ontology. At the current time more information is needed in order to come up with an appropriate selection of
a list of concepts that will lead us to the adaptation of an existing ontology and its potential extension.

However, at the current time high level requirements of the QoS ontology could be defined. Thus, the
ontology:

a) should be extensible, i.e. custom creation of quality metrics

b) should be able to interpret different measurement units

c) should support quality measures for all the available type of resources that appear in the grid

d) should be aligned itself with other established ontologies such as OWL-Time

e) a measurement must carry information about when (e.g. time of measurement), where (locations) and
how they were measured

f) a category of service/resource should be associated with a set of characteristics that affect its quality

g) the quality of a service/resource must be evaluated using a set of metrics

h) a metric must define a method to obtain measurements of a characteristic

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 148

i) a function should define how to compute a value from other values of the same characteristic (e.g.
mean) or different characteristics (e.g. success consuming/total tries).

Technological requirements (for distributed and heterogeneous resource discovery and
trading)

To be able to meet the above requirements, a careful selection of technologies should be performed. An
ontology language able to describe Grid Resources in distributed and open environments should be
selected. The language should be formal so as the semantics of defining classes and individuals to be clear,
and methods for reasoning with them to be provided as well.

Towards this requirement, we should examine the capabilities of existing representation languages. More
specific, we shall examine the capabilities of Semantic Web representation languages, since it is a Grid4All
principle requirement for the realization of VOs and their implementation. More specific, we need to examine
the capabilities of current Semantic Web KR language standards for representing Resources and/or
Services. In the context of this examination, we shall compare existing technologies from many aspects,
ranging from their expressive power to their performance in the large scale (many instances and classes).
An important aspect of this comparison will be the reasoning facilities that these languages provide,
especially at the level of facts (instances in ABox), since inference of new knowledge is rather important for
the dynamic and extensible nature of resources in Grid environment.

4.3.4 State-of-the-Art of Resources/Services ontologies

 Grid Resources ontologies

The OWL-S project Resource Ontology

A Grid Resources ontology has been proposed in the frame of OWL-S project [16]. The purpose of the
ontology, which is stated at an abstract enough level, is to cover physical, temporal, computational, and
other types of resources. This specific resource ontology sketches out the principal classes of properties a
resource might have. It contains a version of the portions of the ontology that can currently be encoded in the
OWL ontology language.

A basic distinction of this ontology concerns resource types, e.g. fuel, resource tokens, e.g. the fuel in the
gas tank of a particular car, and quantity, or capacity of the resource token at any given instant, e.g. the five
gallons of fuel in the car's tank right now. The model is primarily focused in the second of these notions.
Resources in this sense can, depending on resource type, be consumed, replenished, locked, and released.
A resource token, or simply resource, is what is available to an activity.

Resources are allocated to activities or processes. Another principal distinction of resources concerns their
status after the activity stops using them. This distinction is represented as the resource's AllocationType. If
a resource is consumable, its AllocationType is ConsumableAllocation. If not, its AllocationType is
ReusableAllocation. Examples of consumable resources are food, charge in a battery, fuel, money, and time.
Examples of reusable resources are the use of a device, the availability of an agent, the use of a region of
space, and the use of bandwidth. A persistent resource can be locked and released. Many resources, such
as food, are perishable. Thus, eating food is functional, food spoiling is dysfunctional, and eating is rapid
relative to spoiling.

Resources, as described in this ontology, generally have a precise quantitative measure of capacity at any
given instant of time. The quantitative measure might be continuous, such as the quantity of fuel. Or it could
be discrete, such as the number of chairs occupied. Thus, a resource has a CapacityType, where the types
are DiscreteCapacity and ContinuousCapacity. The capacity can be related to various other resource–
related predicates, such as activity, time interval, and time instant. Capacities of resources can also have a
capacityGranularity, that is, the units in terms of which the capacity is measured.

Furthermore, a resource can be atomic, or it can be an aggregate resource. Thus, AtomicResource and
AggregateResource are subclasses of Resource. Some atomic resources can be shared by different

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 149

activities, while others cannot. Therefore, an entity UnitCapacityResource represents resources whose
availability to an activity is a yes-no question and an entity BatchCapacityResource represents resources
that can support multiple activities in a synchronized fashion. Both are subclasses of AtomicResource.

Aggregation is the act of gathering things (resources in our case) of same type e.g. Two Compute Nodes,
two CPUs. Aggregated resources can be conjunctive or disjunctive: ConjunctiveAggregateResource and
DisjunctiveAggregateResource are subclasses of AggregateResource. Conjunctive aggregated resources
have to be allocated to a consumer as a unit, while one may allocate onle a subset of disjunctive aggregated
resources.

Shareable resources should be understood in terms of batch capacity resources and aggregation.

This ontology satisfies many of the requirements specified in this report for a Grid4All Resource ontology. In
terms of the required Grid resource ontology this ontology includes, important entities “Compute Node” and
“Cluster”, the distinction of Computational and Storage resource. The distinction between Composite
Computational/Storage resources and Aggregated Computational/Storage resources, are missing. In
addition, several properties (stated in the requirements section) that Grid resources should have in a Grid4All
environment were also missing. Finally, in terms of Grid economy, there is no specification of entities or
properties that can provide/allow any kind of trading of Grid resources.

The UNICORE Resource Model

The main goal of the project UNICORE Plus (Uniform Interface to Computing Resources) was to develop
production quality software for a seamless, secure, and intuitive access to the distributed resources of the
German high performance computing centres. The initial UNICORE prototype implemented a simple
resource model which is claimed to be still effective in practice. The resources available at each participating
site - computing, data, and software resources - are made known to UNICORE by local administrators. The
process is completely decentralized. Resource information which is valid at a specific time is available to all
authenticated UNICORE users at the time of job creation or job submission. The users select the target
system and specify the required resources. The UNICORE client is in a position to verify the formal
correctness of jobs with respect to resources and alert users to correct errors immediately. For example, if
the initial resource specification asks for one hour of connect time on a 512 processor T3E and the user
redirects the job to a site allowing at most 256 processors, the user is informed that the job can not be
executed as specified. The user is asked to adjust the values, i.e. reduce the number of processors and
possibly double the connect time, or select a different site. Developments in the project EUROGRID extend
the resource model to support resource brokering, cost models, and resource consumption based on
application specific parameters.

The UNICORE resource model [13] [Erwin D., 2002] reflects the batch processing procedures at the
UNICORE sites. For each task, resources, needed as parameters for the submission of the corresponding
batch job, have to be specified. The parameters that can be specified are:

a. number of nodes: the number of nodes in a homogenous SMP cluster (e.g. The "SMP Cluster"
consists of five rackmounted 500MHz Pentium III Xeon Quad SMP machines with a Gigabit Ethernet
network)

b. number of processors per node: the number of processors in one SMP
c. memory per node: the size of memory of one SMP
d. CPU time: depends on the system
e. Disk space: consumable disk space
f. Priority: assign task priority, with possible values of whenever, low, normal, high, and development
g. Requirements for particular software, libraries or applications: Information resources are available to

send local information to the user from a site. Software resources specify required programs and
libraries. Applications are used to specify complete programs such as application packages.

This resource model (ontology) satisfies only a small set of the requirements for a Resource ontology
outlined in this section, mostly at the atomic level of resource description. It is an application-oriented model
rather than a general model for representing Grid resources. There are no generic semantic distinctions
concerning aggregation or composition of resources, apart from the notion of a specific type of a compute
node. More important, there is no any specification of Grid economy entities for trading the represented
resources.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 150

GLUE Schema Specification: an abstract model for Gr id Resource

GLUE schema [1] is a description of core Grid resources at the conceptual level. It defines an information
model, an abstraction of the real world, into constructs that can be represented in computer systems (e.g.,
objects, properties, behaviour, and relationships). The GLUE information model is not tied to any particular
implementation and can be used to exchange information among different knowledge domains. It can also
be mapped on data models that are specific of Grid Information Systems.

The core entities of the GLUE Schema are the Site concept and an abstraction for the Service concept. The
site is an administrative concept used to aggregate a set of services and resources that are installed and
managed by the same set of persons. The service entity captures all the common attributes to Grid Services
and should be used as a base entity for the creation of service-specific schemas. The schema also provides
distinction about a Computing Element and a Storage Element because of their relationship with the Site
concept. In the major revision of the GLUE Schema these classes are expected to specialize (subclasses) a
higher level concept such as a Service or a Service group.

The Computing Element, as a core concept, aims to describe the computing service that is offered to a
group of users or to single users or to VOs. The Computing Element refers to the characteristics, resource
set and policies of a single queue of the underlying management system. At the Grid level, computing
capabilities appear as Computing Elements that are reachable from a specific network endpoint. A
ComputingElement may show free job slots when jobs for a particular VO will not run due to a VO-specific
quota. Conversely, the EstimatedResponseTime may be non-zero even though jobs for some VOs would
start immediately. In order to deal with this possibility, Glue models the different states for different groups of
users (typically on a per-VO basis or at a finer grain). This is accomplished by the VOView entity reporting
state information specific to a group or a VO.

A Cluster is an aggregation entity for representing a complex computing resource in terms of the SubCluster
and Computing Element entities. A cluster is a heterogeneous set of resources (computers belonging to the
same cluster may have different CPUs, RAM and even different OSs), while a SubCluster is an
homogeneous one. The SubCluster entity provides details of the machines that offer execution environments
to jobs. It refers to a homogeneous set of hosts regarding the selected attributes. The set of attributes that
are used for the summary description are present in the Host entity (an elementary computing system). A
Software entity has been added in order to provide a mechanism to describe what software packages are
available in the worker nodes part of the SubCluster.

Storage resources contributed to a Grid system can vary from simple disk servers to complex massive
storage systems. These resources can be managed by different services, each of them taking care of a
certain management aspect (e.g., data access, quota management or space management). The Storage
Element is the core concept of this model and identifies the group of services responsible for the storage
resource. At the virtual level, the storage resource is abstracted using the concept of Storage Area that can
be made accessible to groups of users or VOs. The entities AccessProtocol and ControlProtocol are used to
publish endpoints of protocols related to the storage resource. The storage area is a logical portion of
storage extent assigned to VO. Storage areas can overlap the same physical space, thus having contention
over the free space among different VO's. The AccessProtocol describes allowed ways to transfer files to
and from a StorageElement. The ControlProtocol is similar to the AccessProtocol.

GLUE, although it provides a schema closer to the Grid4All requirement specifications for describing Grid
resources, it is rather a VO-oriented model, contributing most at the level of descriptions concerning
computational (Grid level computing capabilities) and communicational (publishing of protocols’ endpoints
related to the storage resources) entities of VOs, within and between them. More important, it does not
consider any kind of economic parameters for trading the specified resources in a Grid economy
environment.

A Core Grid Ontology

In the CoreGrid project, a core Grid ontology has been introduced [50] to describe fundamental Grid domain
concepts and relationships. This is based on a general model of Grid infrastructures and is described in

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 151

OWL. The aim is to play a key role in the development of Grid-related knowledge bases. Its main objective is
to provide a common basis for representing Grid information about Grid Resources, Grid Middleware,
Services, Applications, and Grid Users.

In Core Grid ontology, the Grid is viewed as a constellation of VOs which includes VOs, users, applications,
middleware, services, computing and storage resources, networks, policies of use. Resources are combined
and organized by Grid middleware to provide Grid users with computing power, storage capability, and
services. VOs are a container for users and applications. A VO is seen as a fundamental element of Grids.
The intention is to develop a general, abstract view of Grids, towards a more general, extensible, open and
VO-oriented model.

A fundamental distinction in this model is the distinction of Grid resources as logical or physical. A physical
resource is a “real” resource that is part of a Grid, and the logical resource is “virtual” resource that a VO
controls according to its policies, rules, and availability. Grid Middleware and Grid services are responsible
for mapping logical to physical resources. From a VO perspective, a logical resource is more “realistic” than
a physical, since Grids are VO-oriented.

The classes of this ontology can be grouped into three main categories:
a. VO-related: they reflect the top level of the proposed Grid model, including classes such as VO,

GridUser, GridApplication, and Policy.
b. Grid Resource: Any resources including ComputingResources, StorageResources,

NetworkResources, and Dataset.
c. Grid Middleware and Service: including GridMiddleware, functions, components, services.

Based on the above Grid model, the following types of the core classes are included in the ontology: VO,
GridResource, GridMiddleware, GridComponent, GridUser, GridApplication, and Service. A GridResource
can be any Hardware, Software, ComputingResource, StorageResource, NetworkResource.

This ontology is much closer to the Grid4All requirements for a Resource ontology. Although we have been
re-using some of its entities (a view of the ontology entities is provided below), again, it could not be used for
the key aspect of the Grid4All project, i.e the trading of resources through their offers’/requests’
matchmaking.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 152

Figure 27 Part of the Core Grid Ontology

The Grid Resource Ontology

UniGridS is a follow-up project from GRIP (Grid Interoperability Project) which aims to realise the
interoperability of Globus and UNICORE projects and to work towards standards for interoperability in the
Global Grid Forum. UniGridS is developing a Grid Resource Ontology based on the ontology developed in
the GRIP project. In the frame of UniGridS a proposal was put forward for a Grid Resource Ontology
Working Group to be set up, and a number of EU projects have joined the UniGridS project to work towards
a standard Grid Resource Ontology. UniGrid in collaboration with OntoGrid has developed a reference Grid
Resource Ontology [33]. The ontology is coded in the W3C ontology language OWL. The GRO is intended to
be developed in further discussions by the Grid community.

The basic distinctions for Resource and Service concepts have been made in GRO. Disk, File, Network,
ResourceCollection, Software, Ticket, and Processing are types of Resources. ExecutionService,
LoggingService, InformationService, and FactoryService are types of Services. Storage is separately defined
to have types of ClientStorage and ResourceStorage. Other concepts such as QoS, Policy, Incarnation,
Agreement, Broker, Authorisation, Access, Action, Authentication, and Protocol are integrated towards a
Grid/VO-oriented ontology. Some of the concepts have been borrowed from Unicore and Globus projects
and some other have been introduced in the framework of this project.

Although GRO ontology satisfies a good set of the Grid4All requirements for a Resource ontology, it could
not be used as it is since there is no any consideration for market-related entities/properties, and
matchmaking of resources’ offer/request based on several economic or/and QoS, time, machine allocation
(and other) constraints could not be achieved.

Market/Grid Economy ontologies

In the following paragraphs we describe the most related work, to the best of our knowledge that has been
reported in the literature, which integrates economic models into Grid computing.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 153

SHARE

In SHARE [8], the utility of one simple abstraction for global resource allocation with a number of appealing
properties is explored: a centralized auction that collects user descriptions of resource configurations and the
values placed on these configurations. A task of “the clearing-house” is to determine a set of winning bids
and to assign appropriate subsets of global resources to individual users. The challenge with this model is
the computational complexity associated with determining winners. Bidding languages are proposed that
constrain the type of bids that users can make, while maintaining required expressiveness. A challenge
concerning auctions presented in SHARE is the lag in clearing the auction and the uncertainty in whether
resources will actually be acquired. A formulation for \Buy it Now" pricing to address some of these
limitations is introduced.

A bidding language that constrains the kind of bids a user can make while maintaining required
expressiveness is presented. The bidding language allows Fine-grained Resource Allocation in which bids
specify the percentage of each type of resource in a bundle (40% CPU, 80% memory, 20% network, and
10% disk resources). They also permit Uniform Share resource allocation in which the bid provides partial
information for a percentage of the bundle (40% share of all node resources (CPU, memory, network, disk)).

The approach cannot be applied to Grid4All because consumers do not know the exact machine
configuration so that a consumer cannot decide the percentage of resources it requires.

Trading Semantic Web Services

The most recent approach related to trading of services/resources in a Grid environment is reported by
Lampater and Schnizler (2006), a work funded by SEKT and CATNETS IST projects. The paper presents an
architecture of an ontology-driven market for trading Semantic Web Services [22]. They report on an auction
schema which is enriched by a set of components enabling semantics based matching as well as price-
based allocations. The key issue of their work, in contrast to classical market mechanisms for trading Web
Services, is the merging of classical auction algorithms with the semantic matching capabilities. They
propose a communication language which defines how orders (requests and offers) and agreements can be
formalized.

Although the presented work is very promising and contributes towards a Grid economy, (as authors admit)
the existing implementations are still relying on pure syntactic matching of orders and thus not all design
requirements outlined in their paper are met. Further more, they do not provide any detailed information on
the ontology that they have developed. Moreover, the traded goods that are represented in the ontology are
at the level of Web services and not at the level of resources.

The Grid Economy

In [4][5], the concept of Grid Economy has been introduced and an attempt to demonstrate the importance of
economic models in Grid resource brokering has been conducted with several experiments. Authors have
been successfully experimenting with the usage of several economic models for the resource brokering task
through Nimrod/G deadline and cost-based scheduling for two different optimization strategies on the WWG
(World Wide Grid) test-bed that contains peer-to-peer resources located all over the world.

This approach provided economic incentive for resource owners to share their resources on the Grid and
encouraged the emergence of a new service oriented computing industry. More importantly, it provided
mechanisms to trade-off QoS parameters, deadline and computational cost and offered incentive for relaxing
their requirements—reduced computational cost for relaxed deadline when timeframe for earliest results
delivery is not too critical. The first experiments [5] that spanned several continents showed promising results
and provided a good basis for further work on Grid scheduling based on economics. Followed experiments
[6] with a reference system architecture driven by Grid economy, introduced computational economy as a
model for tackling challenges of resource management within large-scale Grids. The use of computational
economy within Nimrod-G and Gridbus brokers for compute and data intensive applications, respectively,
has been presented. Scheduling in computational and data Grids environments have been also formulated
and evaluated. The results demonstrated effectiveness of commodity market-based resource allocation and
also met users’ QoS requirements.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 154

This work can be considered as the basis for understanding how resources should be traded within the
Grid4All market, what are the different economic models that can be used, which are the players, what
constraints can be imposed in trading, and assist us on the representation of market-related
entities/properties needed within the resources ontology.

Services ontologies/languages

OWL-S

OWL-S appears as the most selected and appropriate language for modelling the Grid Services in an
attempt to integrate the Web service domain and the Grid domain. OWL-S [30] is an ontology of services
that has been developed as part of the DARPA Agent Markup Language Program [10]. OWL-S is an OWL-
based upper level ontology for describing the properties and capabilities of Web services in unambiguous
and computer interpretable way. OWL-S consist of a Service Profile for advertising and discovering services,
a Service Model which support composition of services, and a Service Grounding, which associates profile
and process concepts with the underlying service interface. Service Profile has functional and non-functional
properties. The functional properties describe the inputs, outputs, preconditions and effects of the service.
The non-functional properties describe the semi-structured information intended for human consumption,
e.g. service name, service description, and service parameter. Service parameter incorporates further
requirements on the service capabilities, e.g. security, quality-of-service (QoS), geographical scope etc.
Service Grounding enables the execution of the concrete Web service by binding the abstract concepts of
the Service Profile and process to concrete messages. The main parts of the OWL-S upper ontology are
shown in Figure 28.

Figure 28 Main Concepts of OWL-S ontology

Extending OWL-S with Grid Jobs

In the context of the CoreGRID [60] project a work [4] has been involved with the convergence of the Grid
towards Web services and the proposal of an extension of the OWL-S ontology with Grid related concepts of
Grid Services, Job and Job Submission Description. The work aims to identify relationships between the
basic concepts of Web Services and the Grid. In general, a Grid Service is a Web service that has stateful
interactions, life-cycle management, externally accessible state and the possibility to subscribe for
notification of events. A Job is an activity that is executed by a Grid service, and a Job Submission
Description is a unit of work describing a Job. Typically, a user submits a Job Submission Description to the
Grid for having the job executed.

Figure 29 depicts the extended OWL-S structure introducing the Grid related concepts. The concept
GridService is a specialization of the class Service. The JobSubmissionDescription is submitted by a
Resource and describes a Job. JobSubmissionDescription is part of process but not Process itself as the
execution of a Job is. Therefore, as can be seen in Figure 30 Job is a specialization of an AtomicProcess
(means that can be invoked) and can be executed by an instance of a GridService.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 155

Converting WSRF to OWL-S

In the context of KW-fGrid [21] project a tool that semi-automatically generates the OWL-S description of
both stateless and stateful services from their WSRF documents has been developed. The derived service
ontology, which is responsible for describing the Grid service, in most of its part is based on the OWL-S
standard. Some domain specific concepts are added and extend OWL-S only when needed.

Figure 29 The proposed concepts ‘Job
Submission Description’, ‘Job’ and ‘Grid

Service’ in the OWL-S ontology.

Figure 30 The ‘Job’ concept is
specialization of the Atomic Process

Concept.

This works comes up with some interesting conclusions and assumptions: No major differences between
stateless and stateful services exist in the modelling of their semantics using the OWL-S. Also, it has been
noticed that the resource properties, as defined in WS-Resource specification can be dynamic, i.e. deletion
and addition of properties on the fly, thus the representation of such a complex conceptualization was
avoided and assumed that they work only with resources that have static properties. Finally, it was correctly
observed that a Grid service may have multiple instances of the same service hosted by different servers.
Therefore, multiple OWL-S groundings should be introduced.

OWL for Workflow and Services (OWL-WS)

In the context of NextGrid [3] project a work towards modelling Abstract and Concrete Services and
Workflows took place. OWL-S selected as the most appropriate language firstly because of its ability to
express control and data flows and secondly because it has been developed on top of standard semantic
web technology. The complete OWL-S model is adopted as it is in OWL-WS to represent Concrete Services
and it is easily adapted to represent Concrete Workflows (see Figure 31). More details concerning the model
of OWL-WS can be found in [3]. A Concrete Service is modelled as Service with its own Profile, Process and
Grounding whose elements refer to a single implementation. On the other hand, Concrete Workflow is
modelled as a Service with its own Profile, Process and Grounding whose elements refer to multiple
implementations.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 156

Figure 31 OWL-WS: concrete components representation example.

OWL-WS use the concept ‘Composite Process’ for modelling workflows. Moreover, OWL-WS defines the
concept of ‘Abstract Process’ which is an Atomic Process having no link to any Grounding and provided with
a new property named ‘definedBy’ which points to a Profile. Using this extension the Abstract Service and
Abstract Workflow can be defined. An Abstract Service is a Service with its own Profile and Abstract Process
with the ‘definedBy’ property pointing to the Service Profile itself. An Abstract Workflow is a Service with its
own Profile and Composite Process. Each Composite Process is an Abstract Process with is own Profile
referred by the ‘definedBy’ property. Figure 32 depicts the above.

Figure 32 OWL-WS: abstract components representation example .

Moreover, OWL-WS supports Service Grouping management by providing information not only for the single
Abstract Service but also for specific service groups modelled as internal workflows. Figure 33 depicts this
capability.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 157

Figure 33 OWL-WS: service grouping capability example

WSRF-S

Web Service Modelling Language is a language for the specification of ontologies and different aspects of
Web services. It provides a syntax and semantics for the Web Service Modelling Ontology [47] and uses
well-known logical formalisms in order to enable the description of various aspects related to Semantic Web
Services. WSMO working group investigated whether and how WSRF could be combined with semantic
technologies [49] in the context of WSMO and concluded that any semantic extensions to WSRF will be
"only" applications of semantic extensions to XML Schema and XML querying technologies [49].

4.3.5 QoS ontologies

Quality of Service Ontology

Quality of Service (QoS) is any non-functional aspect of the system that someone may use to judge quality
of a service that exists in that system.

The QoS Ontology requirement should be driven by the following two principal demands:

I. Service consumers aim to experience a good service performance. For example, low waiting time,
good price/quality ratio, high reliability and availability towards a successfully use of the service at any
time.

II. Service providers need to formulate QoS-aware offers in order to gain the highest possible profit from
their business. For example, high throughput guarantees and low response time through dynamic
resource allocation, and load balancing in order to serve a high number of clients with assured quality.

The above demands are sufficient for driving our selection of concepts and metrics that should be in the QoS
ontology. At the current time more information is needed in order to come up with an appropriate selection of
a list of concepts that will lead us to the adaptation of an existing ontology and its potential extension.

However, at the current time high level requirements of the QoS ontology could be defined. Thus, the
ontology a) should be implemented in OWL-DL, b) should be extensible, i.e. custom creation of quality
metrics, c) should be able to interpret different measurement units, d) should support quality measures for all
the available type of resources that appear in the grid, e) should be aligned itself with other established
ontologies such as OWL-Time. Also, f) a measurement must carry information about when (e.g. time of
measurement), where (locations) and how they were measured g) a category of service should be
associated with a set of characteristics that affect its quality h) the quality of a service must be evaluated
using a set of metrics, i) a metric must define a method to obtain measurements of a characteristic j) a

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 158

function should define how to translate a value from other values of the same characteristic (e.g. mean) or
different characteristics (e.g. success consuming/total tries).

DAML-QoS

In [52] a DAML-QoS ontology is provided as a complement for DAML-S service ontology to provide a better
QoS metrics model since DAML-S (and subsequently OWL-S) does not provide a detailed set of classes,
properties and constraints to adequately describe QoS.

DAML-QoS consists of three layers: (a) The QoS profile layer, which is designed for matchmaking purposes,
(b) the QoS property definition layer for elaborating the property’s domain and range constraints and (c) the
metrics layer for metrics definition and measurement. Additional specific properties can be added to the
ontology for various service categories such as storage and computational services. The DAML-QoS
ontology’s core concepts along with specific defined properties are described in [52]. It is worth noticing that
DAML-QoS permits a Service Profile to have multiple QoS profiles. The ontology also contains a basic
profile for describing a service according to a system-centric QoS. This basic profile contains response time,
cost, reliability and throughput metrics.

� Response Time is defined as the total time needed by the service requester to invoke the service. It
is measured from the time the requester invokes the service to the time the requester finishes with
the service usage.

� Cost represents the cost associated with the execution of the service. It is necessary to estimate the
guarantee that financial plans are followed. The cost can be further divided into more refined
components such as service execution cost and network transportation cost.

� Reliability corresponds to the likelihood that the service will perform when the user demands it and it
is a function of the failure rate. Each service has two distinct terminating states: one indicates that a
web service has failed or aborted; the other indicates that it is successful.

� Throughput represents the number of Web service requests served at a given time period. It is the
rate at which a service can process requests.

QoSOnt

QoSOnt [12], is an ontology for QoS implemented in OWL formalism and aims mainly at Web services. The
ontology consists of a set of interconnected smaller ontologies. Figure 34 depicts the different layers of the
ontology.

Figure 34 Layers of the ontology

QoSOnt represents many of the commonalities discovered between other QoS specification languages
examined. Unlike most of these languages however, QoSOnt also aims to be generic enough to be used no
matter what one’s particular view of QoS is. This approach has been to provide a base set of useful
constructs which cover common cases. The architecture is designed to allow third parties to replace parts of
the ontology as needed. For instance, one may have a different view of dependability, or have produced a

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 159

time ontology which suits specific purposes better. Obviously this is only useful if the relevant ontologies are
shared with the community they wish to interact with.

The base QoS layer contains generic concepts relevant to QoS. Unit ontologies also logically reside in this
layer. Time is the most relevant unit in QoS, and is the only unit ontology defined at the moment. It
represents units of time and how to convert between them. This means that an inference engine could
establish, for instance, that 1 minute is the same as 60,000 microseconds. This is particularly useful if clients
use the same metric as providers - but different units.

The attribute layer contains ontologies defining particular QoS attributes and their metrics. On top of this is
the domain-specific layer, which links the lower layers to specific types of a computer system. For instance,
the network ontology defines that certain QoS attributes are specific to a particular network route and the
service ontology that QoS attributes sometimes refer to particular services, service operations, etc.

OWL-QoS

In [27], a QoS ontology lets service agents match advertised quality levels for its consumers with specific
QoS preferences. Providers express policies and consumers express preferences using the QoS ontology.
This also enables the consumers to configure service proxy agents so that they have the necessary
behaviours to monitor and record consumer and service interactions. It helps to distinguish three ontologies
for QoS: upper, middle, and lower. The upper ontology captures the most generic quality concepts and
defines the basic concepts associated with a quality, such as quality measurement and relationships:

• Quality represents a measurable non-functional aspect of a service within a given domain. Quality
attributes relate to each other.

• QAttribute captures a given quality’s type, for example, whether it’s a monotonic float attribute (a
quality whose value is a floating point number and increases if the value reflects improvements in
the quality).

• QMeasurement measures a Quality objectively or subjectively. Agents make objective
measurements automatically, whereas subjective measurements involve humans. A measurement
has a validity period and can be certified.

• QRelationship describes how qualities are correlated. Service response time, for example, could be
negatively correlated to throughput. Such quality relationships often reflect the trade-offs providers
make in their service implementations. Qualities are potentially related in terms of direction
(opposite, parallel, independent, or unknown) and strength (such as weak, mild, strong, or none).

• AggregateQuality is a quality composed from other qualities. The price/performance ratio, for
instance, aggregates price and performance.

The QoS middle ontology incorporates several quality aspects encountered in distributed systems:

• Availability is the probability that a service responds to consumer requests. It has two subclasses:
MTTR (mean time to repair, meaning the average time for restoring a failed service) and UpTime
(the duration for which the service has been operational continuously without failure). Availability is
mildly parallel to reliability and typically mildly opposite to capacity.

• Capacity is the limit on the number of requests a service can handle. When a service is operated
beyond its capacity, its availability and reliability are negatively affected.

• Economic captures the economic conditions of using the service. Usage cost is a key economic
attribute.

• Interoperability is the ease with which a consumer application or agent interoperates with a service.
It defines, for example, whether the service is compliant with a specified standard, such as the WS-I
Basic Profile, or specific versions of standards like WSDL.

• Performance characterizes performance from the consumer’s perspective. Examples are
Throughput (the rate of successful service request completion) and ResponseTime (the delay from
the request to getting a response from the service).

• Reliability is the likelihood of successfully using a service. Typically, it parallels availability, but its
main aspects also include Fault Rate (the rate of invocation failure for the service’s methods); MTBF
(mean time between failures); Consistency (the failure rate’s lack of variability); Recoverability (how
well the service recovers from failures); Failover (whether the service employs failover resources,
and how quickly); and Disaster resilience (how well the service resists natural and human-made
disasters).

• Robustness is resilience to ill-formed input and incorrect invocation sequences.
• Scalability defines whether the service capacity can increase as needed.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 160

• Security captures the level and kind of security a service provides. Its key components include
Auditability (the service maintains auditable logs); Authentication (the service either requires user
authentication or accepts anonymous users); Encryption (the type and strength of encryption
technology used for storage and messaging); and NonRepudiation (whether consumers can deny
having used the service).

• Integrity is a measure of the service’s ability to prevent unauthorized access and preserve its data’s
integrity.

• Stability is the rate of change of the service’s attributes, such as its service interface and method
signatures.

 QoS Ontology Language

A recent attempt [32] aims to provide a standard model to formally describe arbitrary QoS parameters using
the OWL formalism. The ontology designed towards satisfying rich set of requirements, such as
expressiveness, robustness, flexibility, accuracy, scalability, performance, completeness, user and
developer-friendliness, and interoperability.

The derived ontology acts as an upper level ontology for specifying concrete QoS ontologies. Therefore,
appropriate development is needed towards defining the concepts that will be involved in the measuring of a
service’s quality. An interesting feature of this upper ontology is the definition of conversional formula that is
responsible for converting the measurement units of a metric.

4.3.6 Policy ontologies

In the context of this report, a policy is a set of non-functional constraints and capabilities that a Web service
has and allows itself to specify requirements for initiating the interaction between the service requester and
itself. For example, the functional capability of a hotel booking service is to reserve hotels’ rooms, whereas a
non-functional capability of the service may be that it gives final reservations within 24 hours of the request
and that it supports strong encryption for communication. Moreover, a non-functional requirement of a
service that uses a specific printer to print documents may be that only persons that belong to a specific
group (i.e. senior developers) can have print access to it.

A policy ontology-language should address an authorization policy, which is whether a requester is permitted
to or denied to access to a particular resource/service and obligation policies, which is what and when a
requester is required to do to a resource/service. Also, it should address usage policy. That is what
constraints should satisfy the mean that utilizes the resource/service, for instance the service A should run
on a linux-styled operating system with memory not less than 500 MB. Moreover usage policy may also
dictate some obligations that a resource/service consumer should follow, for instance the service consumer
must not use the output of the service in a commercial use. And last but not least, the policy ontology should
be OWL-DL compliant, extensible to custom polices and capable to combine already defined policies using
the operators and, or and not.

All the following reviewed policy languages except WS-Policy, satisfy more or less the above requirements.
However more specific requirements concerning the exploitation of policy ontology in the context of grid4all
project should be stated in order to choose the most appropriate one.

It should be also stated that in a grid environment policies should be used in other levels. For example at
provider level, e.g. how many resources can be allocated to different purposes, and the Virtual Organization
(VO) member’s level, e.g. the resource providers or a VO member may not participate in a VO
unconditionally, a member of a particular VO should satisfy some criteria or a service should not scheduled
in VO if a QoS measure is below a threshold.

WS-Policy

WS-Policy (WS-Police, 2006) is a policy language being developed by IBM, Microsoft, BEA, and other web
services vendors in order to provide a general purpose model and syntax to describe and communicate the

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 161

policies of a Web service. Policies consist of assertions and alternatives and are expressed in XML
constraint on a grammar in XML Schema. An assertion is the basic unit of a policy and defined by a Qualified
Name which point to a domain-dependent entity. Also, an assertion can contain nested policy expressions.
An alternative is a set of assertions and a set of alternatives comprises a policy. All assertions in an
alternative have to be satisfied by the requester of a service that follows that policy - alternative.

Although, this model has the most momentum of the existing one, lacks semantic expressivity and reasoning
capability. Therefore, is by the beginning unable to support our requirements.

Rei Policy Specification Language

Rei [18][19] is a policy specification language which is modelled on deontic concepts of permissions,
prohibitions, obligations and dispensations and is able to describing a large variety of policies ranging from
security policies to conversation and behaviour policies. Polices are defined by declaring what an entity
can/cannot do and what it should/should not do in terms of actions, services, and conversations.

Rei policy language consists of domain independent ontologies which includes the concepts, e.g.
permissions, obligations, actions, speech acts, that are used for declaring a policy. Policies are specified as
constraints over allowable and obligated actions on resources of the environment. Domain specific
ontologies are used to conceptualize the resources and their properties of the environment. Rei also includes
logic-like variables giving it the flexibility to specify relations like role value maps that are not directly possible
in OWL.

A very interesting feature of Rei policy language is the meta-policy specifications for conflict resolution.
Conflicts may occur between permissions and prohibitions, obligations and prohibitions, and obligations and
dispensations. Rei defines two meta-policies for resolving conflicts: a) setting the modality precedence and
b) stating the priority between rules within a policy or between policies. In the former meta-policy it becomes
well known what policy overrides what policy and in the latter a priority setting ranks the rules within polices
and the policies between them.

KaOS Policy Ontology and Services

KaOS Policy Ontology and Domain Services [41][42] use an ontology, which is formalized in OWL, to build
policies. KaOS’s ontology is provided containing domain independent concepts necessary to describe a
policy. The main concepts of the ontology are: actors, actions and context. A context can refer to objects,
such as domain specific entities, computing resources etc., which are the target of the action. The provided
ontology can be further extended with domain specific concepts.

The KaOS ontology distinguishes between authorizations and obligations. Authorization is divided into
positive and negative authorizations, which are constraints that permit or forbid some action respectively.
Obligations are divided into positive and negative, which are constraints that require some action when a
state- or event-based trigger occurs or that serve to ignore such a requirement. A policy is an instance of one
of following four basic policy concepts: PositiveAuthorization, NegativeAuthorization, PositiveObligation, or
NegativeObligation. The property values determine management information for a particular policy, e.g its
priority. The type of policy instance determines the kind of constraint KAoS should apply to the action, while
a policy’s action class is used to determine a policy’s applicability in a given situation. The Action concept
exploits OWL restrictions to narrow scopes-of-action properties and is associated with actors. KaOS use
Java Theorem Prover (JTP, 2004) in order to identify and harmonize conflicting policies.

Mapping WS-Policy to OWL-DL

The lack of formal semantics in one of the leading policy languages, named WS-Policy, drove Kolovski et al.,
[20] to map WS-Policy descriptions into OWL-DL formalism. WS-Policy has shown to be an expressive
subset of OWL-DL.

OWL-DL proved an interesting framework for exploring richer policy languages with minimal implementation
cost. Also, expressing policies in OWL-DL enabled harmlessly the exploitation of inference capabilities.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 162

Thus, policy inclusion (if x meets policy A and A is sub-class of B then x also meets B), policy equivalence
(police A is equivalent to policy B), policy incompatibility (if x meets policy A and not policy B then A and B
are disjoint), police incoherence (nothing can meet policy A, it is unclassifiable) and policy conformance (x
meets policy A, x is type of A) got in sight of transformation to OWL-DL.

4.3.7 Resources/Services matchmaking

Matchmaking has been a hot topic of MAS (Multi-Agent Systems) research, related to question on how to
find a suitable agent for a specific problem. The matchmaking in MAS involves semantic service
matchmaking using the concept relationships and word distance to determine the semantic similarities of
advertisements and requests. The matchmaking in MAS does not involve other resource types and the
matchmaking results are exact, i.e., only “true” and “false” are allowed.
Research for service/resource discovery in the Internet involves ontology-based matchmaking. The
traditional methods of service discovery include name matchmaking and keyword matchmaking. Some new
methods are based on ontologies. In [34] a semantic matchmaking framework based on DAML-S, a DAML
(DARPA Agent Markup Language)-based language for service description, was proposed for semantic
matchmaking of web services capabilities. The basic idea is that an advertisement matches a request when
the service provided by the advertisement can be of some use to the requester. The matchmaking is
performed on the outputs and inputs of the advertisement and the request is based on the ontologies
available to the matchmaker. Through the subsumption relationship of one concept of the input/output of the
advertisement and one concept of the input/output of the request, three levels of matching can be
determined: exact, subsume, and fail. The idea of checking the concepts of input and output is similar to the
one in the MAS research.

In the following paragraphs we describe some of the related works concerning resource/service matching at
the semantic level towards an effective resource/service discovery in Grid environments. We conjecture that
these works are closely related to the Grid4All requirements for an ontology-based resource discovery
service.

BondGrid

In an intelligent grid environment, the BondGrid [2], a resource matching scheme is proposed that supports a
variety of matching functions including fuzzy ones. Given a request and a set of resources, the goal is to find
a set of resources that best match the request. A request is a (n+1)-tuple consisting of n attributes (a

1
, a

2
, …,

a
n
) and a function of these attributes to be evaluated in the context of resources, i.e., request = [a

1
, a

2
, ..., a

n
,

f(a
1
, a

2
, ..., a

n
)]. An attribute of a request is a mapping from an attribute name to an attribute expression. A

resource is an m-tuple consisting of m attributes (a
1
, a

2
, ..., a

m
). The resource that returns the largest value of

function f is considered as the one that best matches the request. Attribute names are constructed according
to the corresponding resource ontologies. Resource ontologies are a critical component of the matchmaking
framework.

For a request = [a
1
, a

2
, ..., a

n
, f(a

1
, a

2
, ..., a

n
)], the function f is an expression that is the combination of

attribute expressions f
1
(a

1
), f

2
(a

2
), ..., and f

n
(a

n
) through mathematical and/or logical operators, where f

1
(a

1
),

f
2
(a

2
), ..., and f

n
(a

n
) are to be evaluated in the context of the corresponding attributes of the resource. The

expression for function f may involve:
 1. Boolean expressions can be combined with the use of Boolean operators “&” and/or “|”.
 2. Arithmetic expressions can be combined with the use of arithmetic operators, such as “+”, “-”, “*”,

and “/”.
 3. Fuzzy expressions can be combined with the use of fuzzy operators “&&”. The evaluation result of

multiple fuzzy numbers connected by “&&” are the average of these fuzzy numbers.
 4. A Boolean expression can be combined with an arithmetic expression or a fuzzy expression

through the Boolean operator “&”. If the Boolean expression returns 1, they are evaluated to the
value returned by the arithmetic expression or the fuzzy expression. If the Boolean expression
returns 0, they are evaluated as 0.

 5. Expressions are combined through “if”, “then”, and “else” constructs.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 163

Authors define three types of matching functions. A matching function f may contain Boolean expressions
and return a Boolean constant (“true”, 1 or “false”, 0). f may also contain arithmetic expressions and return a
positive real number. They also allow f to contain fuzzy expressions and return a fuzzy number in [0, 1]. The
higher the returned value, the better a request can be satisfied.

The matchmaking framework includes a resource specification component, a request specification

component, and matchmaking algorithms. A request specification includes a matchmaking function and
possibly two additional constraints, a cardinality threshold and a matching degree threshold. The cardinality
threshold specifies how many resources are expected to be returned by the matchmaking service. The
matching degree threshold specifies the least matching degree of one of resources returned by the service.

Although the approach builds on ontology-based resource matching, the need for following specific rules

for constructing attribute names according to the corresponding resource ontology is rather restrictive and
could not be applied in open and distributed Grid environments outside organization boundaries.

Ontology-based resource matchmaking (OMMS)

In OMMS [15] ontology-based matchmaker, authors employ a flexible and extensible approach for
performing Grid resource selection that, unlike the traditional Grid resource selectors, uses separate
ontologies to declaratively describe resources and job requests. Instead of exact syntax matching, the
ontology-based matchmaker performs semantic matching using terms defined in ontologies. The loose
coupling between resource and request descriptions remove the tight coordination requirement between
resource providers and consumers. In addition, the matchmaker can be extended by adding vocabularies
and inference rules to include new concepts about resources and applications, and adapting the resource
selection to changing policies.

In previous work of OMMS, authors have designed and prototyped the matchmaker using TRIPLE to use
ontologies encoded in W3C’s Resource Description Format (RDF) and rules (based on Horn logic and
FLogic) for resource matching. Resource descriptions, request descriptions, and usage policies are all
independently modelled and syntactically and semantically described using RDF schema. They utilize
inference rules for reasoning about the characteristics of a request, available resources, and usage policies
to appropriately find a resource that satisfies the request requirements.

A request is expressed using the request ontology. A persistent Grid matchmaking service has been
designed that can support multiple clients simultaneously. Since there is only one single TRIPLE instance
that handles all requests, authors have implemented a synchronization mechanism to ensure an atomic
operation for each request. The granularity of these operations is chosen so that the waiting time for each
operation is short. Clients submit requests in RDF, and receive a list of matching resources either in an
outline form (e.g., resource names) as strings or in a detailed form (e.g., resource names and their
capabilities) as RDF. Users can express their preference for matched resources by using a ranking function.
The ranking function is an arithmetic expression expressed in terms of resource properties; for example,
10_CPUClockSpeed+PhysicalMemory. Clients can indicate the number of returned resources which will be
sorted based on their ranking values.

As a key part of OMMS, the resource discovery component dynamically collects resource information from
multiple sources, transforms the information into the resource ontology, and updates the backend knowledge
base accordingly. Since different Grid resource providers might express their capabilities using different
schemas and encoding mechanisms (e.g., XML, LDAP), an ontology translator is developed to translate the
various formats used in a heterogeneous Grid environment into OMMS’ resource ontology. The design goals
of this module include collecting various categories of resources and updating with least communication
overhead without service interruption.

According to the authors, the existing system is designed to be application or domain independent. Higher-
level application models can be built on top of the existing system. As an ongoing research, they plan to
expand the request ontology to include application-level description as well as their performance models,
allowing users to describe their requirements in their own domain specific terms. Depending on the request,
additional information might be needed. For example, the sizes of input files are needed to infer the disk

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 164

space requirement associated with the computing resource. In addition to the ontology expansion, authors
plan to extend the matchmaker service to dynamically gather additional information from other knowledge
sources (such as the Metadata Catalog Service) and incorporate that into the matchmaking procedure.

Knowledge layer on Gridbus broker

This work [37] addresses the need for a semantic component in the grid environment to discover and
describe the grid resources semantically. It proposes a semantic grid architecture by introducing a
knowledge layer at the top of Gridbus broker architecture and thereby enabling brokers to discover
resources semantically. The semantic component in the knowledge layer enables semantic description of
grid resources with the help of an ontology template. The Ontology template has been created using
Protégé-OWL editor for different types of computing resources in the grid environment. The Globus Toolkit’s
MDS is used to gather grid resource information and Protégé-OWL libraries are used to dynamically create a
knowledge base of grid resources. Algernon inference engine is used for interacting with the knowledge
base to discover suitable resources.

In grid environment where resources are generally owned by different people, communities or organizations
with varied administration policies and capabilities, obtaining and managing these resources is not a simple
task. Resource brokers simplify this process by providing an abstraction layer for users to access
heterogeneous resources transparently. Gridbus broker is a resource broker designed to support scheduling
of both computational and data grid applications. However, the resource discovery module implemented in
the Gridbus broker does not support semantic description and discovery of grid resources, as it uses the
Globus Grid Index Information Services (GIIS) or Grid Marker Directory (GMD) to gather grid resource
information. In this paper, authors propose a knowledge layer on the top of Gridbus broker architecture for
semantic description and discovery of resources.

Authors proposed a five layered architecture that implements a knowledge layer on top of Gridbus broker as
shown in the following figure and it can be used for building semantic grid infrastructure.

Figure 35 The knowledge layer on top of Gridbus broker

The Resource Discovery Module allows the users to submit the information about required resource to
execute their job. It then generates appropriate Algernon query depending on the requirements specified by
the user and executes these queries over the ontology knowledge base to obtain best possible resources
closely matching to the request. The discovery module retrieves resources that exactly match with that of
request. It also retrieves resources subsumed by the query when exact matching is not found. Once suitable
resource is obtained, the resource discovery module submits the resource information along with the user’s

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 165

job to the job descriptor. With this information, the job descriptor creates an application description file and
resource description file. Both these files are required by the broker to successfully run the application in the
specified resource. The broker executes the job on the specified resource and generates results. The
discovery module aggregates the results from the broker and delivers to the user.

Protégé has been installed in one of the machines (which don’t have to be a resource provider) and an
ontology-driven template has been created by considering different computing resources in the grid. The
concept of these resources has been defined properly using relations and properties so that the
characteristics of any resource can be defined. The MDS component offers a tool to retrieve resource
information which is accessed through remote machines. The grid-info-search tool aggregates various
properties of grid nodes and stores them in the LDAP server. These are retrieved using suitable LDAP
queries. The resource description module is developed using Java programming language. The module
accesses the grid nodes and retrieves resource information by executing LDAP queries on those nodes and
updates into the ontology template. The Protégé editor offers versatile libraries called Protégé-OWL APIs
with which one can manage the ontology and perform several operations over the ontology such as creating
and deleting the instances of concepts, assigning values to the properties etc. For every type of information
retrieved from the grid node, instances of appropriate concept in the ontology template are created, forming
conformity relation between instances and their respective concept types. Further, an instance will be exactly
related to only one concept type. Also, the values of various properties retrieved are assigned to respective
properties of the appropriate concepts in the ontology template. This semantic description of resources
facilitates the use of an inference engine to interact with the knowledge base and retrieve information
semantically. Moreover, the description module is made to execute periodically so that addition and removal
of resources is accounted in the knowledge base dynamically.

Although an important recent implementation of Grid resources semantic matchmaking has been presented
within this related work, there is an important restriction: the ontology template developed depends on MDS
component and hence it may not support middleware other than Globus.

Semantic approach to service discovery in a Grid en vironment

In [26], a matchmaking framework for service discovery in Grid environments is proposed, based on three
selection stages which are context, semantic and registry selection. It provides a service discovery process
by using semantic descriptions stored in ontologies which specify both the Grid services and the application
knowledge. The framework permits Grid applications to specify the criteria a service request is matched with
and enables interoperability for the matchmaking process. A prototype implementation is presented, and an
enhancement of the matchmaking process is achieved with a similarity metric which allows quantifying the
quality of a match.

Related projects are trying to overcome the interoperability problem which Grid systems face, however, are
concerned with applying semantics to resources in order to have a more powerful matchmaking technique.
The approach proposed in this paper is concerned with application-level issues and requirements (also
myGrid project5). The main requirements which have driven the development were high degree of flexibility
and expressiveness, support for subsumption and data-types and a flexible and modular structure
implemented with the latest Web technologies. The main difference to the approaches proposed by others is
the concept of a three step discovery process consisting of application context selection, services selection
and registry selection. It allows the capture of the application and Grid services semantics separately and it
supports application developers and Grid services developers to register application and services semantics
separately. For the discovery process, this separation allows a classification of the application semantics in
order to find service descriptions in the Grid services ontology.

The matchmaking process is designed with respect to the criteria listed below:

1. High Degree of Flexibility and Expressiveness

Different advertisers would want to describe their Grid services with different degrees of complexity and
completeness. The description tool or language must be adaptable to these needs. An advertisement

5 http://www.mygrid.org.uk/

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 166

may be very descriptive in some points, but leave others less specified. Therefore, the ability to express
semi-structured data is required.

2. Support for Subsumption

Matching should not be restricted to simple service name comparison. A type system with subsumption
relationships is required, so more complex matches can be provided based on these relationships.

3. Support for Data Types

Attributes such as quantities should be part of the service descriptions. The best way to express and
compare this information is by means of data types.

4. Matching Process should be Efficient

The matching process should be efficient which means that it should not burden the requester with
excessive delays that would prevent its effectiveness.

5. Appropriate Syntax for the Grid

The matchmaker must be compatible with Grid/Web technologies and the information must be in a
format appropriate for a Grid environment.

6. Flexible and Modular Structure

The framework should be flexible enough to allow Grid applications to describe their context semantics
and Grid services to describe their service semantics in a modular manner.

7. Lookup of Matched Services

The framework should provide a mechanism to allow the lookup and invocation of matched services.

Depending on the matching modules and the defined application and services ontologies, a semantic match
is performed. Every pair of request and advertisement has to go through several different matching modules
of the matchmaking process. The final match with the service registry is performed in the registry module.
Information is provided to the service requester by sending contact details and related capability descriptions
of the relevant service provider.

The context matching module allows matching of the service request by means of context semantics defined
in the application ontologies. The application software of the different HEP (High Energy Physics)
applications specifies the service request within their own application context. In this module a mapping from
an application service request to a context-based service request is performed. It contains the concept of the
application domain specified by classes, datatypes and properties. The matching engine comprises a DAML
parser, an inference engine and a defined set of rules in order to reason about the ontologies.

Authors report performance problems related with the complexity of the ontology and rules and suggest that
a faster reasoning process is desirable and needs to be investigated. Also, the service description contains
prepositions or articles such as to, in, of, a etc., which need to be removed as they do not express the
functionality of the service and only distort the similarity value. Furthermore, not every attribute or description
has the same expressiveness and should be ranked with a different weight value accordingly. This implies
that human intervention for the ranking process becomes necessary which is a drawback for the automation
of the matchmaking process. Finally, It was found that a problem with performing flexible matches is that the
matchmaking engine is open to exploitation from advertisements and requests that are too generic. This
means that the matchmaking process needs to restrict the return of matches. Only matches that are
sufficiently similar to the service request can be accepted. This was achieved with the similarity algorithm
implemented in their prototype. It allows a ranking of service matches and allows restricting matches which
are below a certain similarity value.

The above related work implements a prototype using application-oriented techniques for semantic
matchmaking in Grid environments at the level of services. Grid4All could benefit in both services and
resources matchmaking by following a similar approach based on the three selection stages.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 167

A Grid Resource Discovery Method under the Circumst ances of Heterogeneous
Ontologies

In [7] an approach for semantically discovering grid resources is presented. It concentrates on the ontology
heterogeneity problem: when not a common-shared ontology is used for describing the request and
advertisement of a grid resource. The approach assumes that Grid resources are classified by a resource
ontology and ontology-based queries are expressed on it for selecting the most appropriate resource. An
ontology-based query is a boolean expression on the set of concepts names of an ontology. This approach
suggests that when different ontologies are used, the queries should be re-written by replacing the names of
concepts of the one ontology to other which represents a common basis. The re-writing of the queries is
based on a relation matrix that specifies the mapping between the concepts of the ontologies. The mappings
are specified based on concept instances: the realization of a set of instances (classification of instances
under concepts) to the concepts of the two different ontologies. Hence, common realization of instances
under specific concepts implies a mapping between these concepts. Moreover, the queries can be
approximated, using upper and lower approximation of concepts, by exploiting the subsumption relations
between the concepts in the ontologies. At last but not least, rules are specified for the appropriate re-writing
of the queries in order to ensure completeness (must contain all the answers to the original query).

Ontology-Based Resource Matching in the Grid - The Grid Meets the Semantic Web

In [40] a rule-based matchmaking mechanism is presented for selecting computational resources for specific
applications. Resources are selected based on application constraints (capabilities of the resource that will
be selected) which are specified on request. The matchmaking mechanism consists of 3 components: a) the
ontologies, b) the domain background knowledge and c) the matchmaking rules. The ontologies used are: a)
a resource ontology that provides an abstract model for describing resources and their capabilities, b) a
resource request ontology that captures requests’ properties, e.g. owner of request, characteristics, e.g. the
type of job, resources’ requirements, e.g. minimal physical memory etc. and c) a policy ontology that
captures resources’ authorization and usage policies. The vocabulary defined by the ontologies is used to
the creation of the background knowledge which constitutes ontologies’ A-box. Also, in the background
knowledge axioms are defined to support reasoning with instances. The matchmaking rules define the
matchmaking constraints between a request (job description) and resources (resource advertisements). The
rules are implemented using the TRIPLE/XSB deductive database system (TRIPLE). The requester can
specify preference criteria to the list of the result matches.

SPARQL-based OWL-S Service Matchmaking

In [36] a matchmaking mechanism that is based on SPARQL (SPARQL)[38] query language is presented.
According to this mechanism, a service advertisement is made in OWL-S whereas a service request is
formulated using the SPARQL query language exploiting the vocabulary defined by the ontologies used in
the service description. Moreover, it is assumed that OWL-S instances of service advertisements are stored
in a RDF repository which provides an inferred graph of the instances. The matching is performed in the
input and output attributes of the service profile. SPARQL constructs (i.e. optional, filtering and union) allow
the construction of complex queries for the selection of services. Also, a scoring function is employed for
associating a degree of match in ordering the matching results.

MOD - A Multi-Ontology Discovery System

In [23] a matchmaking mechanism that deals with the case where different ontologies are used for the
respective description of service requests and advertisements is proposed. The matchmaking is performed
in 4 steps: In the first step, namely input matching, the inputs of the advertised services are compared to the
inputs of the requested services. In the second step, namely output matching, the outputs of the advertised
services are compared to the outputs of the requested services. In the third step, namely operation
matching, service category operation of the requested and service category of the advertised service are
matched. In the last step, namely user-defined matching, the requester can declare some more constraints
or rules to restrict the matching and increase the accuracy of the results of matching. In each step, a concept
similarity method, which comes from the ontology mapping research domain, are exploited in order to
produce a similarity degree between the concepts involved in the description of the specific service’s profile
attribute, e.g. input/output attribute etc.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 168

Service Matchmaking and Discovery with Rough Sets

In [51] a matchmaking method that deals with the uncertainty of properties (i.e. properties with empty values)
is proposed. In real-world grid settings, it is not always the case that a service advertisement and request
uses consistent properties for their description. Usually, service providers and requesters may use their own
pre-defined properties to describe services. Moreover, some of these properties might be used in one
description and not in other. Most of the matchmaking methods assume that service advertisements and
requests use consistent properties to describe services and cannot handle uncertainty on properties. The
proposed method, assuming that a common ontology is used for the description of service requests and
advertisements, handles the problem of the uncertainty on the attributes of the service profile description
producing a list of service matches results.

An Algorithm for Resource Discovery Based on Metada ta Semantic Matching in
Semantic Grid Environment

In [25] a hybrid matchmaking method for resource selection is presented. The method synthesizes exact and
fuzzy matching techniques exploiting the vocabulary defined by the ontologies used to represent resource
requests and advertisements. Resource requests and advertisements are made by the population of domain
ontologies. These ontologies can be different. Therefore, the method firstly performs matching between the
ontologies that have been used for the expression of the request and advertisements and then proceeds to
the instances matching (instances represent the specific resource request and advertisement in the
corresponding ontologies). The matching is performed on resource characteristics. The degree of matching,
in each step of its application, is propagated to the next one resulting in a list of matched resource with
various matching degrees.

Resource Matching and a Matchmaking Service for an Intelligent Grid

In [2] providers advertise their resources as instances of concepts of specific Grid resource ontology. On the
other hand, a resource request is a tuple of attributes-values pairs and a function that express constraints on
the attributes. The names of the attributes are based on the names of the concept’s attributes. Hence, the
description of resource requests and advertisements is based on a commonly-shared ontology. The function
is constructed by attribute names and their specified values along with arithmetic, Boolean and fuzzy
operators.

The proposed method returns a ranked list of Grid resources according to their matching degrees. The
requester is able to use two matching preferences on this list: a) a matching degree threshold and b) a
cardinality threshold. The former one is used for specifying the minimum matching degree of the returned
matches whereas the latter one specifies the length of the returned list that contains the matches. Partial
match is supported by the method. Although, a resource ontology is used for resources’ realization, in
general its semantic are not exploited in the matching mechanism but only its structure providing a common
vocabulary.

4.3.8 Technology (Ontology languages/reasoners/tools/repositories)

Resource/service description languages & standards

The Semantic Information System will be provided as a service for Web users. This indirectly requires that
the subsystems integrated in it must be Web compatible or to perform in an efficient and open way when
used in Web applications. The Resources Ontology, the core of the SIS, must be also integrated in SIS and
thus it should be compatible with this technological frame.The leading standard for specifying ontologies in
the new era of Semantic Web (technologies) is the Web Ontology Language (OWL). As a result to that and
to the Grid4All requirements for using the latest technological standards for the modelling of
resources/services, we will not examine any alternatives or related technologies. OWL (and OWL-S for
services) will be Grid4All technology for representing resources and services. Furthermore, due to the
requirement for advanced reasoning facilities and expressivity of the resource description language, OWL-
DL (OWL Description Logic) subset or an equivalent-strength language be used. This capability of OWL is
also an important reason for choosing it as a language for developing the Resources ontology.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 169

In addition to the selection of the most suitable language for representing Resources/Services, it is important
to decide upon the different reasoning engines implementations. Thus, we hereby present a comparison of
the most well-known OWL-DL reasoners. There are a variety of criteria for choosing one or another
reasoning engine, mainly interesting on their performance when used for placing queries to resources’
knowledge bases. These criteria are shown in the following table (first column). Performance and
expressivity are important criteria. Querying and reasoning with instances fast is also an important criteria.
Conformance with the latest standards such as OWL, JENA repository and SPARQL query language as well
as the existence of technical support is criteria that need also to be considered.

 RacerPro 6 Fact++ 7 KAON2 8

Pellet 9

Implementation Language Java/Lisp API C++ Java (1.5) Java

Query Language (QL) nRQL ? SPARQL subset of RDQL &
RDQL -

QL Expressivity

expressivity of non-
recursive datalog
with negation

? conjunctive queries,
albeit without true
non-distinguished
variables

conjunctive ABox

Ontology language
supported/ implemented DL

SHIQ (OWL-DL
without nominal -
nominal are
approximated-)

sound and complete for
SHOIQ

(OWL-DL including
reasoning about
nominal)

SHIQ(D) subset of
OWL-DL (all features
of OWL-DL apart from
nominal)

sound & complete for
SHINQ, incomplete
for SHOIN with simple
datatypes, sound &
complete SHOIQ (the
expressivity of OWL-
DL plus qualified
cardinality
restrictions)

Interface to Reasoning DIG/OWL DIG/LISP DIG DIG/OWL/Jena

QL translation OWL-QL/ SWRL

Reasoning in T-box
(Schema)

subsumption,
satisfiability,
classification

subsumption,

satisfiability,

classification

subsumption,
satisfiability,
classification

subsumption,
satisfiability,
classification

Reasoning in A-box
(instances)

consistency,
classification,

retrieval: do not
support fully the
SWRL.

incomplete (retrieval) –
no reasoning support
for instances

retrieval, conjunctive
query answering

retrieval, conjunctive
query answering

Weakness

cannot handle

nominal & user-
defined datatypes,
does not support
neither default
negation nor
negation

handle only string and
integer datatypes, does
not support default
negation and function
symbols

cannot handle

nominal and large
numbers in cardinality
statements

does not support
default negation and
function symbols

Specific features

equivalence of
roles, synonyms for
individuals, datatype
property roles,
annotation property
roles, incremental
query answering

synonyms, inverse
roles

support SWRL, best
A-box reasoning for
large KB, KAON2
does not implement
the tableaux calculus

Ontology analysis and
repair, Species
Validation,
Entailment, Datatype
Reasoning, User-
defined Simple
Datatypes, Ontology

6 http://www.racer-systems.com/
7 http://owl.man.ac.uk/factplusplus/
8 http://kaon2.semanticweb.org/
9 http://www.mindswap.org/2003/pellet/index.shtml

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 170

 RacerPro 6 Fact++ 7 KAON2 8

Pellet 9

etc. Debugging, multi-
ontology reasoning.

Suitable for S.W.
instance heavy
applications (support
enumerated classes
and instance
assertions)

License
commercial open-source

(GNU public license)

free

(non-commercial use)

open-source

Datatypes OWL-DL datatypes String, Integers String, Integers XML Schema
datatypes

User-
derived
Datatypes

NO YES (OWL1.1) NO YES (OWL1.1)

Nominal NO (approximation) YES NO YES

Disjunctive
classes

YES YES YES YES

Conjunctive
classes YES YES YES YES

Inverse
properties10

YES YES YES YES

Transitive
properties YES YES YES YES

Symmetric
properties

YES YES YES YES

Concepts
Inheritance YES YES YES YES

(arbitrary)
Cardinality
on
Constraints

? ? NO YES

Qualified
Cardinality
Restrictions

YES (OWL1.1) YES (OWL1.1) NO YES (OWL1.1)

Property
Inclusion

NO YES (OWL1.1) NO YES (OWL1.1)

Disjoint
properties

NO YES (OWL1.1) NO YES (OWL1.1)

Anti-
symmetric
properties

NO YES (OWL1.1) NO YES (OWL1.1)

Reflexive
properties

NO YES (OWL1.1) NO YES (OWL1.1)

Language
Features for
Reasoning

irreflexive
properties NO YES (OWL1.1) NO YES (OWL1.1)

Conjunctive
queries

YES YES ? YES
Language

Features for
Queries

Variables in
predicate
position

? ? ? NO

10 Properties are equivalent to roles when we referring to logic languages

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 171

 RacerPro 6 Fact++ 7 KAON2 8

Pellet 9

support for
queries with
undistinguis
hed
variables

? ? ? YES

Negation as
failure YES ? ? ?

KB -
arbitrary
atomic
queries

? ? ? YES

Classification

Fast Fast ? Acceptable

Performance

Query
Answering

(conjunctive)
Acceptable - ? Fast

Table 3 Reasoning Engines

Storage of Descriptions

Another important aspect concerning Resources/Services descriptions, again related with the performance
of retrieving the related knowledge, is the organization of their storage. There are a number of different
technologies for storing ontologies, providing more or less efficient mechanisms with respect to scalability,
speed, platform, architecture, etc. In the following table we present such technologies for organizing
ontologies in database repositories (persistent storage) and/or in-memory organization. The table is
organized based on the criteria shown in the first column. The most important criteria are the compatibility
with the latest standard (OWL and SPARQL) and the support of reasoning facilities (e.g. Pellet). The
performance (speed) of retrieving persistent models (triples) is also of major importance, however such a
comparison is not presented in this report due to lack of independed references.

 SESAME 2.011 JENA 2.4 12 KAON 2 13
RDF

GATEWAY 14
OWLIM BigOWLIM

Implementation
language Java Java Java ? Java Java

Status of Latest
Version Alpha Stable stable ? stable beta

Ontology
language
supported

RDF(S) + other
languages via
3rd parties
software

RDF (s), OWL OWL-DL,
SWRL,

F-Logic

RDFS and
OWL

RDF, OWL DLP,
OWL HORST, and
most of OWL-Lite

RDFS, OWL DLP,
OWL Horst

Query language
supported

RQL, RDQL,

SeRQL
RDQL, SPARQL SPARQL RDFQL SeRQL RQL, RDQL,

SeRQL

Storage (DB)
systems

supported

In-memory and

persistent

ORDBMS

In-memory and

persistent

ORDBMS

persistent

ORDBMS
persistent

ORDBMS
? ?

11 http://www.openrdf.org
12 http://jena.sourceforge.net/index.html
13 http://kaon2.semanticweb.org/
14 http://www.intellidimension.com/default.rsp?topic=/pages/site/products/rdfgateway.rsp

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 172

 SESAME 2.011 JENA 2.4 12 KAON 2 13
RDF

GATEWAY 14
OWLIM BigOWLIM

Persistence
syntax

RDF, N-Triples N-Triples RDF, N-Triples RDF, N-Triples

API support YES YES YES YES Java-YES Java-YES

Inference
supported

BOR reasoner

for DAML+OIL

and OWL

Jena reasoning for

OWL-lite

+

DIG/API Pellet

support for OWL-

DL

YES but

cannot handle

nominals

Cannot handle

large numbers

in cardinality

statements

YES TRRRE engine to

perform OWL DLP

reasoning (internal

reasoning

mechanism)

BigTRREE engine

Export support RDF + other

forms via 3rd

parties software

RDF, N3, N-triples ? Triples in
ASCII

XML, N_Triples, N3 RDF, N-Triples,
N3

License
(availability)

BSD-style

license
Jena license (free

use of source and

binary)

free

precompiled

binary

distribution

Commercial

tools
LGPL open source on-request

Table 4 Ontology repository systems

4.3.9 Conclusions

Within the context of Grid and the IT industry, many systems addressed the issue of resource
representation. Resources are the core of grid, and the way they are described is much important for the
grid user to discover and access them. Many related works provide resource description and specification
languages together with a matchmaking service that efficiently allocate resources.

A number of recent efforts have focused on Grid-related ontologies. Grid ontologies define fundamental Grid-
specific concepts, and the relationships between them. Most of the related works provide a common basis
for representing Grid knowledge about Grid systems. Several ontologies proposed so far which are Grid sub-
domain specific and have been developed for special purposes. Thus, they can be used for only certain Grid
systems/applications (application-oriented resources ontologies).

In respect to Grid economy ontologies, existing Grid ontologies do not contain market specific entities or
attributes. Examples of market specific attributes are price, resource availability, etc. Although we have
found economic oriented and business ontologies that contain market related attributes none of them seem
adequate for representing the trading of resource in the Grid4All context. Thus, Grid4All must develop its
own ontology based on (combining) existing efforts of both Resources and Market ontologies/models
respectively.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 173

4.4 Distributed Query Allocation
for Autonomous Participants: A Survey

4.4.1 Introduction

Increasing numbers of both universities and enterprises are adopting the Internet to share information and
do business with others. It already exist several distributed systems that enable heterogeneous participants
(consumers and providers) to (i) collaborate for reaching a common objective; (ii) exchange information; and
(iii) compete for potential consumers or providers. Providers can be heterogeneous in terms of capacity and
data. Heterogeneous capacity means that some providers are more powerful than others are and thus can
treat more queries per time unit. Data heterogeneity means that providers provide different data and thus
produce different results for a same query.

Besides, in very large-scale distributed systems, participants are usually autonomous, i.e. free to leave the
system at any time, and have special interests for some queries. Such interests mainly reflect their
preferences to allocate and perform queries. Consumers’ preferences may represent their interests towards
providers (e.g. based on reputation)n preferred providers, or quality of service. Providers’ preferences may
represent, for example, their topics of interests, relationships, or strategies.

Example 1. Consider a provider px that represents a courier company. During promotion of its new international

shipping service, the provider is more interested in treating queries related to international shipments rather than

national ones. Once the advertising campaign is over, the provider’s preference may change.

However, preferences are usually considered as private data by consumers and providers (e.g. in an e-
commerce scenario, enterprises do not reveal their business strategies). In addition, preferences are quite
static data, i.e. long-term, while the desire of a provider (resp. a consumer) to perform (allocate) a query may
depend on the context and thus is more dynamic, i.e. short-term.

Example 2. Considering Example 1, px may not desire, at sometime, to perform a query related to an international

shipment because local reasons, e.g. by overload.

Thus, consumers and providers are required to express their desire to allocate and perform queries,
respectively, via an intention notion, which may stem e.g. from combining their preferences and other private
local consideration such as load (see Figure 36). We can then define the intentions and preferences of
consumers and providers as follows.

Preference. A participant’s preference denotes its topics of interests and some quality parameters that it is
looking for (e.g. quality of service and reputation).

Intention. A participant’s intention denotes its desire to allocate and perform queries in according to its
preferences and context (e.g. its load and strategy)

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 174

Figure 36 Query Allocation Schema

In these distributed systems, query allocation is a challenge. Participants’ autonomy is the main source of
the problem, because they may leave the system if they are too dissatisfied. Thus, to survive and succeed in
these environments, it is crucial to apply a query allocation strategy that balances queries such that
participants are satisfied. In this context, the participant's satisfaction means that a query allocation method
meets its expectations.

4.4.2 Considering the consumers and participants’ intentions

As a motivating example, consider a public e-marketplace where thousands of companies can share
information and do business (such as ebay-business [53] and freightquote [54]). Here, business is
understood in a very general sense, not necessarily involving money. Each site, which represents a
company, preserves its preferences for allocating and performing queries. However, preferences are usually
considered as private data by consumers and providers, e.g. enterprises do not reveal their business
strategies. In addition, preferences are quite static data, i.e. long-term, while the desire of a provider (resp. a
consumer) to perform (allocate) a query may depend on the context and thus is more dynamic, i.e. short-
term. For instance, a provider may prefer to perform some kind of queries, but, at some time, it may not
desire to perform such queries because local reasons, e.g. by overload. Thus, enterprises express their
desire to allocate and perform queries via an intention notion, which may stem e.g. from combining their
preferences and other private local consideration such as load.

Its is worth remembering that to scale up and be attractive over time, an e-marketplace should (i) protect, in
the long-run, the consumers and providers' intentions for doing business, (ii) allow consumers to quickly
obtain results, and (iii) fairly balance queries so that providers should have the same possibilities for doing
business, i.e. to avoid starvation, [56].

Consider a simple scenario where a company (eWine), which desires to ship wine from France to USA,
requests the mediator for companies providing international shipping services, as in freightquote [54]. Here,
a query is a call for proposals that providers have to answer in order to provide their services. Consider a
second scenario where a company desires to run a specific application, so it requests the mediator for
companies providing computing resources (e.g. CPU units), as in [55]. The following details are symmetrical
for both scenarios. Suppose that eWine, to avoid be flooded by several proposals, desires to receive
proposals only from the two best providers that meet its intentions, i.e. its expectations. Similarly, to do not
waste time in making proposals for uninteresting queries, providers desire to participate only in those
negotiations that involve queries meeting their intentions.

In these two scenarios, the mediator must perform several tasks. First, it needs to identify the sites that are
able to deal with eWine’s query (i.e. to find the providers). Next, the mediator should obtain eWine’s
intentions to deal with such providers and the providers' intention to deal with eWine’s query15. One can do
so by following the architecture proposed in [70]. Assume that the resulting list contains, for simplicity, only

15 For simplicity, we assume in this example that the intentions’ values are binary.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 175

five providers: p1 … p5. Table 5 shows these providers with their intention to perform the query and eWine‘s
intention to deal with each of them. To better illustrate the query allocation problem in these environments,
we also show in Table 5 the providers’ available capacity. However, it is not always possible to know this
information since providers may consider it as private. Suppose, then, that p5 is overloaded, i.e. has no more
resources for doing business, and that p2 and p4 do not intend to deal with eWine’s query (notice that this not
means they can refuse it) because e.g. p2 is more interested in its new shipping service to the Asian
continent and p3 has bad experience with eWine. Similarly, assume that eWine does not intend to deal with
p1 nor p3 since it does not trust them.

Providers Providers’ Intention Consumer’s Intention Available Capacity

P1 Yes No 0.85

P2 No Yes 0.57

P3 Yes No 0.22

P4 No Yes 0.15

P5 Yes Yes 0

Table 5 Providers that are able to deal with the eW ine's query

Finally, the mediator needs to select the two most available providers, such that eWine’s and providers’
intentions are respected. Because of enterprises’ autonomy, allocating the query to providers that do not
desire to deal with the query may cause their departure from the system. Similarly, if the query is allocated to
those providers that eWine does not desire to deal with might causes the eWine’s departure. The only
satisfactory option (regarding the consumer and providers’ intention) is p5, but allocating the query to it may
considerably hurt response time and quality of service as well as the eWine’s and p5’s departure. Besides,
eWine desires to receive two different proposals. So, what providers should one to select in the above
scenarios? Should one consider the consumer’s intention? The providers’ intention? Or providers’ available
capacity?

4.4.3 Related Work

We focus on the providers’ selection process (the field of distributed databases uses the term query
allocation) that just appears as a subproblem of query processing [69]. The providers selection problem is
defined as follows. Given an incoming query q, the goal of a selection service is to select/rank a set of
providers that are able to deal with q in accordance to some pre-defined criteria (such as reputation and
preferences). The selection of providers is addressed in many domains ranging from distributed database
systems to multi-agent systems, P2P data systems, web services, and networking systems. The
assumptions and techniques often differ depending on the context and do not result in the same system
characteristics. In the following, we draw a picture of the four main related approaches: the multi-agents, web
services, load balanced and economical approaches.

Economical approaches

Many solutions [56][61][82] have considered using the principles and models of micro-economy [73] in the
field of Computer Science. A survey of economic models for various aspects of distributed system is
presented in [61]. In economical models, every consumer tries to minimize its spending to acquire services
from the system, and every provider in the system tries to maximize its own profit by selling services to
consumers. The motivation of economical models is to decentralize the access to the system's resources
that is usually quite complex.

Mariposa [82] pioneered the use of a market approach for dealing with the providers’ selection problem in
distributed systems. It uses an economical model for allocating queries to providers based on a bidding
process. In Mariposa, a broker site processes all the incoming queries by requesting providers for bids.
Then, providers bid for acquiring the query based on a local bulletin board. Finally, the broker site selects a
set of bids that has an aggregate price and delay under a budget curve provided by the consumer.
Nevertheless, the mediation procedure is simple and limited. It inherently assumes that consumers are just

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 176

interested in low prices and response times. Furthermore, it does not take into account providers' quality and
may not process some queries although providers to perform them exist.

Multi-attribute auctions [59][84] are another kind of generalization, which help finding goods providers. The
basic idea is that a good is not only qualified by a price but several other attributes like for instance quality.
Obviously, in that case quality is attached to an item, while we attach it to the provider in our work. The
technical consequence is that price and quality do not evolve the same way at all (for example, in multi-
attribute auctions, the price increases if quality increases) leading to different formulas.

In [78], the authors focus on the optimization algorithms for buying and selling query answers, and the
negotiation strategy. Their query-trading algorithm runs iteratively, progressively selecting the best execution
plan. At each iteration, the consumer sends requests for bids, for a set of queries, and providers reply with
offers (bids) for dealing with them. Then, the consumer finds the best possible execution plan based on the
offers it received. These actions are iterated until either the found execution plan is not better than the plan
found in the previous iteration or the set of queries has not been modified (i.e. there is no new subqueries).
This approach uses some kind of bargaining between the consumer and the providers, but with different
queries at each iteration.

The mechanism proposed by Likhodedov et al [71] aims at maximizing both the consumers and providers’
utility. This is difficult because these two goals are contradictory. To cope with this difficulty, the consumer’s
viewpoint is adopted with a constraint corresponding to the provider's viewpoint. The main principle is the
following: the provider puts on sale several units of the same item. The consumer can buy at most one unit
each. The provider is not forced to sell all its units, in particular when consumers’ proposals are below its
reservation price. The provider allocates the units according to its utility (and thus its reservation price). Each
consumer must pay the amount that the item would have been worth to it if it had submitted its lowest
possible winning bid.

Multi-Agents approaches

In the field of multi-agents systems, the Contract Net Protocol (CNP) [81] is often mentioned as a way to
allocate tasks. Some agent A that wants a task to be completed by another agent sends a call for proposal to
its accointances. Those agents which want to complete the task reply by giving the conditions of execution.
Then agent A compares the offers and chooses the best agent according to its own criteria and informs the
agent that has been selected. At first sight, this protocol does not seem very far from an auction protocol.
However, the CNP is meant to be used in a cooperative context (i.e. the agents are not self-interested). In
addition, it is generally assumed a rather small number of agents, and a detailed description of the conditions
of execution, which is not the case in our case.

Several approaches of middle-agents have been defined, [56] [64] [75] [76] and a survey can be found in
[68]. These approaches find the providers that are able to treat a given query by matching their capabilities
advertisements with the given query. Languages to advertise capabilities have been defined [83]. All these
works are efficient but the number of selected providers may remain too large. Recently, some works have
investigating the possibility of reducing it by using a notion of quality [77] or word of mouth [85]. The former
work clearly suggests to first perform classical matchmaking, and then to refine the obtained selection by
considering the providers’ quality. The proposal in [85] uses records about each provider, which are obtained
using benchmarks and users' feedback. Our model uses a simpler representation of quality, which is just
represented as a number. Our proposal strongly differs from these works because the selection process
uses not only the providers’ quality but also their bids for queries, thus allowing them a more active
participation in the selection process.

More generally, the notion of quality that we use is related to that of trust and reputation. As for computing
reputation or trust, several rather succeeded works exist. They can be found in several works [67][72]. Many
works used trust and reputation, in particular in conjunction with other parameters e.g. as in economic
models.

The Gorobets et al [66] proposal uses an economical approach to model dynamic systems of interacting
agents. Its aims is to ``investigate under what conditions trust can be viable'' in the standard Transaction
Cost Economics. In the system, the roles of the agents may be buyers or suppliers. A buyer can make rather
than buy if it estimates that it is more profitable for it (there is a tolerance threshold). Transactions occur on
the basis of long-run relations between the agents. Each agent establishes a ranking of all its possible
alternatives. The agent's scoring takes into account the profit expected from the transaction (through product
selling) and trust (expressed as a probability of possible defection of the suppliers). Technically, a parameter
enables to support profit more than trust and vice-versa. Each buyer sends a given number of queries to its

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 177

most preferred suppliers. Each supplier is free to accept or reject a query, according to its most preferred
buyers. If one of its queries rejected, the buyer sends it to less preferred suppliers according to its ordering.
This is repeated until the query is accepted or the tolerance threshold is reached. In this latter case, the
buyer carries out the query itself. After this matching phase, the selected suppliers produce and deliver for
their buyers.

Web services approaches

To locate and select services in the web, web services have to describe properly all their proposed services
[56]. Once services have been properly described, these descriptions are made available, via a service
directory, to those interested in using them. Service directories allow users to search for and locate services.
These directories can be hosted and managed by a trusted entity (centralized approach) or each web
service can host and mange them (peer-to-peer approach). Much work on services discovery has been done
in the literature.

WSDL attempts to separate services from the concrete data formats and protocols used for implementation.
It therefore describes a binding scheme between the abstract service description and its specific
implementation. However, WSDL, like UDDI, does not support semantic description of services. DAML-S
aims at providing a common ontology of services. It is inspired by other research in the area of the so-called
semantic Web that encompasses efforts to populate the Web with content and services having formal
semantics. The ultimate goal of this proposal is to provide an ontology that allows users to discover, invoke
and compose Web services.

Finally, once located the Web services that provide the desired service of a consumer, the consumer selects
the Web service that it wants. The simplest thing is to select the provider with the highest score among the
Web services reported by the service directory (the registry). Thus, none of the above works considers the
consumers and providers’ experiences (feedbacks).

Query load balanced approaches

Much work on providers’ selection based on query load has been done in distributed systems
[57][63][65][74][79][80][83]. We can classify query load balanced approaches into two categories: those
techniques that providers’ selection is based on load (load based) and those where the selection is based on
available capacity (capacity based).

Overall, load based techniques weigh the providers by load and select a provider with probability that is
inversely proportional to its load. Generally, load is defined as the number of queries that providers have in
their queue of arrival queries. However, load based techniques inherently assume that providers and queries
are homogeneous. On the other side, Capacity based techniques strive to deal with such heterogeneity by
allocating queries to those providers with the greatest available capacity. The provider’s capacity is defined
as the maximum query rate that the provider can treat.

In contrast to our proposal, all the above works mainly model and address the problem of minimizing the
providers’ load or utilization and thus no notion of quality or reputation is considered in the provider selection
process.

4.5 Conclusions

This chapter provides a description of the state-of-the-art techniques that are related to the development of
the Semantic Information System. SIS in the context of the Grid4All project will implement a service
discovery mechanism based on matchmaking between requests and offers of services. It will provide a
registry for performing queries in the purpose of discovering available services that fulfil certain criteria
imposed by peers within the grid4all environment. These services are:

• Services that expose grid hardware and software resources

• Market services, where grid resources and services are traded

• Services that provide information about other peers that offer or request tradable goods within the
Grid4All.

In this context, this chapter describes the functional and the non functional requirements of the Semantic
Information System. It describes the relationship of the SIS with other components in the Grid4All, the types
of entities (actors) that interact with the system, the functionality that the system exposes to its users and the

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 178

characteristics of this functionality. The description focuses on the interaction of the SIS with its users rather
than the description of the information that is exchanged during SIS-user interaction. As most of the
information that SIS exploits is formalized in an ontology, the chapter outlines the requirements for a
resource/service ontology in the frame of Grid4All project, based on economic/market parameters and
constraints towards a democratic Grid across society. It then provides the requirements of the technological
aspects concerning the implementation of such an ontology, as well as on the matchmaking of
resources/services request/offers at the semantic level. Next it provides an extended review of state-of-the-
art related approaches on a) resource ontologies and related aspects, b) grid economy and c) semantic
matchmaking, and also technologies that support the development, reasoning, querying and storing of
ontologies. The chapter thoroughly presents available QoS and policy ontologies. Finally, the state of the art
on resources/services matchmaking is described.

The section closes with a survey on distributed query allocation for autonomous participants focusing on the
challenge of query allocation. As it is stated, participants' autonomy is the main source of the problem,
because they may leave the system if they are too dissatisfied. Thus, to survive and succeed in these
environments, it is crucial to apply a query allocation strategy that balances queries such that participants
are satisfied. In this context, the participant's satisfaction means that a query allocation method meets its
expectations.

References

[1]. Andreozzi S. (2007) GLUE Schema Specification version 1.3, Draft 3 – 16 Jan 2007.

http://glueschema.forge.cnaf.infn.it/Spec/V13

[2]. X. Bai, H. Yu, Y. Ji, and D.C. Marinescu, Resource Matching and a Matchmaking Service for an

Intelligent Grid, in: International Journal of Computational Intelligence [IJCI], Volume 1, Number 3,

Pages 197-205, 2004.

[3]. Beco S., Cantalupo B., Giammarino L., Surridge M., and Matskanis N., OWL-WS: A Workflow

Ontology for Dynamic Grid Service Composition, accepted to the 1st IEEE International Conference

on e-Science and Grid Computing, Dec. 5 - 8, 2005.

[4]. Bocchi L., Ciancarini P., Moretti R., Presutti V., Rossi D., An OWL-S Based Approach to Express

Grid Services Coordination, In Proc. 2005 ACM Symposium on Applied Computing, pp. 1661-1667,

2005.

[5]. Buyya R., Stockinger H., Giddy J., Abramson D. Economic Models for Management of Resources in

Peer-to-Peer and Grid Computing. Proceedings of the SPIE International Conference on

Commercial Applications for High-Performance Computing, 2001.

[6]. Buyya R, Abramson D, and Venugopal. The Grid Economy. PROCEEDINGS OF THE IEEE, VOL.

93, NO. 3, MARCH 2005, pp 698- 714.

[7]. T.Chen, B. Zhang, X. Hao, H. Zheng: A Grid Resource Discovery Method under the Circumstances

of Heterogeneous Ontologies. In: Proceedings of the First International Conference on Semantics,

Knowledge, and Grid [SKG 2005], 2005.

[8]. B. Chun, C. Ng, J. Albrecht, D. Parkes, and A. Vahdat. Computational resource exchanges for

distributed resource allocation, 2004 (http://citeseer.ist.psu.edu/706369.html)

[9]. S. Colucci, T. D. Noia, E. D. Sciascio, F. Donini, and M. Mongiello. Concept abduction and

contraction for semantic-based discovery of matches and negotiation spaces in an e-marketplace.

Electronic Commerce Research and Applications, 4(3), 2005

[10]. The DARPA Agent Markup Language. http://www.daml.org.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 179

[11]. DAML-S. URL: http://www.daml.org/services/

[12]. Glen Dobson, Russell Lock, Ian Sommerville, Developing an Ontology for QoS, in Proceedings of

the 5th Annual DIRC Research Conference, pp. 128-132, 2005.

[13]. Erwin D. (2002) UNICORE Plus Final Report - Uniform Interface to Computing Recources. Joint

Project Report for the BMBF Project UNICORE Plus. Grant Number: 01 IR 001 A-D, Duration:

January 2000 to December 2002. ISBN 3-00-011592-7

[14]. I. Foster et al., The physiology of Grid : An Open Grid Services Architecture for Distributed Systems

Integration, Global Grid Forum, June 2002.

[15]. Andreas Harth, Yu He, Hongsuda Tangmunarunkit, Stefan Decker, Carl Kesselman. A Semantic

Matchmaker Service on the Grid, in Proceedings of the 13th international World Wide Web

conference, May 17-22, 2004, New York, USA, pp. 326–327.

[16]. Hobbs J. R., Lassila O., Narayanan S. (2001) Towards an Ontology of Resources.

http://www.daml.org/2001/09/resources/

[17]. JESS, Java Expert Systems Shell. URL: http://herzberg.ca.sandia.gov/jess/docs/61/index.html

[18]. L. Kagal, T. Finin, and A. Joshi. A policy language for pervasive systems. In Proceedings of Fourth

IEEE International Workshop on Policies for Distributed Systems and Networks, 2003.

[19]. L. Kagal, T. Finin, and A. Joshi. Declarative Policies for Describing Web Service Capabilities and

Constraints, In Proceedings of the W3C Workshop on Constraints and Capabilities for Web

Services, 2004.

[20]. V. Kolovski, B. Parsia, Y. Katz, J. Hendler. Representing Web Service Policies in OWL-DL, In

Proceedings of International Semantic Web Conference, 2005.

[21]. KW-fGrid Project: http://www.kwfgrid.eu/

[22]. Lamparter S. and Schnizler B. Trading Services in Ontology-driven Market. SAC’06, April 23-

272006, Dijon, France.

[23]. D. N. Le, M.H. Tran, A.E. Soong Goh, MOD - A Multi-Ontology Discovery System, In Proceedings of

the 1st International Workshop on Semantic Matchmaking and Resource Retrieval: Issues and

Perspectives [SMR06], Seoul, 2006.

[24]. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web technology. In

WWW’ 03: Proceedings of the twelfth international conference on World Wide Web, pages 331–339.

ACM Press, 2003

[25]. Zhen Liu, Hongbin Huang, Su Deng, Xueshan Luo, An Algorithm for Resource Discovery Based on

Metadata Semantic Matching in Semantic Grid Environment, skg , p. 58, 2005.

[26]. S.A. Ludwig and S.M.S. Reyhiani, Semantic Approach to service discovery in a Grid environment,

Journal of Web Semantics, pp. 1-13, 2006.

[27]. E. Michael Maximilien and Munindar P. Singh) A Framework and Ontology for Dynamic Web

Services Selection. IEEE Internet Computing, volume 8, number 5, pages 84-93, September-

October 2004.

[28]. METEOR-S project. URL: http://lsdis.cs.uga.edu/projects/meteor-s/

[29]. OGSA: http://www.globus.org/ogsa/

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 180

[30]. OWL-S 1.0 rel. 1.0. http://www.daml.org/services/owl-s/1.0/.

[31]. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne1, and Katia Sycara, Semantic Matching of

Web Services Capabilities, in I. Horrocks and J. Hendler (Eds.): ISWC 2002, LNCS 2342, pp. 333–

347, 2002.

[32]. Ioannis V. Papaioannou, Dimitrios T. Tsesmetzis, Ioanna G. Roussaki, Miltiades E. Anagnostou. A

QoS Ontology Language for Web-Services. The IEEE 20th International Conference on Advanced

Information Networking and Applications, Vienna University of Technology, Vienna, Austria

[33]. Parkin M., Burghe S., Corcho O., Snelling D., Brooke J. (2006) The Knowledge of the Grid: An Grid

Ontology. Session C1, 6th Cracow Grid Workshop. 15 - 18 October 2006. Cracow, Poland

[34]. R. Raman, M. Livny, and M. Solomon. Matchmaking: distributed resource management for high

throughput computing. In Proceedings of the Seventh IEEE International Symposium on High

Performance Distributed Computing, July 1998

[35]. Kaijun Ren, Nong Xiao, Junqiang Song, Weimin Zhang and Tao Chen, A Semantic-based

Meteorology Grid Service Registry, Discovery and Composition Framework, in Proceedings of the

Second International Conference on Semantics, Knowledge and Grid, 2006, SKG '06, pp. 60–66.

[36]. M.P. Said, A. Matono, I. Kojima, SPARQL-based OWL-S Service Matchmaking, In Proceedings of

the 1st International Workshop on Semantic Matchmaking and Resource Retrieval: Issues and

Perspectives [SMR06], Seoul, 2006.

[37]. Thamarai Selvi Somasundaram, R.A.Balachandar, Vijayakumar Kandasamy, Rajkumar Buyya,

Rajagopalan Raman, N.Mohanram and S.Varun. Semantic-based Grid Resource Discovery and its

Integration with the Grid Service Broker, Proceedings of the 14th International Conference on

Advanced Computing and Communications (ADCOM 2006, IEEE Press, Piscataway, New Jersey,

USA, ISBN: 1-4244-0715-X, 84-89pp), Dec. 20 - 23, 2006, NITK, Surathkal, Karnataka, India

[38]. SPARQL Query Language for RDF. W3C Home page. URL: http://www.w3.org/TR/rdf-sparql-query/

[39]. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated Discovery, Interaction and

Composition of Semantic Web Services. Journal of Web Semantics, 1(1), 2003

[40]. H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-Based Resource Matching in the Grid -

The Grid Meets the SemanticWeb. In: Proceedings of SemPGRID ’03, 2003.

[41]. A. Uszok, J.M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S. Aitken.[2004] Kaos

Policy Management for Semantic Web Services. In IEEE Intelligent Systems, Vol 19, No. 4 pp. 32-

41.

[42]. A. Uszok and J.M. Bradshaw. Kaos policies for web services. In W3C Workshop on Constraints and

Capabilities for Web Services, 2004.

[43]. Guillermo Vega-Gorgojo, Miguel L. Bote-Lorenzo, Eduardo Gómez-Sánchez, Yannis Dimitriadis,

Juan I. Asensio-Pérez. A semantic approach to discovering learning services in grid-based

collaborative systems, Future Generation Computer Systems, 22 (2006) 709–719.

[44]. Chris Wroe, Robert Stevens, Carole Goble, Angus Roberts, Mark Greenwood. A Suite Of

DAML+OIL Ontologies To Describe Bioinformatics Web Services and Data, International Journal of

Cooperative Information Systems, 12 (2003), 597–624.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 181

[45]. Web Service Semantics - WSDL-S on W3C, URL: http://www.w3.org/Submission/WSDL-S/

[46]. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic Commerce

Research and Applications, 1[2]:113–137, 2002.

[47]. WSMO working group. Web service modeling ontology [WSMO] submission, June 2005. W3C

member submission. URL : http://www.w3.org/Submission/2005/06/.

[48]. Web Service Resource Framework, http://www.globus.org/wsrf/

[49]. WSRF-S: http://www.wsmo.org/TR/d31/v0.1/

[50]. Xing W., Dikaiakos M., Sakellariou R., Orlando S., Laforenza D. (2005) Design and Development of

a Core Grid Ontology. In CoreGRID Integration Workshop 2005, pages 21--31, Pisa, Italy

[51]. Bin Yu, Wenming Guo, Maozhen Li, Yong-Hua Song, Peter Hobson, Man Qi, "Service Matchmaking

and Discovery with Rough Sets," skg , p. 80, 2006.

[52]. Chen Zhou, Liang-Tien Chia, Bu-Sung Lee, DAML-QoS Ontology forWeb Services, Proceedings of

the IEEE International Conference on Web Services (ICWS'04) - Vol. 00, pp. 472, 2004

[53]. The eBay sytem. http://business.ebay.com.

[54]. Freightquote. http://www.freightquote.com.

[55]. The Grid4All project. http://grid4all.elibel.tm.fr.

[56]. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architecture, and

Applications. Springer-Verlag, 2004.

[57]. Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. SIAM Journal Computing,

29(1):180-200, 2000.

[58]. R. Buyya, H. Stockinger, J. Giddy, and D. Abramson. Economic models for management of

resources in grid computing. Computing Research Repository (CoRR), cs.DC/0106020, 2001.

[59]. E. David, R. Azoulay-Schwartz, and S. Kraus. Protocols and strategies for automated multi-attribute

auctions. In Procs. of the First International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS), 2002.

[60]. K. Decker, K. Sycara, and M. Williamsom. Middle-agents for the internet. In Procs. of the 15th

International Joint Conference on Artificial Intelligence (IJCAI), 1997.

[61]. D. Fergurson, Y. Yemini, and C. Nikolaou. Microeconomic algorithms for load balancing in

distributed computer systems. In Procs. of the 8th International Conference on Distributed Computing

Systems (ICDCS), 1988.

[62]. T. Fong, D. Fowler, and P. Swatman. Success and Failure Factors for Implementing Effective

Electronic Markets. Journal of Electronic Commerce and Business Media, 8(1), 1998.

[63]. P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-partitioned data with

applications to peer-to-peer systems. In Procs. of the 30th International Conference on Very Large

Data Bases (VLDB), 2004.

[64]. M. Genesereth, A. Keller, and O. Duschka. Infomaster: an information integration system. In Procs.

of the 16th International Conference on Management of Data (SIGMOD), 1997.

[65]. Z. Genova and K. Christensen. Challenges in url switching for implementing globally distributed web

sites. In Procs. of the International Workshop on Parallel Processing (ICPP), 2000.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 182

[66]. A. Gorobets and B. Nooteboom. Agent based computational model of trust. Technical Report,

Erasmus Research Institute of Management (ERIM), RSM Erasmus University, 2004.

[67]. M. Kamvar and H. Garcia-Molina. The eigentrust algorithm for reputation management in P2P

networks. In Procs. of the 12th International World Wide Web Conference (WWW), 2003.

[68]. M. Klush and K. Sycara. Brokering and matchmaking for coordination of agent societies: a survey.

Coordination of internet agents: models, technologies, and applications, Springer-Verlag, pages 197-

224, 2001.

[69]. D. Kossmann. The state of the art in distributed query processing. ACM Computing Surveys,

32(4):422-469, 2000.

[70]. P. Lamarre, S. Cazalens, S. Lemp, and P. Valduriez. A Flexible Mediation Process for Large

Distributed Information Systems. In Procs. of the CoopIS Conf., 2004.

[71]. A. Likhodedov and T. Sandhim. Auntion mechanism for optimally trading off revenue and efficiency.

In Procs. of the 4th ACM Conference on Electronic Commerce, 2003.

[72]. S. Marti. Trust and reputation in peer-to-peer networks. Phd. Thesis, Stanford University, 2005.

[73]. A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory. Oxford University Press, June

1995.

[74]. R. Mirchandaney, D. Towsley, and J. Stankovic. Adaptive load sharing in heterogeneous distributed

systems. Journal of Parallel and Distributed Computing, 9(4):331-346, 1990.

[75]. M. Nodine, W. Bohrer, and A. Ngu. Semantic brokering over dynamic heterogeneous data sources in

infosleuth(tm). In Procs. of the 15th International Conference on Data Engineering (ICDE), 1999.

[76]. M. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh. Active information gathering in

infosleuth. International Journal of Cooperative Information systems, 9(1-2).

[77]. C. Ono, S. Nishiyama, K. Kim, B. Paulson, M. Cutkosky, and C. Petrie. Trust-based facilitator:

handling word-of-mouth trust for agent-based e-commerce. Electronic Commerce Research, 3(3-

4):201-220, 2003.

[78]. F. Pentaris and Y. Ioannidis. Query optimization in distributed networks of autonomous database

systems. ACM Transactions on Database Systems (TODS), 31(2), 2006.

[79]. E. Rahm and R. Marek. Dynamic multi-resource load balancing in parallel database systems. In

Procs. of the 21 th International Conference on Very Large Data Bases (VLDB), 1995.

[80]. N. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally distributed systems. IEEE

Computer, 25(12):33-44, 1992.

[81]. R. Smith. The contract net protocol: high-level communication and control in a distributed problem

solver. IEEE Transactions on Computers, C-29(12):1104-1113, 1980.

[82]. M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: a

wide-area distributed database system. VLDB Jounal, 5(1), 1996.

[83]. K. Sycara, M. Klush, S.Widoff, and J. Lu. Dynamic service matchmaking among agents in open

information environments. SIGMOD Record, 28(1):47-53, 1999.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 183

[84]. N. Vulkan and N. Jennings. Efficient mechanisms for the supply of services in multi-agent

environments. In Procs. of the First International Conference on Information and Computation

Economies (ICE), 1998.

[85]. Z. Zhang and C. Zhang. An improvement to matchmaking algorithms for middle agents. In Procs. of

the First International Joint Conference on Autonomous Agents and Multiagents Systems (AAMAS),

2002.

[86]. H. Zhu, T. Yang, Q. Zheng, D. Watson, O. Ibarra, and T. Smith. Adaptice load sharing for clustered

digital library servers. In Procs. of the 7th IEEE International Symposium on High Performance

Distributed Computing (HPDC), 1998.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 184

5. Scheduling service – state of art, requirements,
characterisation, design

This document provides the first deliverable of the Grid4all Task 2.4. It is produced by the INRIA Grand-
Large team. This document aims at providing a state of the art analysis of requirements in terms of
scheduling services for classes of applications described in WP4 scenarios.

5.1 Classification of Grids and Desktop Grids

Grid4all aims at building Grid systems deployed within SME or end-users. Typically such systems are
composed of very large numbers of PCs, used either within enterprise or run by Internet users. Depending
on each environments constraint, such as administrative domain size and professionalism, architecture of
these platforms varies. For example, un-trusted and uncontrollable administrative domains may require
additional components such as results validation.

Those systems are also made of various software components that interact in order to achieve the desired
behaviour. The scheduling service is only one of the components of those systems. So, the design of this
component depends on the architecture of the platform.

In this section, we classify Grids and Desktop Grids in different groups according to how resources are
distributed. We will start from the Enterprise Desktop Grid that is used in only one administrative domain and
end with the Internet Volunteer based Desktop Grid. We will also describe the consequences on the Grid4All
scheduling service. We start with a general description of common features found in desktop grids.

Figure 37 A comparison of Grids vs Desktop Grids

5.1.1 General characteristics of Desktop Grids

A Desktop Grid is composed of software and an infrastructure of ordinary PCs which are shared with their
owner. The network is a regular IP based network ranging from an enterprise LAN to the Internet. Here we
will list features and design goals of those Grids, and then we will describe the general process for running a
computation on those systems.

Common features

Desktop grids architects have defined several desirable properties for their systems. Depending on their
research topic, some systems’ authors choose to emphasize some of the properties in their software. Some
of the systems that will be described in this document may not implement all those features. Here is a short
list of those properties:

Scalability: Desktop grids must scale to a huge number of nodes. The scale will depend mostly on the
number of expected computing nodes. An enterprise grid will gather less computing nodes than a
volunteer desktop grid.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 185

Heterogeneity: Resources may vary in processor architecture, available memory, operating systems,
network connectivity and many other hardware characteristics. Platforms must accommodate this
heterogeneity. Manually porting the applications to all available platforms should be avoided.

Connectivity: The system has to provide connectivity for all resources to the desktop grid, even if those
resources are behind a firewall or in private address space. Systems may provide mechanisms for storing
messages while nodes are off-line.

Volatility: Available nodes and network connectivity vary quickly and incessantly. Network bandwidth and
latency also vary. Computation parallelism should adapt to all those platform grows and shrinks.

Fault Tolerance: Increasing the number of involved nodes and, in the case of volunteer computing, using
nodes that are not professionally set up, also increase the number of potential faults that may occurs. A
failure or loss of one server, client or computing node must have no impact on the correct ending of the
computation. Due to the size of desktop grids, faults are very frequent.

Unobstructiveness: Desktop Grid computing nodes are also used by their user; they usually want their own
program to run with priority greater than grid applications. Desktop Grid must limit resource usage on
computing nodes (including cpu, memory, storage, network usage) Some desktop Grid work by stealing
cycles: they monitor the node for free resources and run the application when the owner don’t use them.

Safety: Internet is well known for not being safe. Servers, clients and computing nodes must be protected
from all attacks. Especially, local resources (there applications and data) should be protected from
attacks coming from the running application. This is often done by running the software in a virtual
machine or in a sandbox.

Correctness: Results obtained from desktop Grid should be validated. The computing node may produce
wrong results or its owner may be cheating.

Ease of use: Especially in volunteer desktop Grid, the software should be easy to use in order to be widely
deployed.

Performances: Performances of the system should be reasonable.

Anonymity: If needed and accepted by the computing node, sensitive proprietary data shouldn’t be usable
by the computing node.

Hierarchy: The Grid may exploit the existing infrastructure (network infrastructure, administrative domains).

Rewarding: In desktop Grid, computation resources may be shared by different peoples. Volunteers may
want to advertise the amount of resources they offered. (They get credits for the work they compute)
Other users may want to charge for their resources or get favour for running there own work when they
will need to.

In next sections, we will describe how this general strategy is done in the different types of desktop Grids.

5.1.2 Enterprise Desktop Grids

Enterprise Desktop which consists of volatile hosts within a LAN. LAN’s are often found within a corporation
or university, and several companies such as Entropia and United Devices have specifically targeted these
LAN’s as a platform for supporting desktop Grid applications. Enterprise desktop Grids are an attractive
platform for large scale computation because the hosts usually have better connectivity with 100Mbps
Ethernet for example and have relatively less volatility and heterogeneity than desktop Grids that span the
entire Internet. Nevertheless, compared to dedicated clusters, enterprise Grids are volatile and
heterogeneous platforms, and so the main challenge is then to develop fault-tolerant, scalable, and efficient
scheduling.

First experiments

The first enterprise desktop Grid distributed system is certainly the Worm program [47] at Xerox Palo Alto
Research Center. At this time, in the early 80’s, each desktop computer involved was mono-application.
When they are not used, they reboot, load and execute one “segment” (i.e. job) of the worm which is the
distributed application to run. When the computation ends, they reboot to a new worm segment or with their
normal software. Applications were simple but of various flavours: distributing news, computing images,
alarm clock. Several key ideas that are investigated currently are presented in the paper (self replication,

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 186

migration, distributed coordination...). It is interesting to notice that this paper has been partially inspired by a
classic science fiction film called The Blob. This experiment involved about 100 machines. During execution,
the worm segment avoided disk accesses entirely to limit its obtrusiveness. The worm could grow
uncontrollably, and the worm’s only control mechanism was a special kill packet that could be broadcasted to
kill the worm entirely. In modern-day Internet, some commercial products use a similar mechanism to reboot
computers at night for using them for computing without changing their usual working environment.

XtremWeb

XtremWeb [32] [39] [52] is an open source research project at LRI and LAL that belongs to light weight Grid
systems. It is primary designed in order to explore scientific issues about Desktop Grid, Global Computing
and Peer to Peer distributed systems but have been also used in real computations, especially in physics.
First version was released in 2001.

XtremWeb also belongs to the Cycle Stealing Environment family. Various Activators are available to decide
when cycles can be stolen. (cpu activity, keyboard and mouse, work hours) The platform is written mostly in
Java and can run applications written in Java or that use the native platform architecture (versions for Linux,
MacOS X and Windows are available) A sandbox is available for isolating the host system from both types of
applications.

The architecture (Figure 38) is similar to most well known platforms. It is three-tier architecture with clients,
servers and workers. Several instances of those components might be used at the same time. Clients allow
platform’s users to interact with the platform by submitting stand-alone jobs, retrieving results and managing
the platform. Workers are responsible for executing jobs. The server is a coordination service that connects
clients and workers. The server accepts tasks from clients, distributes them to workers according to the
scheduling policy, provides applications for running them and supervises the execution by detecting worker
crash or disconnection. If needed tasks are restarted on other available workers. At the end, it retrieves and
stores results before clients download them.

Figure 38 Overview of the XtremWeb platform archite cture

Clients and Workers are initiators of all connections to the server which have for consequence that only the
server need to be accessible from behind firewalls. Multiples protocols are supported and can be used
depending on the type of workload. Communications may also be secured both by encryption and
authentication.

Since its first version, XtremWeb have been deployed over networks of common Desktop PCs providing an
efficient and cost effective solution for a wide range of application domains: bioinformatics, molecular
synthesis, high energy physics, numerical analysis and many more. At the same time, there have been many
researches around Xtremweb: XtremWeb-CH, [14] [17] funded by the University of Applied Sciences in
Geneva, is an enrichment of XtremWeb in order to better match P2P concepts. Communications are
distributed, i.e. direct communications between workers are possible. It provides a distributed scheduler that
takes into account the heterogeneity and volatility of workers. There is an automatic detection of the optimal

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 187

granularity according to the number of available workers and scheduling tasks. There is also a monitoring
tool for visualizing the executions of the applications.

5.1.3 Collaborative Desktop Grids

Collaborative Desktop Grids consists of several Enterprise Desktop Grids which agree to aggregate their
resources for a common goal. The OurGrid project [35] [11] is a typical example of such systems. It
proposes mechanisms for laboratories to put together their local Desktop Grids. A mechanism allows the
local resource managers to construct a P2P network. (Figure 39) These solutions are attractive because
utilization of computing power by scientists is usually not constant. When scientists need an extra computing
power, this setup allows them to access easily their friend universities resources. In exchange, when their
resources are idle, it can be given or rented to others university. This requires a cooperation of the local
Desktop Grid systems, usually at the resources managers' level, and mechanisms to schedule several
applications. A similar approach has been proposed by the Condor team under the term “flock of condor”
[61].

OurGrid has been in production since December 2004 and today aggregates computing resources from
about 180 nodes shared by 12 peers. The platform has been limited to supporting bag-of-tasks. Local users
have always the priority for their tasks on their local resources, only the unused local resources are shared
with other peers. Local jobs kill remote jobs if needed. For promoting cooperation among peers, OurGrid use
a network of favours. Each peer maintains a matrix of the computing time that it gets granted from other
peers. Then, if a processor is requested by more than one peer, it allocates it to the peer with the greatest
favor. The favor computation is protected against malicious peers that, for example, would reset its state in
order to gain more computing time.

Figure 39 Overview of the OurGrid platform architec ture

Other peers are discovered through a centralized discovery system. The network is a free-to-join Grid, so
remote peers are not trusted. To address this issue, a sandbox mechanism is proposed (Sand-boxing
Without A Name). It is build using Xen. Access to local network is also disabled by this sandbox.

Several scheduling policies have been experimented. The first one, Workqueue with Replication (WQR), was
simply sending a random task to the first free processor found. Bad allocation was corrected using
replication. In version 2.0 of OurGrid, a new scheduler tries to avoid communication cost by introducing
storage affinity. Tasks are sent to computing nodes that are closest to used data. This algorithm tries to
avoid the need for redundant information about tasks such as expected completion time. The first algorithm
was found to be still more efficient on some cpu-intensive workloads.

5.1.4 Internet Volunteer Desktop Grids

Internet Volunteer Desktop Grids systems have been amongst the largest distributed systems in the world.
Projects such as SETI@Home or distributed.net are able to provide hundreds of TFlops on dedicated
application from hundred of thousands nodes.

For over a decade, the largest distributed computing platforms in the world have been Internet Volunteer
Desktop Grids, which use the idle computing power and free storage of a large set of networked (and often
shared) hosts to support large-scale applications. In this case of Grid, owners of resources are end-user

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 188

Internet volunteer who provide their personal computer for free. IVDG are an extremely attractive platform
because there offer huge computational power at relatively low cost. Currently, many projects, such as
SETI@home [22], FOLDING@home [70], and EINSTEIN@home [3], use TeraFlops of computing power of
hundreds of thousands of desktop PC’s to execute large, high-throughput applications from a variety of
scientific domains, including computational biology, astronomy, and physics.

Mono-application Internet Volunteer Desktop Grids

At the beginning of Internet Volunteer Desktop Grid, most of the largest projects were running only one
application. Only data were automatically distributed, most of the time using a simple CGI script on a web
server. Upgrading the application was requiring that volunteers manually download and install the
application. In this section, we will describe some of these projects.

The Great Internet Mersenne Prime Search (GIMPS) [6] is one of the oldest computation using resources
provided by volunteer desktop Grid users. It’s started in 1996 and still running. The 44th known Mersenne
prime have been found in September 2006. Each client connects to a central server (PrimeNet) to get some
works. Resources are divided in 3 class based on the processor model and gets different type of tasks. The
program only uses 8Mb of RAM, 10Mb of disk space and does very little communications with the server
(permanent connection is not required) The program checkpoints every half hour.

Since 1997, Distributed.net [2] tries to solve cryptographic challenges. RC5 and several DES challenges
have been solved. The first version of SETI@Home [22] has been released in may 1999. There was already
400 000 pre-registered volunteers. 200 000 clients registered the first week. Between July 2001 and July

2002, the platform computed 221.10
6
 workunits at an average rate of 27.36 TeraFLOPS. The programs is

doing some treatments on a signal recorded by a radio-telescope and then search for particular artificially
made signal in it. The original record is split in workunit both by time (107s long) and by frequency (10 KHz)

The Electric Sheep (http://electricsheep.org/, [37]) screen-saver "realizes the collective dream of sleeping
computers". It harnesses the power of idle computers (because they are running the screen-saver) to render,
using a genetic algorithm, the fractal animation displayed by itself. The computation uses the volunteers to
decide which animation is beautiful and should be improved. This system consists only of one application
but, as the project web site claims, about 30000 unique IP addresses contact the server each day and 2Tb
are transferred. At article writing time, the unique centralized server was the bottleneck of this system.

BOINC

All these mono-application projects share many common components. So, there was a need for a platform
that would provide all these components. Only the part that really does the computation need to be changed
for each project.

The Berkeley Open Infrastructure for Network Computing (BOINC) [20] is the biggest volunteer computing
platform. More than 900 000 users from nearly all countries participate with more than 1 300 000 computers.
[1] More than 40 projects, not including private projects, are available including the popular SETI@Home
project.

Each client (computing node) is manually attached by the user to one or more projects (servers). There is no
central server (Figure 40) and most of the scheduling is done by clients. The server is made of several
daemons. Each project needs to provide a very small number of different applications but that may be often
updated. (Jobs have to be very homogeneous) Each project must last several month mainly because of the
time needed to obtain volunteers and their computing resources.
First, workunits are produced by a generator. Then, the transitioner, the daemon that will take care of the
different states of the workunit life cycle, will replicate (redundancy) the workunit in several results (instances
of workunits) Each result will be executed on a different client. Then, back to the server, each result will be
checked by the validator before being stored in the project science database by the assimilator.

All communications are done using cgi programs on the project server, so, only port 80 and client to server
connections are needed. Each user is rewarded with credits, or virtual money, for the count of cycles used
on its computer.

The client maintains a cache of results to be executed between connections to the Internet. The scheduler
tries to enforce many constraints: First, the user may choose to run the applications according to its activity

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 189

(screen-saver), working hours, resources available. Second, the user assigns a resource share ratio to the
projects. Third, sometimes, some projects may run out of work to distribute.

Figure 40 Overview of the BOINC platform architectu re

Some others projects were inspired by the BOINC platform. SLINC (Simple Light-weight Infrastructure for
Network Computing, http://slinc.sourceforge.net/) [25] tries to fix the main limitations of BOINC.
They tried to make project creation easier by adding a better documentation. This software is also operating
system independent as it runs on the Java platform. It is also database independent (use Hibernate) while
BOINC runs only with Mysql. All communications between components are done with XML-RPC and for
simplifying the architecture; they have removed the validator component. User’s applications are also
programming language independent, but only Java and C++ available for now. Two versions of the same
application, the first one written in Java, the second one written in C++ have almost the same performance.
Some BOINC issues have not been fixed here, such as the time needed to have all the volunteers register
their resources.

The POPCORN [57] is a platform for global distributed computing over the Internet. It has been available
from mid 1997 till mid 1998. Today, only the papers and documentation are still available. This platform runs
on the Java platform and tasks are executed on workers as "computelets", a system similar to usual Java
applets. Computelets need only to be instantiated for a task to be distributed. Error and verification process
is left to the application level. The platform provides a debugging tool that shows the tree of spawned
computelets (for debugging concurrency issues). There is also a market system that enables users to sell
their CPU time. The currency works almost the same as BOINC credits. Some applications have been tested
on the platform (brute force breaking, genetic algorithm...). At the implementation level, they had some
issues with Java immaturity (in 1997-1998).

Bayanihan [69] is another platform for volunteer computing over the Internet. It is written in Java and uses
Hord, a package similar to Sun’s RMI for communications. Many clients (applet started from a web browser
or command line applications) connect to one or more servers.

Korea@Home [24] is a Korean volunteer computing platform. Work management is centralized on one
server but since version 2, there is a P2P mechanism that allows direct communication between computing

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 190

nodes (agents). This platform harness more than 36000 agents, about 300 of them are available at the same
time.

5.1.5 Commercial versions of previous Desktops Grids

Enterprises also provide commercial Desktop Grids. Their source code is most of the time unavailable and
there is less documentation about their internal components. The server part may be available for use inside
an enterprise.

Frontier [5] is a commercial platform launched on June 14, 2000 by Parabon Computation. It can be used for
Internet volunteer computing by buying computation power from Parabon. Frontier can be run inside the
enterprise (without connected to the Internet) by buying Parabon computing power. Volunteers may be
rewarded for the computing power they offer.

First, an application creates a job with different tasks using the Frontier API. Then, the server will assign
those tasks to providers who are the computing nodes. The task progress may be monitored (with
JobController) from the server and intermediate results uploaded. When the task is completed, the Listener
gets the task final result.

From the security point of view, the application must be in Java Virtual Machine bytecode and is executed in
a Java sandbox. No communication with other jobs is allowed. The other communications are secured using
SSL and clients are authenticated using X.509. The application is protected from the volunteer by
obfuscating the Java bytecode and giving no information about the task to the volunteer so it can’t guess
what is computed on its computer. In the intranet version, some of this security features can be removed: all
executables (not only in Java) are allowed and communications between tasks are also allowed.

On this platform, replication is also available. Bad Internet resources are discarded if they fail to compute
accurately test tasks, which are sent on a regular basis to providers. The provider maintains a cache of tasks
to run like BOINC does. Tasks may also be prioritized at the server level to get some of the results more
rapidly.

There are several other industrial desktop Grid platforms from Entropia [34] (ceased commercial operations
in 2004), from United Device [73], Platform [59], Mesh Technologies [9].

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 191

Figure 41 A survey of Desktop Grid systems

5.1.6 Consequences for Grid4all Scheduling Service

Despite the huge return-on-investment that desktop Grids offer, the platform’s use has been limited to mainly
task parallel, high-throughput applications. This is a consequence of the resources’ volatility and
heterogeneity. That is, the resources are volatile in the sense that CPU and host availability fluctuates
tremendously over time. This is because the hosts are shared with the owner/user, whose activity is given
priority over the desktop Grid application; at any time, an executing desktop Grid task may be pre-empted
due to user activity (e.g. key/mouse activity, other user processes, and etc.). Moreover, the hosts are
heterogeneous in terms of clock rates, memory sizes, and disk sizes, for example. As a result of such
volatility and heterogeneity, broadening the range of desktop Grid applications is a challenging endeavour.

Desktop Grids are composed of a large set of personal computers that belong both to institutions, for
instance an enterprise or university, and to individuals. In the former case, these home PCs are volunteered
by participants who donate a part of their computing capacities to some public projects. However several key
characteristics differentiate DG resources from traditional Grid resources : i) performance; mainstream PCs
have no reliable storage and potentially poor communication links, ii) volatility; PCs can join and leave the
network at any time and appear with several identities, iii) shared between their users and the desktop Grid
applications, iv) spread across administrative domains with a wide variety of security mechanisms ranging
from personal routers/firewalls to large- scale PKI infrastructures.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 192

5.2 Classification of DG applications with respect to the Scheduling
Service

In this section we present the various classes of application which could be executed within the Grid4all
project.

5.2.1 Bag of Task application

Application composed of set of independent tasks is the most common class of application one can execute
on a Desktop Grid. This class of applications is straight-forward to schedule and simple to execute when
there is few IO. However, it is a very popular class of application, used in many scientific domains. In
particular, it permits multi-parametric studies, when one application, typically a simulation code is run against
a large set of parameters in order to explore a range of possible solutions.

In [49], several heuristics has been proposed for application which needs a rapid turn around execution.
These several heuristics aim at reducing the makespan of the application (the makespan is the time between
the submission of the first tasks and the completion of the last task). This is an important feature for a user
because minimizing the makespan increases the responsiveness of the platform.

5.2.2 Data Intensive

Enabling Data Grids is one of the fundamental efforts of the computational science community as
emphasized by projects such as EGEE [4] and PPDG [60]. This effort is pushed by the new requirements of
E-Science. That is, large communities of researchers collaborate to extract knowledge and information from
huge amounts of scientific data. This has lead to the emergence of a new class of applications, called data-
intensive applications which require secure and coordinated access to large datasets, wide-area transfers
and broad distribution of TeraBytes of data while keeping track of multiple data replicas. The Data Grid aims
at providing such an infrastructure and services to enable data-intensive applications. Despite the
attractiveness of Desktop Grid, little work has been done to support data-intensive applications in this
context of massively distributed, volatile, shared and heterogeneous resources. Most Desktop Grid systems,
like BOINC [21], XtremWeb [40] and OurGrid [23] rely on a centralized architecture for indexing and
distributing the data, and thus potentially face issues with scalability and fault-tolerance.

However, we think that the basic blocks can be found in P2P systems. Researchers of DHT’s (Distributed
Hash Tables) [72, 54, 67] and collaborative data distribution [36, 43, 42], storage over volatile resources [29,
31, 74] and wide-area network storage [26, 51] offer various tools to construct data Grids. To utilize these
tools effectively, one needs to bring together these components into a comprehensive framework.

Large data movement across wide-area networks can be costly in terms of performance because bandwidth
across the Internet is often limited, variable and unpredictable. Caching data on local workstation storage
[46, 58, 74] with adequate scheduling strategies [68, 75] to minimize data transfers can improve overall
application execution time. Implementing a simple execution principle like “Owner Compute” still requires the
system to efficiently locate data and to provide a model for the cost of moving data. Moreover, accurate
modelling [62] and forecasting of P2P communication is still a challenging and open issue, and it will be
required before one can efficiently execute more demanding types of applications, such as those that require
real-time or stream processing.

5.2.3 Long running (needs checkpoint services)

Long-running applications are challenging due to the volatility of executing nodes. To achieve their execution
it requires local or remote check-pointing to avoid loosing their computational state when a failure occurs. In
the context of DG these application have to cope with replication and sabotage. An idea proposed in [48] is
to compute a signature of checkpoint images and use signature comparison to eliminate diverging execution.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 193

Thus, indexing data with their checksum as is commonly done by P2P software permits basic sabotage
tolerance even without retrieving the data.

5.2.4 Real time application

In this paragraph, we focus on enabling soft real-time applications to execute on enterprise desktop Grids;
soft real-time applications often have a deadline associated with each task but can afford to miss some of
these deadlines. A number of soft real-time applications ranging from information processing of sensor
networks [12], real-time video encoding [65], to interactive scientific visualization [53, 71, 16] could potentially
utilize desktop Grids. An example of such an application that has soft real-time requirements is on-line
parallel tomography [71]. Tomography is the construction of 3-D models from 2-D projections, and it is
common in electron microscopy to use tomography to create 3-D images of biological specimens. On-line
parallel tomography applications are embarrassingly parallel as each 2-D projection can be decomposed into
independent slices that must be distributed to a set of resources for processing. Each slice is on the order of
kilobytes or megabytes in size, and there are typically hundreds or thousands of slices per projection,
depending on the size of each projection. Ideally, the processing time of a single projection can be done
while the user is acquiring the next image from the microscope, which typically takes several minutes [44].
As such, on-line parallel tomography could potentially be executed on desktop Grids if there were effective
method for meeting the application’s relatively stringent time demands.

While this problem entails a myriad of issues (such as timely data transfers), one needs to achieve
probabilistic guarantees on task completion rates via buffering. In [50], we did a work to determine how large
a buffer must be allocate to ensure that some fraction of tasks meet their corresponding deadlines. We
concentrate particularly on achieving such guarantees on desktop Grids in enterprise environments, for
example a company’s local area network. This is a challenging because task execution can be delayed or
cancelled by users’ pre-emptive activity or machine hardware failures.

To enable such soft real-time applications to utilize desktop Grids, we have investigated the use of buffering
to ensure task completion rates. In particular, our contribution can be summarized as follows. First, we
develop a model of the successful task completion rate as function of the server’s buffer size. Second, in the
process of verifying the model’s assumptions, we show that the aggregate compute power of desktop Grid
systems can often be modelled using a normal distribution. Third, in the process of developing the model
and running trace-driven simulations, we found several guidelines to be used when scheduling tasks with
soft deadlines on volatile resources and describe them in detail.

5.2.5 Wave Scheduling

In [78], the authors describe a time zone aware scheduling method. Tasks are executed in Earth’s night zone
and are moved from time zone to time zone as the sun rise in the different countries. The authors selected
the night because its likely to be a long period of inactivity for the hosts, but, as the article says, another time
period may be used.

Applications considered are bag-of-tasks with low communications. Performances are evaluated on
simulations but are not trace based. With XtremLab project, an Internet volunteer project running on BOINC,
we observed that 41% of hosts are located in the UTC+1 time zone. Some time zone, don’t have any host
because they are mainly located above seas or inhabited lands. So, in the case of this project, moving tasks
from Europe at sunrise may be difficult because others time zone won’t have enough resources. Only some
of the tasks will be moved.

5.2.6 Network intensive application

There are a few desktop Grid applications that are not CPU or data intensive: they use other resources
available on the compute node. The execution time is not limited by processing speed, the amount of
available memory, or communication times but by the availability of these resources.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 194

The network is one of these resources. Malicious distributed application (zombies PC) use it for sending a
huge amount of data: sending SPAM, distributed attack targeting a given host. But network may also be
useful for web spiders. For example, YaCy [15] is a P2P-based search engine. On each volunteer resource,
a web crawler collects data from the web that are locally indexed and stored. A local client is available for
retrieving search results from other computing nodes through a DHT.

Those tasks often require special scheduling policy from the desktop Grid because usual criteria can’t be
used. For example, BOINC has support for non CPU-intensive (a special mode that applies to a whole
project) tasks but some limitations are imposed: First, the client doesn’t maintain a cache of task to run: there
is only one task present on the client at a given time. This is due to the fact that BOINC can’t estimate
completion time by measuring CPU usage as it does for normal projects. Second, non CPU-intensive
applications have to restrict there CPU usage to the minimum because there are some other CPU intensive
task running at the same time: BOINC doesn’t mix scheduling policies.

5.3 Scheduling Service Architectures

How to design a scheduling service depends on several factors: levels of coordination between the
scheduling service and the resources, implementation of the scheduling service in terms of a distributed
application, integration of the scheduling service within the Grid Environment.

5.3.1 Coordination Requirements

A first criterion to distinguish between the various implementation of scheduling service is the level of
coordination between the resources, and the ability for the scheduling service to plan the execution.

As shown in the first chapter, Grid Environments may be more or less coupled distributed systems. In
traditional Grid environment, resources are well connected, therefore it is possible for the scheduling service
to interact with the resources directly for instance to implement pre-emptive strategy, where the scheduler
can interrupt a task running on a computing resources, possibly to give priority to another task.

On the contrary, with Internet Grid, such as the one proposed by Volunteer Computing System are loosely
coupled system where resources can provide a very weak level of interaction. For instance, with BOINC,
resources connect to a central scheduler to download a set of tasks. Tasks are stored in a local cache by the
computing resources which can then go offline and process locally the tasks without maintaining any
connection to the scheduler. Thus, the resources ask the scheduler for enough tasks to fill its local cache, so
that the resources won’t starve during their offline period.

As a consequence, the implementation of the scheduling service, and therefore the set of scheduling
strategies strongly depend on the level of coordination reachable by the system. For instance, it would be
difficult, if not impossible, to implement a pre-emptive mechanism over Internet Desktop Grids.

Push-based implementation

When the system is strongly coupled a first solution is to use a push-based implementation. In this
architecture, developers assume that the resources are always connected to scheduler service. According to
this model, tasks are pushed by users to the scheduler, which in turn pushes the tasks to the available
resources.

A typical example of this kind of architecture is the MatchMaker mechanism provided by the Condor project.
The MatchMaker architecture receives requests from client and computing resources. Its role is to select the
best resources according to the client criteria. Once the match is done, client and computing resources
directly communicate to exchange tasks and data.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 195

Pull-based implementation

When the system is loosely coupled, composed of a large number of resources subject to frequent failures, a
frequent solution is to use pull-based implementation.

With this approach, workers contact the task dispatcher and retrieve tasks from the dispatcher. This solution
is by nature more scalable than the push-based implementation because it frees the dispatcher from various
tasks such as running a fault detector. However, this approach also suffers from a major drawback: there is
no immediate way for the scheduler to control the execution of tasks on the worker. For instance, it might be
impossible to verify that a worker is actually running a given task. To provide some control from the
scheduler to the worker, DG developers implement a periodic message from the worker to the dispatcher
(trickle for BOINC, workAlive for XtremWeb) which will retrieve special order to control the execution of a
task. Overall, push-based implementation allows a tighter control of the application execution compared to
pull-based implementation.

5.3.2 Centralized scheduling services

When the number of resources ranges from hundreds to few thousands, a centralized scheduler service can
manage the system. Usually the centralized scheduling services will also provide resources reservation if run
as a self contained environment. If run in parallel with a Grid system, it will rely on the Grid resource
reservation system. Centralized scheduling services are often implemented using 3rd parties software like
databases and web servers.

5.3.3 Distributed and coordinated scheduling services

P2P scheduling service

The design of a P2P scheduling service follows the general design of P2P application, which aims at
avoiding centralized system. In this case tasks are propagated from node to node using a flooding approach.

Client based distributed scheduling

The multi-project design of the BOINC platform introduces a new scheme in the design of a scheduling
service. With this architecture, a worker can participate to several projects. So beyond the scheduler present
on the task dispatcher, there is a second scheduler, on the worker side which will decide to which project the
worker should retrieve tasks. The client scheduler try to satisfy two type of constraints : i) user’s preference
expressed in term of participation wishes (I want to contribute 10% of my time to project A, 20% of my time
to project B etc) and ii) tasks’ deadline, which is a time at a project would like the time to be finished.

5.3.4 Job execution on desktop Grids

We will now describe all the steps that may be needed for executing a job on a desktop Grid. Everything is
not done on every platform. The proposed order may vary and some of those steps may happen
simultaneously with others.

1. Building the platform: this first step is not trivial because of the number of peoples that may be
involved. In volunteer desktop Grid, recruiting volunteers and their resources require some
advertising. In collaborative Grid, agreements between institutions may be needed. The owner of the
computing node needs to be convinced of the innocuousness of the systems. Then, the software itself
needs to be deployed: clients (for submitting jobs), servers, and workers. (for executing jobs) Each
component have to find and connect to the other ones, eventually, finding a topology. Granting
privileges on the different components may also be needed.

2. Dividing work in sub-tasks: before submitting the work, the application needs to divide it in tasks that
will be executed on different computing nodes. The parallelism is created here.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 196

3. Submitting the application: On some systems, the application is submitted separately and before data
to compute. Users may need to submit multiple versions of the same application for running on the
different platforms that will be used.

4. Submitting tasks and data: Then all the tasks are submitted to the system. The system checks that
the user is allowed to submit tasks.

5. Fault tolerance, correctness: Depending on the used algorithm, tasks may be replicated or restarted
here to tolerate faults and discover errors.

6. Finding resources: Then the system will find resources for running all the tasks. In many systems, free
resources will contact the server for getting work. In other systems, the server will distribute the tasks.
This global meta-scheduling must take care of available resources on computing nodes. (CPU,
memory, free disk space, software license)

7. Sending tasks to selected resources: The tasks and needed input files are transferred to computing
nodes. The method used here depends on the amount of data to transfer.

8. Caching tasks on workers: because of network availability, the computing node may maintain a cache
of work to be done.

9. Local scheduling of tasks: a local scheduler checks if conditions are meet for stealing cycles. Tasks
that won’t be finished before the deadline may be aborted. If there is a cache of work, the scheduler
will decide which to execute first.

10. Running tasks: Tasks are executed by their application. The system enforces resource limitation and
security. Communications may be possible with other computing nodes but should not be possible
with local network. Tasks and computing nodes are monitored.

11. Sending results back: Results are send back to the server. Eventually error conditions are reported.

12. Validating results: Results are validated to ensure there correctness.

13. Rewarding worker: If the reported result is correct, the owner of the corresponding computing
resource get points or privileges for running its own tasks.

14. Reporting tasks completion or failure to the client.

15. Retrieving results: depending on their size and the system, results may be stored on the computing
node or on a result server. The system must provide a way to retrieve those results.

16. Deleting old data: old and unused results, input data and application need to be removed. The
desktop Grid can’t be easily reset and usually last for a long time, so, a cleaning mechanism must be
provided.

17. Removing resources: All the resources of the desktop Grid may leave the system at any time. The
system may not always be advertised of this event. Tasks assigned to such a computing node need to
be reassigned to another node.

5.3.5 Implication for the Grid4all scheduling service

Traditional scheduling service for desktop grids is enclosed in a self contained environment. For the Grid4all
project, the scheduling service will have to cooperate with other services such as the resource allocation,
resource monitor and market service. It will be implemented as an independent service using the Grid4all
middleware envelope.

5.4 Overview of scheduling heuristics

A scheduling problem is defined by an application model and platform model, and a schedule is defined by
when and where tasks of the application should utilize resources in the model. Often, these models differ by
the amount of information known a priori by the scheduling algorithm, and the dynamism of the different
parameters of the models. Some relevant parameters of the application model include dependencies among
tasks, the size of tasks and whether it can be mouldable, and whether this information is known a priori,
whether the arrival rates of tasks are periodic or not, whether tasks can be pre-empted, and the computation
to communication ratio of each task. Some relevant parameters of platforms of the platform model include
the number of ports of the server usable for distributing tasks, resource and interconnect speeds and

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 197

topologies, and the volatility and heterogeneity of resources. In the following sections, we describe two of the
most relevant scheduling research areas with respect to the scheduling service, detailing the application and
platform models in each respective area.

5.4.1 Deadline Scheduling

In deadline scheduling, the goal is to meet a set of deadlines for a group of tasks. Feasible solutions have
been obtained for only a few simple cases. For example, for the problem where not all task characteristics
are known from the start and when tasks arrive dynamically, the authors in [18, 55] show that the optimal
algorithm is earliest deadline first (EDF) on a single processor machine with independent and pre-emptable
tasks. The authors in [18, 55] show that the least laxity (LLF) algorithm is also optimal. That is, if a feasibly
optimal schedule exists, EDF or LLF are guaranteed to find it.

However, with the exception of a few simple cases, many versions of the deadline scheduling problem
do not have optimal algorithm. For example, with dynamic scenarios with more than a single processor, the
authors [18, 55, 56] in show that an optimal algorithm does not exist without a priori knowledge of task
deadlines, computation times and arrival times using a adversarial approach for their proofs.

5.4.2 Divisible Load Scheduling

Application Model

A divisible workload application consists of a computation that can be divided into arbitrarily smaller
independent computations often called chunks. Traditionally, divisible workload applications are relatively
data-intensive with relatively low computation to communication ratios. Many scientific and domestic
applications fit this description, such as MPEG encoding [8], photo batch processing [41, 10, 13], and
biological sequence alignment and volume rendering.

In [63], the authors characterize several real divisible workload applications (see Table 1). They characterize
HMMER [7], which is a sequence classification algorithm from computational biology. Then they characterize
a MPEG4 video compression application [8]. Finally, they characterize a volume rendering application called
VFLEET [13].

For each application, they describe the input size in MB, the running time in seconds on an Athlon 1.8GHz
machine, and the computation to communication ratio R assuming a 100 Mb/s data transfer rate (see Table
1). They find that these applications differ in their defining characteristics by as much as an order of
magnitude.

Further the authors show the coefficient of variation (which is the standard deviation divided by the mean) of
the amount of computation per unit of load expressed as a percentage (labeled as G in Table 1). Finally, the
authors compute the range of running times over all units of load. Because of data-dependencies or non-
deterministic computation [63], the coefficient of variation can be as high as 10%, and the spread can be as
high as 2700%.

Application Input size
(MB)

Running
time (sec)

R G (max - min) /
mean

HMMER 802.0 534 6.7 9% 2700%

MPEG 716.8 2494 34.8 10% 30%

VFleet 87.5 600 68.0 1% 2%

Table 1: Characteristics of several applications: input size, running time on a 1.8GHz Athlon, computation to
communication ratio (R), coefficient of variation of a unit of load (G), and spread of running time of unit of

load. [2]

MPEG4 video compression for a particular application has an input size of 716.8 (MB) and running time of
2494 seconds. Assuming a 100 Mb/s connection, this gives a computation to communication ratio of 34.8

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 198

with a coefficient of variance of 10% due to data-dependent and/or non-deterministic computation. Note that
with the recent advent of Gigabit networks at homes, the computation to communication ratio could become
higher.

Platform model

Most of the divisible workload algorithms assume that there is a server from which the divisible workload
application is distributed among workers. Moreover, the server has only a single port, so only 1 datum can
be sent to a worker at a time. Also, most algorithms do not consider variability in the CPU availability of the
workers. That is, they assume the machines are dedicated for scheduling purposes. Only recently in [63] has
the issue of variable availability been examined. Also, only recently has the network overhead (in particular
latency) of sending the data been addressed using simple affine functions to model the initial overhead of
sending the data.

Scheduling Algorithms

The goal in scheduling a divisible workload algorithm is to minimize the applications makespan, which is
essentially its completion time. To understand the scheduling issues with divisible workload algorithms, it is
useful to examine issues with the most naïve algorithm. That is, a naïve approach to send a divisible
workload algorithm would be to divide the workload into a number of equally sized tasks, and then to
distribute these tasks at the same time to the workers. The main problem with the naïve approach is that
while the workers are waiting for the data to arrive, they could have been doing computation. Instead, they
wait until all the data has been transferred before starting to compute.

This issue of overlapping of data and computation is what divisible workload scheduling (DLS) algorithms
address [63, 77, 27, 28, 38, 66, 19, 45]. At a high level, the algorithms overlap data transfers with
computation by sending a small data chuck to a worker so that it can immediately begin computation, and
while it the worker computes, the server sends another chunk, and so on (see Figure 42).

Figure 42 An example of a divisible workload schedu le [33]

Notice in Figure 42 where there are several rounds in which data is distributed to workers. Distributing data
in rounds can have several benefits. First, the initial idle time of resources in Round 0 is lessened when
using multiple rounds. Second, using multiple rounds near the end of the application can be a means of
dealing with variable host load. That is, by having relatively smaller rounds near the end of the application,
the algorithm can detect an imbalance of distributed work more quickly and then it can act responsively when
fluctuations occur.

Divisible workload algorithms can be categorized broadly using two criteria. The first criterion is how they
form the rounds (for example, increasing or decreasing chunk size with each round) and the number of
rounds (for example, using only a single round versus multiple rounds). The second criteria is how they

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 199

model the costs of data transfers to the resources (for example, assuming the time to transfer data is
proportional, i.e., linear to its data size, versus taking into account start-up costs using affine functions).

One of the most effective for divisible load applications on heterogeneous and shared platforms is called
Robust Scheduling for Divisible Workloads (RUMR) [76]. RUMR is able to compute a near-optimal number of
rounds while taking into account the cost of communication and computation using affine functions.
Moreover, RUMR is amenable to uncertain communication and computation times as it decreases the size of
chunks used towards the end of the application.

Software for deployment

Despite over a decade of algorithmic research with divisible workloads, developers implemented real
systems for divisible workload applications only recently. One of the most relevant systems is APST-DV [63]
which is a user-level tool for deploying divisible workload application across a set of distributed and
potentially shared resources. APST-DV provides a simple XML interface by which a user can specify his/her
divisible workload application and implements a number of divisible workload algorithms. In the XML input,
the user indicates the executable, the input file name, and its divisibility. The divisibility of the input file
consists of the method by which to divide the input (for example, uniformly or by a user-supplied call-back
function, the unit of data, and the scheduling algorithm).

Then APST-DV takes the inputs and deploys a scheduling specified by the algorithm. To deploy the
schedule, APST-DV can control or communicate with resources using a number of different mechanisms.
With respect to controlling task execution, it can use fork, GRAM, NetSolve, ssh, Condor, PBS or
LoadLeveler. With respect to communication, it can use cp, scp, FTP, GASS, GridFTp, SRB. Finally to
monitor the state of the system (for example, host load), which is simulation for precise scheduling, it can
use a number of services, such as MDS, NWS, or Ganglia. As setting up these services might not be trivial,
an alternative approach is to use the application itself (or the small part of it) as an active probe to estimate
the performance of the applications. This is the approach that the authors take in [63].

In terms of real experiments with the APST-DV software, in [63] , the authors execute the encoding of a
716.9MB video file over 7 hosts (one 700MHz AMD Athlon, and six 1.73 AMD Athlon XP’s) connected by
100MB/sec Ethernet. Over 10 runs with each scheduling algorithm, the execution time for each run ranged
between 12 and 21 minutes. (On a single machine the time to encode the video was 41.6 minutes.)

5.5 Grid4All Scheduling Service

In this section, we describe the different services (and the specific API’s) provided (or not provided) by the
VO management and scheduling entities. Below we describe the entities and roles involved with job
execution and a job’s lifecycle.

5.5.1 Applications

Photograph Transformation and Video Compressions

The applications of domestic users targeted by the scheduling service are photograph batch processing and
video encoding applications. We envision users submitting batches of photo for filtering (for example, de-
blurring, sharpening or noise reduction), which often requires significant computational processing of each
pixel and its neighbours.

One particular algorithm we will use is the photograph de-blurring algorithm described in [41]. Blurry photos
are a consequence of camera motion during exposure. Longer exposures are often required in dim light
settings, for example indoors or at night, can increase the chance of blurriness due to camera shake.

The de-blurring algorithm described in [41] can be used to reduce blurriness in digital photos that occur as a
result of camera shake. The camera blurring process can be modelled as a convolution, i.e., an operator that
works on two functions (f and g) to produce a third (h). In terms of photography, f is the original clear picture,

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 200

g is the signal convolved around f, and h is the blurry photograph. To de-blur a photograph, one needs to
perform de-convolution, which involves the estimation of the unknown g using statistical estimation
techniques.

The algorithm itself is divided into three stages, namely pre-processing, kernel estimation, and image
reconstruction. The most important and time-consuming step is kernel estimation, where the algorithm
estimates the blur kernel from the input data. To achieve this estimate, the user (or an agent on behalf of the
user) must provide the original blurred image, a rectangular patch within the image, an upper bound on the
amount of blurriness specified in pixels, and an initial estimate of the direction of the blurriness (horizontal or
vertical).

The quality of the de-blurred result of algorithm improves with the size of the rectangular patch from which
the blur kernel in inferred. However, at the same, the running time of the algorithm is dependent on the size
of the patch. Thus, with a single resource, one cannot afford to use the whole image as the patch, especially
if there are multiple photographs to process.

The Grid4All distributed batch processing service will allow one to distribute the de-blurring computation on
multiple resources, to improve the quality and speed of the de-blurring process. Currently the code is written
in MATLAB and copyrighted by the Massachusetts Institute of Technology. However, we are looking into
options of a license-free compiled version of the code.

In addition to photograph batch processing, we envision users submitting videos files for encoding, i.e.,
compression to MPEG formats. A video file consists of a set of frames. Encoding algorithms compress
information within individual frames and among a series of frames. While DV encoded files may be divided in
frames, frames carry different of amounts of information and thus may be of different sizes. Moreover, the
amount of information that may be compressed differs from frame to frame. Thus, the actual chunks of the
inputs files may not be of identical sizes, and the running time for compression may differ for any subset of
frames (including subsets of size 1). Divisible workload algorithms that assume arbitrarily divisible workloads
and uneven computational running times of the non-uniform chunks pose an interesting challenge, which we
will investigate.

The computation to communication ratios for these real photo and video applications are relatively low,
indicating that these applications are data-intensive. This presents several challenges in terms of scheduling
data transfers and computation, as was discussed previously.

Collaborative Network Simulation Environment

Network simulation is an integral part of both network education and research. In particular, packet-level
network simulation, as described in detail by work package 4, is a compute and data-intensive task that often
results in large outputs. While network simulation can be seen as a workflow (consisting of processing, post-
processing, and visualization steps), these steps from the perspective of the scheduling service equate to a
single task. That is, we will assume at least initially that the steps in running a network simulation can all be
done on a single host. Thus, in a collaborative educational environment where many students might be
simultaneously running network simulation experiments, each simulation experiment is seen as a single task,
and the scheduling service has to simply schedule a set of independent tasks. As such, this scheduling
scenario is subsumed by the more complex scheduling scenario of scheduling data-intensive divisible
workloads, and the functionality of the scheduling service for divisible workloads can be reused for enable
network simulation in Grid4All as well.

5.5.2 Entities and Roles

Below we describe the entities and their roles involved with scheduling and resource management. We also
list functions in the API to be exported by each entity.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 201

User agent

This is the entity that specifies a job. It could be implemented through a portal, i.e., simple web interface to
submit, monitor, and control jobs.

Scheduling Service

The scheduling service determines a mapping of tasks to resources within a VO. Specifically, it determines
when and where (that is, between which resources) input or output data transfers should occur, and when
and where tasks should be executed to meet the job deadline (or be within some range of the deadline as
defined by the laxity). For each set of resources, the scheduling service will conduct a simulation of a
divisible workload algorithm in real-time to determine whether or not the deadline can be met. All feasible
schedules are then returned to the caller.

A <resource_set> consists of a set of tuples, one for each resource, each of which contains the following
information: <resource_id, start_time, duration> . A <job> consists of <data_size,
step_type, step_size, deadline, laxity, src_resourc e_id> . Note that because the data file
(for example, a DV encoded input file) itself could be relatively large, we only pass a description of it to the
scheduler. <data_size> is the total size of the input file. Step_type is the unit of the step_size (for
example, bytes). <step_size> is the desired chunk size of the input file to be divided. (The data itself may
or may not be divisible into uniform chunks, but <step_size> is meant to be a first order approximation.)
The deadline is a relative value that is with respect the initial start time of the job. The location of the
submission node can be determined using the src_resource_id in the resource information service.
<schedule_x> are feasible schedules where the deadline can actually be met.

Autonomic resource management framework

As presented in Chapter 1, the task T2.1 of this work package will provide several services relevant to the
management of middleware across a large-scale distributed platform [30] and in particular for management
of virtual organisations. This architecture is based on a control loop that uses sensors (providing monitoring
hooks to managed elements), deciders (which determine what action must be taken), and actuators (which
perform the determined actions). The management components stores and maintain information about the
system composition (e.g. list of nodes, which nodes are available or unavailable, operating system, software
modules), the system architecture (e.g. relationship between components, which nodes contained which
software components), and the system state (e.g. whether the node is active or failed). An important service
provided by T2.1 is that of service deployment. Components and their bindings specified via the Architecture
Description Language (ADL) are deployed through the deployment management service.

The scheduling service uses this framework by providing the name of the component (in this case, the Java
class that contains the wrapper for APST-DV), configuration values (for example, the APST-DV worker
daemon configuration file indicated through get and set properties), and the interface of the wrapper (that is,
the command line required to start and stop the worker daemons).

API: deploy (<ADL>)

Buyer Agent

Resources to schedule applications are acquired through a buyer agent that executes within the scope of a
virtual organisation. This agent uses the Grid resource market (described in Chapter 2) to discover and
acquire resources for a VO. Specifically, the buyer agent is doted with a budget and its goal is to find the
cheapest set of affordable resources from the various markets, on which the user’s job can run. The notion
“can run” is defined later. The buyer agent interacts with the Semantic Information Service (Chapter 3) to
lookup available running markets, to determine various estimators of resource prices (the average, maximum

API: <schedule_1…schedule_n> find_schedules (<resou rce_set_1>, <resource_set_2>…
<resource_set_n>, <job>)

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 202

and minimum price of resources within each market), and to determine the price on a set of resources. Given
a budget, the buyer agent can determine the number and types of resources that can be afforded.

API: <resource_set_1>… <resource_set_n> get_resourc es_sets (<job>, <budget>)
 <market> find_market (), register_market (<market>)

The buyer agent is used by the scheduling service in two steps. In the first step, the BA is requested to
obtain possible resource sets that may be acquired at the markets within the limits of the budget. In the
second step the BA acquires (tries to) one of the resource sets.

Resource information service

The VO management system will support basic queries (e.g. from the scheduling service) for the description
of resources that it manages. The types of supportable queries include the hardware characteristics and
location (e.g. city) of the resource.

API: <CPU, memory, max_network_bandwidth, city> get _charac (<resource_id>)

5.5.3 Job lifecycle (and the interaction between entities)

Overview

The main steps of a compute job’s lifecycles can be summarized as follows:

1. Job submission – A job with information about the inputs data sizes and how it can be divided is
submitted to the buyer agent along with the user’s budget.

2. Resource discovery – The buyer agent determines several sets of affordable resources using
coarse and static information about the resources (e.g. location and clock rates).

3. Resource selection and scheduling – Given each set of resources and job information, the
scheduling service determines which set of resources yield feasible schedulers using real-time
simulation.

4. Resource binding – Once the resources in a feasible schedule have been bought by the buyer
agent, the scheduling service deploys the schedule by specifying the ADL to the Jade management
framework.

Below we describe the lifecycle of a job in detail by first listing our assumptions, and then the key steps
involving resource management and scheduling required before execution of the schedule. In an effort to
make things more concrete, we list the corresponding function call(s) exported by each service that are
associated with each step.

Assumptions

Resource reservations are not allowed as it would require a system for cancelling reservations, and trying to
add resource reservations would make resource management prohibitively complex.

Once a lease for a resource is purchased, we assume that the lease will not be intentionally broken. Of
course, this does not preclude leases broken as a result of hard failures. Also, once leased, we assume the
resource will not be shared with other user processes. In scheduling terms, this means that tasks may not be
pre-empted. We assume only a bid-clear system (not bid-decide) and that the buyer agent cannot be
expected to provide subnet information.

Job submission

User agent submits <job> , <budget> to buyer agent. A <job> consists of <data_size, step_type,
step_size, deadline, laxity, src_resource_id> .

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 203

Resource Discovery

The idea is to use coarse and static information about the resources and the fact that the video and photo
processing applications are relatively data-intensive, to simplify initial resource discovery and to conduct the
“bootstrapping” required to determine initial sets of resources to be considered by the scheduling service.
We present below one possible way to determine sets of affordable resources:

Given the compute node on which the job (including its input data) initially resides (this can be determined by
submitting a query to the resource information service with the src_resource_id), the buyer agent
determines a set of resources within the same city (call it the “close-by” set), and a set of resources in a
neighbouring city (call it “far-away”). The point is just to use proximity to greatly reduce the valid search
space for doing resource selection, that is, the buyer agent is asked to search for resources that are close to
the compute node on which the input data resides.

Given a job, different possible resource sets may enable the job to terminate within its deadline. These
different resource sets are initially not known. A compute node is characterized by its processing capacity, by
its distance to the node where the input data resides. The number (or total processing capacity that may be
acquired) of nodes that may be acquired depends on the current market prices and finally the times at which
the resources may be acquired also depends on the current market demand for the resources. We proceed
by heuristics to narrow down the configurations that the buyer agent should seek to acquire (subject to
budget and current market prices).

Assuming that resources need to be acquired at any time from current time, the possible resource sets are
classified as following:

− <close-by, short duration>

− <close-by, long duration>

− <far-away, short>

− <far-away, long duration>

The buyer agent chooses two initial starting values (short [.5*deadline], long [deadline]). For each set of
resources (close-by and far-away), and for each duration (short, long), the buyer agent ranks the resources
in terms of price (using e.g. average resource price per market as provided by the market information
service).

For each ranked set the buyer agent forms two maximal subsets that are within the budget constraint,
namely a subset of “cheap” resources (start from the cheapest and going up the ranking), and a subset of
“expensive” (starting from the most expensive and going down). Adding the price dimension results in eight
possible configurations, that is, <close-by, short, cheap>, <close-by, long, cheap>, <close-by, short,
expensive>, <close-by, long, expensive>, <far-away, short, cheap>, <far-away, long, cheap>, <far-
away, short, expensive>, <far-away, long, expensive>.

The buyer agent determines the configuration that may be acquired within its budget by querying the market
information services (Chapter 9). It of course cannot know whether the job’s deadline can be met given each
set of resources. The scheduling service is asked to estimate the job termination time for each of the
resource sets that may be acquired currently at the market (obtained through the API get_resource_sets).

Resource selection and scheduling

Each set of resources, and the job is given to the scheduling service. The scheduling service can be
wrapped as a Fractal component to provide a standard management interface that will allow itself to be
managed by Jade as an internal component. Web services will be used for external components. The
service tries to schedule tasks among each set of resources, determining a completion time and whether the
deadline can be met. It returns a schedule (that is, which resources to use and when for computation and
network transfers) to the buyer agent for each resource set, including an estimated completion time.

The buyer agent proposes each estimated completion time and price (which may have changed depending
on market price fluctuations and how long the scheduling service took to return) to the user, who decides
which schedule if any should be executed. However, the most time consuming step is probably the
scheduling simulations. So, if any change in pricing for a set of resources occurs, it would most likely be after

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 204

this process. If however none of the schedules are acceptable then the bid is cleared, i.e., nullified. In later
versions of the system, we make allow for a bid-decide-revise-bid loop.

<schedule_1 … schedule_n> find_schedules (<resource _set_1> … <resource_set_n>, job)

Resource Binding

Once a schedule is approved by the user agent, the buyer agent purchases the resources, which form a VO,
and then the schedule is executed, which requires binding. There are two levels of binding. First, the
middleware (most likely APST-DV) must be installed and deployed on the set of the resources within the VO.
The deployment service presented in Chapter 1 will be used to install, deploy, and manage the middleware
components on the set of resources, specifying the submission node as the server since that is where the
input data resides.

deploy (<ADL>)

Second, the set of tasks in the job must be distributed to the set of assigned resources. The middleware will
ensure that the tasks are distributed to the set of resource according to the decided schedule.

Middleware::job_submit (<job>, <schedule>)

5.5.4 Implementation

In the previous sections, we described the specification for the scheduling service and the components it
interacts with, namely the resource management system, and the deployment system.

We are considering using APST-DV as a means of deploying the actual schedule. APST-DV is licensed by
the University of California and allows for research and non-profit uses of the software without fees or written
agreements. To address licensing concerns, we will integrate APST-DV with the scheduling service
framework using wrappers and in a modular fashion. This way, APST-DV could be easily replaced in the
future by other software that offers similar functionality but under a less restrictive license.

5.5.5 Future Challenges

There are several open issues that will be addressed. First, it is not clear whether a constant <step_size>
used for the real-time simulation will in fact give an accurate estimate for the real execution given that the
step_size for the real application is often variable from photo to photo or frame to frame.

Second, we must be careful that the simulation time does not take too long. Otherwise, we risk large
changes in the pricing of the resources or that the resources get bought by a competing party (as no
reservation mechanism is available.)

Third, we must ensure that the estimated execution time matches the real execution. This will require
accurate models of Internet resources, topologies (network throughput and latency), and their load and
availability.

Fourth, in distributing the data chunks to a set of workers, the submission node may be a bottleneck as
cable/DSL upload speeds are often quite low (for example, often near 133Kbps). We will perhaps need to
look into P2P data distribution methods to ensure timely data distribution and completion.

Fourth, one issue in [63] is when to switch to the second phase of RUMR. We will study this issue in detail.

Finally, there may be firewall issues if the submission node is required to contact other nodes in the VM.
Methods such as TCP hole-punching [64] may be applied here.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 205

References

[1] Boinc statistics for the world! http://www.boincsynergy.com/stats/index.php. website.

[2] distributed.net. http://www.distributed.net/.

[3] Einsten@home.

[4] Enabling Grigs for E-Science in Europe.

[5] Frontier.

[6] The great internet mersenne prime search. http://www.mersenne.org/.

[7] Hmmer.

[8] Mencoder media player.

[9] Mesh technologies. http://www.meshtechnologies.com/.

[10] Noise ninja.

[11] Ourgrid’s website. http://www.ourgrid.org/.

[12] Sensor Networks. http://www.sensornetworks.net.au/network.html .

[13] Vfleet volume rendering package.

[14] Xtremweb-ch’s website. http://www.xtremwebch.net/.

[15] Yacy - distributed p2p-based web indexing.

[16] The grid, blueprint for a new computing infrastructure. Morgan Kaufmann, 2003.

[17] N. Abdennadher and R. Boesch. A scheduling algorithm for high performance peer-to-peer
platform. In CoreGrid Workshop, Euro-Par 2006, Dresden, Germany, August 2006.

[18] M. D. A.K. Mok. Multiprocessor scheduling in a hard real-time environment. In Proc. Seventh
Texas Conf. Comput. Syst., Texas, U.S.A., 1978.

[19] D. Altilar and Y. Paker. Optimal scheduling algorithms for communication constrained parallel
processing. In Europar’02, pages 197–206, 2002.

[20] D. Anderson. Boinc: a system for public-resource computing and storage. In Fifth IEEE/ACM
International Workshop on Grid Computing, pages 4–10, Pittsburgh, USA, 8 November 2004.

[21] D. Anderson. BOINC: A System for Public-Resource Computing and Storage. In proceedings of
the 5th IEEE/ACM International GRID Workshop, Pittsburgh, USA, 2004.

[22] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: An experiment
in public-resource computing. Communications of the ACM, 45(11):56–61, November 2002.

[23] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. OurGrid: An Approach to Easily Assemble
Grids with Equitable Resource Sharing. In Proceedings of the 9th Workshop on Job Scheduling
Strategies for Parallel Processing, June 2003.

[24] E. B. andSungJin Choi andMaengSoon Baik andChongSun Hwang andChanYeol
Park andSoonYoung Jung. Scheduling scheme based on dedication rate in volunteer computing
environment. In Third International Symposium on Parallel and Distributed Computing (ISPDC
2005), Lille, France, 2005.

[25] J. Baldassari, D. Finkel, and D. Toth. Slinc: A framework for volunteer computing. In Proceedings
of the 18th IASTED International Conference on Parallel and Distributed Computing and Systems -
PDCS 2006, Dallas, Texas, USA, November 13-15 2006.

[26] A. Bassi, M. Beck, G. Fagg, T. Moore, J. S. Plank, M. Swany, and R. Wolski. The Internet
BackPlane Protocol: A Study in Resource Sharing. In Second IEEE/ACM International Symposium
on Cluster Computing and the Grid, Berlin, Germany, 2002.

[27] V. Bharadwaj, D. Ghose, V. Manni, and T. Robertazzi. Scheduling divisible loads in parallel and
distributed systems. IEEE Computer Society Press, 1996.

[28] J. Blazewicz, M. Drozdowski, and M. Markiewicz. Divisible task scheduling - concept and
verification. Parallel Computing, 25:97–98, 1999.

[29] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed file system
deployed on an existing set of desktop pcs. In Proceedings of SIGMETRICS, 2000.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 206

[30] S. Bouchenak, N. D. Palma, D. Hagimont, and C. Taton. Autonomic management of clustered
applications. In IEEE International Conference on Cluster Computing, Barcelona, Spain, 2006.

[31] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu. Kosha: A Peer-to-Peer Enhancement for the
Network File System. In Proceeding of International Symposium on SuperComputing SC’04, 2004.

[32] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Néri, and O. Lodygensky. Computing
on large scale distributed systems: Xtremweb architecture, programming models, security, tests
and convergence with grid. Future Generation Computer Science (FGCS), 2004.

[33] H. Casanova. Divisible load scheduling, 2007.

[34] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture and Performance of an
Enterprise Desktop Grid System. Journal of Parallel and Distributed Computing, 63:597–610,
2003.

[35] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade, R. Novaes, and M. Mowbray. Labs of
the world, unite! ! ! Journal of Grid Computing, 2006.

[36] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Economics of Peer-to-Peer
Systems, Berkeley, 2003.

[37] S. Draves. The electric sheep screen-saver: A case study in aesthetic evolution. In 3rd European
Workshop on Evolutionary Music and Art, march 2005.

[38] M. Drozdowski and P. Wolniewicz. Experiments with scheduling divisible tasks in cluster of
workstations. In Europar’2000, pages 311–319, 2000.

[39] G. Fedak. XtremWeb: une plateforme générique pour l’étude expérimentale du Calcul Global et
Pair-à-Pair. PhD thesis, Université Paris Sud, June 2003.

[40] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb: A Generic Global Computing
Platform. In CCGRID’2001 Special Session Global Computing on Personal Devices, 2001.

[41] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. Freeman. Removing camera shake from
a single photograph. ACM Transactions on Graphics, SIGGRAPH 2006 Conference Proceedings,
25(3):787–794, 2006.

[42] Y. Fernandess and D. Malkhi. On Collaborative Content Distribution using Multi-Message Gossip.
In Proceeding of IEEE IPDPS, Rhodes Island, 2006.

[43] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Content Distribution. In
Proceedings of IEEE/INFOCOM 2005, Miami, USA, March 2005.

[44] A. Hsu, March 2005.

[45] S. F. Hummel. Factoring: A method for scheduling parallel loops. Communications of the ACM,
35(8):90–101, 1992.

[46] A. Iamnitchi, S. Doraimani, and G. Garzoglio. Filecules in High-Energy Physics: Characteristics
and Impact on Resource Management. In proceeding of 15th IEEE International Symposium on
High Performance Distributed Computing HPDC 15, Paris, 2006.

[47] X. P. A. R. C. John F. Shoch, Xerox Palo Alto Research Center; Jon A. Hupp. The "worm"
programs - early experience with a distributed computation. Communications of the ACM, 3(25),
1982.

[48] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L. M. Silva, G. Fedak, and F. Cappello.
Characterizing result errors in internet desktop grids. Technical Report INRIA-HALTech Report
00102840, INRIA, 2006.

[49] D. Kondo, A. Chien, and C. H. Rapid application turnaround on enterprise desktop grids. In ACM
Conference on High Performance Computing and Networking, SC2004, 2004.

[50] D. Kondo, B. Kindarji, G. Fedak, and F. Cappello. Towards soft real-time applications on
enterprise desktop grids. In Proceedings of 6th Innternational Symposium on Cluster Computing
and the Grid CCGRID’06, Singapore, 2006.

[51] J. Kubiatowicz and all. Oceanstore: An architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS. ACM, November 2000.

[52] O. Lodygensky. Contribution aux infrastructures de calcul global: délégation inter plates-formes,
intégration de services standards et application à la physique des hautes énergies. PhD thesis,
Université Paris Sud, september 2006.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 207

[53] J. Lopez, M. Aeschlimann, P. Dinda, L. Kallivokas, B. Lowekamp, and D. O’Hallaron. Preliminary
report on the design of a framework for distributed visualization. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’99),
pages 1833–1839, Las Vegas, NV, 1999.

[54] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-peer Information System Based on the
XOR Metric. In Proceedings of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02). MIT, 2002.

[55] A. Mok. Fundamental design problems of distributed systems for the hard ral-time environment.
PhD thesis, Massachusetts Institue of Technology, 1983.

[56] A. Mok. The design of real-time programming systems based on process models. In Proc. IEEE
Real-Time Syst. Symp., 1984.

[57] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed computation over the internet -
the popcorn project. In International Conference on Distributed Computing Systems 1998, 1998.

[58] E. Otoo, D. Rotem, and A. Romosan. Optimal File-Bundle Caching Algorithms for Data-Grids. In
SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, page 6, Washington,
DC, USA, 2004. IEEE Computer Society.

[59] Platform Computing Inc. http://www.platform.com/ .

[60] PPDG. From fabric to physics. Technical report, The Particle Physics Data Grid, 2006.

[61] J. Pruyne and M. Livny. A worldwide flock of condors : Load sharing among workstation clusters.
Journal on Future Generations of Computer Systems, 12, 1996.

[62] D. Qiu and R. Srikant. Modeling and Performance analysis of BitTorrent-like Peer-to-Peer
Networks. SIGCOMM Comput. Commun. Rev., 34(4):367–378, 2004.

[63] K. v. d. Raadt, Y. Yang, and H. Casanova. Practical divisible load scheduling on grid platforms
with apst-dv. In IPDPS, 2005.

[64] A. Rezmerita, T. Morlier, V. Neri, and F. Cappello. Private virtual cluster: Infrastructure and
protocol for instant grids. In Euro-Par, pages 393–404, 2006.

[65] A. Rodriguez, A. Gonzalez, and M. P. Malumbres. Performance evaluation of parallel mpeg-4
video coding algorithms on clusters of workstations. International Conference on Parallel
Computing in Electrical Engineering (PARELEC’04), pages 354–357.

[66] A. Rosenberg. Sharing partitionable workloads in heterogenous nows: Greedier is not better.
pages 124–131, International Conference on Cluster Computing (Cluster 2001), 2001.

[67] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, 2001.

[68] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima. Exploiting Replication and Data Reuse to
Efficiently Schedule Data-intensive Applications on Grids. In Proceedings of the 10th Workshop on
Job Scheduling Strategies for Parallel Processing, 2004.

[69] L. F. G. Sarmenta and S. Hirano. Bayanihan: Building and studying volunteer computing systems
using java. Future Generation Computer Systems, 15(5/6), 1999.

[70] M. Shirts and V. Pande. Screen Savers of the World, Unite! Science, 290:1903–1904, 2000.

[71] S. Smallen, H. Casanova, and F. Berman. Tunable on-line parallel tomography. In Proceedings of
SuperComputing’01, Denver, Colorado, 2001.

[72] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference, San Diego, California, August 2001.

[73] United Devices Inc. http://www.ud.com/ .

[74] S. Vazhkudai, V. F. X. Ma, J. Strickland, N. Tammineedi, and S. Scott. Freeloader:scavenging
desktop storage resources for scientific data. In Proceedings of Supercomputing 2005 (SC’05),
Seattle, 2005.

[75] B. Wei, G. Fedak, and F. Cappello. Scheduling Independent Tasks Sharing Large Data Distributed
with BitTorrent. In The 6th IEEE/ACM International Workshop on Grid Computing, 2005, Seatle,
2005.

D2.1 - Requirements for Grid4All Virtual Organisations Grid4All-034567
 2007/06/26

Grid4All Confidential Page 208

[76] Y. Yang and H. Casanova. Rumr: Robust scheduling for divisible workloads. In 12th IEEE
Symposium on High Performance and Distributed Computing (HPDC-12), Seattle, June, 2003.

[77] Y. Yang and H. Casanova. Umr: A multi-round algorithm for scheduling divisible workloads. In
IPDPS, page 24, 2003.

[78] D. Zhou and V. Lo. Wave scheduling: Scheduling for faster turnaround time in peer-to-peer cycle
sharing systems. In Scheduling Strategies for Parallel Processing 2005 (JSSPP’05), 2005.

