W

N {
-4 I Id\/ <
Grid4All Information Society

Technologies

‘\I‘l

Project no. 034567

Grid4All

Specific Targeted Research Project (STREP)

Thematic Priority 2: Information Society Technologies

D2.3 Specification & Initial prototype of Grid4All

Resource Management

Due date of deliverable: 01-06-2008

Actual submission date: 11-07-2008

Start date of project: 1 June 2006 Duration: 36 months

Contributors : UPRC, UPC, FT, INRIA

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public

PP Restricted to other programme patrticipants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CcO Confidential, only for members of the consortium (including the Commission Services) v

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008

Table of Contents
Abbreviations used iN thiS dOCUMENT ..ot e e e e s saaeee e 3
LT To By | TR o] o = L AT o] o = L PRSP 4
O = TN LAY A= IS U T 42 = USRS 5
P22 11 o Yo [Tod 4 o o I PRSP 6
G T L= Lo 10N o =3 = 1 =T =T o =T o 7
3.1 Relation between the different SEIVICEScooiiiiiiiiiiii e 7
3.2 Resource and service diSCOVETY FEVISIEEAoiuiiii ittt 8
N o G Io PN (oY oI = Ta = Vo =] 4 1= o | TR SRPR 9
R O 1Y 1= PSPPSR 9
4.2 Scheduling heuristics and SCheAUIEr APlooiii oo e e e e e e e s nnnes 9
T T (= To1 01 o] g W g F= T F= To (=10 0 =T o SRR 10
4.4 Summary Of RESEAIrCH RESUILS........ucuiiiiiiiiiiiieee e a e e e e s s ae e e e e e s ennnes 11
I S (TS Yo 1U] (o3 o £0] (=T 1 o o PRSP 13
L T0 R [o1 1o o (VT 1o o [USSP URPRT 13
5.2 Overall architecture and Main COMPONENTScciiiiiitiiiiiee et e et e e e e e e eeeaaeeeaaanes 14
5.3 Relation between the GRIMP MOUUIESoiiiiiiiie e a e e 15
5.4 Design and implementationccooo i e e e e e e e e e aaane 16
5.4.1 Distributed Market INfOrmation SEIVICE..........uuiiiiiiiie e 16
L A Ui o] BT V= TP PPEPT 18
5.4.3 CUIrrenCy ManagEMENTt SEIVICEuuiiiieaiiiitiiiieeae e e e ettt e e e e e s e et et eaeaeeeaaanbsbeeeaaaaeeaaannneeeeaaaaaas 22
L Y - T (S = o1 (o YU 23
L T N[To o) A= Lo | USRS 23
LT T IY=Ted o g o] (oo [Tot= ol o Lo ol =SSR 23
5.5.1 Component model and Fractal..........cccccoiiiiiiiiiiee e e e e e e e e a e e 23
5.5.2 Distributed Component Management SYSIEMcoccviiiiiieeeiiiiiieie e e e s e e e e s s eee e e 23
5.5.3 Overlay and peer-to-peer teChNOIOGIESuuiiiieeiiiiiiiiiee e 24
5.6 Usage WIthin GFIAAAI ... ettt ettt e e e e e e e e et e e e e e e e e anbeeeeeaaeeaaannnes 24
LT A ©7o] [od (V110 13RO RPRT 24
5.7.1 Integration and PrototyPe WOIKeeeeeeiiiiiiiiieieee s e st ee e e e e e s s st e e e e e e e s e aeeaeeessesnnareeaaeees 24
LT 2 0 11 | o TP 25
6 SemMaNtiC INTOIMALION SEIVICE ...uuiiiiii ittt e e e ettt e e e e e e e ettt e e e e e e e e aansbaneeaaaaeaanns 27
6.1 SIS WOrk floW A@SCIIPLION.......uviiiiiee i e e s e e e e e e s e e e e e e e s s ataeareeeeesesnnnreneees 27
6.1.1 ResSoUurce Market QISCOVEIYeiiiii ottt e ettt e e e e e e et e e e e e e e e e annbbeeeeaaeeeaannnes 28
B.1.2 AQVEITISEIMENT ...ttt e e oo ettt et e e e e e s s bt teeeea e e s e ansnbebeeeaeeseaannbaeeeeaaeeaaannnes 28
IS V= 14 2= A @ TUT=T 0 o o PP PPRPRT 29
B.1.4 SEIVICE TISCOVEIYuiiiiiiiee e i e ittt et e e e e e e st e e e e et et e et aaeeessnteaeeeeaeeseaasbbaaeeeaeesaaasssenneaeaeesannnnes 30
6.1.5 SErviCe aUVEIISEMENTccoiiiiiiiiiiii ettt s e s et e e s et e e e s nb e e e e e nbeeeeenneeas 30
6.2 WWSDL ANNOLALIONeeeiiiieiiiiitee it e ettt e oottt e e e e e st b be e et e e e e e sa s bbb e e e eeaae e e e nbabbeeeaeeeeannnreneaeas 30
ST A g1 1o To 11 Tox 1T o I PRSP PRPO 30
6.2.2 External ANNOLAtioN FilE (EAF) ..ottt e e e e e e s e e e e e e s e e snrreeeeeeeeeennnnes 30
6.2.3 WSDL-AT FUNCHONAITY ...cceiiiiitiiiiei ettt ettt e e e e et e e e e e e e e e e aanbbeeeeaaeeeaannnes 31
6.2.4 Service discovery through querying of SIS........ooo e 31
6.3 Main SOftWArE MOTUIES.......coiiiiiiie it et e e s st e e e s snbee e e e nnbeas 32
6.3.1 Matchmaking MOAUIEcooiiiieiiee ettt e e e e e e e e e e e e e nbbeeeeaaeeeaannnes 32
S0 D T=TS{To g 1= U To I 1a] o] (=1 0 0= 1] = o o 1SS 34
6.4.1 TeChNOIOGICAI CROICEcoiiiiiiieee ettt e e e e e e e et e e e e e e e e e e annnes 34

Grid4All Confidential Page 1

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008

I B @0 (o] [1] o] LS PR PRPO 35
7 HoW they all fit tOGEINET ..t e e e e et e e e e e e e e neraeeeaaaaeeanns 36
7.1 Limitations @nd FESEHCHIONSouuiie ittt et e e e et e e s st e e e s sntae e e e nneeas 37
8 CONCIUSIONS ANA FULUIE WOTK ..uuuiiiiiiiiiiiiiiiiiiiiiiiiititietataebaaaeaeaeseaaaeaeaeeeseaaaesessssssssssssssssssssnsssnsnsnsnsnnnsnnes 38
LS T = L= 1T =Y o Vo =T PPNt 39
A. Semantic INfOrMatioN SEIVICE ... 41
AL, Market a0VEIISEIMENTooiiiiiie ittt e et e e s e e e s s be et e e anbe e e e s anneeeesannreeean 41
Al.1. Market advertiSEMeENt INLEITACEcc.eviiiiiiiie e 41

A.l.2. Application advertisement INtEITACE..........c.uuiiiiie e 43

A.1.3. Market QUErYING INEITACEcoi e e s r e e e e e s snrraae s 43

A.l.4. Application qUEryiNg INLEITACEceiiiiiii i 45

A.1.5. Agent Management INtEITACEceiiiii i e e e 45

A2, SIS WED INEITACEeiiiiiiiie ittt e st e e e sttt e e s anbe e e e s snbteeesanneeee s 46
A3, WSDL-ANNOLALION TOOI.....cciiiiiiieiiiiiee ittt s ettt ettt e et e e e st e e e sbbe e e e e snnbeeessnneeeesannneee s 48
A.1.6. [D]=T o1=T gl =] o o[TR 48

A.l.7. (©0] 0110 [= Ui o] o [PPSR PUPRRPR 48

A.1.8. USE CASE EXAMPIES ...ttt e e et e e e e e e e e e e e e e e annreeee s 49

A4, Markets MatChMaKINGueeiieiiiiiiiiie e e e e e e e e e e s s s st e e e e e eeesasantaraeeaeeeaannne 51
A.1.9. ServiceS MatChMEAKING.....ccoiuuiiieiiiiie ittt e e st e st e e e snbae e e e neeas 54

B. RESOUICE BIOKET ..ttt ettt ettt e e e bt e e s ekt e e e s et be e e e e ebbe e e e eabbeeeesanbeeeean 56
B.1. Auction server implemeEntationooiii oot e e e e e eeaae s 56

B.2. K-Double auction design and evaluation..............ccoooo i 58

B.3. Combinatorial auCtioN ... 71

B.4. Distributed Market INfOrmation SYSTEIM ..o 77

B.5. Currency Management SYSIEMccccc i 81

C. Yot aT=To [U1 T o IEST=T RV Ao = TR PRPPPPRUP 85

Grid4All Confidential Page 2

D2.3 Specification and Initial prototype of G4A resource management system

Abbreviations used in this document

Grid4All-034567

11-07-2008

Abbreviation / acronym

Description

Grid4All Confidential

Page 3

D2.3 Specification and Initial prototype of G4A resource management system

Grid4All list of participants

Grid4All-034567
11-07-2008

Role Participant N° | Participant name Participant | Country
short name

CO 1 France Telecom FT FR

CR 2 Institut National de Recherche | INRIA FR
en Informatique en
Automatique

CR 3 The Royal Institute of | KTH SWE
technology

CR 4 Swedish Institute of Computer | SICS SWE
Science

CR 5 Institute of Communication | ICCS GR
and Computer Systems

CR 6 University of Piraeus | UPRC GR
Research Center

CR 7 Universitat Politéecnica de | UPC ES
Catalunya

CR 8 ANTARES Produccion & | ANTARES | ES

Distribution S.L.

Grid4All Confidential

Page 4

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

1 Executive Summary

This deliverable presents the design, specification and current implementation status of the Grid4All
resource management system. The term resource essentially refers to computational and storage resources,
where a single node may provide of course both the capabilities.

Core VO services that provide the essential management functionality within a VO are described in detail in
the D2.2'. The decentralized discovery service allows applications to selectively discover currently available
resources, where this selection is done by applying a filter on the properties describing resources. The
membership service allows users to join and leave VOs, to search for other members and to associate
attributes to members. Application components may be deployed on one or more nodes; this may be done
either by using programmatic interfaces or by interpreting the declarative architecture descriptions. The
Fractal Architecture Description Language is used to describe application architectures. The security system
may be used to describe access control policies and implement policy decision and enforcement points.

Resource management described in this deliverable deals with execution management, resource brokering
and service discovery. They use the aforementioned core VO services.

In Grid4All, Resource management is done at two levels: within the scope of a single VO and across VOs.
Within a VO, core services allow applications to discover resources matching criteria and to provision these
resources. Execution management is used to schedule tasks® and manage their execution. Data
management described in D3.3 and D3.4 provide VO-wide file management services. Multiple VOs may
exist on the Internet. The Semantic Information Service is provided for users and applications to discover
resources and services. VOs may also allocate computational resources at the market-place.

This document describes the current implementation status, the programming interfaces, and the scenarios
in which the provided functionality will be integrated to provide combined capabilities for end applications.
We describe the interactions of the software components with each other for the purpose of jointly providing
capabilities to users and applications. We conclude by outlining directions for future work.

! We recommend reading D2.2 before reading this deliverable.
2 We focus on bag-of-tasks applications.

Grid4All Confidential Page 5

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

2 Introduction

This deliverable describes the current status of three major resource management services: Execution
Management, Resource brokering and Semantic-based service discovery. To support execution of
applications following the bag-of-tasks paradigm, execution management provides an offline schedule
planner that is used to estimate application completion time. In conjunction with this, XtremWeb Desk-top
computing middleware® is used to manage the run-time aspects such as starting of tasks, monitoring its
status and gathering of results. This middleware has been partially adapted to leverage the deployment
facilities offered by VO run-time software. Applications execute on resources currently available in the VO.
On need, resources may be leased from resources markets. Elastic applications adjust to available
resources at both deployment time and run time; the completion time will decrease if available computational
capacity is increased. Offline scheduling permits estimation of completion times prior to execution and
adjustment of the quantity of resources needed to meet timing requirements. If the VO does not have
sufficient amount of resources, additional resources can be requested from the market.

Resources or more precisely leases to resources may be allocated at resource market-places. The Grid4All
Market-Place (GRIMP) provides a set of services and tools to operate resource market-places. They can be
accessed programmatically by resource consumers and providers. GRIMP addresses new categories of
providers and consumers or resource. Workload characterisation and resource availability has been well
analyzed within High Performance Computing production grids; this is not so in the case of Demaocratic
Grids. We propose an evaluation scheme that defines basic parameters to characterize consumers and
providers and captures the requests by simple utility functions.

Grids are seen as a ubiquitous utility for users and small organisations. Resources and services are
deployed and exposed to the Grid users who offer and request them, in a market-oriented environment. In a
market-oriented environment, resources are made available through spontaneous peer-initiated markets. To
facilitate discovery and selection of auction-based markets, we develop the SIS, which provides the means
to discover markets trading resources. Application services may also be advertised and discovered using the
SIS. This chapter describes the architecture, APIs and the technological choices driving the implementation.

The rest of the document is structured as follows. Chapter 3 presents a short introduction to concepts of
resource management. Execution management is presented in Chapter 4 and explained through support
furnished for bag-of-tasks applications. A video transcoding application is used to illustrate the approach.
Chapter 5 and 6 describe, respectively, the tools and services to operate resource market-places and the
Semantic Information Service. Chapter 7 gives an illustration of how all the services fit together.

For the sake of visibility, these chapters are brief in their descriptions. The appendices provide more details
of provided functionalities.

3 www.xtremweb.net

Grid4All Confidential Page 6

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

3 Resource management

Computational and storage resources are managed and allocated to applications to deliver value to end
users. The main purpose of resource management is to allocate and provision resources (CPU, storage,
physical memory and network bandwidth) to applications. Resource management addresses:

» Resource discovery, i.e. identification and matching of services and resources within the system (A
VO in our case), according to properties that characterize resources.

Resource brokering, i.e. selection and decision to allocate a resource to a requesting application.
Scheduling or planning to decide which task should execute on which resource and when.
Deployment or installation of application software on target nodes and their configuration.

Execution Management or run-time lifecycle management of application tasks until their completion.
Execution management uses many of the previously described services to accomplish their function.

vV V V V

Access modules provide concrete means by which allocated resources are used to run applications. Within
traditional Grid computing systems, resources are accessed using methods such as interfaces to batch
gueue systems, remote execution protocols such as ssh. Within Grid4All, users of computational resources
are members of virtual organisations. Resources belonging (or leased) to a VOs are organized as an overlay
network. The nodes of the overlay network execute management services and applications on behalf of
users. New compute nodes join the VO by using the Grid4All protocol to join the overlay. Once joined, these
may be discovered by applications and then used using the APIs as described in D2.2.

D2.2 has described the core VO services that provide the basic management services; deployment and
basic discovery of resources within the VO. The current deliverable describes the higher level functionality
and services; semantic based information services, resource brokering and scheduling.

3.1 Relation between the different services

This section describes the relation between the different resource management services keeping in mind the
application scenarios described within the D4.7. The scenario is in a context where an end application such
as the gMovie, or the CNSE network simulator, is adapted to use the Grid4All APIs; to deploy application
components and manage their execution. Applications are managed by using management services
described within the deliverables D2.2 and D2.3. Management implies discovering and allocation of
resources, deployment of application components, monitoring of tasks and adaptation to unexpected system
events such as failures, leaves or joins of resources.

Figure 1* gives the overall layering of the different components at a high level of abstraction. At deployment
of application, the minimum resources required to execute the application is evaluated. Application
management code is expected to use the different services (discovery, allocation, task scheduling and
dispatching) and select the candidate machines best suiting it. Run-time (self) management monitors current
state of execution and takes decisions concerning the reorganisation of the application. D1.2 has described
the Distributed Component Management System (DCMS). Self-managing applications may reliably execute
on democratic grids when written using this framework.

Resource management services are described in more details in subsequent chapters.

* This figure does not give all the architectural layers, in particular the DCMS and overlay services.

Grid4All Confidential Page 7

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

[Application

| 4
* 1

[Application Management

[VO Resource Management

K 2

T

Negotiator
i -~

(SIS]

Factory |e—> CAS
GRIMP [
.“‘,-“"‘ CcCMS DMIS ..."-..~~.

Overlay]

Figure 1

3.2 Resource and service discovery revisited

Within Grid4All, there are two types of discovery services. D2.2 describes the basic resource discovery
service and it's API. This deliverable presents the Semantic Information Service, which is used for service
discovery. So why do we need two different services?

The basic resource discovery described in D2.2 provides a relatively simple mechanism to find nodes that
are currently part of the VO. Such compute nodes may be of two origins. First, a user may login to the VO
and contribute his/her computer. Second, compute nodes may be leased using the Grid4All resource
marketplace. In either case, the compute nodes join the VO and the underlying overlay network and they
have to be discovered by higher-level management. Compute nodes have a list of properties (CPU speed,
memory size, storage space), and resource discovery is based on filtering on values of those properties.
Once discovered, applications allocate computational and storage capacity on the nodes and deploy
components. Deployed applications may register themselves within the naming service. The scope of the
naming service is 'local' to a VO; i.e. can be looked up only by other applications executing within the VO.

The SIS is used to advertise and discover services across VOSs. It has a wider scope and is not restricted to
a single VO. It is currently designed as a centralized service that executes on its own resources at a well-
known address. The SIS functionality may be accessed by applications executing on any VO. It is not our
current objective to use this same SIS to discover the components and applications executing locally within
the VO.

Grid4All Confidential Page 8

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

4 Execution management

This section describes the main Execution Management modules. The main services are scheduling
(planning of application tasks) and execution of application tasks on resources. We give an overview of the
relevant APIs and describe the scheduling heuristics. We present the architecture and conclude with a
summary of the research conducted in the area of scheduling on large area networking environments.

4.1 Overview

The three main components of the Execution Management are the Scheduling Service, the XtremWeb
Server and the XtremWeb Worker. XtremWeb components are responsible for execution of bag of tasks
applications. The Scheduling Service computes an execution plan (assignment of tasks to resources). The
makespan, i.e., the time at which the last task finishes execution, is extracted from the execution plan
generated by the scheduler.

XtremWeb® is a middleware to build lightweight Desktop Grid that gathers unused resources of Desktop
Computers (CPU, storage, network). Its primary features permit multi-users, multi-applications and cross-
domains deployments. XtremWeb turns a set of volatile resources spread over a LAN or Internet into a
runtime environment for highly parallel applications. This open source software will be used to prototype
execution management in Grid4All. XtremWeb consists of the server part (XtremWeb Server) that distributes
the tasks to its workers (XtremWeb Workers). The legacy Worker module is wrapped as a Fractal
component and deployed using the core VO deployment service.

4.2 Scheduling heuristics and scheduler API

The scheduler assigns tasks to resources based on a suitable policy such as minimisation of makespan.
When scheduling multiple tasks of a job, heuristics are used to find good makespans. MinMin heuristic is the
default scheduler heuristic. It iterates by choosing the next task that has the minimum expected completion
time (over all tasks). Offline scheduling and computing of worst case completion time is essential to estimate
the minimum resources required for the execution of the application, taking into account the execution time
and total budget given by the user.

The scheduler API is neutral to the used heuristic. Heuristics are engineered for special class of applications
and require specific properties from the execution environment (e.g. for the data intensive application
heuristic we designed in [SS-3], data should be distributed using a modified version of BitTorrent that gives
predictable transfer completion times). The MinMin heuristic does not make assumptions about the
execution environment (cf. [SS-5]). It is suitable for compute-intensive applications. Its complexity is
O (nb_resources * (nb_tasks?)). The input to scheduling is a set of tasks and a set of machines. A task is
represented by its estimated completion time in terms of required computational capacity. A machine is
represented by its capacity. The objective of the scheduler is to assign tasks to machines. The heuristic
iterates over tasks and selects the task with minimum computation time and assigns it to the machine with
resulting least aggregated completion time. These steps are repeated until all tasks are assigned.

The Grid4All scheduler can be used to find an estimate of the computation time, based on the specification
of tasks and the resources that are available to execute the tasks.

® Software anterior to Grid4All and contributed to the project by INRIA.

Grid4All Confidential Page 9

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Schedule findSchedule (Resource]] resourceSet,
Task(] tasks,
int schedulerType)

This function returns a plan for the tasks on the set of resources given as input, and uses the scheduling
heuristic identified by the parameter “schedulerType”. The Resource object (read-only) describes the
properties of a compute node and is described in Appendix C. We intentionally restrict the range of values of
properties describing computational resources, to restrain the search space during request processing.
Tasks are described by their main characteristics; the input data size, required deadline and an estimate of
its required processing capacity. The output of the scheduler is a list of scheduled tasks reflecting the
mapping of tasks to compute nodes. A scheduled task is a tuple: Task, Resource and Start time.

The gMovie transcodes video formats. A task in the context of this application corresponds to the fragment
of the input video. We have designed a specific heuristic to schedule these tasks since we will use the pull
scheduling mechanism implemented by XtremWeb. This heuristic is described in Appendix C .

4.3 Execution management

Execution management consists of three major parts: allocation of resources, planning of tasks on resources
and execution of tasks on the allocated resources. Figure 2 gives the sequence of interactions between
different VO management services. The gMovie application is built with a management layer that uses the
resource management interfaces to allocate and execute the application. The Reservation Manager,
described in detail in D2.2 is used by the gMovie management layer to allocate compute nodes. XtremWeb
Desktop Computing middleware manages the execution of application tasks on the allocated nodes.

The slave components, i.e., the workers of XtremWeb, are deployed using the deployment service. This is
done by gMovie management layer on notification of arrival of a new resource (from the Reservation
Manager). The XtremWeb middleware is self-managing; it detects new joining workers. Workers pull in tasks
from a queue maintained by the master. The Scheduler is used by the application manager to estimate the
minimum quantity of compute nodes needed to transcode the video, within the user specified deadline. The
gMovie management layer, represented by gMovieApplication in the figure, iterates with the Scheduler to
obtain such estimates. The Scheduler gives the maximum completion time, given a description of compute
nodes and a set of task descriptions. The gMovie manager iterates with the user until finding a satisfactory
balance between completion time and the budget that the user is willing to spend. The user supplied budget
is used to lease compute nodes at the resource market (described in Section 5). XtremWeb slave
component is then deployed in each leased compute node (as and when they arrive).

Grid4All Confidential Page 10

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008
| : SchedulingService || :Reser\.rationManager| | : gMovieApplication | | : XtremWebServer | | : XtremWebWorker || :DeplovmentSer\.rice|

| | : transcodeVideo() I

I

I |

| : queryAvailableMachines(price)
| m

3

There could be

many : griddalljadeDeploy()
- workers at the
| same

time in fact

I

I

I

estimateCompIetionTiI’T’le{machinesList} | I
I I

I

I

: deploy("XwWorker”) Ij

: splitVideolntoParts() I:D _______________________
I : heartBeat()
|

|

|

“sendTasks() |

:< _______________________ [I:I: sendData() I
k

i |
: getWork()

s assignWork()

: workCompleted()

: mergeVideoParts() |

Figure 2 the gMovie demo using XtremWeb

4.4 Summary of Research Results

We present an overview of research conducted in the context of scheduling bag of tasks applications in desk
top environments, similar to the environment of Democratic Grids targeted within Grid4All. Desktop Grids
uses computing, network and storage resources from idle desktop PCs distributed over multiple-LANS, or the
Internet, to compute a large variety of resource-demanding distributed applications.

While DGs offer a high return on investment, a critical issue is validation of results returned by participating
hosts. Several mechanisms for result validation have been proposed, but the characterization of errors is
poorly understood. To study error rates, we implemented and deployed a desktop grid application across
several thousand hosts distributed over the Internet. We analyzed the results to give quantitative and
empirical characterization of errors stemming from input or output (I/O) failures. We find that in practice, error
rates are widespread across hosts but occur relatively infrequently. We find that error rates (a) tend to be
stationary over time and (b) are not correlated between hosts. We evaluated state-of-the-art error detection
mechanisms and describe the trade-offs for using each mechanism. We have reported this research in [SS-

Grid4All Confidential Page 11

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

2]. This result implies that scheduling heuristics must take in account error rates.

Desktop Grid applications access, compute, and store and circulate large volumes of data; In case of
heterogeneous, large-scale and volatile environments, data management still mainly relies on ad-hoc
solutions, and providing general approach is still a challenging issue. We have proposed the BitDew
framework a programmable environment for automatic and transparent data management on computational
Desktop Grids. BitDew [SS-4] relies on a specific set of meta-data to drive key data management operations,
namely life cycle, distribution, placement, replication and fault-tolerance with a high level of abstraction.
BitDew has distributed service architecture and integrates P2P components such as DHTs to implement
distributed data catalog and collaborative transport protocols for data distribution. A high level of abstraction
and transparency is obtained with a reasonable overhead, while offering the benefit of scalability,
performance and fault tolerance with little programming effort.

Focusing on applications requiring large data transfers, in [SS-3], we demonstrated the advantages of using
BitTorrent instead of FTP. Projects such as BOINC have confirmed our results. BitTorrent however suffers
from drawbacks implying source modifications (its data transfer duration is too unpredictable) to either
BitTorrent itself or to the scheduling heuristics.

Efficient data distribution is not the only factor that positively affects makespan. Throughput is important for
multimedia applications. In [SS-1], we consider soft real-time applications executing on volatile resources
where tasks arrive with well known order and rate. Resources are volatile and hence tasks scheduled on
resources may miss their deadline if the resource leaves. In this study we show that the cumulative power of
a DG follows a normal probability distribution. We therefore modeled the application by taking a buffer to hold
intermediate results. Then we proposed to model failure rate (which can be seen as a throughput) as a
function of this buffer's size.

Researchers from the community often ask themselves if it is more interesting to schedule data then
computations, for applications where data transfer have a higher cost than computing. With volatile
resources, heterogeneous and with variable communication capabilities, shared, etc. scheduling data is not
only positioning them on resources but also managing them globally (lifetime, replication, migration,
persistence). In order to study these topics, we developed a complete framework (described in [SS-4])
allowing management and distribution of data for a DG.

All of our studies, even with a model frame, are based on real-world observations (real availability traces,
data transfer monitoring samples, etc.). For example, in [SS-2] the study is based on 10 millions of results
computed by 35 000 hosts during 15 months.

Grid4All Confidential Page 12

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

5 Resource brokering

5.1 Introduction

Resources are computational and storage elements needed to execute applications. Brokering concerns
selection and allocation of Grid resources. The Grid4All Market-Place (GRIMP) provides a set of tools and
services to create resource market-places.

Members of VOs contribute their resources and use this shared pool. VOs may also incorporate resources
from non-members; such resources can be leased through resource brokers that select and match
consumer requests with supplier offers. When there are fluctuations in supply and demand we need
mechanisms to arbitrate between requests and offers. Priority based, proportional sharing allocations are
pertinent when consumers (applications or users requiring resources), belong to the same organisation. This
is not the case when applications from multiple independent VOs contend for resources. Market based
brokering with pricing mechanisms provide fair arbitration, gives incentives and is decentralized. The GRIMP
(Grid4All Market-Place) provides services and tools to:

» Select suitable resource providers,

» Provide feedback from market to aid traders in brokering and negotiation,

» Mechanisms to allocate resources and establish prices of resources,

» Protocol to establish agreements between consumers and providers, including payment.

In systems with a small humber of large providers (and similarly for consumers), negotiations could be bi-
lateral. It is sufficient to provide discovery services that allow consumers to discover and select providers
based on price, load and reputation. However when providers and consumers may be any actor on the
Internet, this architecture does not scale. Hence in Grid4All, computational resources are allocated as
anonymous entities at auction-based markets; consumers (providers) do not directly negotiate with resource
providers (consumers), but through spontaneously instantiated markets.

From a consumer point of view the need is to find at a good price, and generally within a specific time frame,
a bundle of resources composed with a certain (minimum) amount of processing, storage, service and
network. If “10 CPUs” with 2 Gbytes are required, it is irrelevant if these are procured from one or multiple
providers. The resources traded in the Grid4all are time-limited leases of computational resources
represented by their:

» Processing capacity (CPU) and physical memory,
» Storage capacity and throughput,
« Network bandwidth (currently not supported).

Time-limited means that computational resources are allocated for specific intervals of time. This document
will use the term lease to refer to such time-limited allocations of computational resources. Mature
virtualisation technologies such Xen®, VMware’ provide isolation techniques to partition, isolate and share
resources; a lightweight virtual machine can be the unit of allocation. Hence, we have adopted non-shared
(in the classical sense of time-sharing), leasing of computational resources, i.e., a single compute node
(indifferently virtual® or physical), is allocated at any time to only one consumer (VO). Computational
resources are considered as non-divisible and allocated entirely for a specified time-interval.

Acquired resources should be accessible by VO members and their applications. Access methods range
from remote execution protocols such as ssh to job submissions at batch queuing systems (as Grid
services). We use protocols similar to those of peer-to-peer application overlay networks. Allocated nodes
join the overlay network of the hosting VO; join and leave handling support offered by the core VO
management is used to provide access to leased resources.

® http://www.xen.org/
" http://www.vmware.com/virtualization/
8 Current prototype does not experiment with virtual nodes.

Grid4All Confidential Page 13

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Acquired nodes join and leave the leasing VO using core VO functionality (specifically, the support for
inviting remote nodes to the VO described in D2.2). The resource provider is a leasing authority. On
acceptance of a leasing agreement, it is expected to configure the compute node that it has allocated for the
lease such that the node joins the VO to which it has been leased. Compute nodes that are offered for
leasing must be installed with the Grid4All container software and VO security components. After
successfully joining the VO, the node can be discovered by VO members and is available for deploying
applications. The hosting VO is expected to release the compute nodes on lease expiration.

D2.2 describes the Reservation Manager, the module that provides allocation services to applications. This
module in conjunction with the Negotiator described in section 5.4.5 allocates resources using the market-
place services. As a result of successful brokering, when a leased node joins a VO, we need to decide to
which application this new resource should be provisioned. In our current prototype, there is one instance of
Reservation Manager for each application. The leased nodes are invited to join the VO by the RM through
the "remote addition" service that is described in D2.2.

It is clear that both the resource provider and the resource consumer may cheat. We do not address such
behaviour.

5.2 Overall architecture and main components

We describe the main functionalities offered by the market-place. The term service and component is used in
an interchangeable way. The term service (or component) is used to represent an entity that can be
interacted with in a request-response manner. A component offers one or more interfaces through which its
services can be accessed. Components are written in Java and clients access the service using a Java RMI
stub or through client side libraries (which themselves access the remote objects). The market-place
services themselves execute on a special VO with its own compute nodes.

Market Factory

This service allows registered participants of the market-place to select auction formats and to deploy the
selected auction format on a compute node. The factory maintains a repository of executable auction formats
that can be selected using the Market Description Language. Selected auction formats can then be deployed
to instantiate a new auction server.

Distributed Market Information Service (DMIS)

This publish/subscribe service is used by market-place participants to disseminate and obtain information
revealing market situation, e.g. prices of resources (CPUs, storage), aggregated supply and demand of
resources. Information is published at the DMIS by auctions either during their execution or at their
completion and is disseminated to clients who may either query or subscribe for notifications. The distributed
market information service also provides aggregated and summarized information, i.e. it maintains historic
data over time and space.

Configurable auction server (CAS)

Participants in computing markets may be: users or resource consumers, owners or resource providers and
brokers that mediate between them. Consumers and providers interact through auction-based markets. To
facilitate mediation of different kinds of resources, the auction server has been designed as a set of
components implementing auction protocols and that may be instantiated using the Market Factory.
Instantiated auctions may be configured using the APIs of the auction server. They are published at the
semantic information service and discovered by traders that need to buy or sell computational resources.
Participants use the APIs of the server to register and negotiate.

Currency Management System (CMS)

Grid4All Confidential Page 14

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

This service maintains user accounts and keeps tracks of user consumption by storing a log with each
transaction. It is based on a probabilistic transactional mechanism built upon a structured peer-to-peer
overlay. This component is meant to control and regulate economic transactions.

Negotiator

Market-place clients are consumers and providers who wish to sell or acquire computational resource
leases. These are collectively referred to as negotiators. Negotiators use the APIs provided by the market-
place services: to create auctions, obtain market information, participate at auctions, use the currency
system for payments, and finally access (provide access to) the traded resources. Both types — consumers
and providers -- of negotiators should implement a set of interfaces that are described in later sections. The
market-place services expect that the clients implement appropriate callback interfaces on which the service
calls back clients. A VO is expected to have at least one active instance of Negotiator if it has been
configured to reserve/allocate resource leases at markets.

Different implementation issues (e.g. interfacing, providing security and authentication, providing
functionality) have been decoupled into different sub-systems, enhancing modularity and easing future
implementations of more advanced features. The GRIMP modules rely on the basic middleware services
provided by WP1 and as described within the deliverables D1.2 and D2.2. These hide the heterogeneity and
distribution of the platform on which they execute. Fractal component model is used to develop the main
services and tools, for the following reasons:

» To provide an abstract architecture for auctions, enabling reuse and facilitating design of new
auction formats.

» To leverage the DCMS and the core VO services to deploy and manage the components of the
market-place.

5.3 Relation between the GRIMP modules

The main interactions between the DMIS, CMS, CAS, Market Factory and the Negotiator modules are
described in this section. DMIS is a decentralized service and provides client side interfaces to the
Negotiator that queries or subscribes for events, and the market, which is an instance of CAS that publishes
events, e.g. clearing market prices, number of market participants. SIS is a centralized service that provides
a set of Java APIs to publish information about instantiated auction-markets and to query/select one or more
of these markets. While DMIS is a pub/sub service that disseminates dynamic market information; SIS is a
registry of executing markets. The Negotiator — a software agent trading on behalf users and applications is
the focus of most of the interactions. This agent is the principal client (or user of the market-place services;
The Reservation Manager described in D2.2 requests the Negotiator to allocate computational resources.

The Negotiator (buyer role) executes the following steps on reception of a resource request:

» Decide when to negotiate based on current and historical market information and the time and price
constraints specified in the request. The DMIS provides such information when queried.

» Select the auction type that is best suits the resource request. If multiple types (and quantities) of
resources are required for a rigid application (the complete requested bundle should be allocated), a
combinatorial auction is chosen. The K-DA auction type is selected for elastic applications.

» Query the SIS and select from currently running auctions in the marketplace, one instance, which is
the most appropriate to the current request. Section 6 describes in detail this process.

» Specify the bid and its parameters:
0 Quantity of resources and their quality attributes, e.g. CPU speed or storage throughput;

0 The time specification including the earliest lease starting time, the latest lease ending time,
and the duration;

o0 The maximum price that the requester is willing to pay taking into account the importance of
the request and the current market price.

Grid4All Confidential Page 15

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

» Register and participate at one of the selected auctions. The negotiator may participate in more than
one independent auction, but it is up to the negotiator to ensure that it does not win the same
request at more than one auction®.

> Wait termination of auction and if successful collect the set of allocated leases.

The successful Negotiators obtain a set of leases in objects called Agreements. An Agreement is an object
that encapsulates the references (URL) to the AgreementProvider and the AgreementConsumer, the type of
resources (by their qualifying attributes), the number of units of resources, the times at which the resources
are leased and the price of the transaction. The Negotiator at the consumer side (AgreementConsumer)
redeems the allocated leases by contacting the provider through the AgreementProvider interface. The
provider is expected to select the resource units, configure them and return the URLs of the selected
resource units. It is to be noted that resources are characterized by their attributes (currently we allow CPU
speed, memory size, storage size, network location) and resource units matching the required attributes are
presumed to be interchangeable. Hence at time of negotiation at the Market, it is not necessary that the
providers specify the exact physical machine (represented for example by its world wide name such as an IP
address).

The Negotiator returns URLs of leased resources to the requesting Reservation Manager, which then
requests the resources to join its overlay (when lease should start). Each join triggers a join event at the
hosting VO at the lowest level (overlay) and is propagated to higher level handlers implemented by the
resource managers.

We have prototyped the main functional units (SIS, CMS, DMIS, CAS) and specified the interfaces for the
Reservation Manager (described in D2.2), the Factory and the Negotiator. We have started implementing the
ReservationManager and the Negotiator tailoring them to the needs of bag-of-tasks applications. The section
5.6 presents the detailed design of the Negotiator. The ReservationManager uses the Negotiator to
implement reservation and allocation of leases.

5.4 Design and implementation

5.4.1 Distributed Market Information Service

A challenge for a decentralized market information system is to meet the economic requirements in
combination with the technical requirements of a distributed system. Aggregated and individual data such as
prices, levels of supply and demand should be provided in near real-time. The technical realization has to
cope with high churn and to scale with the number of traders and offers.

The DMIS architecture [MIS-6] consists of three layers shown in Figure 3: Market Information System (MIS)
Application Layer, DMIS and Advanced Routing. Each layer addresses different technical or economic
requirements. The MIS layer offers interfaces to Negotiators in Virtual Organization (VO) and provides the
security and anonymization service. The Advanced Routing uses the DHT (to store subscriptions and topics)
and KBR (Key-Based Routing) services to efficiently disseminate events; efficiency is measured in number
of required messages. The additional services are aggregation, filtering, subscription and multicast. The
Communication Layer uses the DHT and KBR, for large-scale scalability and the robustness.

® Currently a submitted bid may not be withdrawn. However even so, bids may not be withdrawn once the auction has
computed allocations.

Grid4All Confidential Page 16

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008

. ~,
' Market Applications (SORMA, Grid4All, etc) |
A v

MIS Application

Gateway Access (e.g., WebServices)
Securtiy Access (e.g., Certificates)
Grid Spaecific Access (JSDL)

L Anonymisation

Is ™1
DMIS Uncertainty Management (e.g., Approximations)
Routing Management (e.g., Read-Write)

Economic Algorithms
e .

I ; Balanced
Adua_nced Filtering :)Binary Troo
Routing gﬂg:;ast OMUlUF—“E Tree
Subscription Structures
L Aggregation)——O Other
— N N —___\-
e Communication Layer N
N DHT KBR Y,

Figure 3 DMIS architecture layers

The communication layer has been implemented with both the Kademlia-based DHT [MIS-3] and Pastry
[MIS-5] to show the flexibility of the architecture. The current prototype uses the existing open-source Scribe
publish/subscribe system. To easily integrate with different overlay networks, the DMIS routing structures
use standard APIs: send, sendDirect, receive, put and get [MIS-2].

The Advanced Routing Layer implements core functionalities listed below. It implements different
aggregation tree structures as plug-ins. The ability to choose different tree (routing) structures permits higher
layers to optimize the information provision process. The main functionalities are:

Filter-based routing: Messages are forwarded to nodes which are interested in it; e.g., an event
publishing a resource price of 5 is sent to nodes interested in resources with a price lower than 4.

Multicast: Sends messages point-to-point to a subgroup of nodes in cases where a node knows all
members of a topic. This will be changed to a tree-based propagation algorithm where a new node
takes a certain place in the tree and knows only the direct parent(s) and children.

Query: This function enables to execute a query for a read-dominated value within the marketplace.
It follows an epidemic structure, binary-tree structure or multi-tree structure [MIS-1]. The current
implementation organizes nodes as a binary-tree. Queries are propagated along this tree. Future
work will implement multiple-trees, for improved robustness at cost of increasing number of
messages.

Subscription: This is the process to join a certain topic or content, and accordingly to obtain
interested information. The current implementation allows subscriptions to topics. We are evaluating
replacing this with content-based subscription.

Aggregation: Provides summary information such as maximum, minimum, total and average.
Aggregation improves scalability by reducing number of events to propagate. For complex
aggregations such as averages, each node forwards the total towards its parents. Knowing the total
number of children the average is calculated. Even more complex queries are a combination of more
parameters (select price where storage > 100 GB and memory > 3 GHz).

Grid4All Confidential Page 17

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

The DMIS layer coordinates core querying, subscription and publishing functionalities for the client. It
provides handlers, SubscriptionHandler, QueryHandler or RequestHandler for messages returning or
entering the trader. The trader can invoke APl methods to subscribe, query or publish [MIS-4]. Currently we
store subscriptions at rendezvous nodes within the DHT and published events on nodes emitting the events.
In the future, these will also be stored in the DHT. The published events are maintained over a time horizon.

The MIS Application Layer provides a flexible interface to the DMIS functionality and presents an adapter
to the DMIS services. Web Services (in SORMA) and Fractal interfaces (in Grid4All) have been developed.
This gateway access establishes the connection to clients executing on nodes within a VO. Security will be
handled in this section via certificates.

The main programming interfaces are described below. Clients should implement notification handlers.
Events encapsulate the market information to be transferred to interested traders. Events may be filtered by
setting Patterns.

e public boolean query (QueryHandler handler, Pattern pattern, long timeout) throws
DMISException; calling this method executes a request for a value like the price in the DMIS. The
result is sent to the notify method of the assigned QueryHandler. The pattern specifies constraints
(e.g. price < 100) that act as filters and an aggregation operator (minimum, maximum, average). The
timeout defines the maximum duration of a query. DMISException is raised when the duration is
exceeded. The method returns false if the query already exists.

e public boolean subscribe (SubscriptionHandler handler, Pattern pattern) throws
DMISException; this method allows clients to subscribe to a topic. The pattern describes the events
in which a client is interested. Published events in the matching topic are notified to the
SubscriptionHandler, if the events match the specified filter.

e public boolean unsubscribe (SubscriptionHandler handler, Pattern pattern) throws
DMISException; identified by the handler and pattern, the trader or participant will be unsubscribed
from the content subscription.

e public void publish (Event event) throws DMISException; Clients publish events to the DMIS
using this method. Events are transferred to interested subscribers.

The Appendix B.4 to this document presents the interactions between the main actors using the DMIS.

5.4.2 Auction Server

This section describes the Fractal based Configurable Auction Server (CAS). Auction is a process that
implements rules to govern registration, bidding, pricing and determination of winners. Based on previously
established taxonomies'®, we propose an approach using components to encapsulate auction activities and
algorithms. A coherent set of components implementing a specific mechanism is described using the Fractal
Architecture Description Language. The main motivations are:

» Configurability: Auction-based markets have a large number of configurable parameters; the items
(and their configurable attributes) traded at the market, the different time-outs regulating the
behaviour and scheduling, the control on number of registered participants etc.

» Reuse and extensions: Two auction types may be similar in almost all rules but a few; e.g., different
pricing policies may be used even though bidding and allocation rules are the same. Moreover
system and platform specific concerns such as deployment, configuration, registration and process
control should be separated from auction specific rules programming.

» Deployment: On-demand creation of markets requires functionalities to facilitate deployment. D2.2
has described deployment of applications described using Fractal ADL.

» Distribution: Scalability and failure resilience are two key aspects that are addressed by means of
distribution. A component model enables the execution of components at different locations that
makes the framework more resilient to possible failures.

19 Montreal Taxonomy

Grid4All Confidential Page 18

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

» Supporting multiple auction mechanisms: Auctions adhere to the maxim: one shoe does not fit all.
The type of auction may depend on a number of variables such as the composition of request/offers,
the time constraints, the privacy constraints, the allocation constraints etc.

Main messages and data

A Participant at an auction-market may be either a seller or a buyer. This object represents a negotiating
agent that has a unique identifier across VOs. A participant must register at an auction before being able to
access its service. A Negotiator may become a participant at an auction.

Bids encode the requirements of buyers and sellers. Bidding is the process of communicating the
requirements and constraints of buyers and sellers to the auction. A bid is a logical expression that is
represented as a tree with interior nodes representing logical operators (OR, XOR, and AND) and leaf-nodes
to specify the bidder's request (or offer). XOR operators allow expressing substitute bids, i.e., the buyer is
willing to accept exclusively one of the multiple options. OR bids indicate that the auction may accept any
non-overlapping subset of the bid and that pricing is additive. AND nodes indicate that all leaf-nodes should
be allocated. Bids are specified using XML encoded schema representing the resources required (offered)
by buyers (sellers). Leaf-nodes embed the required (offered) item. Two types of resources are supported:

» Computational resource described by CPU speed, memory size and number of CPU units.
» Storage resource represented by size, disk throughput and number of storage units.

Basic resources can be combined into Aggregates (multiple units of similar resource) or Composites
(bundles of different resource types). Auctions can be configured to trade basic, aggregate (CPU in sets of 8)
or composite (3 CPUs and 40 giga of storage) resources. Leaf-nodes specify lease times (i.e. start time, end
time and duration), prices, quantities and allocation constraints. Leaf-nodes may be imprecisely specified.
For example, requests for 2 hours of CPU between 10:00 and 18:00 hours of a specific day could be
expressed, without expanding to all possible combinations.

An Agreement object represents successful transactions buyers and sellers. Each allocation decided at an
auction generates an Agreement encapsulating: the resource types, the price of transaction, the lease
specifications and the partner information. A request from a buyer may be satisfied by more than one seller.
Successful negotiators receive an AgreementType grouping all the allocated Agreements.

Main components and their management

The auction design space has been extensively studied. Similarities and differences of different mechanisms
are well documented. Exploiting this, we have designed the CAS as a set of Fractal components. The
architecture of the auction server is described with the Fractal ADL. Specific auction formats or types can be
assembled by selecting the required implementation code. The design takes into account two aspects:

» Rules and algorithms representing the functional elements: Each component has a specified role
and corresponds to a specific functionality within an auction.

» Dynamic or the process view: The execution of the auction process workflow follows the required set
of interactions between the components (representing functional elements) and conforms to a given
configuration of the auction.

Static view

Figure 4 represents the main components in the architecture. Components may be co-located on one single
machine or placed on multiple nodes by changing declaratively the directives in the ADL. The capabilities of
a component are accessed through the interfaces it provides and a component may only use the functions
accessible through its required interfaces.

» Bid management encapsulates rules governing bidding. Incoming bids are pre-processed and
validated for conformance. It implements data structures and algorithms to organize accepted bids.

Grid4All Confidential Page 19

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

» Winner determination component clears the auction. It labels bids as winners or losers; matches
winning bids (one from seller and one from buyer). An objective function — typically social welfare or
revenue maximization drives this matching. Clearing an auction is a hard problem particularly in the
case of combinatorial auctions. Heuristic search-based algorithms may be implemented for specific
cases of winner determination.

» Pricing component implements a specific pricing policy. The K-DA implements k-pricing policy; the
transaction price is a weighted average of the asking and bid values.

The Market super-component includes the previously described Auction component and the following:

» Tradelnfo component manages descriptions of items traded at a specific instance of the Market and
is configured at creation. Its query interface informs participants of items traded and its configuration
interface allows items to be configured.

» Registration manages the authentication and authorization of participants.

» Feedback provides publish/subscribe functionalities to subscribe to both market events like Quotes,
and system events such as Termination. It generates and sends the Agreement to winning
participants.

L1 L1
0 T

«Tradingifr«Biddinglfs
Configurable Auction ‘\JQ j El
Server
Market 2]
Server
anager
[]
«cdmiroln
Auction areemen
8 1m-O) gt |
Winner
el i ‘ﬂ—@—E Tradelnfo 5|
=l i[‘ Feedback™® |
AuctionManager Eﬂ_@_Eg“a"age'

Figure 4 Auction server detailed architecture

Dynamic view

The dynamic view describes control and life-cycle management. The market process can be seen as an
event-driven workflow. Events are generated by timers, method invocations, end of data transformations and
synchronization points in the auction workflow. Transitions occur in the state of each component, the control
flow is driven by external events and timers. Wiring of all possible execution paths is complex, given the
number of configurable parameters in the design space”. Considering all possible execution paths result in
a large number of possible workflows. Typical patterns are listed below:

» Sequential: Auctions may be configured to trigger clearing activity when bidding completes. But this
may not always be the case; in continuous mode, matching is performed at each bid arrival.

10 D2.1, we have described the complexity of the auction design space.

Grid4All Confidential Page 20

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

» Parallel and concurrent executions: Auctions may be configured to allow registration to progress in
parallel with bidding activities; i.e., one thread may be processing a bid from one client, while
another thread may be registering a new client.

» Conditional: Registration activity may begin only when both the market is opened and the
registration has been enabled. If both conditions are not true, then registration fails.

» Loop: In iterative auctions, auctions execute in rounds the same work flow pattern; accept bids,
clear, send feedback.

» Event-condition-action triggers: For example, on reception of a valid bid, trigger clearing algorithm.

The auction (or market) process may be modelled as a hierarchical state machine; each contained
component has its own state machine and is also subject to the state changes of the containing component.
Components interactions can be modelled as a workflow orchestrating interactions of these state machines.
For e.g., Registration component should accept registration requests only when Market is open. Registration
may itself be configured to accept registrations only within a registration interval; both conditions need to be
true to allow registrations. Similarly Registration may itself close, even if Market is still running, if end of
registration has been triggered. Hierarchical and composite components can be viewed as managing
composite states; child components are regions with their sub-states. Mapping this to semantics of
hierarchical state machines is however non-trivial.

Analysis of state-of-art technology did not provide off-the-shelf design solutions:

» BPEL4WS: Even though promising and moreover recommended by SCA (Service Component
Architecturelz), BPEL4WS is heavy-weight; furthermore components are expected to be bridged
through Web Services. With BPELAWS, formal design methods such as Statecharts may be used to
model and design auctions; then design mapping algorithms that generate BPEL4AWS processes.
The emergence of Fractal tools to bridge components and Web Services makes this approach a
practical option.

» UML Hierarchical state machines: This is promising, however non-trivial to integrate with
component-based architectures even though UML-2 supports component architectures.
Components interact and synchronize through well-defined interfaces, whereas HSM model uses
event-based state machine. There is also a lack of suitable runtime engines. Recent research
projects such as [CAS-6] propose mapping of Fractal architectural and behaviour features within
UML 2.0". We may consider this approach at a later stage.

» Windows state machine workflow management: This moves the design space away from the
component based approach that we have taken.

Currently, we model workflows manually (i.e. without using tools such as UML) and propose a native solution
to control and synchronize components. Auctions are broadly single-shot or iterative. At single-shot auctions,
participants may send their bid only once; the auction may clear immediately or at a scheduled time. Single-
shot auctions preclude use of feedback and price discovery such that buyers may focus their bids on the
most pertinent subset of traded items. When auctioning resource leases, feedback aids consumers to adjust
deadlines and aggregated requested computational capacity. Iterative auctions evolve in rounds where each
round executes the basic auction activities.

In Appendix B.1 of this document we describe the implementation of the generic server and specifically two
auction mechanisms; K-pricing double auction to trade leases of single type of resources and the
combinatory auction to trade bundles of computational resources. The CA has been specifically designed for
Grid4All where typically providers own small quantities of resources, at least much smaller then the typical
guantity that is requested by consumers.

12 SCA isaset of specifications which describe a model to build applications using a Service Oriented Architecture.
Application code is designed as a set of components which offer their capabilities through service-oriented interfaces
(www.osoa.org)

¥ UML 2.0 http://www.omg.org

Grid4All Confidential Page 21

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

The K-pricing double auction is implemented in conformance to the CAS architecture. The CA has been
formulated and implemented natively using CPLEX API. Our future work for combinatorial auctions are:

» Pricing model and heuristics based algorithms to compute (approximate) item prices,

» Implementation (or adaptation) of the CA model to within the Fractal based auction server. The main
software engineering issue is designing the abstractions for the optimization model formulation of the
combinatorial auction.

5.4.3 Currency management service

Currency Management System (CMS) is a distributed banking service which keeps track of user's
consumption and contribution by storing user's balances and their transaction history in participant's
accounts. Its main responsibility is to reliably store these accounts by means of a distributed and scalable
storage system.

These accounts must be set up by users in order to participate in market transactions as each transaction
will be credited through this service. CMS provides a simple API to open and close accounts as well as to
deposit and withdraw G4A virtual currency against real money. Besides, it provides operations to transfer
virtual currency from one account to another in the face of an economic transaction. Such transactions will
be bound to an agreement reached through the CAS.

Transaction
Commands

Account Security
Idlanagement Idcdule

Banking Layer

Transaction API

5

LockAlive Transaction Transacticnal

Manager Manager based DIET
Module

Tleszame
e
el Transactional Layer

IMutatkle DHT AFT

Serializer

Storage Feconfiguration Clonsistency based
ITdcdule Iidanager DHT Iedule

Clonsistent
Idessage
toee
Handlers Mutable Consistent Layer
EBE API

Fouting
DHT Fouting F2FP Structured e
Callbacls
Owerlay IMTode Clonnection
Ilanager KBR Layer

Network

Figure 5 CMS Architecture

Technically CMS copes with a dynamic environment (n odes come and go) and where rate of account
modifications is high (account is updated for each economic transaction decided in the market).
From the economical point of view, its main purpose is to regulate and limit customer's consumption
power to avoid overloading and provide an incentive for providers to share their resources. CMS is
built with a layered architecture and wrapped as a single fractal component. It offers a single APlan d
is (described in the Appendix B.5) used by customer s to perform the necessary transfer of funds
between accounts. The layered architecture and the main responsibilities of each layer are depicted
in

Figure 5.

Grid4All Confidential Page 22

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

The report [SS-5.CMS-1] presents the detailed technical architecture and design of the CMS. This report is
sent as a companion document with this deliverable.

5.4.4 Market factory

The specification of the Market factory and its implementation design will be available in September 2008.

5.4.5 Negotiator

Negotiators are software agents that trade on behalf of consumers and providers. Negotiator behaviours are
expected to be dependent on the needs of the VO and the applications that execute in the VO. We focus on
Negotiators to allocate computational resources for elastic applications, in particular bag-of-tasks
applications such as the gMovie. Such applications tolerate variability in performance and hence adjust
guantity of resources.

Virtual Organisations execute Negotiator agents encapsulating the negotiation process and offer brokering
interfaces to resource managers. We have started implementing Negotiator agents based on assumptions
described within the companion document [CAS-8]. This implementation and resulting evaluation will be
reported in future deliverables.

5.5 Technological choices

This section presents the rationale for the adoption of the underlying technologies used in the design of the
services and tools of the G4A resource market-place.

5.5.1 Component model and Fractal

The auction server is conceived to facilitate design of new auction formats and to facilitate developing
repository services to select appropriate auction formats by assembly of required rules (of the auction). We
are extending the design of the auction server to handle distributed auctioneers; for scalability when number
of participants increase and for availability. DMIS and CMS are decentralized systems whose components
need to be deployed on multiple nodes of a large scale distributed system.

Component technologies have proven their advantages: reuse, modularity, specialization, composition and
reconfiguration. D2.2 describes implementations of the Fractal model including its Architecture Description
Languages and run-time software to deploy applications on large scale systems. Deployment involves
instantiation of application components and establishment of bindings between these.

Recent years have also seen the emergence of tools that bridge CBSE (component based software
engineering) and Service Oriented Architectures. This trend will continue since CBSE is appropriate to
design and develop back-end logic and SOA and Web Services is well suited to integrate, wrapping and
exposing functionalities in a platform.

5.5.2 Distributed Component Management System

Aggressive management capabilities are required when decentralized and distributed services execute in
harsh environments. This is the case with GRIMP services. The Currency Management System (CMS) is a
peer-to-peer application and is able to self-organize and self-optimize the load through internal
reorganization of stored items between nodes, when a node joins, leaves or fails; it lacks the ability to self-
manage the system as a whole. Using component model and DCMS (Distributed Component Management
System developed in WP1) allows us to define general managing policies to self-manage CMS as a whole;
e.g., it allows us to define a minimum number of CMS running nodes without administration penalties;
enables us to guarantee an optimum load for each node by adding or removing nodes from the system as
the load against it changes over time.

Grid4All Confidential Page 23

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

We are extending the design of CAS to support multiple instances of the Auction component. Clearing
algorithms are potentially hard problems, in particular in the case of combinatorial auctions. A distributed
auction component may reduce the time to compute allocations.

The DCMS technology developed within Grid4All combines the best of component technologies, overlay
technologies and feedback-control based autonomic management patterns.

5.5.3 Overlay and peer-to-peer technologies

The operational model that we envision is that consumers and providers create auctions on demand. This
can also be done 3" parties; value-added intelligent agents that monitor the market-place and instantiate
auctions at the appropriate place and time. Participants select the auctions (amongst running ones) at which
they trade; participants require suitable information from the markets to bid; to set prices, adjust times,
deadlines and resource quantities. This watcher service is provided by the DMIS. DMIS should scale in
number of messages and market participants. Key-based routing and DHT technologies offered by overlay
services are promising to address this.

CMS should scale in the number of objects (accounts and its related transaction logs) that it stores and with
the number of account transactions. DHTs (provided by the overlay network) are effective to store and
retrieve large number of objects in a scalable manner. CMS enhances a specific DHT implementation
(namely, the DKS P2P middleware) to improve storage guarantees and to decrease the delay when several
objects need to be modified atomically.

5.6 Usage within Grid4All

This section recapitulates the two usage scenarios requiring allocation of resource leases:

» gMovie demonstrator: Section 4 has explained how gMovie management interacts with the
Reservation Manager“. gMovie is an adaptable bag-of-tasks application that adjusts to varying
guantities of compute nodes; higher the number of nodes, shorter the completion time. Willingness
to pay is expressed directly by the user (who needs to transcode); quicker completion time may
imply a higher cost. The user is expected to specify the earliest (cannot use the result before this
time) and latest (result is useless after this) desired completion times. The objective is to execute the
application within the required time span minimizing the cost of resources.

» Network simulation for classrooms: Network simulation lessons are organized in a school VO.
Lessons run over two days. On the first day, students in groups prepare scripts, desired network
topology and a range of parameters to simulate. Number of parameters differs from one group to
another. Simulations should complete before the next day. The objective is to maximize the number
of successful runs (subject to a maximum willingness to pay). Fairness between the student groups
should be guaranteed; all groups should progress fairly.

5.7 Conclusions

Chapter 5 has presented the status regarding software prototypes15 of the G4A resource marketplace. The
first prototypes have been implemented and the different integration points have been designed. We focus
integration (software prototypes) towards the usage described in section 5.6. A comprehensive user guide of
the market-place tools will be provided at the 30" month.

1 Explained in D2.2
15 Currently, the software is available on demand. We will soon host all the software components on the common G4A
gforge server.

Grid4All Confidential Page 24

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

5.7.1

11-07-2008

Integration and prototype work

The following software integration is ongoing:

>

Advertise markets at SIS and query for markets at the SIS: Usage of SIS APIs is fairly trivial since
they are well documented and clear. The Negotiator agent (for bag-of-task applications) will use this
API to query and select markets. Agents that initiate markets will advertise markets at the SIS.

Publish dynamic market information using DMIS APIs: DMIS is a decentralized peer-to-peer service.
The service will be used by (a) Market, to publish information and (b) Negotiators, to subscribe/query
information. A DMIS peer executes on every node of the market-place. Auctions deployed on a node
will publish their events to the local DMIS peer using the Market Application Layer provided by
DMIS.

Negotiation agent and Reservation Manager: We plan to implement a prototype of the Negotiation
agent to satisfy needs of the usage scenario described previously.

Integration of combinatorial auction within the Auction framework: The current code implements a
linear integer formulation of the winner determination problem that decides the allocations. This
requires solvers such as CPLEX. We aim to design the interfaces and support for exact optimization
based solutions such that minor modifications to the model does not imply complete rewriting of the
clearing component.

The Figure 6 illustrates the interactions between the different modules that have been previously described.

sd Overall Sequence J
Resource Negotiator M arket M arket Configurable Agreement Currency
Manager Inform ation Factory Auction Manager ||{Management
User buyer Service Server System User seller
I 1 1 1 1 1 T 1 I
| | | | | | | | |
‘ | | | | | | | ‘
| | lack of \ \ \ \ \ \ }
injt|al expression of @657() } } } } } } \
needs() } Iookforadeq‘hate } } } } }
market() | | | | | ‘
initiate Trade() | \ \ \ \ }
nojexisting } } } } |
G | - |
| | I I I |
select then \ | \ \
de})loy I launch | | }
adapted lalinch type of | this type } } |
market type() M eret0 of | | \
| m arket() | | ‘
1 A 1
| markettype,] Mmarkettype market | | \
| launched(<Iaunched()) | | |
| L] | | }
. u market type } } |
[T | launched() | | \
| T T \ ‘ ‘
| | | | | | ‘
| | | | | | }
i		i	
nego}hate()	‘4	hegotiate(),	
"‘V T T			agrepment
‘ hotify agreem ent()	g ‘ nptify ‘ reached() notify		
} -t i ; aPreem ent() ; agreem‘ent()			
‘			
}		claiml leased	
L } } resou}rces() } J			
} ! ‘ I' deliver leased resources() ‘			
=~ I I T T I I S			
N	s e P #*d*****()*r ****** H————qt——- >		
L L	send payment()	U L	
! ! \ \ ! T			
i i | i
X
Figure 6 Interactions between GRIMP and SIS modules illustrating allocation of resources

Grid4All Confidential Page 25

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

5.7.2 Design

Ongoing design work includes:
» Pricing models for combinatorial auction: We are devising a pricing model to compute per-item
(commodity) prices per-time slot for computational and storage resources.

» Distributed auctioneers: Currently an auction server has a single instance of the Auction or Market
component. We plan to extend this to support multiple instances of Auction and Market component.
Two reasons motivate this: ensure that the service is not completely lost on node failures; handle
increase in load represented by number of registered participants and the number of bids.

» Self-management for Currency Management System: The CMS sub-system will use the DCMS
framework for advanced self-management capabilities.

Grid4All Confidential Page 26

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

6 Semantic information service

Computational and storage resources are traded applying economic models. Consumers and suppliers
negotiate at auctions initiated by resource providers, by resource consumers, or by third partiesl6. The
market-place is populated by multiple, simultaneous and independently operating trading instances.

To support discovery of resource markets and of services, we propose the Semantic Information System
(SIS) to publish and discover services. SIS is an information service where OWL-S service profiles are
published. End-point references to these services are discovered by sending queries to it. SIS matches
required service descriptions against offered services. The Grid4All resources ontology [SIS-9] is used to
select markets. Queries are matched against services advertised as OWL-S profile specifications.

6.1 SIS Work flow description

SIS provides matching and selection services for peers that offer or request resources and services. Queries
may be issued by software agents or human users to discover and select advertised markets and services.
Queries for services are matched against their OWL-S profiles and results are ranked according to
resources/services matching characteristics and providers’/consumers’ features.

As shown in Figure 7, SIS has three main modules; to process advertisements, to match queries to
advertisements and to select (rank) matches. The Ontology registry is used to store domain ontology and
facts. Queries to discover generic services are matched against published OWL-S service profiles and
gueries to discover markets are matched against the published offers and requests.

SIS exploits the Grid4All resources ontology [SIS-9] to discover markets and the OWL-S services profile
specifications to discover services. Other types of market related, application-oriented and offers/requests
related properties can also be exploited for matchmaking. Entities (human or software) pose queries to SIS.
The matchmaking component matches queries with entries in the registry and ranks results according to
their similarity as well as the providers/buyers features. Queries may be requests (seeking matching offers)
or offers (seeking matching requests). The Request concept describes the resource needs of a consumer.
The Offer concept describes the resources offered by a provider. Request and Offer are sub-concepts of
Order. Requests and Offers are traded at Markets.

The following sections present the details of the main sub-systems.

Service Query

WSDL (OWL-S)
file
SIS
Advertisement Matchmaking Selection
WSDL \ Agplic_ation AbD. service) atchmaking o e
annotation : ervice Services N BN Y
/OWL-$ file *, Selection SPresentation
> > p;

;7 ,’// .

OWL specificati Market [Order atchmaking of S L '

arket (Orders) >

&mar g ace who may dectdg Market Query

Annotation (OWL)

file 7 Ontology repository

¢~ WSDL20WL (Grid4All, domain
1

ntia. _mapplng tool ontologies) Page 27

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Figure 7 SIS Workflow

6.1.1 Resource market discovery

Advertisement and discovery of markets are based on the concepts of Order, Request and Offer. A Request
describes the resource properties, the quantity, time intervals of their allocation and the price the consumer
is willing to pay. An Offer specifies the exact resources (quantity of offered resources) that a provider trades
in specific time intervals and price: This is in contrast to the specification of requested resources, where the
consumers may request a class of resources. Both Request and Offer are sub-types of Order.

We deal with two types of grid resources: computational and storage resources. Tradable resources may be
either Compute Nodes or Clusters.

» A Compute Node is a type of Composite Resource that comprises exactly one Computational Resource
and any number of Storage Resources.

» A Cluster is an Aggregated Resource comprising a set of Compute Nodes.

Orders may be “atomic”, representing a single resource, or "complex”, representing a bundle of more than
one type of resource. Multiple orders of the same type (offers or requests) may be connected using an XOR
(exclusive OR) (respectively, AND) connective operators.

Auction-based markets are created to trade resources by consumers who have Requests (to buy resources)
or by providers who have Offers (to sell resources). 3" parties may create markets trading Orders. In this
final type, multiple sellers and multiple buyers may participate. SIS provides a registry of the published e-
markets, together with a retrieval and ranking service for those markets: Participants query the SIS
submitting orders (i.e. requests and offers). These are matched against advertised orders of the opposite
type. Query results are ranked according to the preferences and intentions of providers and consumers, as
well as according to the characteristics of resources and markets. Main features related to market discovery
are:

» Publishing or advertising markets, by providing market-related requests or offers, as well as information
about traded resources and services, and

* Querying in order to obtain a list of relevant markets according to the resource/service ordered (as a
consumer request or as a seller offer) as well as market characteristics.

6.1.2 Advertisement

This functionality allows insertion of offers and requests in the SIS registry. Orders (offers and requests)
contain information about the entities that are traded at their associated markets, that is, resources,
information about the related markets, the participants i.e. providers and prospective consumers of resources
and services, as well as attributes of the orders themselves. Such descriptions are instances of the Grid4All
ontology schema and are stored in SIS in OWL format.

Markets may be advertised by API (for software agents) or using a web-based user interface (for humans).
No authoring of formal descriptions of input information is required from users to create and submit an
ontology instance (SIS registration). Consumers and providers of grid resources have to subscribe to the SIS
in order advertise initiated and running market services. Specific APIs are available for consumers that
advertise requests and providers who advertise offers.

» Providers advertise forward markets that trade their Offer objects. Offers may also be bundled, that
is as a list of XOR or substitute offerings.

» Consumers advertise reverse markets that trade their Request objects. Requests describe the
resource types, their quantities and characteristics.

Grid4All Confidential Page 28

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

» Both Offers and Requests are specific kinds of Orders.

Orders are generalizations of Offers and Requests. Orders contain the following information.

» Description of the market where the resource/service is to be traded: location of the market, starting and
closing time of the market.

» Description of the technical characteristics of the traded service or resource in terms of capacity, quality
of service, time of availability, etc.

» Description of pricing policy, initial price auction price (minimum price for a forward auction and
maximum for a reverse auction).

e Information about the provider or consumer.

The actors, inputs, outputs, pre-conditions and post-conditions (effects) of supported use cases for market
query are briefly presented in table Tableau 1

Advertised by Provider Consumer 3 party
Actor A provider who initiates a | A consumer who initiates a | Any agent initiating an
forward market. reverse market. exchange or double auction.
Input Offer and market properties Request and market | Abstract Order and market
properties properties
Output N/A N/A N/A
Pre-condition Provider registered at SIS Consumer registered at SIS Initiator registered in SIS
Post-condition Advertisement is stored in | Advertisement is stored in | Advertisement stored in SIS
SIS registry SIS registry registry
Tableau 1

Examples of advertisements and API to advertise markets are described in Appendix A.

6.1.3 Market Querying

The Query interface returns a ranked list of advertised markets. Queries filter advertisements based on the
Order and some Market properties. Advertised markets are matched against the query filter and ranked
according to selection criteria. Semantic descriptions of advertised markets that fulfil the query criteria are
identified through type-based matching. Matched results are ordered by the selection mechanism based on
characteristics including the capacity of resources, preferences and intentions of providers and consumers.
The ranking process provides an ordering of results reflecting the user preferences (e.g. preference on
specific peers) performed by the selection component of the SIS. The returned results may be: a list of
resources/services, the list of the corresponding markets or may also be the list of providers or consumers.
This is chosen by the user performing the query. The SIS API that clients use (either developers who use
programmatic APl or human agents who use web-based interfaces), do not require knowledge of
ontology specific query language. Query is performed by providers and consumers. The table [Tableau 1]
gives the inputs, outputs, preconditions and post-conditions (effects) of supported use cases for market

query.

Appendix A provides examples of queries and the API methods to query the SIS for the purpose of
discovering markets.

Queried by Provider Consumer

Actor A provider who wants to discovera | A consumer who wants to discover a
market. market.

Input Offer and market properties Request and market properties

Grid4All Confidential Page 29

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008
Output Ordered list of end-point | Ordered list of end-point references to
references to markets or a list of | markets or a list of provides.
consumers.
Pre-condition Provider registered at SIS Consumer registered at SIS
Post-condition Query is stored in SIS registry Query is stored in SIS registry
Tableau 2

6.1.4 Service discovery

SIS may be used to discover services. A service provider registers (advertises) a service in the SIS in order
to be discovered by prospective clients of this service (service consumers).

6.1.5 Service advertisement

Providers submit a service description in WSDL, along with annotations in a document named External
Annotation File (EAF). The EAF describes the mapping between advertised service 1/O types and concepts
in OWL ontology previously stored in the SIS registry. The SIS automatically generates and inserts the
corresponding OWL-S profile specification in its registry. Advertisers may prepare the annotation document
by using the annotation tool described in section 6.2. An important part of the registration process is
validation. Before registering, the provided information is inspected to ensure that there is no type mismatch
and that the consistency of the knowledge base that stores registered descriptions is maintained.

Programming API to prepare and send advertisements are described in Appendix A.

6.2 WSDL Annotation

WSDL annotation is an important part of matchmaking and selection. It provides mappings between WSDL
I/O types and the corresponding domain ontology. Annotation can be performed interactively or automatically
if WSDL parts requiring annotations are satisfactorily described. In interactive mode, humans provide
mappings between WSDL /O parts and ontology classes (this process is called semantic annotation). We
have devised a mechanism that computes mappings between WSDL I/O parts and OWL classes to
automate this process. Humans, in general developers have to provide descriptions and comments
concerning the intended meaning/use of these 1/0O parts and types used (in contrast to semantic annotation,
we call this process annotation). Annotations may also be fetched from code documentation.

6.2.1 Introduction

Lack of explicit semantics in WSDL specifications reduces effectiveness of discovery. We annotate a WSDL
service description using an External Annotation File (EAF) that stores semantic annotations of WSDL I/O
parts. The annotation file is separated from the WSDL file to track changes and to separate concerns of the
developer from those of the annotators.
We have developed the WSDL-AT, WSDL Annotation Tool for human annotators to support:

» Manual annotation of WSDL elements with natural language descriptions.

» Automatic semantic annotation of WSDL elements that refers to classes of domain ontology.

» Validation of the generated semantic annotations.
Details concerning the functionality of this tool are provided in the Appendix A.

6.2.2 External Annotation File (EAF)

EAF is XML encoded and based on an XML schema. The EAF file provides “slots” for the (semantic)

Grid4All Confidential Page 30

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

annotation of WSDL elements. The XML schema specifies elements for “comments”, “description”, as well as
“type reference” to ontology classes, for each of the WSDL elements. The annotation file uses the <typeRef>
elements to map each WSDL part element to an ontology class, and hence to semantically annotate the
WSDL element.

The EAF annotations are aligned with the WSDL specifications via XPATH expressions. Comments and
descriptions are some of the possible types of textual (or other media) information and can be extended to
other textual media. An example of EAF file is depicted in the following snippet.

1 2Pl version="1.0" encoding="LITF-8"?=

2= <annotations "hitpficsd-ai-lab aegean gr8080/ariddall_sisfresourcesfontologiesing owl"
3 "hitp: Sansner w3 orgf 200150 Schema-instance

4 "eafxsd"=

57 <annotate “iwesdl definitionsiwsdlmassage1]iwsd! part"=

§ =description=A ns-2 simulation script that is provided to launch a new simulation</description=
T <comment=This includes the file name and the file data</comment=

2 <typeRef "OWLontology NS-2_Simulation_script'f>
9 | <fannotate=
10| <annotate "wysdl definitionsfwsdlmessage[2)wsdl part"s

" <description=A ns-2 traces file is returned after the simulation has completed</description=
12 <comment=This includes the file name and the file data</comment=

13| <fannotate=

14 =fannotations=

Figure 8 XML instance of EAF XML Schema
6.2.3 WSDL-AT Functionality

The WSDL-AT (WSDL Annotation Tool for human annotators) facilitates the human annotator in the following
tasks:

» Creation and authoring of EAF for WSDL files: Users create a new EAF when starting an annotation
process. If however an EAF already exists, the WSDL-AT imports and depicts the existing
annotations and provides editing facilities to the user. During the annotation procedure, WSDL-AT
provides a set of ontology, from which the most appropriate ones may be chosen to perform the
WSDL-to-OWL mapping process. This can also be used a reference to validate the semantic
annotation of WSDL elements.

» Mappings of WSDL 1I/O parts to the classes of a given ontology: WSDL-AT initiates the WSDL-to-
OWL mapping process. When human-created annotations (provided in natural language within the
“descriptions” and “comments” elements) of WSDL part elements are entered, WSDL-AT
automatically computes and suggests OWL classes (from the domain ontology) that match the
WSDL I/O part elements (i.e. the semantic annotations of WSDL part elements). This automatic
computation is performed using algorithms of the ontology alignment paradigm. Suggestions for
each WSDL part element are returned as a ranked list; the higher position in this list implies a
stronger matching proposition. Human annotators can inspect the domain ontology and the
suggested mappings produced by WSDL-AT and may change the semantic annotation of a WSDL
part element by selecting an alternative ontology class (from the domain ontology hierarchy).

WSDL-AT is a platform-independent stand-alone application, with a graphical user interface (GUI). For more
information and a use case example, please refer to the Appendix A.

6.2.4 Service discovery through querying of SIS

Clients submit queries to discover services advertised in the SIS registry. A query is specified by a list of
input and output types of the required service. These types are OWL classes defined in domain ontology
stored in the SIS. Matchmaking consists of discovering semantic (similarity) relationship between the 1/O
parameter types of registered services and the 1/O types specified in the query. Advertised services whose
I/O types match are considered as satisfying the query. Reasoning services identify exact as well as partial
matches. Matched services are ranked by the selection component of the SIS that uses the preferences of
service consumers and providers. The output of a service query is a ranked list of endpoint references of
services which match query criteria.

Grid4All Confidential Page 31

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

6.3 Main software modules

SIS consists of the matchmaking and the selection component. These two components interact through an
internal APl and are together accessible though a uniform external APIl. The API provided by the SIS is
available as a set of web services to:

» Provide access to system features to agents such as consumers and providers,
» Facilitate interoperability with other Grid4All components.
The Appendix A presents the SIS API to perform service advertisement and querying.

6.3.1 Matchmaking module

Matchmaking functionality of resource markets and services are presented in the two subsequent sections.

Resource Market Matchmaking

The Grid4All ontology has been engineered so that retrieval of information about markets, orders, and traded
resources proceed by means of a) the automatic classification of individuals by computing their inferred
types and b) SPARQL queries to filter matching individuals by market-related properties and orders’
constraints. To leverage the classification mechanism, and according to the requirements for offers and
requests, we have represented orders in the following way: Resources offers are represented as individuals
of class Offer and requests are represented as defined subclasses of the class Request. Hence, matching
offers are classified under specific request subclasses. Individual markets are classified under their
corresponding subclasses of the Market class (e.g. depending on whether they are consumer or provider-
initiated markets). Only those markets whose Request/Offer match the client's resource specification, the
prices, lease specifications and the market properties are retrieved. For example, even if the resource
attributes match, if the price or the number of time-slots requested do not match those of the offer, then no
matching occurs.

An example of the functioning of market matchmaking is provided in Appendix A.

Service Matching

OWL-S service profile descriptions generated by automatic translation of WSDL specifications are stored as
advertisements. A list of input/output types is submitted as queries to the SIS. We assume that the I/O types
in a submitted OWL-S profile document are already known, i.e. they refer existing ontology
classes/individuals. For example, a query for services that has an input parameter of type “Compute Node”,
and an output parameter of type “Hard Disk”, will have the form of an OWL-S profile document, in which
there will be an input parameter and an output parameter of the respective types.

The matching of advertisements to a submitted query is divided in two main stages: a) matching of inputs,
and b) matching of outputs. For the matching of inputs and outputs, the direction of the subsumption relation
is important for (a) the input types to ensure proper execution of the service and for (b) the output types to
fulfil the demands of the service requester ([SIS-1]).

Three basic types of matching are defined in the context of Grid4All services: Exact match, “Subsumes”
match, and fail ([SIS-2]). Let T be the terminology of the domain ontology where the service 1/O types are
specified; CTy the concept subsumption hierarchy of T. The types of service matching in the context of
Grid4All are the following:

» Exact match. Service S exactly matches request R = [INs OINg: INS = INg O 0 OUTr OOUTs: OUTR
—= OUTs. For every input type of the advertised service one equivalent input type of the required service
is found. Also, for each output type of the required service one equivalent output type of the advertised
service is found. The service 1/O signature perfectly matches with the request with respect to their formal
semantics.

Grid4All Confidential Page 32

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

« “Subsumes” match. Request R subsumes service S « 0 INs OINg: INg & INs 00 OUTg OOUTs: OUTg
L OUT&R. For each input type of the advertised service exactly one input type of the required service has
been found, which is at least subsumed by the input type of the advertised service. This means that the
advertised service might be invoked with a more specific input than expected. The output types of the
required service subsume the output types of the advertised service or are equivalent to them. This
means that the required service might receive a more specific output type than expected. Additionally,
for all output types of the required service a successfully matching counterpart of the advertised service
is identified.

» Falil. Service S fails to match with request R in any of the ways described above. This means that one of
the following holds: a) at least one input type of the advertised service has not been successfully
matched with one input type of the advertised service, and so the service cannot be executed properly,
or b) at least one output of the required service has not successfully been matched with an input of the
advertised service.

For more information and a use case example, please refer to the Appendix A.

Selection module

The Selection Service (SS) is in an internal module of the Semantic Information System (SIS) and is used to
rank matching services and markets. SS narrows down and ranks the providers list found by the
Matchmaking Service (MS). To narrow down (or only to rank) the list of providers, MS invokes the
selectProviders method of SS by passing it: the query identifier and type, the query source identifier (i.e. the
consumer), the set of providers that can deal with the query, and the size of the providers list that the
consumer is waiting for. Then, SS module ranks (or narrows down) the list of providers according to (i) the
preferences that consumers have towards providers (regarding providers' reputation for example), (ii) the
preferences that providers have towards queries (regarding which data or service is concerned by the
query), and (iii) the query load of providers. With this aim, we assume that consumers and providers declare
at any time their preferences to SIS so as to get those providers and queries they prefer, respectively, at the
top of (or included in) the providers list returned by SIS. To do so, consumers invoke the
"setConsumerPreferences" method and providers invoke the "setProvidersPreferences" method to set their
preferences at SIS. It is worth noting that, conversely to consumers, providers should invoke the
"getQueryTypes" method to discover the types that a query can be. Some examples of these types are given
in previous section. Moreover, a consumer and a provider can also define default preferences for those
providers and queries, respectively, it does not know (see the Annex for details about the SS's API).

A natural way to rank providers is considering a consumer-centric fashion, as several e-commerce
applications do. This generally takes into account the consumers' preferences (denoted by vector Cl). This
may however penalize providers' preferences (denoted by vector Pl)). Similarly, if the ranking service
considers only the providers' preferences when allocating queries, consumers may quit the mediator by
dissatisfaction, which in turn may cause the departure of providers. We hence balance consumers' and
providers' preferences to satisfy both. Given a query g, a provider p is scored by considering both its
preference for performing q and the preference of consumer ¢ (who issued q) for allocating q to p. That is,
the score of p regarding query g is defined as the balance between the c's and p's preferences as follows:

(PLlp)*(Clalp)" ™ if Plqfpl > 04
serg(p) = | AnClglp]l =0
| —([1 — Plqlp]+¢)* (1= Clalp] + €)' 7%) else

The parameter w ensures such a balance and takes its values in the interval of [0...1]. To guarantee equity at
all levels, such a balance should be done in accordance to the consumer and providers' satisfaction so that
the less satisfied one be paid more attention. Overall, SS aims at equally satisfying buyers and sellers so

Grid4All Confidential Page 33

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

that they almost have the same chances of doing business and getting interesting resources or services in
the long-run. Satisfaction, in our context means, how well preferences are met by queries a seller gets and
by resources/services a buyer gets. To this end, MS informs SS of buyers' final choices and of queries
allocated to sellers: MS does so by invoking the "informFinalSelection” method of SS by giving the query
source identifier and the set of selected sellers as parameter. Details and validation can be obtained from
[SIS-6].

6.4 Design and Implementation

Figure 9 depicts the relations among the various SIS components and the functions which are available to
the users.

Service Profile
Generation
Component

1

Service ‘

Advertisement
Component
. Dynamic Forms
el o ‘ Data Validation Component) Human User

Siorage F_]J'f"m‘m"J Component

) | . / - '

Creation
Component

! Editing
Component

Maichmaking SIS SIS ‘

Persicient

Component Weh Service

=

Selection
Component

User
Management
Contponent

4
Presentation
Component
Software Agent

Figure 9 SIS Architecture

6.4.1 Technological choice

SIS is implemented using Java technologies (Java Server Pages (JSPs) and Servlets) and provides Web-
form-based interface (HTML forms and Javascript functions) for human-users to advertise their resources or
services or submit queries. The Jena framework [SIS-3] is used to represent semantic information (e.g.
representation of resources and markets, semantic matchmaking) and the Pellet [SIS-4] for reasoning.

Jena provides a rich APl to manage ontology. In Jena terminology, a knowledge base is called a “model”.
The basic units in a Jena model are resources and statements (the concepts originated from RDF). The
concept of resource is fairly complex, since almost every entity (Classes, individuals, properties, and even
statements themselves) can be regarded as resource. The Jena API provides classes and interfaces for all
the concepts of RDF(S) and OWL languages: Other than classes and properties, such concepts include
subclass relations, property restrictions, RDF data types, etc. In addition, Jena uses a simple SPARQL
engine, ARQ, through which SPARQL queries can be executed. Finally, Jena offers the capability of
attaching inference engines, such as Pellet, to the models. When an inference engine is attached to a model,
guery processing can be enhanced because inferred statements, which may provide answers to queries, are
discovered. Such an enhancement, of course, comes at the cost of query processing time.

Grid4All Confidential Page 34

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

The SIS uses a MySQL database (to store RDF/OWL models) to store the ontology. When a user makes an
advertisement or query the SIS stores the relevant semantic descriptions in the database and, if necessary,
reasons with the updated ontology in order to obtain inferred statements related to the new registered
ontology entries. Inferred knowledge is cached for future use. This means that automatic classification, which
is a vital part of the matchmaking mechanism for grid resources, is executed exactly after object
registrations, and not during query processing. Caching improves responsiveness of query processing.

The implemented system has been tested in the Apache Tomcat server. In general, the loading times during
advertisements were acceptable, but the system has not yet been load-tested. Also, the SIS portal requires
relatively large amounts of Java heap space, due to the inferred statements which are cached after object
registrations. This shortcoming may either be resolved by the persistent storage of inferred statements in the
database, or by pruning the cache, i.e. removing statements that concern past offers, requests, markets, etc.

The AXIS 1.4 Web services framework [SIS-7] is used for enabling web service access for the SIS API. The
SIS API, supported by AXIS, conforms to the WSDL 1.1 specification. Thus, the overloading of operations of
the API, such as queryMarket, is supported.

6.4.2 Conclusions

The implemented SIS offers basic functions for human users and software agents to advertise semantic
descriptions of resources (specifically, of markets trading resources) and services, and submit queries and
obtain results using the matchmaking mechanisms described earlier. Human users interact with the SIS
through a portal. Software agents access it using Web Services interfaces exposed by the SIS. Web Service
interfaces also facilitate automation of testing and benchmarking.

Currently, the results obtained by the matchmaking process are only distinguished as either being exact
matches of the submitted queries or “subsumed” matches. Ranking of the retrieved results could be more
fine-grained, and involve information related to ontology structure and to preferences of individual users.
[S1S-2], describes additional matching types suiting the first requirement. [SIS-6] considers users’ intentions
and preferences regarding other users, either providers or consumers. The selection component of the SIS,
which has been designed by a separate group within the Grid4All project, takes advantage of the user
preferences in order to rank matched results. Future work on ranking involves using the structural
information of the ontologies used in the matchmaking, e.g. the semantic distance between subsuming and
subsumed concepts.

Future work also includes testing of scalability to ensure that the SIS will be able to support a large number
of users (either offering or requesting resources). The current implementation of SIS is centralized. It is our
intention, therefore, to design a decentralized version of the SIS, which will deal with the issues of scalability
and availability.

Grid4All Confidential Page 35

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

7 How they all fit together

This section gives an overview of how the major functionalities described in this document and those
described in D2.2 work together.

End users and members of Virtual Organizations should be able to execute their applications
without needing to decide where (on which physical machines) and when. Application should
continue execution with minimal or no manual intervention even if compute nodes were to fail or
leave. VOs should have means to allocate computational resources and execute applications
on these resources. Users and administrators should be able to provide hints on required
qualities of service'’.

This is a digest of a set of related requirements that have been presented in D4.7. We have selected the
gMovie application to demonstrate this. This application converts video films from one compression format to
another and belongs to a category that has been called embarrassingly parallel. It may be implemented as
bag-of-tasks application by dividing the entire film to be processed into smaller chunks that are processed
independently. Applications of this category are adaptive and scale as number of processors is increased
(up to a threshold). The Collaborative Network Simulator Environment application described within D4.3 also
belongs to this category. The application will execute within a Virtual Organization whose pool of resources
may be resized by leasing compute node at resource markets.

The main parameter of interest to the user is the desired completion time (or deadline). Earlier completion
time may imply a higher cost. Hence the second related parameter is the user budget value. These two user
indications drive resource allocation decisions; system leases resources that are necessary to complete
execution within the desired deadline, subject to the available budget.

gMovie application is adaptive, i.e., adjusts to variable parallel processing (computational) capacity. The first
prototype of the demonstrator will exercise the auction server implementing the K-Double Auction
mechanism, to allocate leases of compute nodes represented as a composite indivisible resource
(computational and storage). In future work, we will extend this to use the combinatorial auction mechanism.

This demonstrator will exercise the following modules:

» Scheduling service: It is used as an offline planner. Based on estimate of CPU (quantity, quality,
duration) that can be allocated with the given budget, the scheduler gives an estimation of
completion time. Multiple iterations may be required with the scheduler.

» Reservation manager: It uses the Negotiator to find estimates of resource configurations (quantity,
quality and duration of computational capacity), given a budget value. Once user has confirmed the
budget (based on acceptable completion time), the RM requests the Negotiator to lease resources.

» Negotiator: This is a central module that uses all the services of the market-place. It queries DMIS to
obtain estimates of resource configuration (quantity, quality, duration) for a given budget value. It
queries the SIS to select from currently operating auctions. It registers and participates (submits
prepared bids) at a selected® Auction. If successful in negotiation it receives Agreements from the
Auction. The negotiator uses the provider's end-point reference available in the Agreement object to
obtain the end-point addresses of concrete resources corresponding to the allocated leases.

» Deployment service is used to deploy XtremWeb slaves on allocated nodes by application manager
on notification of resource availability.

» Execution of gMovie tasks are managed by the XtremWeb desktop computing middleware.

Y The exact parameters defining QoS are clearly dependent on the application itself.
18 Strategic negotiators who may simultaneously participate in more than one auction for the purpose of acquiring the
same set of resourcesis out of scope.

Grid4All Confidential Page 36

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008

7.1 Limitations and restrictions

>

Negotiation agents: We will focus on developing negotiator agents to satisfy the purposes of the
demonstrator. Complete buyer agent and seller agent frameworks are out-of-scope within our
project.

Provider side management: Designing provider-side resource managers are out of scope. We will
implement proof-of-concept provider side management for purposes of the demonstrator.

Payment: The demonstrator will not be integrated to use the services of the currency management
system to transact payments.

Self-managing execution management: The execution management of task farms will not use the
DCMS in its design and implementation.

Multiple applications: Each application is expected to manage its own budget. Hence each
application runs within its own set of resources. There is no global VO-wide budget and resource
management.

Grid4All Confidential Page 37

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

8 Conclusions and Future work

This document has presented the current implementation status of scheduling service, the market-place
services (CAS, DMIS, and CMS) and the SIS. Usage and integration of these software modules will be
demonstrated through an application as described within section 7.

We have identified the main future work concerning each software module. It is clear that a single
demonstrator does not evaluate a dynamic market-place with multiple contending applications. A separate
document [CAS-8] presents a detailed evaluation plan with a goal to gathering insights on the feasibility of
using market-based methods to allocate resources for Democratic Grids. A second key future work will
investigate how the Semantic Information Service may be distributed or decentralized.

An important aspect of democratic grids is that of management. WP1 has released the DCMS which permits
developing of self-managing applications. Due to time and resource constraints, the execution management
does not leverage this middleware. We plan to rectify this by providing the design of master-slave
behavioural skeleton using the DCMS. Future work will address how DCMS and core VO services could be
used to develop self-managing market-place services.

Grid4All Confidential Page 38

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

9 References

SS-1. Towards Soft Real-Time Applications on Enterprise Desktop Grids -- Derrick Kondo , Bruno
Kindarji, Gilles Fedak et Franck Cappello -- In Proceedings of 6th Innternational Symposium on
Cluster Computing and the Grid CCGRID'06 Singapore, 2006

SS-2. Characterizing Result Errors in Internet Desktop Grids D. Kondo, F. Araujo, P. Malecot, P.
Domingues, L. M. Silva, G. Fedak, and F. Cappello -- European Conference on Parallel and
Distributed Computing -- EuroParRennes, August 2007 -- Best paper award

SS-3. Towards Efficient Data Distribution on Computational Desktop Grids with Bittorrent --
Baohua Wei, Gilles Fedak et Franck Cappello -- Future Generation Computer Science FGCS --
Selected paper from ISPDC'05, 2007

SS-4. BitDew: A Programmable Environment for Large-Scale Data Management and Distribution -
- Gilles Fedak, Haiwu He and Franck Cappello --INRIA Research Report 6427, January 2008
SS-5. Scheduling resources in multi-user, heterogeneous, computing environments with SmartNet

-- Freund, R.F.; Gherrity, M.; Ambrosius, S.; Campbell, M.; Halderman, M.; Hensgen, D.; Keith, E.;
Kidd, T.; Kussow, M.; Lima, J.D.; Mirabile, F.; Moore, L.; Rust, B.; Siegel, H.J. -- Heterogeneous
Computing Workshop, 1998. (HCW 98) Proceedings. 1998 Seventh Volume , Issue , 30 Mar 1998
Page(s):184 — 199

MIS-1. M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating aggregates on a peer-to-peer
network. Technical report, Stanford University, 2003.

MIS-2. F. Dabek, B. Zhao, P. Druschel, and |. Stoica. Towards a common api for structured peer-to-peer
overlays. 2003.

MIS-3. Petar Maymounkov and David Maziéres. Kademlia: A peer-to-peer information system based on the
xor metric. In IPTPS '01l: Revised Papers from the First International Workshop on Peer-to-Peer
Systems, pages 53-65, London, UK, 2002. Springer-Verlag.

MIS-4. Peter Pietzuch, David Eyers, Samuel Kounev, and Brian Shand. Towards a common api for
publish/subscribe. In DEBS '07: Proceedings of the 2007 inaugural international conference on
Distributed event-based systems, pages 152-157, New York, NY, USA, 2007. ACM.

MIS-5. Rowstron,A. and Druschel,P. Pastry: Scalable, distributed object location and routing for large-scale
peer-to-peer systems IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), 2001, 329-350

MIS-6. René Brunner, Felix Freitag and Leandro Navarro, Towards development of Decentralized Market

Information System: Requirements and Architecture; Parallel & Distributed Computing in Finance
(PDCoF'08). In proceedings of the 22" |PDPS, Miami, FL, USA, 2008

MIS-7. René Brunner, Felix Freitag and Leandro Navarro, On Efficient Routing Structures for Information
Acquisition in Distributed Markets, submitted for publication

CMS-1. Leon, X. and Navarro, L. Currency Management System: a distributed banking service for
the Grid. Technical Report n° UPC-DAC-RR-XCSD-2007- 6. Universitat Politétecnica de Catalunya,
2007

CAS-1. P. R. Wurman, W. E. Walsh, and M. P. Wellman. Flexible double auctions for
electronic commerce: Theory and implementation. Decision Support Systems, 24:17-27, 1998.

CAS-2. Vilajosana, X.; Marques, J.; Krishnaswamy, R.; Juan, A.; Amara, N.; Navarro, L.

(2008): “Bidding support for computational resources”. In Proceedings of the Second International
Conference on Complex, Intelligent and Software Intensive Systems. Barcelona, Spain, March 4-7.
p309 - 315.I1SBN: 0-7695-3109-1.

CAS-3. http://www.sun.com/service/sungrid/index.jsp
CAS-4. aws.amazon.com
CAS-5. L'Ecuyer, P., Meliani, L., Vaucher, J. 2002. SSJ/ A framework for stochastic simulation

in Java. In Proceedings of the 34™ Conference on Winter Simulation: Exploring New Frontiers (San
Diego, California, December 08 — 11, 2002). Winter Simulation Conference, 234-242

Grid4All Confidential Page 39

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

CAS-6. http://www-sop.inria.fr/oasis/Vercors

CAS-7. Combinatorial Auction model for Democratic Grids, FTRD internal report

CAS-8. Negotiation agents and evaluation of Grid4All market-place, Grid4All working
document

SIS1. M. C. Jaeger, G. Rojec-Goldmann, G. Muhl, C. Liebetruth, and K. Geihs, “Ranked Matching
for Service Descriptions using OWL-S”, Proceedings of KiVS, p. 91-102 2005.

SIS-2. M. Klusch, B. Fries, M. Khalid and K. Sycara, “OWLS-MX: Hybrid Semantic Web Service

Retrieval”, Proceedings of the 1st International AAAI Fall Symposium on Agents and the Semantic
Web, Arlington VA, USA, AAAI Press, Technical Report FS-05-01.

SIS3. B. McBride, “Jena: Implementing the RDF Model and Syntax Specification”, Proceedings of
the Second International Workshop on the Semantic Web - SemWeb'2001, pp. 74-83, 2001.
SIS4. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz, “Pellet: A Practical OWL-DL

Reasoner”, Web Semantics: Science, Services and Agents on the World Wide Web archive, volume
5, issue 2 (June 2007) pp. 51-53, 2007.

SISS. A. G. Valarakos, V. Spiliopoulos, K. Kotis, G. A. Vouros, “AUTOMS-F: A Java Framework
for Synthesizing Ontology Mapping Methods”, I-KNOW 2007 Special Track on Knowledge
Organization and Semantic Technologies, 2007.

SIS-6. J. —A. Quiane-Ruiz, P. Lamarre, P. Valduriez, “SQLB: A Query Allocation Framework for
Autonomous Consumers and Providers”, Proceedings of the 33rd international conference on Very
large data bases, pp. 974-985, 2007.

SIS-7. AXIS Web Services Framerowk, http://ws.apache.org/axis/, accessed June 9, 2008.

SIS8. R. Krishnaswamy et al., “State of the art analysis and Requirements for the Grid4All
Semantic Information” System, D2.1 deliverable, 2007.

SIS9. K. Kotis et al. “The Grid4All ontology for the retrieval of traded resources in a market-

oriented Grid”. WGISDO08/CISIS 2008 proceedings, IEEE Computer Society, 2008.

Grid4All Confidential Page 40

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

A. Semantic Information Service

A.1l. Market advertisement

A.l.1. Market advertisement interface

Market services are advertised by both providers and consumers. Providers advertise provider-initiated
markets and consumers advertise consumer-initiated markets. SIS API defines the following operations for
advertisement:

Method advertiseOffer

This method advertises an offer for cluster resource. This is specified by a provider in a forward market. The
agent must register with the SIS before advertising. Method signature is:
String adverti seO f er (String providerld, ClusterOffer clusterOfferDescri ption,
String marketURL) throws InvalidURLException ,
InvalidAgentRoleException,
InvalidDescriptionException,
NoSuchAgentException

Providerld is a unique identifier for the 'provider' role of the agent.

ClusterOfferDescription is a description of an offer as an instance of class ClusterOffer.
ClusterOffer class is an object-oriented wrapper describing an offer stored in the SIS. The detailed

specification of ClusterOffer is described in SIS API documentation. An Offer object contain
information about the resources offered and about the market trading the offer, as described in the
SIS Ontology.

Mar ket URL is the URL of the market service in which the specific offer is negotiated.

The method returns an identifier of the advertised order. It throws the following exceptions:
InvalidDescriptionException is thrown when the semantic information is malformed.
InvalidURLException is thrown when the market URL is null or malformed.
NoSuchAgentException is thrown when an invalid agent id is provided
InvalidAgentRoleException is thrown when a consumer id is provided

Other forms of the advertiseOffer method are available, through which other types of tradable resources
are advertised. These forms have a second argument of the following type:

ComplexClusterOffer . Complex cluster offers contain multiple ClusterOffer descriptions, connected
by one of the AND/OR/XOR operators. The AND operator implies that the advertising provider agrees to
negotiate offered markets as a unique bundle that cannot be disaggregated.

ComputeNodeOffer . This class contains information about provider-initiated markets offering compute
node offers.

ComplexComputeNodeOffer . This class contains information about provider-initiated markets offering
complex computing node offers, that is, offers about compute nodes connected with AND/OR/XOR
operators.

Method advertiseRequest

This method advertises consumer initiated reverse markets. Consumers advertise these markets along with
their Request that describes the resources they require. They also provide information about the markets.
Both kinds of information are stored in the SIS ontology after request advertisement.

Grid4All Confidential Page 41

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008
String adverti seRequest (String Consumerld, ClusterRequest ClusterRegDescri ption,
String MarketURL) throws InvalidU RLEXxception,
In validAgentRoleException,
In validDescriptionException,
No SuchAgentException

This method registers a request for clusters, specified in a consumer initiated market.
Consurer | d is a unique id for the 'consumer role of the agent.

Cl ust er Request Description is a description of a request as an instance of class
ClusterRequest. Class ClusterRequest is an object-oriented wrapper for information about
the intended characteristics of clusters which a customer would like to purchase in a reverse auction.

Mar ket URL - The URL of the market service that trades the Request.
Method advertiseRequest returns an identifier of the advertised order. It throws the following

exceptions:

InvalidDescriptionException is thrown if the semantic information contained in parameter
ClusterRequestDescription is malformed.

InvalidURLException is thrown if either service or market URLs are different than null but are

either malformed or not available.
NoSuchAgentException is thrown if an invalid agent identifier is provided.

advertiseRequest method has another form for the advertisement of consumer-initiated markets for
trading compute nodes. In this form, the method takes as a second argument an object of class
ComputeNodeRequest instead of ClusterRequest

Method advertiseOrder

This method is called by an agent, provider or consumer, to advertise a third-party initiated market, that is, a
market that does not negotiate any tradable resources at the time of its initiation and advertisement. Markets
of these types are discoverable through queries by both providers and consumers. The query should match
the description of a particular order. The form of the method is the following:

String adverti seRequest (String Agentld, Order orderDesc, String marketURL)
throws InvalidURLException, Inval idAgentRoleException,
InvalidDescriptionException,
NoSuchAgentException

Agent | d is a unique identifier for the ‘consumer" role of the agent.

Cl ust er Request Description - A description of a request as an instance of class
ClusterRequest. Class ClusterRequest is an object-oriented wrapper for information about
the intended characteristics of clusters which a customer would like to purchase in a double auction.
Mar ket URL - The URL of the market service.

Method advertiseRequest returns an identifier of the advertised order. It throws the following

exceptions:

InvalidDescriptionException is thrown if the semantic information contained in parameter
ClusterRequestDescription is malformed.

InvalidURLException is thrown if either service or market URLs are different than null but are

either malformed or not available.
NoSuchAgentException is thrown if an invalid agent identifier is provided.

Grid4All Confidential Page 42

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

A.1.2. Application advertisement interface

As mentioned before, (application) services are advertised through their WSDL descriptions. These
descriptions are mapped to a domain specific ontology by providing an annotation file (External Annotation
File—EAF). The following methods comprise the API for application service advertisement:

Method advertiseService

String adverti seServi ce(String WsdlFileLocation, String DomainOntologyNs,
String Annotations)

This method advertises a service. The specified service is translated to an OWL-S profile, that is registered
in the SIS. To produce the OWL-S profile, this method makes use of an external annotations file, whose
contents are specified in the Annotations String.

WsdlIFileLocation is the URL of the WSDL document which describes the advertised service
DomainOntologyNs is the namespace of the domain ontology which should be used for automatic
annotating.

Annotations is an XML String with the contents of the annotation file (EAF) for the particular
service.

The method returns a unique identifier for the advertisement.

A second form of the advertiseService method is the following:
String adverti seServi ce(String WsdlFileLocation, String DomainOntologyNs)

In this method, no annotation file (EAF) is submitted by the provider of the service. The SIS
automatically performs a matching of WSDL operation message types to ontology classes in the
specific ontology.

A.1.3. Market Querying Interface

SIS supports the following types of queries:
* Querying by consumers for markets initiated by providers which are trading tradable resources.

* Querying by providers for markets initiated by consumers who want to purchase tradable resources
(reverse markets).

* Querying by providers and consumers for markets initiated by third-party agents.
* Querying for available (application) services by service consumers.

Querying API in the SIS supports operations as described in the following paragraphs.

Method queryMarkets

Method queryMarkets performs a query for available markets advertised in the SIS. This method has the
following forms:

QueryResults[] guer yMar ket s(ClusterOffer RequestDescription,
MarketQuery MarketRelatedConstraints,
int NumOfResults,
String Agentld) throws NoSuchAgentException ,
InvalidAgentRoleException,
InvalidDescriptionException

Grid4All Confidential Page 43

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

This method called by a consumer in order to query for markets advertised by resource provider.

MarketRelatedConstraints contains market related constraints in the form intended days,
pricing, location, etc.
RequestDescription contains resource related specifications for the query.

NumOfResults is the number of expected of results. It is used in top-N queries.
Agentld s the identifier of the consumer performing the query
Method queryMarkets returns an ordered set of endpoint references for markets. It throws

InvalidAgentRoleException is thrown when the specified agent identifier does not belong to a
consumer agent

InvalidDescriptionException is thrown when the Request is malformed
NoSuchAgentException - when the submitting agent is not found.

Another form of the queryMarket method is the following

QueryResults[] guer yMar ket s(ClusterOffer RequestDescription,
MarketQuery MarketRelatedConstraints,
int NumOfResults, String Agentid)
throws NoSuchAgentException,
InvalidAgentRoleException,
InvalidDescriptionException

This method called by a provider in order to query for markets advertised by resource consumer.

MarketRelatedConstraints contains market related constraints in the form intended days,
pricing, location, etc.
OfferDescription contains resource related specifications for the query.

NumOfResults is the number of expected of results. It is used in top-N queries.
Agentld is the identifier of the consumer performing the query
Method queryMarkets returns an ordered set of endpoint references for markets. It throws

InvalidAgentRoleException is thrown when the specified agent identifier does not belong to a
provider agent

InvalidDescriptionException is thrown when the Request is malformed
NoSuchAgentException is thrown when the submitting agent is not found.

Method queryProviders

A set of providers is returned by this query. The providers can then be invited in a reverse auction market.

String]] qguer yProvi der s(String Requestld,
int NumOfResults,
String Agentld)
throws NoSuchAgentException,
InvalidAgentRoleException,
NoSuchDescriptionException
Requestld is the identifier of a resource request, which has been previously advertised in the SIS.
NumOfResults is the number of expected of results. It is used in top-N queries.
Agentld is the identifier of the consumer performing the query

The method returns an ordered set of provider usernames. Exceptions thrown are:

Grid4All Confidential Page 44

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

InvalidAgentRoleException - when the specified agent identifier does not belong to a
consumer

NoSuchDescriptionException - when there is no order with the specified Requestid
NoSuchAgentException - when the submitting agent is not found.

Method queryConsumers

String]] guer yConsuner s(String Offerld,
int NumOfResults,
String Agentld)
throws NoSuchAgentException,
NoSuchDescriptionException
A set of consumers is returned by this query. The consumers are then invited in an auction market. The
market itself is NOT specified by means of. e.g. an endpoint reference.

Offerld s the identifier of a resource offer, which has been previously advertised in the SIS.
NumOfResults is the number of expected of results. It is used in top-N queries.

Agentld - is the identifier of the provider performing the query

The method returns an ordered set of consumer usernames. The exceptions thrown are:
NoSuchDescriptionException is thrown when there is no order with the specified Offerld.
NoSuchAgentException is thrown when the submitting agent is not found.

A.l4. Application querying interface

Method queryServices

Service querying is performed by method queryServices . This method performs a query for
application services, based on the specified 1/O types.

java.lang.QueryResults] qguer ySer vi ces(java.lang.String domainOntologyNs,
java. lang.String[] inputTypes,
java. lang.String[] outputTypes)

domainOntologyNs is the ontology namespace for the domain the user is interested about

inputTypes is a list of the required input types. These types are the URIs of classes belonging to
the domain OWL ontology.

outputTypes is a list of the required output types. These types are the URIs of classes belonging
to the domain OWL ontology.

Method queryServices returns a list of matched services which are stored in the SIS registry in
OWL-S form. The service matching algorithm is described in the Service Matchmaking Section.

A.1.5. Agent Management Interface

Method name Description

registerConsumer | Register by giving username, password
and location

registerProvider idem

updateAgent Update agent information

deleteAgent Unsubscribe the agent

Grid4All Confidential Page 45

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

A.2. SIS web interface

The SIS web interface enables users to perform the following functions:

Register an Offer: Providers can use this function to submit new offers, and also to describe the markets
where the offers are specified. Using dynamic form creation techniques, users can define offers for already
existent registered tradable resources, or register them while creating the offers.

Register a Request: Consumers may use this specific function to create requests for tradable resources,
using dynamic forms. Consumers may also impose market or market and order related specifications to
further constrain their queries.

Register an object: Apart from the creation of offers or requests, users are capable of specifying ontology
classes through this function. The first step here is to define what type of object needs to be registered, by
selecting among the various object types (classes) defined in the resource ontology. According to the
selected type, a form is generated dynamically so that the user can describe the new entry in detail, avoiding
inconsistencies.

Remove an object: Users can use this option to remove registered individuals from the resource ontology.

View registered entries: Here, users can view all their previous individuals and their properties.

) New Entry page - Mozilla Firefox FEX
Bpwdio Enepyoco MooPody lotopwd Zowbodcwree Epyohtia Bohfing
€-2-@od~E [G-) B -
B =orvivros B ToheuTo vio
[&] New Entry page @ i
Offered_Cluster_001 (Cluster) &
Hame of the object Offered_Cluster_001
Resource_ID:
O Add Esisting object
has_Capacity. Offer_001 v

@ Create new object:

Aggregation v

Offered Compute Node 001
Offered Compute Node 002
has_Compute_Mode © Add Bristing object ‘Add Compute_Node
Ofter_001 he
@ Create new object:
Compute_Node ¥

© Add Ewisting object:

is_Exposed_by_Service: Ofter_001 v =

Chadrpiike 5]

Figure 10 Offer registration

Grid4All Confidential Page 46

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Offer properties

Requested Cluster 001 (Cluster)
© Specic value

Mame of the object Feguested_Cluster_001 d
3 turne_slots: © Define range.
Resource_ID. e To
3 5
» . : ® Speciic value
© Add Esisting object:] 2007-10-10T20-00:00
Requested_Cluster 001 + ! ool e © Difins fage
has_Capasity. © Create new object Add object : From To
Aggregation v H
Min: [0 N an : N
+ Market properties
Max 0 .

® Specific value

© Add Existing object: H
ting obj + bid_withdraw. © Define range

| Requested_Cluster_001 +]
-] From To
has_Compute_Node: ® Create new object: Add Compute_Node]
Compute_Node » '
Min: B H ® Specific value
Max |2 i [2007-10-10T20.00:00
| market_closing_fime O Define range
1 From To

Figure 11 Request registration — Constraints on mar ket-related information

Register service: The registration of a service involves the submission of its WSDL description, as well as the
corresponding EAF. Doing so, the OWL-S profile of the WSDL specification is automatically generated, and
is stored in the SIS. Using this option, users can register services by providing the required documents.

Grid4All SIS - Upload service description

Home :: Logout

Offers/Requests Please select an WSDL file to upload:
Register Offer
Register Request Chservserv_wsdl

Please select an annotation file to upload:
Object registration
Revistor obiact Clserserv_1.xml AvaTimon...
gi i
Remove registered object

My registered entries
View registered entries

Services
Register service

Submit service query

Figure 12 Service registration

Submit service query: Service queries, like service advertisements, are encoded using OWL-S. Using this
option, users can submit OWL-S profile documents specifying service queries.

Grid4All Confidential Page 47

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Grid4All SIS - Upload service query

Offers/Requests Please select an OWL-S query file to upload:
Register Offer
Register Request ChowlsQn/gueryl owls

Upload Service Quel

Object registration

Register object
Remove registered object

My registered entries

View registered entiies

Services
Register service
Submit service query

Figure 13 Service query submission

After such a query is submitted, the matchmaking process takes place and the matched services are presented to the
user.

Home :: Logout

Offers/Requests Exact matches:
Register Offer
Register Request No services match your query

Subsumption matches:
Object registration
Register object
Remove registered object

Matched sexvices

serv_6_operationService: hitp
My registered entries serv_1_operationService: hitp

View registered entries serv_5_operationService: hitp/fw

Services

Register service

Submit service query

Figure 14 Service matchmaking results

A.3. WSDL-Annotation Tool

A.1.6. Dependencies

In order to run WSDL-AT, users need to perform the following actions:

a. WordNet lexicon should be installed. The installation of WordNet should be executed in the
same directory with the one specified in the WorldNet configuration file that exists in the WSDL-
AT root directory

b. Java version 1.5 or later should be also installed.

A.l.7. Configuration
The WSDL-AT automatically configures itself on startup, by looking for external property files in the

application’s root directory. The configurable parameters are the following:
a. WSDL elements that will be annotated (annotationElements.properties file)

Grid4All Confidential Page 48

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

b. The number of returned suggested mappings of the WSDL-to-OWL mapping process (top-k
results) (wsdIAT.properties file)

A.1.8. Use case examples

The WSDL-AT starts by executing “wsdlAnnotationToolRun.bat” batch execution file under Windows OS or
by typing the command “java —Xmx81M -jar WSDLAnnotationTool.jar". The GUI of the WSDL-AT consists of
two tabs. The first tab named “EAF Editor” is depicted in Figure 15. The ontology can be selected by a pre-
defined list using a compo box. Then the WSDL file that will be annotated is selected through the “Browse...”
button which opens a browsing window at users’ file system.

Fie Help

EAF Editor]| proposed Annotations

Ontology : ~]

WSDL

EAF:

Update

Figure 15 The “EAF Editor” tab

After selecting the WSDL file, its corresponding EAF file is loaded if already exists, otherwise a nhew one is
created by consulting the configuration file specifying the WSDL elements to be annotated. Lists of the
WSDL elements that are ready for annotation in their XPATH format are presented to the user. The WSDL
element for which the human annotator will provide annotations is selected from this list. Next to this list,
there are three text boxes. In the first one from the top, as shown in Figure 16, the value of the “name”
attribute of the “part” WSDL element appears (is the one that the XPATH corresponds). The following two
text boxes hold annotation information concerning the fields “Description” and “Comments” respectively.
Using the “Update” button the human annotator updates the values of these fields. The “Update” button
should be pressed before the annotator selects a new WSDL element to be annotated. Figure 16 depicts the
annotation of the "/wsdl:definitions/wsdl:message[1]/wsdl:part[2]* WSDL element which corresponds to the
“part” WSDL element that its “name” attribute has value equals to “_CITY".

The human annotator loads the domain ontology by selecting it from the drop down list that is located beside
the “Ontology” label. The selection of the ontology is an obligatory action before WSDL-to-OWL mapping
process takes place for producing the suggested semantic annotations. The WSDL-to-OWL mapping
process is initiated by pressing the “Compute Annotations” button.

Grid4All Confidential Page 49

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

EAF Editor | proposed Annotat

WSDL : | Giiaityeor

EAF: [Cilctyco

Figure 16 Annotating the "/wsdl:definitions/wsdl:me ssage[1l]/wsdl:part[2]" WSDL element

At the end of the WSDL-to-OWL mapping process the active tab changes to the “Proposed Annotations” tab
as Figure 17 depicts. For each WSDL part element the suggested ontology classes are proposed in the left-
hand list. Any WSDL part element can be selected from the drop down list of the combo box. The human
annotator can select from the list with the suggested ontology classes the correct one, according to which
class he/she believes is the correct one. “Select Annotation” button confirms the user-selected semantic
annotation for a WSDL part element. The annotator may also select an ontology class directly from the
ontology hierarchy that appears in this tab. By pressing the “Select Class” button he/she can replace the
ontology class reference of a selected WSDL/Ontology Class pair with a new class. All the selections are
kept in a table in the same tab as can been seen in Figure 18 . Finally, the EAF is updated with the semantic

File Help
EAF Editor | Proposed Annotations |
tore . N |
& http:j/127.0.0, Lontology ftravel owl# ity
ooty hEkp:{127.0,0, fontolagy fravel.awli Activity -
o4 http:/[127.0.0. Ljontology ftravel.owl# C apital (= owl; Thing
hetp:/[127.0.0. Ljontology ftravel.owl#Hotel & @ Accommodation
hitpj{127.0.0. Lfontology ftravel.owl#Beach £+ AccommodstionRating
http:/127.0.0. Liontology travel.owh# Contact 13- Activiey
1@ Contact
- Destination
Search Class ¢
WSDL NAME Ontology Class

Figure 17 “Proposed Annotations” tab and domain ont ology hierarchy

Grid4All Confidential Page 50

D2.3 Specification and Initial prototype of G4A resource management system

Fie Help

EAF Editor | Proposed Annotations |
Mame : _ACCOMMODATION

;@ hitp:/i127.0,0, 1 fontology/travel owl#BudgstAccommadation
foo# hibp:i127.0.0. 1ontalogyftravel. owl#Accommedation
*# hitp:/f127.0.0.1fentalogy/travel. owl#AccommodationR.ating
@ hitp:/f127.0.0.1jontology/travel.owl#FamilyDestination
{4 hitp:/i127.0,0,1jontology/travel. owl#Campground

L@ hitp:fi127.0.0,1jontology/travel. owl#NationalPark

Search Class |

owl: Thing

Grid4All-034567
11-07-2008

[Accommodation

i AccommodationRating

5@ Activity
- @ Adventure

Sightsesing
) Sports
Contact
@ Destination
£ BatkpackersDsstination
() Beach
) BudgetHotelDestination
£3 FamivDestination

Select Annotation Select Class
WSDL MAME Ontology Class
Ty http:127.0.0.1jonkologyftravel owl# City |
_ACCOMMODATION |http:{F127.0.0. 1 fonkology ftravelowl# Accommodation |
Update EAF ...

Figure 18 Selected pairs of WSDL elements and Ontol

ogy Classes from the suggested ones

After selecting the WSDL file, its corresponding EAF file is loaded if already exists, otherwise a hew one is

created by consulting the configuration file specifying the WSDL elements to be annotated.

A.4. Markets matchmaking

To demonstrate the retrieval of the traded resources requested by a consumer, we provide details of the
classes/individuals specifications (using Protégé interface for presentation reasons) concerning the following

request scenario:

A consumer agent places the following request:

Resource specification: Clusters that comprise at least 3 and at most 5 Compute Nodes, each of which
comprises at most 2 CPUs of CPU-speed at least 2 GHz, and at most 2 persistent storage (Hard-Disk) of

60GB.

Order (request) constraints: At least 1 and at most 3 instances of the requested Cluster type are
required for 4 time-slots, each of 30 minutes duration. The Cluster must be offered between 10:00 and
18:00 of the 26th of March, 2007. The maximum price of the Cluster should not exceed 2€ per time-slot.

The specific market-related constraints related to buyer’'s requests are as follows: Provider-initiated
markets must be located in Athens trading one of the described resources, operating a combinatorial
auction, using IC (Incentive-Compatible) as the pricing scheme, and allowing withdraw of orders.

Figure 19 depicts the specifications of a requested Cluster and Compute Node, as these were described in
the matchmaking scenario: “Clusters that comprise at least 3 and at most 5 Compute Nodes, each of which
comprises at most 2 CPUs of CPU-speed at least 2 GHz, and at most 2 persistent storage (Hard-Disk) of

60GB".

Grid4All Confidential

Page 51

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Cluster

has_Compute_Node only Reguested_Compute_Mode_specification_1
has_Compute_Mode min 3

has_Compute_MNode max 5

a) Requested_Cluster_specification_1 class specification

Compute_RMode

has_Storage_Resource only Requested_Hard_Disk 1
has_Storage_Resource max 2

has_Computational_Resource only Requested_Computational_Resource e
has_Computational_Resource max 2

b) Requested_Compute_MNode_specification_1 class specification

1'Requested_Computational_Resource =

((has_CPU onby CPLY ((has_G0S_property onby GoS) (205 _propetty has "CPUspeesdRange™)

(@05_measurement_unit has "GHZ" (min_QoS_value has "2")))

2 Requested_Hard_Disk =
((has_Capacity only Capacity) ((capacity_measurement_unit has "Gb") (min_Capacity_value has "60")

(max_Capacity _value has "60")}))

Figure 19 The requested (a) Cluster and (b) Compute Node specifications. Hard Disk and CPU QoS
properties are also depicted (underlined descriptio ns).

Given the above specifications and the specific Cluster instances retrieved, Figure 20 depicts a specific
request: “At least 1 and at most 3 instances of the requested Cluster type are required for 4 time-slots, each
of 30 minutes duration. The Cluster must be offered between 10:00 and 18:00 of the 26th of March, 2007.
The maximum price of the Cluster should not exceed 2€ per time-slot”. The request is done by (a) specifying
a subclass of the class Request for the classification of the matching offers, and by (b) a SPARQL query for
filtering all the matched offers according to order-related constraints™”.

PREFIX myURI: <http://www.icsd. aegean.gr/ai-lab/projects/grid4all/ontology/grid4allonto#=
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT 7offer 7price ?tsz 7ts 7ost 7oet 7numConsumer
WwHERE { 7offer rdf:type myurI:offers_matching_request_1.
?offer myURI:price_of_resource ?price. h ord -
FILTER regex (str(?ﬁlr'ice), "2.0"). match order properties
7offer myURI:time_slot_size 7tsz.
FILTER regex (str{?tsz), "30").
?offer myURI:time_slots ?ts.
FILTER regex (str{?ts), "4").
7offer myURI:order_start_time 7ost.
FILTER regex (str(?ost), "2007-03-26T10:00:00").
?offer myURI:order_end_time Zoet.
FILTER regex (str(7oet), "2007-03-26T18:00:00").
7offer myURI:number_of_consumers ?numConsumer.
FILTER regex (str(?numConsumer), "2")

a) SPARQL query

concerns_Resource only Reguested_Cluster_specification_1
concerns_Resource min 1
concerns_Resource max 3

b) Request_1 class specification

Figure 20 The specification of the class Request 1 (b) for the retrieval of offers that specify
resources matching with the Requested Cluster_speci fication_1 cluster specification, and the
SPARQL query (a) for filtering the retrieved offers using the specified request constraints.

Figure 21 depicts the query for the retrieval of the market instances that trade the specific Clusters retrieved
through the queries specified above and that have been related with the retrieved offers (retrieved by
answering the queries in Figure 8). This is done by exploiting the specific market-related constrains that the
buyer agent specified in order to retrieve markets: “Find any provider-initiated markets located in Athens that
trade one of the described resources, such that they operate a Combinatorial auction, the pricing scheme of
the market is IC (Incentive-Compatible), and the market allows withdraw of orders.”

11 order to reduce complexity of the presentation we do not specify in detail the filtering process, which involves the
automatic creation of further ontology classes.

Grid4All Confidential Page 52

D2.3 Specification and Initial prototype of G4A resource management system

PREFIX myURI: <http://www.icsd.aegean.

PREFIX rdf: <htt§::/jww.w3.org/1999f02 22-rdf-syntax-ns#=
oc

SELECT ?market ?location
WHERE { 7market rdf:type
7market myURL:geo
FILTER regex (str
?market myURI:bid
FILTER (Pbw = tr
?market myURI:pri
FILTER regex (str

7market myURL:ope
7auction rdf:typ
Pauction myURI:a

FILTER regex (str(?at), "Comb"inator"ia'l”).

7auction myURI:c
FILTER regex (str

FILTER regex (str

Market
specifies_Offer only Reqguest_1

?bw %ps Tauction
myURI:Provider_i

_withdraw Zbw
ue).
cing_scheme 7ps

(?ps), "Incentive-Compatible").

rates rauction.
e myURI:Auction.
uction_type ?at

Tearence 7c

nitiated_market. |—match market properties
raphic_location ?location
t%?"Icuca\t'ic:|r1), "Athens").

(?c1), "immediate").
7auction myURI:negotiation_process ?np
(?np), "single-shot™).

a) SPARQL query

b) Requested_Market class specification

Figure 21 The Requested_Market class (b) for retrie
classified under the class Request_1 and the SPARQL
initiated Markets, using certain market and auction

r/ai-lab/projects/gridd4all/ontology/griddallonto#>

™ . .
—match auction properties

Grid4All-034567
11-07-2008

ving the markets that are related with the offers
query (a) for filtering the retrieved provider-

constraints.

Running the retrieval process, SIS retrieves the following individuals as presented in Figure 22 a) A
Compute Node individual Offered_Compute_node_1 that is part of the requested Cluster, b) a matching
Cluster Offered_Cluster_1 c¢) a matching Offer Offer_1 for the specified Cluster, and d) a matching provider-
initiated Market Provider_initiated_Market_1, trading the individual Offered_Cluster_1 offered by the specific

Offer_1.

Property | alue Type
[has_Computational_Resource 0 R Offered_Computational_Resource
[has_Storage_Resource ‘ Hard_Disk_1 Offered_Hard_Disk

a) matched Compute Node individual

Property

I Walue

Type

[has_Compute_Node
[has_Compute_Node
[has_Compute_Node
[has_Compute_Node

‘ Offered_Compute _node_2
4 Offered_Compute_node_3
0 Offered_Compute_node_4
‘ Offered_Compute_node_1

b matched Cluster individusl

Compute_Nodes_matching_reguested_CN_specification_1
Compute_MNodes_matching_requested_CN_specification_1
Compute_Nodes_matching_reguested_CN_specification_1
Compute_Nodes_matching_reguested_CN_specification_1

Property Value Type
M concerns_Resource ‘ Offered_Cluster_1 Clusters_matching_requested_cluster_specification_1
M is_ordered_by 4 Provider_1 Provider
M rumber_of consumers 2 @ int
M Offer_specified_in_Markst Q Provider_initiated_Market_1 Provider _initiated_Market
M order_end_time 2007-03-26T18.00:00 4 dateTime
M order_start_time 2007-03-26T10:00:00 @ dateTime
I price_of_resource 20 @ float
M time_slot_size 30 int
M time_slots 4 4 int
) matchedd Offer incividual

Property | Value | Type
B bid_withdraw true 4% boolean
M geographic_location Athens @ string
M has_market_initiator ‘ Provicer_1 Provider
M market_closing_time 2007-03-26T1800.00 4 dateTime
M market_opening_time 2007-03-26T12:00:00 @ dateTime
B market_state active 4 string
M cperates 4 Auction_1 Auction
M order_satisfaction full 4 string
M pricing_scheme Incentive-Compatible @ string

M specifies Offer

& Offer 1
o) matchedd Market indivicusl

Offers matching request 1

Figure 22 Starting from the bottom of the Figure: (d) The matched provider-initiated market individual, and (c) the
related matched offer which trades the matched Cluster specification shown in (b), which, in its own turn, comprises the

specification of the matched Compute Node shown in (a).

Grid4All Confidential

Page 53

D2.3 Specification and Initial prototype of G4A resource management system

A.1.9.

Services Matchmaking

Grid4All-034567

11-07-2008

An example of the various possible matching types is presented in Table 1. The I/O types used in the
example are taken from the Grid4All resource ontology. Tradeable Resource subsumes Compute_Node,
Hardware_Resource subsumes CPU and Hard_Disk

Service query specifications:
Input types: Compute_Node
Output types: Hardware_Resource
Advertised | Input types Output types Type of
Service # match
1 Tradeable_Resource | CPU Subsumes
2 Tradeable_Resource | Provider_initiated_Market | Fail
3 Market Tradeable_Resource Fail
4 Tradeable_Resource | Consumer_initiated_Market | Fail
5 Tradeable_Resource | Hard_Disk Subsumes
6 1. CPU Subsumes
Tradeable_Resource
2. Market
7 Compute_Node Hardware_Resource Exact
Table 1. Service matching example
PREFIX rdf: <http://wuww.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemafs
PREFIX profile: <http://www.daml.org/services/owl-s/1.0/Profile.owli>
PREFIX ...
SELECT ?profile WHERE {
profile rdf:cype profile:Profile.
profile profilerhasInput ?inputl.
Z?inputl process:parameterType I,.
Jprofile profile:hasInput ?input.
?input2 processiparameterType I,.
;;u.fnflla profile:hasInput ?inputn.
Zinputn process:parameterType I_.
profile profile:hasCutput ?outputl.
Zoutpucl process:parameterType O).
?profile profile:hasCutput ?oucputl.
Foutpucz process:parameterType O;.
;1;1-:0flle profile:hasOutput Zoutputn.
Foutputn process:parsmeterType O .
¥
Figure 23 SPARQL query for service matching (Exact match)

Figure 23 and Figure 24 present the SPARQL queries which have been created according to a given
query to perform the matchmaking at the service profile level. Granted that the query specifies n
..., In, and m outputs of types, Oy, O,, ...
performed by finding all services which have input (output) parameters whose types match exactly

input parameters of types Iy, I,

with a parameter type defined in the service query.

Grid4All Confidential

, Om, exact matching is

Page 54

D2.3 Specification and Initial prototype of G4A resource management system

Grid4All-034567
11-07-2008

PREFIX rdf: <http://uww.w3.org/1999/02/22-rdf-syntax—ns#>
PREFIX rdfs: <http://vwww.ws.org/Z000/01/rdf-schema#s>

PREFIX profile: <http://www.dsml.org/services/owl-s/1.0/Profile.owlis

PREFIX ...

SELECT ?profile WHERE {
?profile rdf:type profile:Profile.

?profile profile:hasInput ?inputl.

?inputl process:parameterType ?inputTypel.
I, rdfs:subClass0f ?inputTypel.

?profile profile:hasInput ?inputz.

?inputl process:parsmeterType ?inputTypel.
I, rdfs:subClass0f ?inputTypez.

?profile profile:hasInput ?inputn.
?inputn process:parameterType ?inputTypen.
I, rdfs:subClassof ?inputTypen.

?profile profile:hasCOutput Youtputl.
Poutputl process:parameterType ?outputTypel.
PoutputTypel rdfs:subClassof 0,.

?profile profile:hasOutput Toutputl.
Poutputi process:parameterType PoutputTyped.
PoutputTypeZ rdfs:subClassof 0,.

?profile profile:hasCutput Youtputm.
Youtputm process:parameterType PoutputTypem.
Poutput Typem rdfs:subClassof 0.

}

Figure 24 SPARQL query for service matching ("Subsu

mes" match)

For the second type of service matching, the “subsumes” type of match, the corresponding SPARQL query
Figure 24, is created so that a matching service will be recognized if a) each one of its input parameters
subsumes an input type which is defined in the service query b) each one of its output parameters is
subsumed by an output type which is defined in the service query. To process such a query, which uses the
subclassOf property of the RDF Schema, it is necessary to use an inference engine, so that inferred
subclass/superclass relations may be detected among the parameter types specified in service queries or

advertisements.

Grid4All Confidential

Page 55

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

B.Resource Broker

B.1. Auction server implementation

The CAS architecture proposes a set of interfaces to control and manage sub-component states and a set of
primitives to handle market specific events, timers, and state management. Each composite component, i.e.,
a component that includes more than one primitive component is expected to implement the
ActivityController interface (as a managing component) and each contained sub-component is expected to
implement the ActivityControl interface (as a managed component). The Figure 25 depicts the state
transitions of the sub-component Auction. State transitions may be triggered due to events such as timers,
method invocations or control actions from parent states. In this figure the Auction component inherits the
states of its parent component and manages its own sub-states as well (in bidding, clearing etc). Manager
components implementing the ActivityController interface propagate synchronization and events to signal
state changes to its sub-components. The Figure 26 illustrates a sequence of activity that is part of
initialization of a newly deployed auction market. Here the initiator of the market invokes the MarketControl
interface to start market operations. This triggers the change of state to OPEN which will then be propagated
to the hierarchy of sub-components through the ActivityControl interface. A sub-component changes to the
new compound state when it's including component triggers this change and when its current sub-state
permits it; e.g. the Registration component is open to accept registrations only when the Market is open and
when the registration start timer (if configured) has expired.

MWONE |-/ READY | - CONFIGURNG | -/ CONFIGURED

r

%? ABORTED |
;‘I

" OPENED k[OPENING

(" BobmG L -/ CLEARING

—)

[compLETED k[cLoseD | CLOSING

Figure 25 Auction state machine

We have implemented workflows for two patterns: single shot auctions and iterative auctions. Fractal
Controller interfaces (Content, Binding) are used to introspect sub-components and interfaces to verify that
every composite sub-component indeed respects the programming constraints; that the Controller and
Control interfaces are indeed implemented and bound according to the architecture as has been defined in
the auction's ADL description.

Grid4All Confidential Page 56

D2.3 Specification and Initial prototype of G4A resource management system

Grid4All-034567
11-07-2008

interaction deploy @daploy 1

||nitiatnr|f| |Iniliatnrlmpl | |Mar|let(2nmml | | i
T

11 startarket() 1 |
20 startMarket() IL

3 starthtarket()

4: ChangeState(OPEN)

Figure 26 Initiator interface example

We have implemented and evaluated the K-pricing based double auction using the framework described
within this section. The next section describes the internals of this mechanism and its relevance to auctioning

computational resource leases.

The architecture of the configurable auction server is described declaratively using the Fractal Architecture
Description Language. The ADL run-time software is capable of deploying and configuring the application
according to the specification provided by this description. The ADL describes the architecture as a
hierarchical set of components, the interfaces offered and provided by each component, and the bindings
between the interfaces (provided/offered). The Fractal ADL also has run-time support that is provided by the
Fractal ADL factory, which can be used to deploy the described architecture. The boxes below show a Java

code snippet illustrating deployment and a fragment of the ADL.

fpubl i ¢ void deployerMarket(String auctionADL) throws Mark

try {
factory =
FactoryFactory.getFactory(FactoryFactory. FRACTAL_BA
marketServer = (Component)

} cat ch (Exception e) {
t hr ow new Error(
}

}

.

"Cannot get Fractal ADL factory", e);

factory .newComponent(adIDef , context);

etException { \

CKEND);

/<!—— Main market server application that is, the de

<definition name="server.lib.MarketServer" extends

<component name="market-server" definition = "M
<component name="market" definition="market
<binding client="this.Market server" server="m
<binding client="market-server.Market e
event dispatcher"/>
</definition>

\

finition -->
= "MarketServerType">
arketServerManager"/>
Jib.Market"/>
arket-server.Market server"/>
vent dispatcher" server="market.Market

Figure 27 ADL fragment for Market

Grid4All Confidential

Page 57

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

The Figure 27 shows an excerpt of an ADL. Specific implementation class of a component may be
configured through the ADL. Different market/auction formats (implementing specific auction rules) may be
deployed by simply modifying such Content classes. Deployment code registers the main client interfaces at
RMI registries; clients look up the MarketServer interface which acts as an entry point to connect and
register to the auction.

D2.2 describes the extensions and enhancements that have been done to the Fractal ADL in order to
support deployment of application components within virtual organisations. With these extensions, finer
control may be done on the placement of components on a network of compute nodes. At the current
prototype of the auction server, we are not using these extensions leaving the use of them to our future work.

B.2. K-Double auction design and evaluation

The K-DA mechanism implements specific interfaces of the architecture described in section 5.4.2. At
initialization time, this can be configured to execute either in mode 'continuous' or scheduled. In case of
continuous clearing, clearing can be activated by different events: at each new bid, when a configured
number of bids have been accepted etc.

The K-pricing based double auction is a simple yet powerful mechanism to trade in multiple units of single
items; an item could be CPU or Storage. This section describes how the implementation of this mechanism
fits into the previously described architecture and the specific extensions to this well known mechanism to
adapt to trading in multiple time-slots. The native mechanism is capable of trading multiple units of an item,
but does not distinguish one item to the other. This mechanism however does not guarantee complete
allocations and hence does not accept bids that specify the AND operator described previously.

Leasing computational resources imply that the time is divided into discrete intervals called time-slots. The
intervals need not be necessarily of the same size, but we assume this for convenience. The standard DA
mechanism cannot be directly used since there may be multiple CPUs and multiple time-slots for each
traded CPU. We hence extend the standard mechanism to support multiple time-slots; e.g., a CPU offered
between 12:00 and 18:00 is traded as 6 time-slots of one hour each. We allow consumers to place bids for
more than one CPU unit and for more than one time-slot: "2 cpus for 2 hours between 12:00 and 18:00 for
1% for each cpu for each time-slot". Such bids are referred to as substitutes, since they are willing to accept
any contiguous subset of time-slots in the specified interval. These are implicit XOR bids and a pre-
processor expands them to all valid combinations.

The BidCatalog component uses and extends the four heap algorithm as described in [CAS-1]. It maintains
the multiple 4Heap data structures; this is referred to as a 4HeapBidLaneEngine and one such lane is
maintained for each time-slot. Bids requesting more than one time-slot are dispatched across the lanes. Now
consider the following two bids: B1 that requires 1 CPU for any two time-slots between 12:00 and 18:00 and
B2 that precisely requires the time-slot 13:00. What we would like is that if the offered prices are compatible,
then B1 should not pre-empt B2 for the time-slot at 13:00.

When handling such XOR bids, we considered two possibilities: (a) Select one lane where the bid can
currently win and choose only that XOR leaf-node. (b) Dispatch the XOR bids to every acceptable lane.
Currently we implement the second option. In the case of XOR bids, only one branch should win (exclusive
OR). Lanes are cleared in random orders and the first winner removes its siblings from all the other lanes.

We have revised the above naive algorithm:
> Dispatch an XOR bid to the lane (time-slot) where it maximizes social welfare.

> Implement clearing in multiple passes; at end of each pass, an XOR bid is selected as a winner on
the lane where it produces the greatest welfare. The clearing iterates until there are no more XOR
siblings to remove.

The Figure 28 gives the main classes that constitute the specific implementation support for this mechanism.

Grid4All Confidential Page 58

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

11-07-2008
BidAttributeCantroller —
getBidTimeout(}long innerDetermination
setBidTimeout{long time) clear()-List
1ln
Udes
Udes
Biddinglf "
closeBiddingSession(BidID id) BidCatalog
””””” 2| createBiddingSession(RegistrationID id)BidiD getBidEntry(BidID id):BidEntry
getBidCount(BidderType type)-long getitems(yList
getBiddingRules():BidDominance getlterator():terator
Participant SetStatus(BidIDyBidStatus UsES 77| getMatchings(Object item):List
submitBid(BidID id,BidInfo bid) insertBid(BidTree bid)
withdraw(BidID id) ’E”““"E(B‘d'[" id)
almplei’nenls»
v
AuctionControl MultiLaneBidCatalogimpl |
getCurrentRoundCount()long getBidEntry(BidID):BidEntry
startNextRound() getitems():List
getMatchings(Object) List
insertBid(BidTree bid)
Cleari or remove(BidID id)
canTerminate():Boolean
getAuctionDescription():Description
getClearingAlgorithmCapabilities():Map
isGombinatorial():boolean
IsDoubleSided(}:boolean
isForward():boolean 3
::g:"’"e’:s:gﬂiﬁ’::'%” _LaneEngine i BidTree
isSingloltemAllocation():boolean getMatchings()-List Bidlterator() lterator _]
isSingleSided() boolean newAsk(BidEntry ask) preprocess(BidTree bid,Description desc): BidTree
isSingelUnitAllocationAlgorithm:boolean newBid(BidEntry bid) gelMatchedBids(BidTree bid):List
removeAsk(BidiD) getCorrespondingBids(Price price) List
removeBid(BidID) getCorrespondingBids(Description desc):List
|
| o|n
| Stdres
«implefnents»
]
]
Vi Heap
FourHeaplaneEngine clear()
newAsk(BidEntry ask) insert(Object o)
newBid(BidEntry bid) Uses extract():Object
getMatchings():List 47| peek():Object
size()int

isEmpty():boolean

Figure 28 K-DA classes

The implementation uses the Four Heap data structure. The 4-HEAP algorithm [CAS-1] takes its name from
the fact that the bids are organized into four heap data structures, representing the currently winning buy
offers, the currently winning sell offers, the currently non-winning buy offers, and the currently non-winning
sell offers. We denote the four heaps as Bin, Sin, Bout, and Sout, respectively. Bin and Sout are min heaps,
and Bout and Sin are max heaps. Naturally, the minimal bid in Bin must be at least as great as the maximal
bid in Bout, and the minimal bid in Sout must be at least as great as the maximal bid in Sin. The heaps have
the further properties that the number of units in Bin and Sin must be the same, and the minimal member of
Sout is strictly less than the maximal member of Bout. An important benefit of the 4-HEAP algorithm is that
the Mth and (M + 1)st prices are easily calculated from the heaps. Specifically, the Mth-price is the min of Bin
and Sout, and the (M + 1)st-price is the maximal members of Bout and Sin, both of which can be easily
computed from the values of the highest priority nodes in each heap. In addition, clearing the auction is
simply a matter of deconstructing the Bin and Sin heaps, and leaving the other two heaps intact.

When a new bid is inserted, the algorithm first determines whether it (a) should be inserted directly into an
OUT heap, (b) should be matched with bid(s) in the complementary OUT heap and all implicated bids moved
to IN heaps, or (c) displace some bids from the appropriate IN heap. In both cases (b) and (c), the new bid
may need to be split across the IN and OUT heaps during this process. Split bids can be reassembled if the
component parts are returned to the same heap, thus, the algorithm will never have more than one split bid.
Note that steps (b) and (c) may result in several nodes being moved between heaps; in the worst case, q
nodes will have to be moved, where q is the quantity associated with the new bid.

A price quote can be generated in constant time by simply computing the Mth- and (M + 1)st-prices as
mentioned above. Setting aside the issue of how bids are matched, and focusing only on separating the
winning bids from the non-winning bids, clearing takes O(N) time in 4- HEAP because the two IN heaps can
be directly disassembled. In particular, the 4-HEAP algorithm has the drawback that its typical performance
is close to its worst case performance because of the manner in which objects are popped and pushed onto
the heap. In 4-HEAP, when a bid is moved from an IN heap to an OUT heap, or vice-versa, it is certain to
require two operations (a pop then a push) that require exactly In(N) time.

Grid4All Confidential Page 59

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Bid pre-processing

The need for pre-processing multi-item bids into single-item bids has been identified. Preprocessing may be
looked upon as an internal process that returns semantically equivalent bids but able to be handled by a
specific allocation mechanism. There is the need to point out that a given market (instance) regulates the
operators that may be present at non-leaf nodes. For example, a market employing an auction that cannot
guarantee the complete allocation of the request will not accept the AND operator. The following example
will be used to illustrate the different possibilities of decomposition: Let's consider an auction that is trading
one CPU of 400 FLOPS for the time range compressed within 9:00 and 19:00 where each time slot is 1 hour
of duration. The bids that users are able to formulate are of the following types:

» Exact preference in quantity and time: A bid B3 requires one CPU of 400 FLOPS for 3 hours from
12:00 to 15:00, that is, the bidder is asking for a precise time range. Case 1 of Figure 29 shows the
compact bid representation that is the way user formulates the bid. Note that for this example bid
partial satisfaction is required (OR constraint). Case 2, presents the same case when complete
satisfaction is required (AND constraint). The (b) of Figure 30 represents the same bid but showing it
fully pre-processed. Figures in this document will present both compact and full decomposition trees
except for the cases where the size of the full decomposition prevents from a clear understanding.

» Exact preference in quantity but not in time: Require time to be consecutive: A bid B4 requires
one CPU of 400 FLOPS for 3 consecutive hours within 11:00 and 16:00. This case requires the
formulation of one XOR bid with (number of available slots — number of required slots + 1) AND (OR
for the case of partial satisfaction bids) sibling bids each one with 3 precise leaf nodes. Case 1 of
Figure 29 shows the bid formulated by the bidder for the case when partial satisfaction is required.
Case 2, presents the same case when full satisfaction is required. Figure 29 presents the tree
completely pre-processed for the case of partial satisfaction.

» Exact preference in quantity but not in time: Do not require time to be consecutive: A bid B5
requires one CPU of 400 FLOPS for 3 any hours within 11:00 and 16:00. This case requires pre-

processing the bid into a tree with C: leaf nodes. Due to its size a figure is not provided, however

the case is very similar to the one presented in Figure 30.

» Neither exact preference in quantity nor in time and contiguous time-slots: By excess: A bid
B6 requires one CPU of 400 FLOPS at least for 2 consecutive hours within 11:00 and 16:00. In this
case, the auction provides complete satisfaction (the auction only accept AND operators), otherwise
does not make sense the mandatory 'at least’. The decomposition needs to generate a bid tree of
XOR (root node) and AND due to impreciseness in time (multiple possibilities). The maximum bound
on number of time-slots must be set by bidder. Due to the size of the decomposition, Figure 30 only
shows the decomposition of non-leaf nodes whereas leaf nodes are kept in a compact
representation. For the example, the bids are decomposed into precise bids for 2 time slots, 3 time
slots and 4 time slots (bound set by the bidder). The complete decomposition (including leaf nodes)
would be similar to the decomposition showed in right side of Figure 31.

» Neither exact preference in quantity nor in time and contiguous time-slots: By default: A bid B7
requires one CPU of 400 FLOPS at most for 2 consecutive hours within 11:00 and 16:00. This case
is simpler and similar to the case illustrated in Case 1 of Figure 29. Notice that the requirement "at
most’ indicates partial satisfaction which is expressed with an OR constraint.

Grid4All Confidential Page 60

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

-
AND

D

D, D

C
AN

1o 1o 1o 100 1c 10U
1CRU 1oPU

1time shot 1time slot 1time shot 1time shot 1time slot 1time slot
5 time sots 3time slots

12.00-13.00 13.00-14.00 14.00-15.00 12.00-13.00 13.00-14.00 14.0015.00
12.00-45.00 12.00-15.00

Figure 29 Exact preferences in quantity: (a) Compac t representation (b) Complete representation

= = /’\
- - U P \

Cazel Cazel

o0 o0 1 167U U LR 1 LA
3 time siots 3 time slots ifmesot | | 1time siot 1ime siot ttimesot | | 1time siot L1ime ot 1time st ttimesot | | 1tme st
1001800 11.00-16.00 H0H200 || 200300 || 3004400 | | 1200300 | | 00400 | | 14004500 E0MA0 | | L0M500 || 15004600

Figure 30Compact and complete representations

/

T
D

1uRU 1uRU 1uRU
2 time slot 3 time slot 4 time slot
11.00-16.00 11.00-16.00 11.00-16.00

Figure 31 Exact preference in quantity and not time

Grid4All Confidential Page 61

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

K-DA Evaluation

This section presents current evaluation results that have been conducted using the K-pricing double auction
mechanism implementation. This mechanism is used to allocate time-slots of one type of resource, where a
resource may be CPU or storage. Bidders may request (or offer) multiple units, either in the number of CPU
units or in the number of time-slots. The objective of the mechanism is to maximize social welfare, i.e., the
aggregated sum of utility generated by the allocations. A Bid is a translation of the requirements of a Job
(we use this term following Grid terminologies) that is released by a user: type of resources, quantity of
resources, attributes of resources, time specifications and the price. The evaluation studies the effect of
different statistical distributions used to generate the different parameters of a Bid on the results of the
auction measured by the aggregated welfare and aggregated allocations.

In our model, each bid requires a certain amount of resources for a specified duration. The price of a
resource is computed using the following functions:

Qbase = nrec |:ﬂreci El
pbase = Qbase |:pavg E2
pres = pbasg r E3
k
Poia = z Pres E4
i=1
r=(1-N)"¢ E5
Parameter | Description Distribution Parameters
Nrec Number of wunits of required | Gaussian HU.o
resource
trec Number of time slots that this | Gaussian HU.o
resource is required.
Qbase Quantity of the required resource N/A N/A
Pavg Average cost price of the resource | N/A N/A
across providers.
Ppase Base price for the quantity of
resources required.
Puig Sum of the prices of the items
required in the bid.
r The willingness to pay of the | Pareto ¢
bidder.
Pai Sell price per unit and per time | Gaussian .o
slot.

Asks are characterized in the same way as bids.

K, Py,

ER

pavg = E6

Grid4All Confidential Page 62

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

In order to generate test data we assumed that each bid was for a single unit of resource leading to the
equality:

Poia = Pres E7

The generated bids followed a Pareto distribution with two different variable parameters: the Pareto index
and the Py.se. The generated prices had a mean and variance as indicated in equations 8 and 9 below:

Cl:Pbase
=2 b E8
M -1
2
V= pbafR for(¢>2)E 9
(c-D°Us-2)

Similarly asks where generated using a Gaussian distribution with mean (4 and standard deviation o .

In order to calculate P, (the based selling or reservation price per unit of resource), Sun Grid [CAS-3] and

Amazon Web Services [CAS-4] pricing models have been studied. Sun Grid applies a fee of 13$ for one hour
of CPU. Amazon Web Services uses a different pricing policy. Each request to an Amazon Web Service is
charged with 0.000001 $ whereas data transfer are charged with 0, 10$ for each in GB and a variable out

rate ranging from (0,18% GB/month to 0,13$ GB/month). Our Py, , price has been calculated following the

model taken by Sun using a mean of 1$ and a standard deviation of 0,125%. Note that Sun used a fixed price
policy. However we wanted to model some variability of prices because we supposed that resources were
provided by different sellers. To generate random data the SSJ statistical library [CAS-6] has been used.
Random numbers have been generated with a backbone generator of the type Well Equidistributed Long
period Linear Random Number Generator (WELLg, proposed by F. Panneton, and which has a state size of
1024 bits and a period length of approximately 21°

Ask have been generated following a Gaussian distribution N (u, o) with a mean y and variance o, where o
> 0. Its density function is

f (X) - 1/(2_“_)1/20,e(x-p)2/(20'2)
To generate bids, a Pareto distribution with parameters ¢ > 0 and P, > 0 have been used. Its inverse
distribution function is

F'(uy=P_(1-u)™ foro<=u<1.

We have conducted two sets of experiments and describe them in the following sections. At this time we
have not correlated the generated data to real and representative work-load traces. The experiments are
conducted by injecting the generated work-load to a K-double auction. The arrival rates (of bids and asks)
are not relevant to this experiment.

SIGMA Experiments

We aimed to experiment the effects of varying the standard deviation of asks (while keeping unchanged that
of bids) in the final results of the auction. Specifically we measured the average price achieved by the
auction, the total and average social welfare and the number of transactions that occur. These variables
were observed for different values of o in the interval [0,125, y] with a fixed increment of 0.001. Bids were

Psar.
o for k sellers.

generated with fixed values of ¢ and Py, calculated as (2) with Pavg = z
i=1

Grid4All Confidential Page 63

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

The studied variables were:

Name Symbol Description

Number of successful | N; Counts the number of bids
transactions that are matched with asks.
Number of issued bids and | N Counts the number of issued
asks bids in the auction

Avg Final Price PFavg The average transaction price

for the total amount of
transactions for an execution.

Social Welfare W, Accumulated social welfare
for all transactions in an
execution.

Avg Social Welfare Wayg W avg=Wi/Nioal

Social Welfare for those | Wyoc W avg=Wi/N;

bidders (sellers and buyers)
that get a match.

Accumulated Seller's | Ry Sum of the revenues of all the
Revenue sellers.
Accumulated Buyer's | Ry, Sum of the revenues of all the
Revenue buyers.
Final Price Psinal It can be Uniform, so all

transactions in an experiment
occur at the same price. | can
be discriminatory, that is, all
transactions calculate a price.

Kin [0,1] K The pricing policy.

Social welfare has been calculated as the accumulation of the revenue obtained by the seller plus the
revenue obtained by the buyer.

W = z Rig, ~ P, (10)
i=1

Average welfare it the total welfare divided to the total amount of issued bids and asks.

Z Pbidi + Paski
W o=z (11)

av
’ Ntotal

W o indicates the welfare only considering those bidders that get a match.

Z Fig, Pas
W,ioc == (12

R is the total revenue for sellers while Ry, represents the total revenue for buyers. Note that social welfare is
computed as the sum of Ris and Ry,.

Grid4All Confidential Page 64

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Rs = z Prina — Pear (13)
i=1

Ry = z Fad ~ Pria (14)
i=1

The experiments consisted in 875 executions of the clearing process each one with a different ask input. For
each experiment the same 100 bids were used. In contrast, 100 asks were generated as described above for
each experiment. Characteristic parameters for bid generation were kept constant while characterization
parameters for asks generation were changed at each experiment. For bids, we used a fixed value of ¢ set

to 1.2 and a P, calculated as the average value of asks. Asks were generate starting with an o value of
0.125 and increasing it by 0.001 after each experiment. u was fixed at 1.0 as described earlier. The K-pricing
policy used in these experiments set the value of K to 0.5.

SIGMA vs pAvg,PFavg,Wavg,Walloc

7,50000

700000

£,50000

£,00000

5,50000

500000 —**
£ 450000 ~m
J
g 4,00000 ;:1.‘,?
= 350000

3,00000 il

2,50000

2,00000

1,50000

1,00000 sk P AN

0,50000 ' | | ‘ | | : : |

00000 020000 030000 040000 050000 060000 070000 080000 090000 1,00000
SIGMA
Figure 32

Figure 32 presents the effects of varying o (standard deviation) to PF,g Wayg, Payg and Wae.. We can see
that as o increases, the variability of P, also increases (at it is expected) but the average base price falls
quite near to the 13$. Note that this variability can be also attributed to the imprecision of the used random
generator [5].

The final average price (PFay) slightly increases as o increases due to the fact that as more variability, sell
prices can be greater leading to a higher final average price. Accordingly, as PF,,4 increases, the W o value
also increases because there is more benefit to share (more variability lead to smaller sell prices). Wy is
kept almost constant (increases very insignificantly) since the price increment is compensated by the
decrement of the number of allocations.

SIGMA vs Nt,Wt,Rts,RTh

450,00000

425,00000

400,00000

375,00000

sopO0A—— . vl et reies

325,00000
L 300,00000
S 27500000 [\ it
S 250,00000 t
£ 250000 Ris

200,00000 [\ Rtb

175,00000

150,00000

125,00000

100,00000

75,00000 o e

50,00000 T T T T T T T T 1

040000 020000 030000 040000 0S0OD0 0B00OD 070000 080000 080000 1,00000
SIGMA
Figure 33

Grid4All Confidential Page 65

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Figure 33 presents the relation between o and N,W;,R;s and Ry,. As o increase, the number of transactions
decrease due to an increase in asks prices (higher variability in generation of asks). Seller and Buyer
revenue (R and Ry, respetively) also increase due to the increase in prices. W, is N; times W,,4 and behaves
accordingly.

SHAPE Experiment

The second experiment consisted in the evaluation of the Pareto Index (¢) and its implications on the

allocation provided by the auction. As in the previous experiments, we fixed the values of one distribution
and we experimented with different values of the other. In this experiment, asks were generated once with a

K p
u fixed at 1.0 and o fixed to 0.125. p,,, = Zﬂ was also calculated and fixed as a base price for all the
i=1
bids. Bids were for a single item and for a single time slot because the aim of the study was to understand
how the variability of prices for one resource affects the behaviour of the auction. So we would like to keep
the model as simple as possible.

As a result we got that (looking at (2)): Ppe = Pavg

Bids have been generated using a Pareto distribution with parameters ¢ > 0 and P, fixed as state before.
The generated inverse distribution function was:

F'(u) =P, (1-u)™* for0<=u<1.

The experiment consisted in 950 executions of the clearing process each one with a different bid input. For
each experiment the same 100 asks were used. In contrast, 100 bids were generated at each execution. For
bids, we used a value of ¢ ranging from 0.5 to 10.0, P,,4 was calculated as the average value of asks. After

each execution, ¢ was increased by 0.01.

Pareto Index vs PFavg,\Wavg Walloc

3500000
3250000
30,00000
27 50000
2500000 Jl
2250000 ‘”

{

\
2000000 ‘ ’| Freg

17 50000 g
15 10000 - Wiales
1:5000[1-#

1000000

7o 1| |
500000 \ it

\
|
pan L IO e

o VAT T i, 7y
L e A M B R L | | | | 1 | 1
0,90000 0,75000 1,00000 1,25000 150000 1,75000 2,00000 225000 2,50000 275000 300000 3,25000 3,50000 375000 400000

Pareto Index

Arnount

Figure 34
Figure 34 shows the relation of the Pareto Index with the PF,,4 W,,. Note that even we computed values
ranging form 0,5 and 10.0 Figure 34 only shows the results until ¢ = 4.0 because the tail of the curve keeps
constant until 10.0. Looking at the results we can see that lower values of ¢ present higher levels of
instability leading to high variations of PF,,, and W, Close to 1.2 ¢ stabilizes and keeps almost constant
until 10.0.

Grid4All Confidential Page 66

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Pareto Index vs Wt Rts,Rtb with K=05

326000000
300000000
2786010000 fl
260000000 %
22600000 l
20000000 ‘
1740,00000 \ X
\
\
|
l

1600,00000 +
125000000
1000,00000
74000000
£0000000 = ‘
2500000

|
o000 LTI B

T T 1 T T 1 1 T T 1 T T 1
04000 07500 1,0000 12500 15000 17600 20000 22500 25000 27500 30000 32500 35000 37500 40000
0 0 0 0 i 0

Aomount

Pareto Index

Figure 35

As in the case of the previous experiment, as long as ¢ increases the number of allocations decreases (see
Figure 35). This effect can be attributed to the fact that as ¢ increases, the proportion of high-value bids is
reduced leading to a decrement of the number of bids that are above the price.

K experiment

The next experiment consisted in the evaluation of the pricing policy. As a remainder, the K-pricing policy
calculates transaction prices as:

Pina = KRy + (1-K) [P, (15)

K-pricing policy is directly related to how welfare is distributed, leading to theoretically optimal results when
k=0,5. Note that when k=0 the mechanism is incentive compatible for sellers whilst when k=1 it is incentive
compatible for buyers.

Our experiment consisted of 100 iterations. Initially k was set to 0 and after every iteration the value of k was
incremented by 0.01 until it reached the value of 1.0.

Grid4All Confidential Page 67

D2.3 Specification and Initial prototype of G4A resource management system

Grid4All-034567
11-07-2008

For each value of k we computed average values of PF,,q Wayg, Ni, Wy, Ris and Ry, for the execution of an

auction ran 1000 times over the same input data.

K vs Seller Revenue and Buyer Revenue

00,0000

TE0,00000 -

e

F00,00000

S

G50,00000
G00,00000

S50,00000

00,0000

50,0000

00,0000 H_

Ft=

Arnount

250,00000
300,00000

™. Rtk

250,00000

200,00000

150,00000

100,00000

£0,00000
0,00000 I I I

T

0,00000 0,20000 0,40000

Figure 36 shows how revenue is shared amongst buyers and sellers for different values of k.

0,G0000

0,50000

|
1,00000

Kvs PFavg, Wavg and Walloc

10,00000

8,00000

§,00000

7,00000

i

§,00000 -

/

™\ FFawg

5,00000
4,00000

Amount

e

Wawg
Wallac

pd
7

3,00000
2,00000
1,00000

0,00000
0,00000

T T
0,50000 0,75000

K

T 1
0,25000 1,00000

Figure 36

Figure 36 shows how prices increase as long as the value of k gives more weight to bid prices. The welfare
of the system keeps constant. The aim of the experiment was to study how the variations of the
characteristics of some statistical distribution affect results of the auction. For the case of ask generation we
conclude that the variability of the prices does not affect too much the behaviour of the auction, keeping price
and social welfare almost constant but at expenses of a decrement of the number of allocations. In the case
of bids we conclude that the Pareto Index has a higher impact on the generation of prices. Our experiments
showed that generating bids with values of ¢ (0.5<¢<1.1) lead to very unstable behaviour. The main

reason for that behaviour can be attributed to the wider variance of generated prices. As long as ¢

increases the variance of the generated prices is reduced leading to a more stable behaviour. We conclude
that using values of ¢ larger than 1.1 the behaviour of the auction is quite stable apart from a sensible

reduction on the number of allocated bids.

Grid4All Confidential Page 68

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Comparison of continuous and discrete double auction

In order to obtain data from the two market institutions, two market instances were activated. The first market
instance implemented a continuous double auction (CDA), and the second market instance implemented a
scheduled double auction (SDA). Tests were conducted during 500 iterations. In each round, 100 processes
trying to buy resources and 100 trying to sell resources were executed. 50 of the buying (selling) processes
submitted bids to the CDA and the rest submitted bids to the SDA.

Processes acting as buyers generated bids following a Pareto distribution having established an initial price.
Pareto distribution has been considered the most appropriate distribution for generating bids since it has
been used to describe the distribution of wealth in the society. Sellers generated their offers following a
normal distribution, because of the normal distribution of the costs of the traded items. Prices were updated
at end of each round taking into account the variations in supply and demand.

Two important variables were observed, the number of allocations and the social welfare. The first one
indicates the efficiency of the mechanism in terms of the number of resources used. Social welfare
measures the capacity of the market to allocate the resources to those who need them more. Social welfare
has been calculated as the aggregation of the buyer's surplus and seller's surplus.

Number of Transactions
25000

22500

20000 F——-

17500 —

15000 —

12500 —

10000 —

7a0n —

Mumber of Transactions

5000 —
2500 —

o T

Type of Auction

Figure 37

Figure 37 presents the number of successful transactions for both mechanisms. The CDA obtains
understandably a higher number of transactions than the SDA. Figure 38 presents the social welfare for the
500 iterations. The CDA obtains a slightly lower aggregated social welfare than the SDA with 4101 less
transactions. This is because SDA has the total set of bids/asks whereas CDA is eager. Figure 39 shows the
average price evolution in the market as well as the social welfare for each of the iterations. Price evolution
is guided by random variables that depend on the levels of activity in the market.

Our tests showed that the social welfare provided by the SDA is higher than the social welfare provided by
the CDA. Contrarily, the CDA provides a higher number of allocations which means that a higher number of
resources are utilized. The choice of one or the other constitutes a trade-off between economic efficiency
and number of allocations. Which mechanism to use is an individual decision that the trader may take based
on its strategy.

Grid4All Confidential Page 69

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Social Welfare
250000
225000 —

200000 —

175000 —
150000 —

125000 —
100000 —

Amount

75000 —
50000 —

25000 —

0 .
CDA SDA

Type of Auction

Figure 38

After doing the presented tests, we wondered about improving the social welfare provided by the CDA
without decreasing significantly the number of allocations. To do so, we delayed the immediate allocation of
the CDA and re-executed the tests. In order to delay the clearing of the CDA it was configured to wait until at
least 4 bids had arrived to the market. The results were fairly interesting. As can be seen in Figure 39 and
Figure 40, the number of allocations provided by the CDA remained higher than the number of allocations
that the SDA provided, contrarily the difference of the aggregated social welfare provided for both methods
was reduced nearly a 50%.

Auerage Price Evolution

i
oo, I I e
£ v ! : T
2 LA] i A
RS TN . [W W

LA 74P L% VY AL WL A VLW AL YR

{0p0mooo 4
5 1)) m 13 o s m » H i) m k3 k:1) 15 i 3 o) an
Tect Number
Sacial Viefare for each feretion R
[" id etae:
‘ Cumialie GV i e -E0AE0GH ke
p— |
\
L "
| I |
. AI
] |
= N) | 1)
3 1 I
00 -
2500000 1
O
T T T T T T T T T T T T T T T T T T T 1
0 b:) 1] 5 mn i 10 i1 m n b1l bl n ki) ka1l kL3 m i ol i3 1]
Figure 39

By delaying the clearing of the CDA the social welfare is increased at the expense of reducing number of
allocations. Even then, the number of allocations remains higher than that provided by the SDA and the
improvement of the social welfare is more significant than the decrement of the number of allocations. A
conclusion extracted is that the efficiency of the CDA can be improved by delaying slightly the clearing
process. It can be done either by discretizing continuous time into small iterative time frames or by delaying
the clearing until a certain number of bids arrive to the market

Grid4All Confidential Page 70

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Number of Alloctaions Delaying CDA

25000
22500
20000
17500

15000
12500
10000
7500
5000
2500
a

nurmber of allocations

T
CDA num ker of trensactions SDA number of transactions

Type of Auction

Figure 40

Conclusions

The experiments conducted propose different set of distributions to generate bids. The purpose of the
evaluation is to measure the impact of parameters used to generate bid and ask prices on the outcome of
the K-Double auction where the outcome is measured in terms of number of transactions (representing
allocations), the final price of transactions and the social welfare that is generated.

B.3. Combinatorial auction

Unlike the double auction mechanism, the combinatorial auction permits to trade simultaneously multiple
units of multiple resource types. This mechanism is preferable for jobs requiring a combination of resources.
The different resources are complementary (the bundle of items is more valuable than the sum of the
individual items); it may be worthless for the consumer to obtain a subset of the requested bundle.
Combinatorial auctions enable expression of complementarities and allows participants to bid on bundles of
items.

In Section 1, we present the design of the combinatorial auction and the scenario requirements. The
mathematical formulation of the mechanism is given in Section 2. Finally, in Section 3, we explain how to
deal with the presented mathematical problems.

Design of a combinatorial auction

Let us consider a marketplace on which several negotiators (consumers and suppliers) want to trade
computer resources. There may be more than one type of resources; in our case, computational and storage
resources that are specified by their quantity and quality attributes. Each negociator may request or provide
any combinations of these resources.

The aim of the mechanism is to first determine an allocation of resources, and then to provide the trading
prices. We say that the mechanism is efficient if it maximizes social welfare where the social welfare is the
aggregate of individual utilities obtained by the allocation. We assume that the negotiators submit truthful
bids (with their true valuations), the utility is hence computed as the difference of the valuations of winning
jobs (or the reservation prices of winning bundles) and the corresponding payments.

The CNSE application as described in D4.7 and D4.2 requires a combination of computational and storage
resources. In this scenario, the job (simulation) should complete before a hard deadline (end of class room
session). Earlier the job may finish, more the value for the completion, since this leaves sufficient time for
discussion within the class-room. Completion of the job beyond the deadline is worthless for the class-room.

Grid4All Confidential Page 71

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

The completion time clearly depends on the number, quality and duration of allocated resources. To control
the allocation computation time, we would like to minimize the number of bids (XORs) submitted by the
consumers. Likewise suppliers must choose the configurations of offered bundles. Feedback from the
market may help the negotiators make relevant choices (the selection of optimal resource configurations);
information on the time-slots that have heavy demand, the price according to the quality of resources, the
supply of different types of resources are essential to help negotiators limit their selections.

We propose to provide this information by performing an iterative combinatorial auction. At each round of the
auction, negotiators submit some bids and provisional winners and prices are computed. From this result,
consumers and suppliers determine their new bids for the subsequent rounds. Auction terminates when the
negotiators do not modify their bids. Here the provisional winners of the last round become the final winners.

Following sections give details of the CA mechanism and the scenario requirements.
Traded commodities

The scenario-specific CA trades two commodities; computation and storage service. The job execution time
depends on CPU performance and the level of parallelism defined by number of CPU units. As CPU is
worthless without physical memory, the combination is traded as an entity and the RAM specifications is
considered as an attribute of the computation service. Storage service is characterized by the number of
storage units, storage size and the available throughput which is characterized as the speed of writing on a
hard disk (network capacities and transfer time are ignored).

To limit the combinatorial explosion when all possible values are considered, we simply this model by
aggregating the quality features of each resource. We propose to consider only realistic and typical
configurations for each resource type. The categories of a resource type is ordered such that if a consumer
requests a resource of category I, any category j, j =1 also match. A resource category is considered a
commodity since two units of the same category cannot be distinguished. Thus resources are characterized
by three attributes: the type of resource (CPU or Storage), the quantity and the quality category.

Time characteristics

The market defines an allocation horizon consisting of discrete time intervals or time slots of fixed and
uniform length.

Bid configuration

Agents purchase and offer services by submitting bids to the market platform. Although both supplier and
consumer bids contain resource combinations, their structure differ. Supplier bids consist of a set of bundles
of which an arbitrary number may be allocated (a bid is an OR ed set of bundles). The sum of all resources
in the set of bundles should correspond to the supplier's total trading capacity. The maximum bundle
guantity, i.e., the number of OR nodes, is predefined by the market. Bundles are available over a time-
frame and give the reservation prices representing minimal acceptable revenue for a bundle per time slot.

Consumers may express their preferences for substitutable resource configurations (jobs), by submitting
XOR bids. Only one job should be allocated. A job is specified by the earliest execution start time, the latest
end time (corresponds to deadline). Each job gives its valuations™. The valuation represents the maximum
amount that the bidder is willing to pay.

% Bidders are expected to know the valuations.

Grid4All Confidential Page 72

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

A job may consist of several conjunctive parts represented by the AND operator. A job can be executed if
and only if all its parts are allocated. Each part is defined by a set of resources and the duration for which
they are required with a time frame. The consumer may request the parallelization of the job parts (here the
durations of all parts are expected to be equal). The time specifications and the parallelization parameter
apply to the job and not to the individual parts.

The Allocation characteristics

A valid allocation is one where the all the attributes specified in the job match those of the bundles to which it
is allocated; resource attributes, the availability times must match and the aggregate prices of the allocated
bundles must not be greater than the valuation of the job. The WDL (Winner Determination Problem)
determines an allocation of jobs to bundles that maximizes the social welfare among all valid allocations. We
have added some dispersal constraints: a part of a job is allocated to at most one bundle, and for every time-
slot, a bundle is allocated to at most one job part. This also implies that at a given time-slot, different parts of
a job is allocated to different bundles. Job parts are allocated in contigous time slots(without holes). If
parallelization is activated, all job parts are allocated in exactly the same time frame.

The pricing characteristics

Payments of winning bids are computed after the determination of optimal allocations. Even though desirable
properties for pricing are budget-balance, individual rationality21 and incentive compatibilityzz, a well-known
result”® states that no exchange can be allocative-efficient, budget-balanced and individually rational at the
same time**. So one must choose to favour some properties to the detriment of the others; we choose to
enforce the budget-balance and individual-rationality properties, since the market must not be deficient nor
dependant on subsidies, and we want the negotiators to be volunteer for participating.

There are two pricing options: bundle pricing which consists in determining prices of winning bundles, and
the item pricing which consists in determining prices of individual items. Bundle pricing permits to express
the complementarities between the items, but item pricing gives more interpretable information about the
market. This facilitates the decision making for negotiators. Consumers can restrict their choice of resource
configurations to those whose aggregated price computed by using the item prices do not exceed the
valuations.

This pricing must be budget-balanced and individually rational. One desirable property of item prices is its
closeness to market clearing prices: the loosers find out that their bid is too low (for the consumers) or that
their reservation price is to high (for the providers). However such prices cannot be guaranteed to exist in
combinatorial auctions. We may need to find approximates that minimize the maximum gap between the
bids (resp. the reservation prices) and the computed prices of the bundles in case the market clearing
property is not verified. Also, in order to ensure the individual-rationality property, we may have to introduce
a gap between the prices paid for winning bundles and the sum of the prices of the items that make it up.
Again we try to minimize the extent of this gap.

Mathematical formulation

Notation

2L All agents have positive expected utility from the participation.

2 The best strategy for the negotiators is to report truthfully their valuations.
3 Satterthwaite

2 Independently of incentive compatibility

Grid4All Confidential Page 73

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Let R be the set of resources and A the set of quality categories of resource I . The length of the
allocation horizon is defined by T ={1,...,t} .Let M be the set of suppliers. For each supplier mCOM , B™

denotes the set of bundles he offers (the number of bundle in B™ is upper-bounded by a predefinite quantity
b). Each bundle b of supplier m is defined by four parameters :

> the earliest available start time slot denoted by ¢™ OT :

> the latest available end time slot denoted by f™ OT ;

Y

the reservation price per time slot denoted by p"b;

A\

the resource attributes denoted by d™, rOR, i0{0,1} (the value dr"jg corresponds to the

i
quantity of resource I offered by supplier m in the bundle b, and dr"ff OA} specifies the quality
of the resource).

Let N be the set of consumers. The consumer NN bid consists of a set of jobs J.,. A job] of
consumer N is specified by:

> the earliest execution start time slot denoted by €” OT ;

> the latest execution end time slot denoted by 1" OT ;

the valuation for the job denoted by V" ;

A2 74

a set of job parts denoted by K "

> the parallelization of job parts denoted by ynj 0{0,1} (ynj =1 if the parallelization is activated, 0
otherwise);

> for each part KOK" of the job :

njk
i

o the resource attributes denoted by , rT'OR, i10{0,1} (the value a,”fg corresponds to

the quantity of resources I required by consumer N for the part K of job | and ”"1‘
specifies the quality requirements);

o the duration " O{1,...,|" —e" +1} (the number of required time slots).

The Winner Determination Problem

To state the winner determination problem as an integer linear program, we need first to define two groups of
decision variables:

> z"0{0,1},with nON and jOJ,_, specifies if job j of consumer N is allocated or not.

> ym 0{0,1}, with nON, jOJ,, kOK”, mOM, bOB™ and tOT, indicates wether job part

K of job | of consumer N is allocated to bundle b of supplier M with time slot t as start time.

The WDP can now be formulated as the following integer linear program:

Grid4All Confidential Page 74

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

LEAEDIILLEDIDIDIDIDIPRAEA i

nON j0J,, nON 03, ok M MM g 0T

under the constraints :

OnON, Y 2" <1

i3,

OnON,Oj0J",0kOK"Y > > >y =27

MM pogM taT

OmOM,ObOB™, 0tO[c™, f™],> > > Z Yoy <1

MON 03 gk M =g - WK1

OnON,0j 03", 0t00e”,1"],0k 2k’ OK",

yn] Z Z yan yn] Z Z yan

MM ppg™M MM pogm
OnON,OOJ",0kOK",OmOM,Ob0OB™,
OtOT \[max(e”,c™),min(l", f™ - g™ +1)], ym, =0
OnON,0jOJ",0kOK",OmOM,ObOB™,
OtOT,0r OR,0i 0 A suchthata < d™, ym, =0

OnON,0j0J", 0kOK™,OmOM, Ob0OB™, 0t 0T,y 0{0,1}
OnON,0j0J3", 2% 0{0,1}

The objective function aims at maximizing the social welfare of participants. This is represented by the
difference of the sum of job valuations for allocated jobs and the sum of reservation prices for the associated
bundles and time slots. Constraints (1) ensure the representation substitute in job allocation (XOR).
Constraints (2) force variables y and Z to be coherent. This guarantees also that a job part cannot be

allocated by more than one bundle. Constraints (3) guarantee avoidance of overlapping jobs. Constraints (4)
ensure the allocation of job parts of a given job in exactly the same time slots when the parallelization is
activated. Constraints (5) expresses the matching of availability time frames. Constraints (6) check quantity
and quality attributes. Finally constraints (7) and (8) ensures that variables y and z are binary.

Pricing scheme

Let us assume that the WDP has been solved with Y and Z as optimal solution. Let M, and N,, denote
the subsets of winning suppliers and consumers. For mUM,,, B\X} denotes the subset of B, containing
the allocated bundles. Likewise, for nOON,,), J, denotes the subset of J containing the allocated job
(| Jw IF1). We consider also the subsets B" = B™\ B}, and J'=J"\J,; of loosing bundles and jobs.

Let finally O_"b, mUM,, , b0 B\;\? denote the total number of time slots allocated for bundle b of supplier
M. Let us consider the following variables:

> ,umb OR™, with mOM,, and b0 B, is the price to be received by the supplier m for its allocated
bundle b;

Grid4All Confidential Page 75

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

> V" OR", with nO N, and jOJy , is the price to be payed by the consumer n for its winning job
j;

> M0OR", with rOR and a JA , denotes the price of one unit of resource I of category @ per
time slot.
We consider also four families of slack variables denoted by :

> &™0OR, OmOM,, and Ob OBy
> &J0OR,OnON,, and 0jOJ;
> &°0R",OmOM and ObOB™;

> &) OR",OnON_ and OjOJ".
The the pricing comes down to the resolution of the following linear program:
min Z
UV, 2

under the constraints :

IADWALDIDNS

MMy bR nONyy jO3,

r mb
OmOM,,, Ob0B, 4™ = 6™ dmn "t + g

rOrR
. . . . ryanj .
OnON,,,0j035.v" = > g”™>arn ™ +g)
kDKnj rOR

r mb
OmOM,DOb0OB!, p™ > Yd™n" 1 - g

rOR
nj
_ . .
OnON,, 003" < Y g™ >a’n " +g)
kDKnj rOR

OmOM,,,0b0B),|&™ k Z
OnON,,,0j035, &) £ Z
OmOM,Ob0OB",0<&*<Z
OnON,,0j0J"0<¢g) <27
OmOM,,,O0b0B], 4™ = p™o™
OnON,,,0j0J5,v" <v°
OrOROa0A,N™ 20

The objective of this program is to minimize the value of Z which corresponds to the maximum gap &£.
Constraint (9) ensures the budget balance of the market. Constraints (10) and (11) aim at minimizing the

gaps & and &, between the prices paid and received by winning negotiators and the sum of the individual

prices of the corresponding resources. Constraints (12) and (13) ensures that the market clearing property is
not too much violated: if possible the loosing bundles have reservation prices greater than the sum of the
individual prices of the corresponding resources and the loosing consumers have valuations lower than the

Grid4All Confidential Page 76

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

market prices of resources; otherwise the gaps &; and &, are minimized. Constraints (14), (15), (16) and

(17) define the value of Z as an upper-bound for all £. Constraints (18) guarantee that the prices received
for allocated bundles are greater than their reservation prices. Constraints (19) guarantee that the prices
paid by consumers are lower than the valuations of the winning jobs. Constraints (20) ensures that the
computed prices are nonnegative.

Solving the combinatorial auction

The winner determination problem is formulated as an integer linear program. Actually, this problem comes
down to a scheduling problem. In this type of problems, the decision maker must find a way to successfully
manage resources in order to execute jobs (or produce products) in the most efficient way possible. He
needs to design a schedule which satisfies the jobs requirements and which optimize some objective
function such as for instance minimizing the makespan, or minimizing the amount of consumed ressources.
So the only difference between the WDP and a scheduling problem lies in the objective function.

Such problems have been studied a lot in the last decades by the combinatorial optimization community. The
WDP is classified among the most difficult problems (it is NP-hard). In practice, it results in the impossibility
to solve optimally this problem when the size of the data is large, although some sophisticated and powerful
solvers have been developped to deal with such difficult problems.

We therefore propose two methods to solve the WDP. If the size of the data is small enough, it is possible to
use a solver in order to find the optimal solution. This can nevertheless take a certain amount of time, even
for instances of reasonable size. If the size of the problem is too large or if the negotiator or the service
which initiates the auction specifies a maximum time of completion, then it can be necessary to use a
heuristic (an approximate method) that provides fastly an allocation satisfying the constraints of the problem
and with a good value of the social welfare (if possible close to the optimal one).

The pricing can be formulated as a linear program with continuous variables. Thereby it can be solved quite
easily by applying the simplex algorithm.

Conclusion

We have developed a combinatorial auction specifically for Grid4All trading expectations. The Winner
Determination Problem has been implemented and evaluated using a set of generated instance data
representing jobs and bundles. The detailed report [CAS-7] is provided along with this deliverable. We have
evaluated the performance of the auction through four numerical experiments to understand the influence of
the different quantity and quality parameters. The model scales acceptably well with increase in the number
of time-slots and number of agents, until a limit of 500 agents.

Our next steps are to implement the pricing algorithm. The first implementation will focus on resolution of the
linear program using simplex algorithms. We will evaluate the results before turning to designing heuristic
algorithms.

B.4. Distributed Market Information System

Main Interactions

A query is issued by a trader to obtain information on the resource markets as illustrated in Figure 5. The
trader creates filters to narrow the search for information, and a handler for the query results. These objects
are passed to DMIS, which executes a query using its routing layer. The routing process queries nodes on
the overlay using the filter and aggregates received information. The current prototype provides the following

Grid4All Confidential Page 77

Grid4All-034567
11-07-2008

D2.3 Specification and Initial prototype of G4A resource management system

gueries on compute nodes. The parameters of queries are the QueryHandler, the number of units of the

resource, the start and end times within which the information is aggregated.

Name Description Comment

getAveragePrice Average price for one or | This will affect the value in the bid, the starting
more units of resource, | time and the ending time between which the
per unit-time, and | resources are required. This is not independent
between specific start | of the utility function of the application itself.
and end times of the
day.

getVolume Total volume of trade of | The volume of traded products helps to find good

a resource, between a
specific start and end
time of a certain day.

market sectors and for statistics of the resource
providers.

getMinimumPrice

Minimum price for one or
more units of resource at
specific times in the day,
for a unit of time.

This information is needed for bidding strategies
such as Zero Intelligence Plus (ZIP)

getMaximumPrice

Same as above, but

maximum.

This information is needed for bidding strategies
such as Zero Intelligence Plus (ZIP)

getAverageClearingTime

Average time to clear
auctions.

To decide the time at which the negotiator should
start its negotiation taking into account the time
at which resources are needed.

getTotalDemand (Offer)

Total demand (offer) for
a specific resource

This may be more useful for providers. But even
for consumers, more the demand at specific
times of day, the higher the price is likely to be at
those times. Hence this may direct the
consumers to set the best time specifications.

Grid4All Confidential

Page 78

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

Trader | :Filter | ‘:QueryHandleq | :DMIS :Routing ‘ | :Overlay
L T

T T
| 1
I |
create() | !
| 1
| |
reate() L’_r| :
|
|

T
[
|
1
|
|
|
[
|
1
1
query(Filter ffilter, QueryHandler ha_f']dler. long timeout) |
T —

executeQuery(Filter filte

loop /

send()

receive()

|
I
I
|
I
I
|
I
I
|
|
I
|
|
} ueryResponsefvalue)

|
|
1
|
|
| notify(value)
1
|
notify(value) ’7 notify(value)
T
|
|
1
|
|
1
[

Figure 41 Example internal query process

Figure 41 shows a trader that subscribes to a topic/content and another trader publishing an event, which will
notify the subscriber. The subscriber creates a filter that defines the interested events. The created
subscriptions are installed by the DMIS in its routing layer. Subscribers are notified when a new event
matches a set filter. Similarly publishers on arrival of new events, e.g. establishment of agreement between
buyer and seller, send the event to the DMIS which in turn forwards to the routing layer. Routing layers notify
their DMIS on a new incoming event. The DMIS then notifies registered SubscriptionHandler.

Grid4All Confidential Page 79

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567

. . Filt SubscriptionHandl, :Event bscriber.DMIS publisher:DMIS bscriber:Routing publisher:Routing Overlay
Subjc_nher Publiher |‘ er | ‘ ubseri \‘on Ell er| ‘ v‘en ‘ | sul sm‘ er. ‘ ‘ ublis| e‘r | | subscri Ier outin | ‘ ublis ?r outin ‘ | VTH
| | | | | | | |
| ‘ | | | i | | |
create() | | | | | | |
T | I | | I I |
| | | | | 1 | |
| | |
| create() | 1 | | ! 1 1
| | I I I | I |
| | | | | i | i
| i | |] | i
i subscribeFilter filter, SubscriptionHandler handler) | } | | |
+ i L |
i } } ; subscribelFilter filter) : }
| ! ! | } ! I
! | | | | | loop / |
! } : i } } send()
T
| | | | | | |
| | |
: 1 1 ! l l ;
} : : | : : recew‘e()
| |
| | | | T
} I ; } | | |] |
| | 1 | |
1 create() | | | | | |
] T | | | | |
|) | ! ! I |
! |_publish(Event event)) ! | } |
| } ; } publish(Event event) ™ |
|] I
: | | | | | | |
| | | | | : send()
| I | I ! |
| | } | | | receive()
| | | | | L
| | | | | ! T
| | |
} | } | notify(Event event) ’-L‘ 'E(w‘g“ _J
| } nol\fy(Evejt event) I | |
| notify(Event event) ’—‘ | : I |
! | i | | 1 1
|
| i i i | I y | |

Figure 42 Internal publish and subscribe process

Uncertainty Management

The self-management algorithm for the uncertainty calculates the size of the simple data in for of hops (size
of sample data is approximately 2" within a binary tree). For example, the users define the Confidence
Interval (CI) with 95\% or 99\%. The t-table provides the value of tncy. As result, the self-management
components adapt its approximations within to keep the results in the tolerance interval, defined by the user.

Algorithm 1: Uncertainty self-management algorithm.

Input: Confidence Interval (CI)

Input: o

Input: hops

Input: t, o

Input: P..P,

Output: hops

forall prices of P,..P, do

| add price to sum;

end

median = sum/countresults ;

torall prices of P,..P, do

| add (median — price)? to sum,ariance;
end

o= sqrt from sum,ariance/count, esults;
L= taern) 0 x 100/ /n o« median;

if i > o then

| increment hops by 1;

else

| decrement hops by 1;

end

Figure 43
Efficient routing for information acquisition

The B-Tree based routing algorithms prototyped within the DMIS and the results of preliminary evaluations
are presented in the accompanying technical report [MIS-7].

Grid4All Confidential Page 80

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

B.5. Currency Management System

The CMS Bank Service Layer provides operations to perform account creation and deletion as well as
modifications to these accounts when performing, for example, a transfer of funds. It relies on the
guarantees supported by the lower layer (Transactional Data Layer) to ensure the ACID properties of its
operations and to reliably store user accounts. This layer is also responsible to define and implement
regulation policies regarding the amount of currency that a user account may hold at any time, the maximum
amount per transactions, etc.

The Transactional Data Layer provides mechanisms to perform ACID transactions when modifying objects
stored in the lower layer. To provide those semantics, the data will be accessed in mutual exclusion to avoid
transaction inconsistencies. It relies on the probabilistic guarantees supported by the lower layer (Mutable
Consistent Data Layer) to reliably store and retrieve such objects.

The Mutable Consistent Data Layer provides an enhanced DHT interface to support the update operation
as well. Moreover, it is responsible to deliver the most up to date data stored within the system. This Layer
will be based on the DHT API provided by the Niche peer-to-peer middleware.

The KBR Layer: KBR stands for Key Based Routing. As its name suggests its responsibility is to provide
mechanisms to communicate different nodes based on their key interval responsibility. We will use the KBR
Layer provided by the DKS middleware without any modification. As long as DKS uses a standard KBR API,
this layer would be replaced by any other middleware providing this kind of routing mechanisms.

This section presents the main interfaces and programming APIs to the CMS.

/ * %
* The <code> CMSinterface </code> class
*
* API offered by CMSto the Agreement Manager/Buyer Agent. This API will be
* the interface offered once CMS is wrapped as a sing le Fractal Component.
* Xavier Leodn
*/

public interface CMSinterface {

/**
* Open an account for a given wuser identified by its credentials within
* the CMSinfrastructure.
* user Credentials of the wuser opening the account. An user can
* not have more than one account associated with each Credentials.
* An AccountID which identifies uniquely the account created
* for the user.
* AccountAlreadyExistsException
* InvalidCredentialsException
*/
publ i ¢ AccountlD openAccount(Creden tials user)

throws AccountAlreadyExistsException,

InvalidCredential sException;

/**

Grid4All Confidential Page 81

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

* Closes the account identified by an AccountlD. Users allowed to

* close it are the owner of the account -- who openend it -- or the

* admin of CM'S otherwise.

* @param accountlD AccountID of the account to be closed

* @param owner Credentials of the user which is performing the

* operation.

* @return A Boolean representing wether the operation has finished

* correctly.

* @throws AccountNotFoundException

* @throws InvaidCredential sException

*/

public Boolean closeAccount(Accountl D accountl D, Credentials owner)
throws AccountNotFoundException,

InvalidCredential sException;

/**

* Query the Account information of the user.

* @param account!D AccountID of the account to be queried.

* @param owner Credentials of the user which is performing the

* operation.

* @return The Accountlnfo matching the AccountlD provided by the user.

* @throws AccountNotFoundException

* @throws InvaidCredential sException

*/

public Accountinfo queryAccount(Accountl D accountl D, Credentials owner)
throws AccountNotFoundException,

InvalidCredential sException;

/**

* Transfer funds from one account to another for a given amount of

* currency. The only user allowed to perform this operation isthe

* owner the source account.

* @param src Accountl D of the source account (Buyer account).

* @param dst AcocuntlD of the destination account (Seller account).

* @param amount Amount of currency to be transfered.

* @param buyer Credentials of the buyer agent which performs

* the transaction.

* @return A ticket representing the proof-of-payment.

* @throws AccountNotFoundException

* @throws InvaidCredential sException

* @throws NotEnoughFundsException

* @see edu.upc.cnds.cms.api. TransferRecei pt

*/

public TransferReceipt transferFunds(AccountID src,
AccountID dst,
Double amount,
Credentials buyer)

throws AccountNotFoundException,
InvalidCredential sException,
NotEnoughFundsException;

Grid4All Confidential Page 82

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

/**

* |ncrease the user account associated to the Accountl D with the given
* amount of currency. This method will be only accesed by system
* administrators to deposit funds due to any reason (e.g. to deposit
* initial funds to the account, user wins a dispute against a provider,
* efc).
* @param accountlD AccountID of the account balance to be increased.
* @param amount Amount of currency to be deposit within the account.
* @param admin Credentias of the admin user of CMS.
* @return A Boolean representing wether the operation has finished
* correctly.
* @throws AccountNotFoundException
* @throws InvaidCredential sException
*/
public Boolean depositFunds(AccountI D accountlD,
Double amount,
Credentials admin)
throws AccountNotFoundException,
InvalidCredential sException;

Grid4All Confidential Page 83

D2.3 Specification and Initial prototype of G4A resource management system

**

* Decrease the user account associated to the AccountlD with the given
* amount of currency. This method will be only accesed by sysadminsto
* withdraw funds due to any reason (i.e. user loses a dispute against a
* provider).
* @param accountlD AccountlD of the account balance to be decreased.
* @param amount Amount of currency to be withdrawn.
* @param admin Credentials of the admin user of CMS.
* @return A Boolean representing wether the operation has finished
* correctly.
* @throws AccountNotFoundException
* @throws InvaidCredential sException
* @throws NotEnoughFundsException
*/
public Boolean withdrawFunds(Accountl D accountl D,
Double amount,
Credentials admin)
throws AccountNotFoundException,
InvalidCredential sException,
NotEnoughFundsException;

Grid4All Confidential

Grid4All-034567
11-07-2008

Page 84

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

C.Scheduling service

The papers presenting the main research results [SS-1] [SS-2] [SS-3] and [SS-4] are presented as a
separate document along with this deliverable.

The following Figure 44 describes the scheduler interface and the relevant input parameters. The Resource
object represents a computational resource. The CPU speed and network speed are restricted to three value
categories. The times at which the resource is available is also represented for purposes of establishing the
planning.

schedulerTypes:
pubhc static final int MIN_MIN_SCHED = O;
public static final int MIN_MAX SCHED = 1;
public static final int SUFFERAGE SCHED = 2

L
L
«interfaces
Scheduler

+ findSchedulelresourceSet : Resource[], tasks : Task] |, schedulerType ©int] : Schedule

Hesource Schedule
-respurcelUID : Stnng - schediledTasks : ScheduledTask{]
availabiltyBegn : Date - resgurces : Resource|]

- availabiltyEnd : Date Task
- EpuSpesd :int - dataSizeBytes : long

- deadline : Date

-networkSpeed © int
_nbePU : int - tasklUID : Stang
-nhOperationsPers : long ScheduledTask - nbOperstionsNeeded : long
bytePers 1 dong ' -assignedfesourceUUID & Stang
= -scheduledStantDate : Date
\l e - duration : long
T
L -
e
\ =
I
-\‘ number of CPU
\ public static final int SMALL QUANTITY = 3;
public static final int MEDIUM_QUANTITY = 4;
\ public static final int HIGH QUANTITY = 5.

|

CPU or network speed

public static finalint SLOW SPEED = 0
public statc final int MEDIUM_SPEED = 1;
public static final int FAST_SPEED = 2;

Figure 44 Scheduler interface

The [Tableau 3 MinMin heuristic] describes the default MinMin algorithm implemented by the Scheduling
service.

Grid4All Confidential Page 85

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

tasks are defined by their size
resources are defined by their speed, their begin of availability and their end of availability
schedule (tasks, resources):
sort resources ascending by avail_begin
WHILE we have resources AND we have unassigned tasks DO
assign the current task to the first resource in the resources list
which have a big enough (avail_end - avail_begin) regarding
the task’s size
IF we were not able to assign the task THEN
remove it from the tasks list
ELSE
update affected resource's avail_begin date
IF avail_begin == avail_end THEN /** rare **/
remove resource from resources list
ELSE
sort resources ascending by avail_begin by only moving the
last affected resource
END IF
END IF
END WHILE

Tableau 3 MinMin heuristic

Level of confidentiality and dissemination

By default, each document created within Grid4All is © Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implementation
plan, all deliverables listed in section 7.7 have a specific dissemination level. This dissemination level shall
be mentioned in the document (a specific section for this is included in the template, both on the cover page
and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:
PU = Public

PP = Restricted to other programme participants (including the EC services);

RE = Restricted to a group specified by the Consortium (including the EC services);

CO = Confidential, only for members of the Consortium (including the EC services).

Grid4All Confidential Page 86

D2.3 Specification and Initial prototype of G4A resource management system Grid4All-034567
11-07-2008

INT = Internal, only for members of the Consortium (excluding the EC services).
This level typically applies to internal working documents, meeting minutes etc., and cannot be used for

contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case, a
new document code should be given so as to distinguish between the different versions.

Grid4All Confidential Page 87

