
Project no. 034567

Grid4All

Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies

Deliverable 3.1
Requirements analysis, design and implementation plan

of Grid4All data storage and sharing facilities

Due date of deliverable: June 2007.

Actual submission date: 20 June 2007.

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA Regal

Revision: 2007-06-20

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

√

D 3.1
Grid4All–034567

26th June 2007

Grid4All Confidential Page D.3.1–0

D 3.1
Grid4All–034567

26th June 2007

Preamble

This document, Deliverable 3.1 “Requirements analysis, design and implementation plan of Grid4All
data storage and sharing facilities”, comprises the following parts:

Chapter I Semantic Store
Chapter II Collaborative Applications
Chapter III VO-Aware File system
Appendix I Telex application API

The pages of each part are numbered separately.

Grid4All Confidential Page D.3.1–1

D 3.1
Grid4All–034567

26th June 2007

Level of confidentiality and dissemination

By default, each document created within Grid4All is c© Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.
PP = Restricted to other programme participants (including the EC services).
RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.

Grid4All Confidential Page D.3.1–2

Project no. 034567

Grid4All

Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies

Deliverable 3.1: Requirements analysis, design and
implementation plan of Grid4All data storage and

sharing facilities - Chapter I

Due date of deliverable: June, 2007.

Actual submission date: June, 2007.

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA Regal

Revision: Submitted 2007-06-20

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Contents

1 Introduction D 3.1-Chapter I–6

2 State of the art D 3.1-Chapter I–7
2.1 Data replication techniques . D 3.1-Chapter I–7

2.1.1 Single vs. multiple masters . D 3.1-Chapter I–7
2.1.2 Full replication vs. partial replication . D 3.1-Chapter I–8
2.1.3 Synchronous vs. asynchronous systems D 3.1-Chapter I–8

2.2 Optimistic replication . D 3.1-Chapter I–10
2.2.1 DNS . D 3.1-Chapter I–10
2.2.2 LOCUS . D 3.1-Chapter I–10
2.2.3 TSAE . D 3.1-Chapter I–11
2.2.4 Ramsey and Csirmazs’ file system . D 3.1-Chapter I–11
2.2.5 Unison . D 3.1-Chapter I–11
2.2.6 CVS . D 3.1-Chapter I–11
2.2.7 Harmony . D 3.1-Chapter I–11
2.2.8 Bayou . D 3.1-Chapter I–11
2.2.9 OceanStore . D 3.1-Chapter I–12
2.2.10 IceCube . D 3.1-Chapter I–12
2.2.11 Distributed log-based reconciliation . D 3.1-Chapter I–12

2.3 Replication in P2P systems . D 3.1-Chapter I–12
2.3.1 Napster . D 3.1-Chapter I–12
2.3.2 Gnutella . D 3.1-Chapter I–13
2.3.3 Chord . D 3.1-Chapter I–13
2.3.4 CAN . D 3.1-Chapter I–14
2.3.5 Pastry . D 3.1-Chapter I–14
2.3.6 Freenet . D 3.1-Chapter I–15
2.3.7 Past . D 3.1-Chapter I–16
2.3.8 DKS . D 3.1-Chapter I–16

3 Requirement analysis D 3.1-Chapter I–17
3.1 Functional requirements . D 3.1-Chapter I–17

3.1.1 Semantic store . D 3.1-Chapter I–17
3.1.2 Integration with VOFS . D 3.1-Chapter I–17

3.2 Technical requirements . D 3.1-Chapter I–18
3.2.1 Semantic store . D 3.1-Chapter I–18
3.2.2 Integration with VOFS . D 3.1-Chapter I–18

4 Semantic store - Telex D 3.1-Chapter I–19
4.1 Data structures . D 3.1-Chapter I–19

4.1.1 Document . D 3.1-Chapter I–19
4.1.2 Multi-log . D 3.1-Chapter I–20
4.1.3 Action . D 3.1-Chapter I–20
4.1.4 Constraint . D 3.1-Chapter I–21
4.1.5 Filter . D 3.1-Chapter I–21
4.1.6 Snapshot . D 3.1-Chapter I–22

4.2 Architecture and basic operation . D 3.1-Chapter I–23

Grid4All Public Page D 3.1-Chapter I–1

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

4.2.1 Scheduler . D 3.1-Chapter I–24
4.2.2 Replica reconciler . D 3.1-Chapter I–25
4.2.3 Transmitter and Logger . D 3.1-Chapter I–26

4.3 Advanced features . D 3.1-Chapter I–28
4.3.1 Bound documents . D 3.1-Chapter I–28
4.3.2 Functional extensions . D 3.1-Chapter I–30

4.4 Document implementation . D 3.1-Chapter I–30
4.4.1 Internal structure . D 3.1-Chapter I–31
4.4.2 Access control . D 3.1-Chapter I–31

4.5 Application API . D 3.1-Chapter I–31

5 Interfacing Telex with VOFS D 3.1-Chapter I–33
5.1 Enhanced services . D 3.1-Chapter I–33

5.1.1 File replication . D 3.1-Chapter I–33
5.1.2 Event notification . D 3.1-Chapter I–34
5.1.3 Communication . D 3.1-Chapter I–35

5.2 API . D 3.1-Chapter I–35

Grid4All Public Page D 3.1-Chapter I–2

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Abbreviations used in this document

Abbreviation/acronym Description

ACF Action Constraint Formalism
Grid4All The FP6 STREP project that aims to democratise access to the

Grid, through the use of peer-to-peer technologies. The co-
ordinator is France Télécom; the other partners are a SME from
Spain, and research labs from Greece, France, Spain, and Swe-
den.

VO Virtual Organization
VOFS VO-aware File System

Grid4All Public Page D 3.1-Chapter I–3

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Grid4All list of participants

Part.
Role Part. Participant name short Country

name
CO 1 France Telecom FT FR
CR 2 Institut National de Recherche en Informatique en

Automatique
INRIA FR

CR 3 The Royal Institute of technology KTH SWE
CR 4 Swedish Institute of Computer Science SICS SWE
CR 5 Institute of Communication and Computer Systems ICCS GR
CR 6 University of Piraeus Research Center UPRC GR
CR 7 Universitat Politècnica de Catalunya UPC ES
CR 8 ANTARES Produccion & Distribution S.L. ANTARES ES

Grid4All Public Page D 3.1-Chapter I–4

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Preamble

This document is the Chapter I of Deliverable 3.1 ”Requirements analysis, design and implemen-
tation plan of Grid4All data storage and sharing facilities”, which comprises the following parts:

Chapter I Semantic Store
Chapter II Collaborative Applications
Chapter III VO-Aware File system
Appendix I Telex application API

The following persons contributed to this chapter: Sarfraz Ashfaq INRIA-Atlas, Lamia Ben-
mouffok INRIA-Regal, Jean-Michel Busca INRIA-Regal, Maria Gradinariu INRIA-Regal, Esther
Pacitti INRIA-Atlas, Marc Shapiro INRIA-Regal, Pierre Sutra INRIA-Regal, Patrick Valduriez INRIA-
Atlas, Martin Vidal INRIA-Atlas.

Grid4All Public Page D 3.1-Chapter I–5

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

1 Introduction

Grid4All aims at supporting collaborative applications in a peer-to-peer (P2P) environment. Col-
laboration raises a key problem in distributed systems: access to shared and mutable data, and
this problem is even more difficult in a P2P systems due to the volatility of the participants.

A possible approach is optimistic replication (OR). OR decouples data access from network
access: it allows a processor to access a local replica without synchronising. A processor makes
progress, executing uncommitted actions, even while others are slow or unavailable. Local exe-
cution is tentative and actions may roll back later. An OR system propagates updates lazily, and
ensures consistency by a global a posteriori agreement on the set and order of actions.

However previous implementations of OR do not take into account the semantics of the col-
laboration. Therefore they are either incomplete, or inefficient, or both. For instance, many
algorithms implement a total order, which is inefficient in the common case where many actions
commute.

In our previous work, we brought semantics to OR and proposed the Action Constraint Frame-
work (ACF), which is especially well suited for collaborative applications. In the ACF, a shared
document is represented by a set of actions (or operations) submitted by users, and the set of
constraints between those actions, expressing the semantics. A formal description of the ACF
can be found in Grid4All Deliverable D1.3.

We are currently developing a middleware system, called Telex, that provides communication
and consistency services based on this model. Developpers may focus on the core functionalities
of their application, leaving the difficult issues of managing consistency to Telex. We propose to
re-use and adapt Telex in order to implement the Semantic Store layer of Grid4All. Telex will
enable collaboration in P2P environments, based on optimistic replication and semantic-aware
agreement.

This chapter describes the Telex midddleware and its use within the Grid4All project. The
chapter is organized as follows. Section 2 studies the state of the art on semantic replication
and storage. Section 3 analyzes the requirements of the semantic store. Section 4 describes in
detail the architecture of Telex and its operation. Finally, section 5 describes how Telex interfaces
with the underlying VOFS/VOFS in Grid4All. The interface that Telex exposes to application is
described in detail in Appendix I.

Grid4All Public Page D 3.1-Chapter I–6

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

2 State of the art

This section describes the state of the art of data replication in P2P systems. A more compre-
hensive survey can be found in Martins et al. [30].

We first present an overview of data replication, within the larger area of distributed systems.
Then we focus on the optimistic approach, which supports good properties for dynamic environ-
ments. Finally we expose data replication techniques in the particular context of P2P systems.

2.1 Data replication techniques

Data replication consists of maintaining multiple copies of data objects, called replicas, on sepa-
rate sites [43]. An object is the minimal unit of replication in a system. For instance, in a replicated
relational database, if tables are entirely replicated then tables correspond to objects; however, if
it is possible to replicate individual tuples, then tuples correspond to objects. Other examples of
objects include XML documents, typed files, multimedia files, etc. A replica is a copy of an object
stored on a site. We call state the set of values associated with an object or a replica at a given
time.

Data replication is very important in the context of distributed systems for several reasons.
First, replication improves the system availability by removing single points of failures (objects
are accessible from multiple sites). Second, it enhances the system performance by reducing
the communication overhead (objects can be located closer to their access points) and increases
the system throughput (multiple sites serve the same object simultaneously). Finally, replication
improves the system scalability as it supports the growth of the system with acceptable response
times. However, data replication in distributed system has a major issue: how to manage replicas,
or equivalently how to manage updates.

Gray et al. [20] classify replica control mechanisms according to two parameters: where
updates take place (i.e., which replicas can be updated), and when updates are propagated to
all replicas to be executed. According to the first parameter (i.e., where), replication protocols
can be classified as single-master or multi-master solutions, as described in sub-section 2.1.1.
According to the second parameter (i.e., when), update propagation strategies are divided into
synchronous (eager) and asynchronous (lazy) approaches, as described in sub-section 2.1.3.
The replica control mechanisms are also affected by the way in which replicas are distributed
over the network (replica placement). Sub-section 2.1.2 discusses the full and partial replication
alternatives.

2.1.1 Single vs. multiple masters

A replica of an object can be classified as primary copy or secondary copy according to its
updating capabilities. A primary copy accepts read and write operations and is held by a master
site. A secondary copy accepts only read operations and is held by a slave site.

In the single-master approach, there is only a single primary copy for each replicated object.
In this case, every update is first applied to the primary copy at the master site, and then it is
propagated towards the secondary copies held by the slave sites. Due to the interaction between
master and slave sites, this approach is also known as master/slave replication. Centralizing
updates at a single copy avoids concurrent updates on different sites, thereby simplifying the
concurrency control. In addition, it ensures that one site has the up-to-date values for an ob-
ject. However, this centralization introduces a potential bottleneck and a single point of failure.
Therefore, a failure in a master site blocks update operations, and thus limits data availability.

Grid4All Public Page D 3.1-Chapter I–7

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

In the multi-master approach, multiple sites hold primary copies of the same object. All these
copies can be concurrently updated, wherefrom the multi-master technique is also known as
update anywhere. Distributing updates avoids bottlenecks and single points of failures, thereby
improving data availability. However, and in order to ensure data consistency, concurrent updates
to different copies must be coordinated and a reconciliation procedure must be applied to ensure
the consistency between replicas.

2.1.2 Full replication vs. partial replication

Replica placement over the network directly affects the replica control mechanisms. Full repli-
cation consists of storing a copy of every shared object at all participating sites. This approach
provides simple load balancing since all sites have the same capacities, and maximal availability
as any site can replace any other site in case of failure.

With partial replication, each site holds a copy of a subset of shared objects, so that the
objects replicated at one site may be different of the objects replicated at another site. This ap-
proach expends less storage space and reduces the number of messages needed to update
replicas since updates are only propagated towards some sites. However, if related objects are
stored at different sites, the propagation protocol becomes more complex as the replica place-
ment must be taken into account. In addition, this approach limits load balancing since certain
sites are not able to execute a particular set of transactions.

2.1.3 Synchronous vs. asynchronous systems

In distributed database systems, data access is done via transactions. A transaction is a se-
quence of read or/and write operations followed by either a commit or abort, if the transaction
does not complete successfully. A transaction that updates a replicated object must be propa-
gated to all sites that hold replicas of this object in order to keep its replicas consistent. Such
update propagation can be done within the transaction boundaries or after the transaction com-
mit. The former is called synchronous, and the latter asynchronous propagation.

Synchronous propagation The synchronous update propagation approach (a.k.a. eager) ap-
plies changes to all replicas within the context of the transaction that initiates the update. As a
result, when the transaction commits, all replicas have the same state.

This mechanism is achieved by using concurrency control techniques such as two-phase
locking (2PL) [47] or timestamp based algorithms. In addition, a commitment protocol like two-
phase commit (2PC) [47] can be run to provide atomicity (either all transactions’ operations are
completed or none of them are). Thus, synchronous propagation enforces mutual consistency
among replicas. Bernstein et al. [7] define this consistency criteria as one-copy serializability,
i.e., despite the existence of multiple copies, an object appears as one logical copy (one-copy
equivalence). Namely a set of accesses to the object on multiple sites is equivalent to the serial
execution of these accesses on a single site.

Early solutions [5, 45] use synchronous single-master approaches to ensure one-copy seri-
alizability. However, most of the algorithms avoid this centralized solution and follow the multi-
master approach by accessing a sufficient number of copies. For instance, in the ROWA (read-
one/write-all) approach [7], read operations are done locally while write operations access all
copies. ROWA is not fault tolerant since the update processing stops whenever a copy is not
accessible. ROWAA (read-one/write-all-available) [6] overcomes this limitation by updating only
the available copies. Another alternative are quorum protocols [17, 22], which can succeed as

Grid4All Public Page D 3.1-Chapter I–8

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

long as a quorum of copies agrees on executing the operation. Other solutions combine ROWA/
ROWAA with quorum protocols [16, 2].

More recently, Kemme and Alonso [26] proposed new protocols for eager replication that take
advantage of group communication systems, avoiding some performance limitations of existing
protocols. Group communication systems [10] provide group maintenance, reliable message
exchange, and message ordering primitives between groups of nodes. The basic mechanism
behind these new protocols is to first perform a transaction locally, deferring and batching writes
to remote replicas until transaction commit time. At commit time all updates (the write set) are
sent to all replicas using a total order multicast which guarantees that all nodes receive all write
sets in exactly the same order. As a result, no two-phase commit protocol is needed and no
deadlock can occur. Following this approach, Jiménez-Peris et al. [23] show that the ROWAA
approach, instead of quorums, is the best choice for a large range of applications requiring data
replication in cluster environments. Next, in [29] the most crucial bottlenecks of the existing
protocols are identified, and optimizations are proposed to alleviate these problems, making one-
copy serializability feasible in WAN environments of medium size.

The main advantage of the synchronous propagation is to avoid divergences among replicas.
This enables local reads since transactions surely take up-to-date values. The drawback is that
the transaction has to update all replicas before committing. If one replica is unavailable, this can
block the transaction, making synchronous propagation unsuitable for dynamic networks such as
P2P. In addition, the transaction response times and the communication costs increase with the
number of replicas and, for these reasons, this approach does not scale beyond a few tens of
sites.

Asynchronous propagation The asynchronous update propagation approaches (a.k.a. lazy)
do not change all replicas within the context of the transaction that initiates the updates. Indeed,
the initial transaction commits as soon as possible, and afterwards the updates are propagated to
all replicas. Asynchronous replication solutions can be classified as optimistic or non-optimistic
according to their assumptions concerning conflicting updates. In general, optimistic replication
relies on the assumption that conflicting updates will occur only rarely, if not at all. Updates are
therefore propagated in the background, and occasional conflicts are fixed after they happen.
In contrast, non-optimistic asynchronous replication assumes that update conflicts are likely to
occur and implements propagation mechanisms that prevent conflicting updates.

An advantage of the asynchronous propagation is that the update does not block due to
unavailable replicas, which improves data availability. In addition, communication is not needed
to coordinate concurrent updates, thereby reducing the transaction response times and improving
the system scalability. In particular, the optimistic asynchronous replication is much more flexible
than other approaches as the system can choose the appropriate time to propagate updates and
the application can progress over a dynamic network in which nodes can connect and disconnect
at any time. The main drawback of optimistic techniques is that replicas may diverge, and then
local reads are not guaranteed to return up-to-date values. The non-optimistic asynchronous
replication is not as flexible as the optimistic approach, but it provides up-to-date values for local
reads with high probability.

Non-optimistic approaches The goal of non-optimistic asynchronous solutions is to use lazy
replication while still providing one-copy serializability. Chundi et al. [13] have shown that se-
rializability cannot be guaranteed in all cases. To circumvent this problem, it is necessary to
restrict the placement of primary and secondary copies across the system. The main idea is
to define a set of allowed configurations using graphs, so that nodes represent sites and edges

Grid4All Public Page D 3.1-Chapter I–9

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

between sites represents links between primary and secondary copies of a given object. If this
graph is acyclic, serializability can be guaranteed by simply propagating updates sometimes after
transaction commits [13].

Pacitti et al. [32, 31] have enhanced these initial results by allowing certain cyclic configura-
tions. The replication algorithm assumes that (1) the network provides FIFO reliable multicast, (2)
an upper bound on the time to multicast a message from a node to node (noted Max) is known
and (3) that local clocks are ε-synchronized i.e., the difference between any two correct clocks
is not higher than ε). As a result, a transaction is propagated in at most Max + ε units of time
and thus chronological and total orderings are ensured with no coordination among sites. Ex-
perimental results show that such approaches ensure a consistency level equivalent to one-copy
serializability for normal workloads, and for bursty workloads the consistency level is still quite
close to one-copy serializability. Coulon et al. [15] have extended this solution to work properly in
the context of partial replication.

Breitbart et al. [8] propose alternative solutions. The first one requires acyclic directed config-
uration graphs (edges are directed from primary copy to secondary copy). The second solution, in
contrast, allows cyclic graphs, and applies lazy propagation along acyclic paths while eager repli-
cation is used whenever there are cycles. Since these approaches use lazy update propagation,
the state of a replica can be somewhat stale with respect to committed (validated) transactions.
Thus, the associated consistency criterion is freshness, which is defined as the distance between
two replicas wrt. validated transactions.

Optimistic approaches Contrasting with non-optimistic approaches, optimistic replication does
not aim at providing one-copy-serializability. Indeed, it assumes that conflicts are rare or do not
happen. Thus, the propagation of updates is done in background and replica divergences may
arise. Conflicting updates are reconciled later, which means that the application must tolerate
some level of divergence among replicas. This is acceptable for a large range of applications,
which are described in the following section.

2.2 Optimistic replication

This section presents several systems based on optimistic replication. In the description, we
focus on features that differentiate Telex from those systems.

2.2.1 DNS

The Domain Name System [4] is the standard hierarchical name service for the Internet. Names
for a particular zone (a subtree in the name space) are managed by a single master site that
maintains the authoritative database for that zone and optional slave sites that copy the database
from the master. The master and slaves can answer queries from remote sites.

2.2.2 LOCUS

LOCUS [33] is a distributed operating system composed by a replicated file system. The file
system uses version vectors to order updates on distinct replicas of the same object. A version
vector is an array of timestamps that allows the detection of conflicting updates. For LOCUS,
any two concurrent updates to the same object are in conflict. LOCUS automatically resolves
conflicts by taking two versions of the object and creating a new one.

Grid4All Public Page D 3.1-Chapter I–10

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

2.2.3 TSAE

Time-Stamped Anti-Entropy [18] uses real-time clocks to order operations. Basically, sites ex-
change vector clocks (i.e., arrays of timestamps) and acknowledge vectors in order to learn about
the progress of others, so that a site i is able to determine which operations have surely been
received by all sites at a given time. As a result, site i can safely execute these operations in the
timestamp order and delete them. TSAE does not perform any conflict detection or resolution. It
only needs to agree on the set of operations and their order.

2.2.4 Ramsey and Csirmazs’ file system

Ramsey and Csirmaz formally study the semantic of a simple file system that supports few op-
eration types, including create, remove, and edit [39]. For every possible pair of concurrent
operations, they define a rule that specifies how the operations interact and may be ordered.
Non-concurrent operations are executed in the submission order.

2.2.5 Unison

Unison [36] is a file synchronizer that reconciles two replicas of a file or directory based only on
the current states of the replicas (i.e., it does not use operation logs). Unison takes into account
the semantics of the file system when trying to merge two replicas. Non-conflicting updates are
automatically propagated, but nothing is done with conflicting updates. Thus, after reconciliation
replicas may hold different states.

2.2.6 CVS

The Concurrent Versions System [9] is a version control system that lets users edit a group of
files collaboratively and retrieve old versions on demand. A central site stores the repository that
contains authoritative copies of the files and the associated changes. Users create private copies
(replicas) of the files and modify them concurrently. After that, users commit private copies to the
repository. CVS automatically merges changes of distinct users on the same file if there is no
overlap. Otherwise, user must resolve conflicts manually.

2.2.7 Harmony

Harmony [35] is a generic framework for reconciling disconnected updates to heterogeneous,
replicated XML data. For instance, Harmony is used to reconcile the bookmarks of multiple web
browsers (Mozilla, Safari, OmniWeb, Internet Explorer, and Camino). This application allows
bookmarks and bookmark folders to be added, deleted, edited, and reorganized by different
users on disconnected machines. Similar to Unison, Harmony takes only replica states and it
does not resolve update conflicts.

2.2.8 Bayou

Bayou [34] is a research mobile database system that lets a user replicate a database on a mobile
computer, modify it while disconnected, and synchronize with any other replica of the database
that the user happens to find. In Bayou, each operation has attached a dependency check and
a merge procedure. The dependency check is run to verify if the operation conflicts with others
whereas the merge procedure is executed to repair the replica state in case of conflict. In Bayou,
a single primary site decides which operations should be committed or aborted and notifies other
sites about the sequence in which operations must be executed. Anyway, Bayou remains different

Grid4All Public Page D 3.1-Chapter I–11

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

from single-master systems as it allows any site to submit operations and propagate them, letting
users to quickly see the operations effects. In single-master systems, only the master can submit
updates.

2.2.9 OceanStore

OceanStore [28] is a peer-to-peer distributed storage that targets groupware applications, as
Grid4All does. It provides an update model based on conflict resolution, derived from that of
Bayou. However the conflict resolution uses centralization points called primary tiers, which may
render it unsuitable for large scale cooperative applications.

2.2.10 IceCube

Icecube [38, 37] is a general-purpose reconciliation system that exploits the application semantics
to resolve conflicting updates. In IceCube, update operations are called actions and are stored
in logs. IceCube captures the application semantics by means of constraints between actions. It
treats reconciliation as an optimization problem where the goal is to find the largest set of actions
that honor the stated constraints. Reconciliation is performed by a master site, which propagates
the outcome to other sites.

2.2.11 Distributed log-based reconciliation

Chong and Hamadi [11] propose distributed algorithms for log-based reconciliation constructed
upon the formal framework introduced in IceCube. Actions and constraints are partitioned in a set
of nodes that locally compute the largest set of non conflicting actions, and then combine these
local solutions into a global consistent distributed solution. This approach requires an ordering
between nodes that share constraints.

So far, we have seen replication solutions in the context of distributed systems. However,
P2P systems have specificities that have lead to a panel of adhoc techniques detailed in the next
section.

2.3 Replication in P2P systems

P2P systems allow decentralized data sharing, distributing data storage across all peers of a
P2P network. Since these peers can join and leave the system at any time, the shared data
may become unavailable. To cope with this problem, P2P systems replicate data over the P2P
network.

In this section, we present the main existing P2P systems from the perspective of data man-
agement and we discuss the corresponding data replication solutions. Throughout this section
we assume that the reader has a good knowledge of P2P systems. For a survey of P2P systems
please refer to Grid4All Deliverable D1.1.

2.3.1 Napster

Napster [1] is a P2P system supported by a super-peer network which relies on central servers to
mediate node interactions. Any peer that shares files connects to a super-peer and publishes the
files it holds. The super-peer, in turn, keeps connection information (e.g., IP address, connection
bandwidth) and a list of files provided by each peer.

Grid4All Public Page D 3.1-Chapter I–12

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

In order to retrieve a file from the overall P2P network, a peer sends a request to the super-
peer, which searches for matches in its index and returns a list of peers that hold the desired file.
The peer that has submitted the query then opens direct connections with one or more peers
belonging to the super-peer reply and downloads the desired file.

Napster relies on replication for improving files availability and enhancing performance, but
it does not implement a particular replication solution. Indeed, replication occurs naturally as
nodes request and copy files from one to another. This is referred as passive replication. Napster
is simple to implement and efficient for locating files, but it has two main limitations. First, it stores
read-only data (e.g., music files). Second, super-peers constitute single points of failure and are
vulnerable to malicious attack.

2.3.2 Gnutella

Gnutella [24] is a P2P file sharing system built on top of an IP network service. Its overlay network
is unstructured. In order to obtain a shared file, the node that requests the file (the requestor)
must perform three tasks: join the Gnutella network, search the desired file, and download it.

To join the Gnutella network, the requestor connects to a set of nodes already joined (a boot-
strap list is available in databases such as gnutellahosts.com’s one) and sends them a request.
Each of these nodes receiving this request send back a message containing its IP and port as
well as the number and size of its shared files; and in addition, it propagates the announcement
request to its neighbors.

Once joined, the requestor can search the desired file. The searching mechanism starts with
a query message q sent by the requestor to its neighbors and distributed throughout the network
by flooding . Replies to q are routed back along the opposite path through which q arrived. A
reply of a host that can satisfy q is called query hit and contains the IP, port, and speed of the
host. When the requestor receives a query hit message, it directly connects to the node that holds
the desired file and performs the download. In order to improve efficiency and preserve network
bandwidth, duplicated messages are detected and dropped. And in addition, the message spread
is limited to a maximum number of hops.

As Napster, Gnutella implements passive replication, i.e., a file is only replicated at nodes
requesting the file. To improve locality of data, as well as availability and performance, active
replication methods were proposed in which files may be proactively replicated at arbitrary nodes.
However, Gnutella keeps on a major limitation, namely it deals with read-only files.

2.3.3 Chord

Chord [44] is a P2P routing and location system on top of a DHT overlay network. Chord uses
consistent hashing [25] for mapping data keys to nodes responsible for them.

The consistent hash function assigns each node and key an m-bit identifier using a base hash
function such as SHA-1. The identifier length m must be large enough to make the probability
of two nodes or keys hashing to the same identifier negligible. A node identifier is chosen by
hashing the node’s IP address, while a key identifier is produced by hashing a data key. All node
identifiers are ordered in a circle modulo 2m. A data key k is assigned to the first node whose
identifier is equal to or follows k in the identifier space. The use of consistent hashing tends to
balance load as each node receives roughly the same number of keys.

Chord does not implement data replication; it delegates this responsibility to the application.
However, it proposes that the application implements replication by storing the object under sev-
eral keys derived from the data’s application level identifier. Knezevic et al. [27] realizes this
purpose assuring that in case of concurrent updates on the same replicated object only one peer

Grid4All Public Page D 3.1-Chapter I–13

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

completes the operation. In addition, missing replicas are proactively recreated within refresh-
ment rounds. This approach gives probabilistic guarantees on accessing correct data at any point
in time. Akbarinia et al. [3] use multiple hash functions to produce several key identifiers from a
single key. They allow updating replicas of the same object in parallel and rely on timestamps to
automatically resolve conflicts. This approach provides probabilistic guarantees of consistency
among replicas; however, conflicting updates might cause lost updates.

In [19] the authors introduce propose a lighweight replication service on top of Chord that
aims at reducing the nodes load. The authors propose a generic algorithm LAR and evaluates
its performances while it runs on top of Chors. LAR takes a minimalist approach to replication.
Servers periodically compare their load to local maximum and desired loads. High load causes a
server to attempt creation of a new replica usually the sender of the last message. Since servers
append load information to messages that they originate, .downstream. servers have recent
information on which to base replication decisions. Information about new replicas is then spread
on subsequent messages that contain requests for the same data item.

Replication on top of Chord was recently addressed in [12]. The authors propose a simple a
efficient replication on top of Chord.

A major limitation of Chord is that the user cannot control data placement.

2.3.4 CAN

CAN (Content Addressable Network) [40] relies on a structured P2P network that resembles
a hash table. It uses a virtual d-dimensional Cartesian coordinate space to store and retrieve
(key,value) pairs. This coordinate space is completely logical as it is not related to any physical
coordinate system. At any point in time, the entire coordinate space is dynamically partitioned
among all nodes in the system, so that each node owns a distinct zone that represents a segment
of the entire space.

From the replication perspective , CAN assumes immutable (read-only) content and similarly
to Chord, the main limitation of CAN is that the user cannot control data placement. The two
approaches proposed in CAN to ensure replication are the following:

• The first one is to use m hash functions to map a single key onto m points in the coordi-
nate space, and, accordingly, replicate a single (key,value) pair at m distinct nodes in the
network (similarly to Chord’s solution).

• The second approach represents an optimization over the basic design of CAN that con-
sists of node n proactively pushing out popular keys towards its neighbors when n finds it
is being overloaded by requests for these keys. In this approach, replicated keys should
have an associated time-to-live field to automatically undo the effect of replication at the
end of the overloaded period.

CAN infrastructure was recently used in publish/subscribe [21] systems in order to store in a
persistant way the subscribtions keys. The CAN grid is devised in two parts following the main
diagonal. All data stored above the main diagonal is replicated in the zones situated under the
main diagonal.

2.3.5 Pastry

Pastry [41] is a P2P infrastructure intended for supporting a variety of P2P applications like global
file sharing, file storage, group communication, and naming systems. Pastry is built on top of a
structured overlay network.

Grid4All Public Page D 3.1-Chapter I–14

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Each node in the Pastry network has a 128 bits long identifier. Node identifiers are ordered
in a circle like Chord identifiers. Data placement in Pastry is also similar to Chord, i.e., an object
identified by key is stored at the node whose id is closest to key.

Contrasting with Chord, Pastry takes latency into account to establish node’s neighborhoods.
For routing a message looking for a certain key k, each node forwards this message to its neigh-
bor whose id is the most similar to k. In addition, the application is notified at each Pastry node
along the message route, and may perform application-specific computations related to the mes-
sage.

Pastry does not implement object replication directly, but it provides functionalities that enable
an application on top of Pastry to easily take advantage of replicas. First, Pastry can route a
message that looks for key to the k nodes whose ids are closest to key. As a result, a file storage
application, for instance, can assign a key to a file (e.g., using a hash function on file’s name
and owner) and store replicas of this file on the k Pastry nodes with ids closest to key. Second,
Pastry’s notification mechanisms allow keeping such replicas available despite node failures and
node arrivals, using only local coordination among adjacent nodes.

2.3.6 Freenet

Freenet [14] is a distributed information storage system focused on privacy and security issues.
In FreeNet users contribute to the network by giving bandwidth and a portion of their hard drive
(called the ”data store”) for storing files. Unlike other peer-to-peer file sharing networks, Freenet
does not let the user control what is stored in the data store. Instead, files are kept or deleted
depending on how popular they are, with the least popular being discarded to make way for
newer or more popular content. Files in the data stor e are encrypted to reduce the likelihood
of prosecution by persons wishing to censor Freenet content. Concerning the underlying P2P
network, Freenet is often qualified as loosely structured network since the policies it employs to
determine the network topology and data placement are not deterministic.

To add a new file, a user sends an insert message to the system, which contains the file
and its assigned location-independent globally unique identifier (GUID). The file is then stored in
some set of nodes. During the file’s lifetime, it might migrate to or be replicated on other nodes.
To retrieve the file, a user sends out a request message containing the GUID key. When the
request reaches one of the nodes where the file is stored, that node passes the data back to the
request’s originator.

Every node in Freenet maintains a routing table that lists the addresses of other nodes and
the GUID keys it thinks they hold. When a node receives a query, if it holds the requested file,
it returns this file with a tag identifying itself as the data holder. Otherwise, the node forwards
the request to the node in its table with the closest key to the one requested, and so forth. If the
request is successful, each node in the chain passes the file back upstream and creates a new
entry in its routing table associating the data holder with the requested key. Depending on its
distance from the holder, each node might also cache a copy locally. An insert message follows
the same path that a request for the same key would take, sets the routing table entries in the
same way, and stores the file in the same nodes. Thus, new files are placed where queries would
look for them.

Data replication occurs as a side effect of search and insert operations. Searches replicate
data along the query paths (upstream). In the case of an update (which can only be done by
the data’s owner) the update is routed downstream based on keys similarities. Since the rout-
ing is heuristic and the network may change without notifying peers updates may be lost and
consistency is not guaranteed.

Grid4All Public Page D 3.1-Chapter I–15

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

2.3.7 Past

PAST [42] is a P2P file storage system that relies on Pastry to provide strong persistency and high
availability of immutable (read-only) files on the Internet. The PAST system offers the following
operations: insert, lookup, and reclaim.

The insert operation stores a file in k distinct nodes within the PAST network. The lookup
operation reliably retrieves a copy of the desired file if it exists in PAST and if at least one of the
k nodes that store the file is reachable. Then the file is normally retrieved from a live node “near”
(in terms of latency) the PAST node issuing the

The reclaim operation reclaims the storage occupied by the k copies of a file. Once the
operation completes, PAST no longer guarantees the success of lookup operations. Reclaim is
different from delete because the file may remain available for a while.

Replica management in PAST is based on Pastry’s functionalities.

2.3.8 DKS

DKS is a familly of infrastructures for P2P systems. Each search in DKS is resolved in logk(N)
steps. To ensure this, each node is present at logk(N) levels in the hierarchical overlay DKS. At
each level a node has a view. Each view is composed of k equal parts disjoint (intervals) of the
identifier space. For each interval in a node n view, DKS maintains a contact point that the node
will contact whenever it wishes to reach some keys in the respective view.

On top of DKS was proposed a replication service based on the symmetry principle. The
main idea behind symmetric replication is that each identifier in the system is associated with
f other identifiers. If identifier i is associated with identifier r, then any item with identifier i is
stored at the peers responsible for identifiers i, and r. Similarly, any item with identifier r is also
stored at the peers responsible for the identifiers i, and r. The identifier space is partitioned into
N
f equivalence classes such that identifiers in an equivalence class are all associated with each

other. To replicate items in this scheme, the responsible peer of identifier i stores every item with
an identifier associated with i. This implies that to find an item with identifier i, a request can be
made for any of the identifiers associated with i.

Grid4All Public Page D 3.1-Chapter I–16

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

3 Requirement analysis

Requirements on the semantic store stem from both the limitations of existing OR systems and
the large-scale, dynamic, P2P nature of the Grid4All environment. We divide the requirements
on the semantic store into functional and technical requirements. The former relate to what
end users expect from the semantic store, whereas the latter address architectural, engineering
and ressource usage issues. We further distinguish requirements regarding the semantic store
itself, and those regarding the integration of the semantic store with the underlying VOFS. Next
paragraphs address each of these aspects.

3.1 Functional requirements

3.1.1 Semantic store

Users connected at different locations and/or times should be able to create, view, and update
shared documents. When collaboratively editing a document, users should be able to make
progress despite conflicts that may arise.

In order to be relevant, conflict detection and resolution should take semantics into account.
All possible levels of semantics should be adressed: data semantics, application semantics and
user intents.

Users should be able to define their own view of a shared document. For instance, they
should see each other updates in real time in the case of shared whiteboard. On the other hand,
they should be able to select a personalized view where other updates are ignored when editing
a text document, in order not to be distracted by group activity.

The semantic store should helps users with reconciliation when conflict occurs. It should
present users with alternative solutions to the conflict, and let users choose the one they prefer.
For instance, they should be able to retain the most important update, or minimize the amount of
lost work.

Users should be able to define semantic constraints between two or more documents, in order
to enforce consistency accross documents. This should be allowed even if these documents are
processed by distinct applications.

Users should be able to access and modify a shared document regardless of their being con-
nected or disconnected to/from other Grid4All computers. The only change they should perceive
is the frequency of updates of the document’s contents.

3.1.2 Integration with VOFS

The semantic store will allow users to share documents with rich semantics and that are updated
by multiple writers. However, we expect Grid4All users to also share files with simple structure or
that are updated by a single writer. Handling these plain files does not require the services of the
semantic store and thus they will be stored directly in the VOFS for simplicity.

Users should be able to store, designate and manipulate semantic store documents and plain
files in the same way. In particular, semantic store documents and plain files should share the
same name space and the same storage ressources. As for plain files, users should be allowed
to copy, move and delete a semantic store document and to change its access rights.

Just as VOFS guarantees ubiquitous access to plain files, the semantic store should not
assume that users are tied to a specific computer of the system. Instead, users should be allowed
to move from one computer to another and still access semantic store documents without any
loss of functionality or performance.

Grid4All Public Page D 3.1-Chapter I–17

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

3.2 Technical requirements

3.2.1 Semantic store

The architecture of the semantic store should be fully P2P and it should respects the autonomy
of each site. In particular, the semantic store should not assume constant connectivity between
sites. It should also allow distributed conflict resolution, with no specific leader site.

The semantic store should allow several applications to concurrently use its services at any
one site. These applications should be able to run anaware of one another, unless they process
documents that are bound by cross-document constraints. Moreover, handling bound documents
should not require complex interfaces and synchronization mechanisms between applications.

The semantic store should optimize the use of the disk, CPU and network ressources re-
quired to store and process a shared document. In particular, logs should not be allowed to
grow indefinitely and document snapshots should be stored incrementally. Conflict resolution
and action scheduling should be performed only when necessary.

3.2.2 Integration with VOFS

Section 3.1.2 states that file commands such as copy, move, etc., should have their counterpart
for semantic store documents. To avoid developping a new set of commands, semantic store
documents should actually be handled through regular file system commands. This is particularly
important considering that a Grid4All system will aggregate computers with various operating
systems. This requirement implies that semantic store documents be stored under a regular file
system structure.

Grid4All Public Page D 3.1-Chapter I–18

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

4 Semantic store - Telex

We propose to use Telex as the semantic store layer of Grid4All. Telex enables collaborative
application by providing consistency services based on the Action Constraint Formalism (ACF).

Telex defines a document as the basic sharing unit. The current state of a document is
represented by the history of actions submitted by users to update the document. These actions
are bound by contraints that express the semantics of updates by defining scheduling invariants
between actions.

The ACF defines three elementary constraints: non-commuting, not-after and enables.
These constraints can be combined to express a wide range of semantics: data semantics, such
as commutativity and conflicts, application semantics, such as causal dependence or user intents,
such as atomicity. A detailed description of the ACF can be found in Grid4All Deliverable D1.3.

Telex replicates the history of actions and constraints across co-operating sites. Based on
locally-known actions and constraints, Telex computes sound schedules, i.e. sequences of ac-
tions that comply with constraints, and proposes them to the application for execution.

Telex ensures that co-operating sites eventually apply the same schedule on their local replica
by periodically running a distributed committment protocol. Each site votes for the schedule of its
choice, possibly specified by the local user. No site takes precedence over the others.

A user may select a particular view of a document by means of action filters. A filter defines
which actions of the document history Telex must exclude when computing sound schedules.
The user may define several filters on a document and dynamically add and remove them.

A user may take one or more snapshots of a document of particular interest to him. Telex
takes additional snapshots in order to speed up the traversal of action history. Snapshots are
also used as garbage collection points of the history of actions and constraints.

Although documents are the basic sharing unit, Telex does not assumes that documents are
always independent. Instead, it allows a user or an application to define a constraint between
actions of two distinct documents. In this case, Telex computes sound schedules over the actions
of all of the documents bound by constraints.

The remainder of this section is organized as follows. Subsection 4.1 presents the main data
structures of Telex. Subsections 4.2 to 4.4 describe the architecture of Telex and its operation.
Subsection 4.5 presents the interface that Telex exposes to applications.

4.1 Data structures

4.1.1 Document

The document is the basic data sharing unit in Telex. Figure 1 shows the various components of
a Telex document, as stored on persistent storage. These are:

• A multi-log. This is the main data structure, which represents the contents of the docu-
ment. It contains the history of actions and constraints submitted by users. The multi-log
is replicated asynchronously at each participating site.

• A set of user-defined action filters. Filters are saved as part of the persistent state of the
document, in a per-user name space. Filters are not replicated on each participating site.
Depending on Telex’s operating mode, described later, filters may however be accessible
from all sites.

• A set of user-defined state snasphots. Snapshots are saved as part of the persistent state
of the document, in a per-user name space. Like filters, snasphots are not replicated but
may be accessible from all sites depending on Telex’s operating mode.

Grid4All Public Page D 3.1-Chapter I–19

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 1: Components of a Telex document.

These components are described in more detail below.

4.1.2 Multi-log

The multi-log is implemented as a set of logs, one per participating user. Each log is a sequence
of XML records representing either an action or a constraint.

To ease garbage-collection, Telex splits per-user logs into chunks, not shown on Figure 1.
Thus, triming the history of actions and constraints from the head simply amounts to delete some
log chunks.

4.1.3 Action

An action represents an application operation. As shown in Figure 2, it is described by several
attributes. Some are known to Telex, others are opaque. Attributes known to Telex are:

• issuer: the user that submitted this action.

• timestamp: the sequence number of this action, relative to issuer.

• time: the time this action was created.

• keys: keys identify the application object(s) that this action targets; their use is described
in section 4.2.1.

Opaque attributes are only used by the application. They describe the semantics of the
action. These are:

• operation: the application operation that this action corresponds to.

• arguments: the list of arguments of the operation.

• other: any application-specific information.

An action belongs to only one document. It is uniquely identified by the triple (document,
issuer, timestamp). Telex logs an action in the log of the user who issues it. The on-disk
representation of an action does not include its issuer attribute as it is implicit.

Grid4All Public Page D 3.1-Chapter I–20

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 2: Action and constraint attributes.

4.1.4 Constraint

A constraint reifies a semantic relation between two actions. As shown in Figure 2, it is composed
of the following attributes:

• issuer: the user that defined this constraint.

• type: the type of this constraint (non-commuting, not-after, etc.).

• action1, action2: the actions that this constraint binds.

• other: any application-specific information.

A constraint is uniquely identified by the triple (type, action1, action2). Telex logs a
constraint in the log of the user who issues it. The on-disk representation of a constraint does not
include its issuer attribute as it is implicit.

Most often, a constraint binds two actions of the same document, whether issued by the same
user or not. Such a constraint is called an intra-document constraint. However, a constraint may
bind actions of two distinct documents. Such a constraint is called a cross-document constraint.
It is then logged in both documents.

A constraint C references an action A by using one of the three following forms: (timestamp)
if A is issued by the same user as C and belongs to the same document, (issuer, timestamp)
if A belongs to the same document as C and (docId, issuer, timestamp) otherwise. In the
latter form, docId is the numerical id of the document that action A belongs to. This id is an
index in a document table that gives the full pathname of the document. This table, not shown
in Figure 1, is saved as part of the persistent state of the documents in which the constraint is
logged.

Figure 3 shows an example of the two types of constraint. Constraint C1 is an intra-document
constraint: it binds actions A1 and A2 of document1. Constraint C1 is issued by user1 and thus
it is logged in user1’s log of document1 . On the other hand, constraint C2 is a cross-document
constraint: it binds action A3 of document1 and action A4 of document2. Constraint C2 is issued
by user3 and thus it is logged in user3 ’s log of both document1 and document2.

4.1.5 Filter

A filter defines a set of actions that a user wishes to exclude from his view of the document. The
attributes of a filter are shown in Figure 1. To define a filter, a user specifies its name and one
or more filtering criteria. These criteria may relate to any attribute of an action. Using generic
attributes, a user may for instance filter out all of the actions issued by some user ui. He may
also filter out all of the actions that ui submitted after a specific action or after a specific time.

Grid4All Public Page D 3.1-Chapter I–21

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 3: Intra- and cross-document constraint logging.

User may dynamically assign and remove filters to/from a document. A given filter may be
assigned to one ore more documents. Telex saves the set of currently-defined filters as part the
persistent state of the document. It uses a distinct name-space for each user to avoid name
conflicts. When a user opens a document, Telex automatically loads and apply the filters that this
user have defined.

As shown in Figure 1, user may activate or de-activate a filter. When computing sound
schedules, Telex only applies the set of active filters. The activity status of a filter is saved as part
of the persistent state of the document when the document is closed.

Note that user may define a filter that targets a specific action of a document. By activating
and de-activating the filter, user may thus selectively undo and redo the corresponding action in
his view of the document. (To undo an action persistently, the user must abort it. By convention,
this is expressed by a reflexive before constraint on the action.)

4.1.6 Snapshot

A snapshot records the state of the document at a particular point in time. The attributes of
a snapshot are shown in Figure 1. To define a snapshot, a user specifies its name and the
schedule of actions whose execution yields the state being recorded. In addition, the application
may provide the corresponding binary state of the document. In this case, the snapshot is said
to be materialized.

The user may define any number of snapshots of interest to him, and later remove those that
are no longer useful. Telex saves the set of currently-defined snapshots as part the persistent
state of the document. It uses a distinct name-space for each user to avoid name conflicts.

When saving binary states on persistent storage, Telex optimizes disk utilization by using a
content-based naming scheme, as follows. Telex first splits state into fixed-size fragments and
computes the SHA-1 hash of each fragment. It then saves each fragment under the (file) name
representing its hash value. File names of fragments that make up the state are stored in a file
representing the snaphot. Thus, state fragments that remain unchanged from one snapshot to
another are reused instead of being stored twice. Moreover, fragments are stored in a space
common to all users, thus enabling fragment sharing between users. This is particularly useful
when dealing with large documents, such as video files.

The size of fragments is a parameter that application may specify on a per-document basis.

Grid4All Public Page D 3.1-Chapter I–22

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 4: Snapshots and state fragments.

Moreover, based on their knowledge of structure of the document state, applications may provide
a specific fragmentation scheme to Telex in order to improve fragment re-use.

Figure 4 illustrates the re-use and sharing of state fragments. It represents three material-
ized snapshots of the same document: snapshot11 and snapshot12, taken by user user1, and
snapshot21 taken by user2. Each of the corresponding binary states consists of five fragments.
In this example, snapshots snapshot12 and snapshot21 happen to represent the same docu-
ment state. Thus, although they are saved by distinct users, they share the same set of state
fragments. Snapshot snapshot12 was taken shortly after snapshot11 and it only differs from the
latter by fragments #2 and #5: fragments #1, #3 and #4 are re-used from snapshot snapshot11 .
(Note that this figure does not represent the schedule that each snapshot file normally contains.)

4.2 Architecture and basic operation

Figure 5 shows the overall architecture of a Telex instance. One such instance runs at each site
and communicates with remote instances.

On top of the figure are the applications using the services of Telex. Several such applications
may run concurrently at the same site. These applications may run on behalf of distinct users,
possibly belonging to distinct VO. A Telex application may be an application developped from
scratch on Telex, like the shared Calendar described in Chapter I. Or it may be a adapter layer
inserted beneath an existing application, like for example a database manager.

In the middle of the figure is the Telex middleware. It is composed of two main modules — the
scheduler and the replica reconciler — layered on top of two auxiliary modules — the transmitter
and the logger. Arrows in the figure represent invocation paths between Telex modules and
to/from applications.

Each application may open one or more documents. For each open document, Telex cre-
ates one instance of each module, which maintains the execution context of the document. The
only exception is when documents are bound by cross-document constraints, as described in
section 4.3.1.

Each document is associated with a set of Telex instances that collaboratively edit the docu-

Grid4All Public Page D 3.1-Chapter I–23

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 5: Telex architecture

ment, either at the same time, earlier or later. This set is specific to a document (or to a group of
documents) as a user is involved in several working groups in the general case.

The operation of each module is described next. In the description, the document refers
to the document the module has beeen instanciated for, the application is the application that
currently edits the document and peer instances refers to Telex instances that collaboratively edit
the document.

4.2.1 Scheduler

The role of the scheduler is twofold. First, it maintains an action-constraint graph that represents
the local state of the document. Second, it periodically computes sound schedules from this
graph and proposes them to the application for execution.

The action-constrain graph is the in-memory representation, at the local replica, of the docu-
ment’s multi-log. Actions and/or constraints are added to the graph either by:

• the application (arrow #1), when local user updates the document,

• the logger (arrow #2), when it receives an update issued by a remote user,

• the replica reconciler (arrow #3), when it commits a schedule.

The scheduler passes locally-submitted actions and constraints to the logger (arrow #4) to
log them on persistent storage.

Cross-site constraint generation Two Telex instances may concurrently submit semantically-
related actions. Thus, whenever a new action is addded to the graph, Telex must find out if a
constraint exists against concurrent actions, i.e. actions submitted by a site distinct from the one
submitting the new action. Telex does this in two steps. First, it quickly checks if any of the keys

Grid4All Public Page D 3.1-Chapter I–24

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

of the new action is identical to a key of a concurrent action. If so, Telex then asks the application
for constraints (arrow #5) and adds to the graph the constraints that the application returns, if any.

Action keys are thus used to improve performance of constraint checking by avoiding unnec-
essary upcalls to the application. Note that keys are opaque to Telex, which only tests them for
identity. The application uses keys as a compact (but approximative) representation of the ap-
plication objec(s) that the action uses or updates. Note that if two unrelated actions happens to
have equal keys, no harm is done other than a loss of performance.

Periodic schedule generation Computing sound schedules is CPU-intensive. To amortize
this cost, Telex computes schedules (arrow #6) only when one the following is true:

• The number of fragments added to the graph since the last round exceeds a given value
(threshold parameter).

• The time since a new fragment was added after the last round exceeds a given value (delay
parameter).

• The application explicitly requests schedule computing.

The application may set the threshold and delay parameters on a per-document basis and change
them over time. Specific values direct Telex to compute sound schedule whenever a new action
is added to the graph, or on application request only.

On-demand schedule generation A large number of sound schedules exist for any given
action-constraint graph in the general case. It is therefore not feasible to compute all sound
schedules beforehand and present them to the application. Besides, the application may be in-
terested only in a few or even just one schedule. For these reasons, Telex generates sound
schedules dynamically, upon application request (this is not shown in the figure). The applica-
tion may thus iterate through the proposed schedules and stops when one or more appropriate
schedules are found.

When generating a sequence of sound schedules, Telex runs a heuristic algorithm that tries
to satisfy the following properties:

• Only one of each set of equivalent schedules (according to non-commuting constraints)
should be handed to the application.

• In case of conflict between actions of local user and that of remote users, schedules con-
taining actions of local user should be handed to the application first.

• Schedules should include as many of the actions of the action-constraint graph as possible.

4.2.2 Replica reconciler

Peer instances may generate different sound schedules from the same action-constraint graph.
The role of the replica reconciler is to make peer instances agree on a common schedule to
apply and thus achieve (eventual) mutual consistency. The agreed-upon schedule is said to be
committed.

The replica reconciler implements a decentralized asynchronous commitment protocol based
on voting. Periodically or on user request, each site proposes and votes for one or more sched-
ules generated by the scheduler (arrow #7). Local user may specify the schedule(s) of his choice,
if any (arrow #8). Votes are sent to peer instances (arrow #9) and the schedule that receives

Grid4All Public Page D 3.1-Chapter I–25

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

(arrow #10) a majority or a plurality of votes is committed. The committed schedule is then mate-
rialized as a set of constraints added to the action-constraint graph (arrow #3).

An important feature of the protocol is that it is fully asynchronous. It runs in the background
and each instance determines locally when a schedule has won an election. Meanwhile, the
scheduler keeps proposing (tentative) sound schedules to the application.

Note also that the commitment protocol may run only on a subset of peer instances. More-
over, the voting process is automated and does not require user intervention.

The detailed protocol can be found in [46].

4.2.3 Transmitter and Logger

The transmitter provides a message-passing interface between local and peer intances. Its role is
twofold. First, it determines the set of peer instances that edit the document. Second, it provides a
broadcast service among peer instances (arrows #9 and #10). This service is best-effort: it does
not provide any ordering or delivery guarantee. Modules that use the transmitter must implement
a retransmission protocol if needed.

The logger interfaces the local Telex instance with persistent storage. Its role is to log ac-
tions and constraints submitted locally (arrow #4), while feeding the scheduler with actions and
constraints submitted by remote instances (arrow #2). Not shown in the figure, the logger is also
responsible for storing filters and snapshots. The logger hides to other modules the details of the
implementation of the document presented in section 4.4.

Operating mode Telex may run in two modes: stand-alone and above-VOFS. In stand-alone
mode, Telex does not use any external support. In above-VOFS mode, Telex leverages replication
and communication services that VOFS provides, as described in sections 5.1.1 and 5.1.3. This
allows users to manipulate Telex documents and plain files in the same way and to use Telex with
more flexibility.

The scheduler and the replica reconciler are not aware of the current operating mode. It only
affects the operation of the transmitter and the logger, as described next.

Stand-alone mode In stand-alone mode, each Telex instance is responsible for maintaining a
replica of the multi-log of the document at the local site. To do so, the transmitter embeds a P2P
communication library and it co-operates with the logger to implement and epidemic replication
protocol based on vector clocks.

In this mode, Telex knows peer instances through static configuration files. Thus, a user has
to configure these instances for each working group he belongs to. In addition, user mobility is
restricted because Telex does not provide any remote file access service. Consequently, filters
and snasphots are only available on the computer on which they were saved.

Figure 6 shows the interaction between the transmitter and the logger in stand-alone mode.
Messages exchanged between peer instances are of two types: votes for schedules and multi-log
records. The transmitter dispatches incoming messages according to their type. Vote messages
are passed to the replica reconciler, while multi-log messsages are handed to the logger. The
logger logs onto local storage all of the multi-log records it receives, whether local or remote.
Conversely, it sends through the transmitter all of the multi-log records that the local scheduler
submits.

Above-VOFS mode In above-VOFS mode, VOFS is responsible for maintaining a replica of
the multi-log of the document at each site that accesses it. VOFS also handles communication
between peer Telex instances: Telex does not use any internal communication library.

Grid4All Public Page D 3.1-Chapter I–26

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 6: Stand-alone operation

Figure 7: Above-VOFS operation

Grid4All Public Page D 3.1-Chapter I–27

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 8: Bound document processing, step 1.

In this mode, VOFS dynamically determines peer instances by keeping track of the computers
that open the document. VOFS also provides transparent access to remote files as a basic
service. Therefore, a user may access the filters and the snasphots that he has defined from any
computer. Thus, using Telex in VOFS mode eliminates the need of configuring peer instances
and enables user mobility.

Figure 7 shows the operation of the transmitter and the logger in Grid4All mode. Messages
exchanged between peer instances are only vote messages. Thus, the transmitter and the logger
do not interact, unlike in stand-alone mode. The transmitter passes all of the (vote) messages
it receives to the replica reconciler. Conversely, the logger does not send any multi-log record
through the transmitter since local updates are propagated to peer instances by the replication
service of VOFS.

4.3 Advanced features

Previous section described the basic operation of Telex. The following paragraphs present ad-
vanced features.

4.3.1 Bound documents

Bound documents are documents that are bound by one or more cross-document constraints.
This implies that the actions of a bound document can not be scheduled independently from
those of the documents it is bound to. In addition, bound documents may be handled by distinct
applications. For these reasons, they require special processing.

Telex processes bound documents in two steps, as follows. First, Telex merges the actions
and the constraints of the bound documents into a single shared action-constraint graph in order
to compute global schedules over all actions and constraints. This first processing step is shown
in Figure 8. In this example, documents document1 and document2 are bound by three cross-
document constraints. These bind actions 3 and B, 4 and D, 5 and B, respectively. Twelve global
schedules1 can be drawn from this graph, of which three are shown in the figure.

1There are two independant not-after cycles of three actions each and two not-commuting actions in every
schedule containing action D, which yields: 1(D)×3×2+2(6 D)×3 = 12

Grid4All Public Page D 3.1-Chapter I–28

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 9: Bound document processing, step 2.

Each global schedule generally contains actions from all bound documents. However, the
basic execution model of Telex assumes that an application applies to a specific document a
sequence of actions relating to this document. Thus, in order to execute a global schedule, Telex
must first project the schedule on each document, and then pass each projected schedule to the
relevant application for execution. The projection operation simply consists in retaining only those
actions that belong to the target document while preserving their order. This second processing
step is shown in Figure 9. Global schedules S1, S2 and S3 from previous example are each
projected on document1 and document2 , yielding a total of six projected schedules.

As with a non-bound document, global schedules over bound documents must be displayed
to the user, so that he can specify the schedule he prefers. As noted above, the applications that
handle the bound documents are likely to be distinct. From an engineering perspective, Telex
applications should remain as independent as possible, if not unaware of each other. Indeed, an
application cannot implement a specific interface to every other application in order to process
bound documents and to display global schedules.

To solve this problem, Telex implements a simple solution based on naming. In this solution,
applications do not interface with each other. They only interact with Telex through the basic
execution model, as for non-bound documents. As shown in Figure 8, Telex identifies each global
schedule with a unique identifier — S1, S2 and S3 in the example. It then assigns this identifier
to each projected schedule that derives from the global schedule, as shown in Figure 9. Finally,
applications indicate the identifier of the schedule corresponding to the state of the document
they are displaying. In this way, the user can identify matching schedules on each document. In
turn, he may specify the one he prefers through one application or the other. Telex will retrieve
the corresponding global schedule thanks to the unique identifier.

The identification of schedules can be achieved as shown in Figure 10. The figure represents
the display of the user and the two documents of the above example. These documents are
edited in a separate windows by their respective application, as if not bound. Each application
displays the possible states of the document in a distinct tab, named after the corresponding
schedule. Alternatively, applications may use a color code, info bubles or revision marks to identify
all possible state within a single tab or window.

Grid4All Public Page D 3.1-Chapter I–29

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 10: Displaying global schedules on bound documents.

4.3.2 Functional extensions

The scheduler and the replica reconciler modules described above implement general-purpose
algorithms that suit most needs. However, applications with specific requirements may replace
any of these modules with its own to override the default behaviour of Telex. Application-specific
modules must implement the same interface as their Telex counterpart and they must interact
with other modules as described in Figure 5.

As an example, the Calendar application described in Chapter I provides Telex with its own
replica reconciler. Indeed, no distributed commitment protocol is needed in this case since each
user must be free to arrange his own agenda.

Some other applications may choose to replace the default scheduler with one that gives
them full access to the action-constraint graph. In this way, these applications can compute
sound schedules by taking the semantics of actions into account, in addition to constraints.

4.4 Document implementation

Figure 11 depicts the actual layout of a Telex document on a file system. A document is imple-
mented as a directory that contains all of the items listed in pararagraph 4.1.1. This directory is
referred to as the root directory of the document.

Thanks to this implementation, a user may manipulate a Telex document as a single entity
and (almost) as simply as a plain file. Indeed, commands for copying, moving, deleting and
setting the access rights of files apply to directories with only minor changes in parameters on
most operating systems.

A user designates and manipulates a Telex document by specifying the pathname of its root
directory. The internal structure structure of the document remains opaque to the user and is
only known to Telex.

Next sections describe the internal structure of a Telex document and how access control is
achieved.

Grid4All Public Page D 3.1-Chapter I–30

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 11: Internal structure of a Telex document

4.4.1 Internal structure

As Figure 11 shows, the root directory is subdivised into sub-directories containing the multi-log,
filters and snapshots, respectively.

The Filters sub-directory contains user-defined filters. All of the filters defined by a user
are stored in a single file, named after this user.

The Multilog sub-directory contains log chunks. Each chunk is named after the user who
writes it and is suffixed with a sequence number relative to user. It is important to note that each
log chunk is thus a single-writer append-only file.

The Snapshots sub-directory contains user-defined snapshots and the corresponding state
fragments. Each snapshot is stored under the name assigned by the user, suffixed with the name
of the user. State fragments are stored under the value representing the hash of their contents.

When Telex runs in above-VOFS mode, a document also contains a file named channel.
This file materializes the communication channel used by peer instance of the document, as
explained in section 5.1.3.

4.4.2 Access control

Telex defines read and write permissions on a document. Telex only relies on the mechanisms
provided by the underlying file system to enforce access control. Applications may further re-
strict access rights with additional mechanisms of their own, but this is out of the scope of this
document.

4.5 Application API

Figure 12 gives an overview of the interface between Telex and the application. The interface
comprises downcalls (from application to Telex) and upcalls (from Telex to application) corre-
sponding to arrows #1, #5, #6 and #8 of Figure 5. Note that this figure does not mention miscel-
laneous calls, like calls that open or close a document, or get the status of a document.

Grid4All Public Page D 3.1-Chapter I–31

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 12: Telex Application API.

Figure 12 also shows the interaction between application and user. Solid lines denote calls
that are triggered only by the user. Dashed lines denote calls that may be triggered either by the
application or by the user.

The detailled description of the interface can be found in Appendix I.

Grid4All Public Page D 3.1-Chapter I–32

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 13: Sharing data through VOFS.

5 Interfacing Telex with VOFS

Telex interfaces with VOFS in order to store and retrieve Telex documents. Figure 13 illustrates
the basic principle of data sharing in Grid4All. In this example, three users share their files and
disk ressources through the VOFS. User user1 has created a plain file under the path/to/file
pathname in the VOFS. The file happens to reside on the computer of user1 because path/to
refers to a directory on his local disk. Users user2 and user3 may refer to file through its full
pathname. If user1 has granted them access, they may read and write file through the VOFS
as if it were local. This only requires the basic services that a regular distributed file system
provides, namely transparent file location, transparent file access and file access control.

This scheme also works for a Telex document, even though its structure is more complex than
that of a plain file. Indeed, VOFS allow user2 and user3 to write their log and read other users’
log remotly on the computer of user1. Read and write operations do not raise any consistency
issue since each log is a single-writer file. Thus, no additional service is required to handle Telex
documents because of their specific structure and semantics.

However, the basic services mentioned above are not sufficient to handle the dynamic, P2P
environment that Grid4All targets. This holds for plain files as well as for Telex documents. In-
deed, VOFS must allow for disconnections and preserve the automony of users and sites. To this
end, VOFS provides enhanced services regarding file replication, event notification and commu-
nication. These are are described in detail in Deliverable 3.2 ”Interface specification and initial
running prototype of the Virtual Block Store - DFS+VBS Architecture and Prototype”.

Next sections describe how Telex leverages these enhanced services and present the corre-
sponding API.

5.1 Enhanced services

5.1.1 File replication

A process accessing a (remote) file may request VOFS to create a persistent replica of the file
on the local disk. If at most one process writes to the file at a time, VOFS guarantees that the
file and the local copy are eventually consistent despite possible network failures. When network

Grid4All Public Page D 3.1-Chapter I–33

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 14: Replicating the multi-log through VOFS.

links are up, VOFS propagates updates of the remote file as soon as possible. When a link is
down, VOFS buffers the updates and propagate them when link is up again. This service may be
activated on a per-file basis at open time.

Telex leverage this service to create local replica of a document’s multi-log at each site that
edits the document, as shown in Figure 14. Note that it can do so because the multi-log is
implemented as a set of single-writer logs. Thanks to the local replica, a user who happens to
be disconnected from its peers may still access and update the shared document. For the same
reason, Telex requests that the filters and the snapshots that the local user creates be replicated
locally.

5.1.2 Event notification

VOFS allows a process to be notified of various events affecting a file system entry, whether a
file or a directory. The type of event may be configured dynamically on a per-entry basis. Telex
requests the notification of three types of event, as described next.

Directory update notification When opening a document, Telex requests VOFS to be notified
of a file being created in the Multilog sub-directory of the document. Such an event occurs
when a user creates his log for the first time or when he starts filling in a new log chunk. In either
case, Telex must read the new log in order to update the in-memory action-constraint graph. The
notification service avoid polling the Multilog sub-directory and provides a more efficient and
more responsive mechanism.

Log update notification For the same reason, Telex also requests VOFS to be notified of a log
chunk being (remotely) updated. Without the help of this service, Telex would have to poll every
log chunk for updates (a read operation does not block when end of file is reached). This would
be unacceptable, since the number of logs may be very large.

Directory move notification Whenever a document becomes bound, Telex requests the VOFS
to be notified of the document being moved. Telex needs this notification to update all the docu-

Grid4All Public Page D 3.1-Chapter I–34

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

ment tables — described in section 4.1.4 — that reference the bound document. This function-
ality allows users to freely move or rename bound documents while retaining the corresponding
cross-document constraints.

Note that if a user deletes a bound document, he also implicitely deletes the corresponding
cross-document constraints. However, Telex does not need to be notified of such event: it will
simply notice that the document is deleted when trying to open it.

5.1.3 Communication

VOFS implements the file replication and the event notification services on top of an internal
general-purpose publish-subscribe infrastructure. To allow applications to use this infrastructure
for their own needs, VOFS exposes it through a file system-like interface.

A VOFS application may use this interface to define a basic broadcast service as follows.
The group that the broadcast service targets is defined as the set of processes that have a
particular file opened. The events that these processes subscribe to are write operations to the
file. Broadcasting a message to the group simply amounts to write the message to the file.

Telex uses this scheme to implement the broadcast service that the transmitter module —
described in section 4.2.3 — provides. When creating a document, Telex creates a file named
channel under its root directory. Each Telex instance that edits this document opens this file in
order to communicate with peer instances.

5.2 API

Most operations on a Telex document are achieved through the regular POSIX file system API:
reading and writing records in the multi-log, saving an retrieving snapshots or filters. However, the
POSIX API does not provide support for implementing the enhanced services described above.

To circumvent this problem, VOFS defines virtual files that provide access to information and
services specific to VOFS. Like regular files, virtual files are accessed through the POSIX API.
However, they are artifacts: they do not represent any actual VOFS resource and their contents is
computed on demand. For each file system entry path/to/entry, VOFS defines a set of virtual
files named path/to/file/@<virtual file>. The virtual files that Telex uses are described
next.

@config . This file receives several configuration commands on the entry. For each log file,
Telex issues the command instructing VOFS to create a local replica of the log.

@state . This file contains the current state of the entry, in the form of several attributes. The
offline attribute indicates that the local replica is disconnected from the main file and is thus not
synchronized with it any more. For each log file, Telex checks for this particular attribute and
reports it back to the application for information.

@notify . This entry is actually a directory. It contains the @notify/ctl control file, that
a process uses to specify which events it subscribes to. These events are received in the
@notify/publications file by performing a read operation. Note that contrary to POSIX se-
mantics, reads on this file block the calling process until an event is received.

@publish . This file receives events to be published to the (possibly remote) processes read-
ing the @notify/publications file. These events can be written to the file either by a VOFS
application or by the VOFS itself.

Telex uses the @notify and @publish files to be notified of event regarding: (i) the root di-
rectory of document, (ii) its Multi-log subdirectory, (iii) every log file in this subdirectory and
(iv) the channel file.

Grid4All Public Page D 3.1-Chapter I–35

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

References

[1] Napster.

[2] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicated databases. ACM
Transactions on Database Systems, June 1989.

[3] R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Global Data Management (Chapter
Design and implementation of Atlas P2P architecture). July 2006.

[4] P. Albitz and C. Liu. Dns and bind. 4th Ed., O’Reilly, January 2001.

[5] Peter A. Alsberg and John D. Day. A principle for resilient sharing of distributed resources.
In Proc. 2nd Int. Conf. on Software Engineering, pages 562–570, San Francisco, CA (USA),
October 1976.

[6] Philip A. Bernstein and Nathan Goodman. An algorithm for concurrency control and recovery
in replicated distributed databases. ACM Transactions on Database Systems, 9(4):596–615,
December 1984.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.
http://research.microsoft.com/pubs/ccontrol/.

[8] A. Bhargava, K. Kothapalli, C. Riley C. Scheideler, and M. Thober. Pagoda: a dynamic
overlay network for routing, data management, and multicasting. In Proc. of the ACM Symp.
on Parallelism in Algorithms and Architectures (SPAA), January 2001.

[9] Per Cederqvist, Roland Pesch, et al. Version management with CVS, date unknown.
http://www.cvshome.org/docs/manual.

[10] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a compre-
hensive study. ACM Computing Surveys, December 2001.

[11] Y.L. Chong and Y. Hamadi. Distributed log-based reconciliation. In Proc. of the European
Conference on Artificial Intelligence (ECAI), September 2006.

[12] Maria Christodoulidou and Panagiota Fatourou. Simple and efficient replication in chord. In
Proceedings of the IASTED Parallel and Distributed Computing and Systems (PDCS’06),
November 2006.

[13] P. Chundi, D.J. Rosenkrantz, and S.S. Ravi. Deferred updates and data placement in dis-
tributed databases. In Proc. of the Int. Conf. on Data Engineering (ICDE), February 1996.

[14] I. Clarke, S. Miller, T.W. Hong, O. Sandberg, and B. Wiley. Protecting free expression online
with freenet. IEEE Internet Computing, January 2002.

[15] C. Coulon, E. Pacitti, and P. Valduriez. Consistency management for partial replication in a
high performance database cluster. In Proc. of the IEEE Int. Conf. on Parallel and Distributed
Systems (ICPADS), July 2005.

[16] D.L. Eager and K.C. Sevcik. Achieving robustness in distributed database systems. ACM
Transactions on Database Systems, September 1983.

Grid4All Public Page D 3.1-Chapter I–36

http://research.microsoft.com/pubs/ccontrol/
http://www.cvshome.org/docs/manual

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

[17] D.K. Gifford. Weighted voting for replicated data. In Proc. of the ACM SIGOPS Symp. on
Operating Systems Principles (SOSP), December 1979.

[18] Richard A. Golding. Weak-consistency group communication and membership. PhD thesis,
University of California Santa Cruz, Santa Cruz, CA, USA, December 1992. Tech. Report
no. UCSC-CRL-92-52, ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z.

[19] Vijay Gopalakrishnan, Bujor Silaghi, Bobby Bhattacharjee, and Pete Keleher. Adaptive repli-
cation in peer-to-peer systems. In The 24th International Conference on Distributed Com-
puting Systems, March 2004.

[20] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. Dangers of replication and a
solution. In Int. Conf. on Management of Data, pages 173–182, Montréal, Canada, June
1996.

[21] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. Meghdoot:
content-based publish/subscribe over p2p networks. In Middleware ’04: Proceedings of
the 5th ACM/IFIP/USENIX international conference on Middleware, pages 254–273, New
York, NY, USA, 2004. Springer-Verlag New York, Inc.

[22] S. Jajodia and D. Mutchler. Dynamic voting. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, May 1987.

[23] R. Jiménez-Peris, M. Patiño-Martı́nez, G. Alonso, and B. Kemme. Are quorums an alterna-
tive for data replication? ACM Transactions on Database Systems, September 2003.

[24] M. Jovanovic, F. Annexstein, and K. Berman. Scalability issues in large peer-to-peer net-
works: a case study of gnutella. Technical report, ECECS Department, University of Cincin-
nati, January 2001.

[25] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent
hashing and random trees: distributed caching protocols for relieving hot spots on the world
wide web. In Proc. of the ACM Symp. on Theory of Computing, May 1997.

[26] B. Kemme and G. Alonso. A new approach to developing and implementing eager database
replication protocols. ACM Transactions on Database Systems, September 2000.

[27] P. Knezevic, A. Wombacher, and T. Risse. Enabling high data availability in a dht. In Proc.
of the Int. Workshop on Grid and Peer-to-Peer Computing Impacts on Large Scale Hetero-
geneous Distributed Database Systems (GLOBE’05), August 2005.

[28] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells,
and Ben Zhao. Oceanstore: An architecture for global-scale persistent storage. In Pro-
ceedings of the Ninth international Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’00), November 2000.

[29] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Consistent data replication:
is it feasible in wans? In Proc. of the European Conf. on Parallel Computing (Euro-Par),
September 2005.

[30] Vidal Martins, Esther Pacitti, and Patrick Valduriez. Survey of data replication in P2P sys-
tems. Research Report 6083, Institut National de la Recherche en Informatique et Automa-
tique (INRIA), December 2006. https://hal.inria.fr/inria-00122282.

Grid4All Public Page D 3.1-Chapter I–37

ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z
https://hal.inria.fr/inria-00122282

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

[31] E. Pacitti and E. Simon. Update propagation strategies to improve freshness in lazy master
replicated databases. VLDB Journal, 2000.

[32] E. Pacitti, E. Simon, and R.N. Melo. Improving data freshness in lazy master schemes. In
Proc. of the Int. Conf. on Distributed Computing Systems (ICDCS), May 1998.

[33] D.S. Parker, G. Popek, G. Rudisin, A. Stoughton, B. Walker, E. Walton, J. Chow, D. Edwards,
S. Kiser, and C. Kline. Detection of mutual inconsistency in distributed systems. In IEEE
Transactions on Software Engineering, May 1983.

[34] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.
Flexible update propagation for weakly consistent replication. In Symp. on Op.
Sys. Principles (SOSP), pages 288–301, Saint Malo, October 1997. ACM SIGOPS.
http://www.parc.xerox.com/csl/projects/bayou/.

[35] B.C. Pierce, A. Schmitt, and M.B. Greenwald. Bringing harmony to optimism: an experiment
in synchronizing heterogeneous tree-structured data. Technical report MS-CIS-03-42, De-
partment of Computer and Information Science, University of Pennsylvania, February 2004.

[36] B.C. Pierce and J. Vouillon. What’s in unison? a formal specification and reference imple-
mentation of a file synchronizer. Technical report MS-CIS-03-36, Department of Computer
and Information Science, University of Pennsylvania, February 2004.

[37] Nuno Preguiça, Marc Shapiro, and J. Legatheaux Martins. SqlIceCube: Auto-
matic semantics-based reconciliation for mobile databases. Technical Report TR-
02-2003 DI-FCT-UNL, Universidade Nova de Lisboa, Dep. Informática, FCT, 2003.
http://asc.di.fct.unl.pt/∼nmp/papers/sqlice3-rep.pdf.

[38] Nuno Preguiça, Marc Shapiro, and Caroline Matheson. Semantics-based reconciliation
for collaborative and mobile environments. In Proc. Tenth Int. Conf. on Coop. Info. Sys.
(CoopIS), volume 2888 of Lecture Notes in Comp. Sc., pages 38–55, Catania, Sicily, Italy,
November 2003. Springer-Verlag.

[39] Norman Ramsey and Előd Csirmaz. An algebraic approach to file synchronization. Technical
Report TR-05-01, Harvard University Dept. of Computer Science, Cambridge MA, USA, May
2001. http://www.eecs.harvard.edu/∼nr/pubs/sync-abstract.html.

[40] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. of the ACM SIGCOMM Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communications, August 2001.

[41] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Int. Conf. on Dist. Sys. Plat-
forms (Middleware), pages 329–350, Heidelberg, Germany, December 2001. IFIP/ACM.
http://www.research.microsoft.com/∼antr/pastry/pubs.htm.

[42] Antony Rowstron and Peter Druschel. Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In Symp. on Op. Sys. Principles (SOSP), pages
188–201, October 2001.

[43] Yasushi Saito and Marc Shapiro. Optimistic replication. Computing Surveys, 37(1):42–81,
March 2005. http://doi.acm.org/10.1145/1057977.1057980.

Grid4All Public Page D 3.1-Chapter I–38

http://www.parc.xerox.com/csl/projects/bayou/
http://asc.di.fct.unl.pt/~nmp/papers/sqlice3-rep.pdf
http://www.eecs.harvard.edu/~nr/pubs/sync-abstract.html
http://www.research.microsoft.com/~antr/pastry/pubs.htm
http://doi.acm.org/10.1145/1057977.1057980

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

[44] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: a scalable
peer-to-peer lookup service for internet applications. In Proc. of the ACM SIGCOMM Conf.
on Applications, Technologies, Architectures, and Protocols for Computer Communications,
August 2001.

[45] M. Stonebraker. Concurrency control and consistency of multiple copies of data in dis-
tributed ingres. IEEE Transactions on Software Engineering, December 1979.

[46] Sutra Pierre and Barreto Joao and Shapiro Marc. An asynchronous, decentralised commit-
ment protocol for semantic optimistic replication. Research Report 6069, INRIA, 12 2006.

[47] T. Özsu and P. Valduriez. Principles of distributed database systems. 2nd Ed. Prentice Hall,
January 1999.

Grid4All Public Page D 3.1-Chapter I–39

CHAPTER I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Level of confidentiality and dissemination

By default, each document created within Grid4All is c© Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.
PP = Restricted to other programme participants (including the EC services).
RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.

Grid4All Public Page D 3.1-Chapter I–40

Project no. 034567

Grid4All

Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies

Deliverable 3.1: Requirements analysis, design and
implementation plan of Grid4All data storage and

sharing facilities - Chapter II

Due date of deliverable: June 2007.

Actual submission date: 20 June 2007.

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA Regal

Revision: Submitted 2007-06-20

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Contents

1 Introduction D3.1–Chapter II–7

2 Shared Calendar application D3.1–Chapter II–8
2.1 State of the art . D3.1–Chapter II–8
2.2 Requirements . D3.1–Chapter II–9

2.2.1 Description of the application . D3.1–Chapter II–9
2.2.2 User requirements . D3.1–Chapter II–10
2.2.3 General architecture of Shared Calendar Application D3.1–Chapter II–11
2.2.4 Infrastructure requirements . D3.1–Chapter II–12

2.3 Use case . D3.1–Chapter II–14
2.4 Interfacing Shared Calendar to semantic store . D3.1–Chapter II–16

2.4.1 Shared Calendar semantics . D3.1–Chapter II–16
2.4.2 Data type . D3.1–Chapter II–18
2.4.3 Application architecture . D3.1–Chapter II–27

2.5 Shared Calendar Pseudo-code . D3.1–Chapter II–34
2.5.1 Actions on Calendar Telex-Documents . D3.1–Chapter II–34
2.5.2 Actions on Meeting Telex-Documents . D3.1–Chapter II–34
2.5.3 Controller thread . D3.1–Chapter II–36
2.5.4 Model thread . D3.1–Chapter II–43
2.5.5 Compare thread . D3.1–Chapter II–44

3 Collaborative Editors D3.1–Chapter II–45
3.1 State of the art . D3.1–Chapter II–45

3.1.1 Collaborative Editors . D3.1–Chapter II–45
3.1.2 Cooperative editing system, general issues D3.1–Chapter II–47
3.1.3 Wiki . D3.1–Chapter II–48

3.2 XWiki P2P . D3.1–Chapter II–48
3.2.1 Requirements of Collaborative Applications D3.1–Chapter II–48
3.2.2 Detailed Examination of XWIKI . D3.1–Chapter II–50
3.2.3 XWiki P2P . D3.1–Chapter II–54
3.2.4 APPA (Atlas Peer-to-Peer Architecture) D3.1–Chapter II–55
3.2.5 Architecture of XWiki using Semantic Store API D3.1–Chapter II–56

3.3 XWiki P2P Use Cases . D3.1–Chapter II–57

Grid4All Public Page D3.1–Chapter II–1

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

List of Figures

1 General architecture of Shared Calendar application. D3.1–Chapter II–11
2 Execution scenario the Shared Calendar application. D3.1–Chapter II–14
3 Multilog scenario of a shared calendar application. D3.1–Chapter II–17
4 Multiple documents on Marc’s site . D3.1–Chapter II–19
5 Multiple documents on Jean-Michel’s site . D3.1–Chapter II–19
6 Application atomic action data type. D3.1–Chapter II–20
7 Invite action structure. D3.1–Chapter II–22
8 SetInfo action structure. D3.1–Chapter II–25
9 Scenario of constraints inside a document. D3.1–Chapter II–26
10 Scenario of constraints between documents. D3.1–Chapter II–27
11 Shared Calendar architecture. D3.1–Chapter II–28
12 Producing a paper in a collaborative manner . D3.1–Chapter II–50
13 XWiki Client Server . D3.1–Chapter II–52
14 XWiki confliction . D3.1–Chapter II–53
15 Architecture of XWiki Documents . D3.1–Chapter II–53
16 APPA Architecture . D3.1–Chapter II–56
17 APPA API . D3.1–Chapter II–57
18 Creation of a replicated Document D . D3.1–Chapter II–58
19 Update Document D . D3.1–Chapter II–59
20 Reconciliation . D3.1–Chapter II–61
21 Reconciliation . D3.1–Chapter II–62

Grid4All Public Page D3.1–Chapter II–2

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

List of Tables

1 Constraints matching table: createEvent . D3.1–Chapter II–29
2 Constraints matching table: addUser . D3.1–Chapter II–29
3 Constraints matching table: cancelUser . D3.1–Chapter II–30
4 Constraints matching table: setInfo . D3.1–Chapter II–31
5 Constraints matching table: cancelEvent . D3.1–Chapter II–32

Grid4All Public Page D3.1–Chapter II–3

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Abbreviations used in this document

Abbreviation/acronym Description

ACF Action Constraint Formalism
Grid4All The FP6 STREP project that aims to democratise access to the

Grid, through the use of peer-to-peer technologies. The co-
ordinator is France Télécom; the other partners are a SME from
Spain, and research labs from Greece, France, Spain, and Swe-
den.

OS Operating Sysetm
SC Shared Calendar application.
VO Virtual organization.
SyD System on Device middleware.

Grid4All Public Page D3.1–Chapter II–4

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Grid4All list of participants

Part.
Role Part. Participant name short Country

name
CO 1 France Telecom FT FR
CR 2 Institut National de Recherche en Informatique en

Automatique
INRIA FR

CR 3 The Royal Institute of technology KTH SWE
CR 4 Swedish Institute of Computer Science SICS SWE
CR 5 Institute of Communication and Computer Systems ICCS GR
CR 6 University of Piraeus Research Center UPRC GR
CR 7 Universitat Politècnica de Catalunya UPC ES
CR 8 ANTARES Produccion & Distribution S.L. ANTARES ES

Grid4All Public Page D3.1–Chapter II–5

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Preamble

This document is the chapter II of Deliverable 3.1 ”Requirements analysis, design and implemen-
tation plan of Grid4All data storage and sharing facilities”, which comprises the following parts:

Chapter I Semantic Store
Chapter II Collaborative Applications

Chapter III VO-aware File system
Appendix I Telex application API

The following persons contributed to this chapter: Sarfraz Ashfaq INRIA-Atlas, Lamia Ben-
mouffok INRIA-Regal, Jean-Michel Busca INRIA-Regal, Vidal Martins INRIA-Atlas, Esther Pacitti
INRIA-Atlas, Marc Shapiro INRIA-Regal, Patrick Valduriez INRIA-Atlas.

Grid4All Public Page D3.1–Chapter II–6

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

1 Introduction

Grid4All motivation is to bring Grid computing technologies and its advantages to millions of
users beyond the academic and industrial user communities of today’s Grids. Grid4All aims to
extend support for dynamically forming groups within the Internet, to support scalable groupware
applications in dynamic environment.

To meet these requirements, Grid4All project will provide a Grid middleware framework. It will
develop a set of collaborative applications to exercise the Grid4All middleware.

Grid4All middleware integrates a Data Storage (WP3) layer adapted to large-scale collaborative
data sharing applications with application dependent semantic. Semantic Store layer is a part
of Data Storage. It provides semantic oriented decentralized P2P replication middleware and
consistency protocols.

Atlas P2P Architecture (APPA) is an existing prototype of Semantic Store. Telex is an other im-
plementation of the Semantic Store described in “Deliverable 3.1: Requirements analysis, design
and implementation plan of Grid4All data storage and sharing facilities - Semantic Store”.

A use case of collaborative applications used either by academic, industrial and domestic users
are a shared calendar application and a collaborative editor.

This chapter describes the implementation of a shared calendar and a collaborative editor XWiki
over the Semantic Store. The shared calendar application is implemented over Telex as Semantic
Store. XWiki uses APPA as Semantic Store.

For both applications, we provide a state of the art. We present the requirement of both applica-
tions. A detailed examination of the shared calendar and XWiki shows how to interface them with
the Semantic Store layer.

Grid4All Public Page D3.1–Chapter II–7

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

2 Shared Calendar application

2.1 State of the art

In the last decade a significant amount of groupware applications have been developed, and
democratized. An example is group-calendaring applications. A shared calendar (SC), also
called group calendar application, aims to help people organizing their agenda in a collaborative
way. In fact, SC allows people to create and manage private events as well as group meetings
scheduled on a collection of online calendars.

Shared calendars are the target of many researches. Leysia Ann Palen [18, 19] examined
the role, the successful adoption and the use of SCs. The Calendaring and Scheduling Con-
sortium “CALCONNECT” [3] is focused on understanding and developing new technologies for
calendaring data interchanges.

Frank Dawson and Derik Stenerson authored the iCalendar standard (RFC 2445) for calen-
dar data exchange [7]. It is a textual format to describe the calendar data. iCalendar allows users
to send meeting invitations and modifications to other users through emails.

iCalendar standard is implemented/supported by a large number of products, some of which
are Google calendar (web based calendar), Microsoft Outlook, Apple iCal, IBM Lotus Agenda
and Groupwise (desktop calendars).

These applications offer multiple features including:

• Keeps track of events and appointments, allows multiple calendar views (such as calendars
for ”home”, ”work”, and ”kids”)

• Share a calendar with a group of people

• Creating and managing meetings

• Inviting people to a meeting

• Notification requesting response and sending responses on an operation on an event

• Identify conflicts and free time

• Discovery services: find calendars

• Portability/Compatibility: Web-based calendars like Google calendar supports any operat-
ing systems (OS). However, desktop calendars are generally OS dependent.

These applications support the asynchronous and disconnected work. They are based on
client server architecture. Thus the central server may be a bottleneck of such systems and a
single point of failure.

A user posts his calendar on the server or a shared directory like iCalShare [11] and Dat-
eDex [6]. He has to import a user calendar to add an event on it. The event is recorded in the
calendar server. To invite users, the inviting user sets the list of the invitees and sends them the
invitation by email. He sets the respective right of each invited user: can invite other users, see
the list of the invitees etc. Invited users get the invitation in their mailbox, and answer back by
email too.

A user can easily identify a conflict on his calendar1 . Nevertheless, those calendar applica-
tions generally don’t handle conflicts.

1 Two overlapping events, or more.

Grid4All Public Page D3.1–Chapter II–8

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Besides meetings updates are not well managed and this can lead to a non-consistent state
except for Outlook and Lotus Note). In fact, suppose that user1 creates a meeting and invites
user2. user2 accepts the invitation, thus the meeting is scheduled in his calendar. If user2 deletes
or changes the date of the meeting, then this change will appear in user2 ’s calendar but not in
user1 ’s.

Moreover there is no proper commitment2 in those calendars. However a commit may be
useful, especially when people have to pay for an invitee or a room.

A research calendar prototype was implemented based on System on device middleware
(SyD) [23]. SyD is a middleware to hide heterogeneity of devices, information and databases.
The coordination between calendars is based on event-and-trigger mechanisms. Calendars are
not replicated, so they may be a bottleneck of the systems and a single point of failure. When
one creates a meeting with a group of invitees, invitees set of subscription links to that meeting .
Thus, triggers will automatically propagate updates on a meeting through the subscription links.
They add some semantics on the links that become ’negotiation links’. Negotiation links allow
updates only if the underling constraints are satisfied. Those constraints can be “allow changes,
only if changes succeeded on each of the subscribed entities”. Negotiation links serve to handle
conflicts. This is pessimistic updates. thus it can be hardly achieved in a dynamic and large-scale
environment. Besides, it is not adapted for asynchronous work, doesn’t allow disconnected work,
and doesn’t support commitment.

A group calendar application can be implemented on top of replicated and semantic rich
systems like IceCube [25] and Bayou [21].3 [24, 26] describe the deployment of a shared calendar
application on top of IceCube. Similarly, [8] describe how Bayou can support a shared calendar
application.

Those two approaches are semantically rich, thus they handle conflicts and concurrent up-
dates. They support asynchronous work, and commitment. Besides, IceCube supports discon-
nected work, allows a user to undo/redo actions and to work in isolation.

Although IceCube and Bayou replicate data, the reconciliation still centralized. Thus the
reconciliation server becomes the bottleneck of the systems and a single point of failure.

The SC application, within the Grid4All environment would benefits from many mechanisms
and services such as data replication, persistency and consistency model. Grid4All middleware
overcomes the communication, network management and access control issues. Besides, it
provides communities awareness and Virtual Organization (VO) management services. The Se-
mantic Store (chapter I of deliverable 3.1) is semantically rich, inspired from IceCube. It provides
mechanisms to achieve consistency in peer-to-peer environment. SS supports commitment,
asynchronous and disconnected work. Additionally, SS provides mechanisms for undoing and
redoing operations.

2.2 Requirements

2.2.1 Description of the application

Considering the rationale stated above, the shared calendar application will be developed using
the SS. Before describing the operation principle we must introduce the outline of the Semantic

2 Make changes and decision permanent. The opposite is to rollback.
3 For more detail on IceCube and Bayou, see the deliverable “D3.1: Requirements analysis, design and implemen-

tation plan of Grid4All data storage and sharing facilities – Chapter I: Semantic Store”

Grid4All Public Page D3.1–Chapter II–9

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Store. The SS is based on the Action-Constraint Framework (ACF). ACF is a log-based opti-
mistic replication approach, where “actions” are application atomic operations. “Constraints” are
relations between actions. The application sets the constraints to express its’ semantics and to
capture user intention.

As said before, the application provides users a way to manage heir activities. Each user has his
own and independent calendar filled with private events. Additionally he can organize meeting
with other collaborators. He creates a “meeting object”, share it, and notifies invitees of their
invitation. For that purpose, he creates an operation (action) on their respective calendar. Thus,
he has to import the invitees’ calendar.

When one receives an invitation he can accept it or decline it. If he accepts it, he can collaborate
to hold the meeting: he can invite other users, and modify the meeting time, and location. For
that purpose he creates operations (actions) on the corresponding “meeting object” concurrently
with other invitees. Consequently conflicts may appear.

As we are in an optimistic replicated environment, those actions are “tentative” until they are
“committed”. In case of conflict some of them are “aborted”.

2.2.2 User requirements

The SC provides the following functionalities:

Meeting management:

• Create an event

– Create the “object” event.

• Publish an event

– Share it with a group without inviting anybody.

• Import a user document

– To invite other people to an event

– Needs the approval of that user

• Invite a user

– Ask a user to attend the event

– Share the event “object” with the invited user

– Notify him of the invitation on his agenda

– Needs the approval of that user

• Cancel invitation

– Ask a user to cancel his coming to a meeting

– Needs the approval of the cancelled user

• Allocate room

– Choose a specific room for a meeting

– Or ask for an available room

• Set/update meeting time

– Propose a time for a meeting

Grid4All Public Page D3.1–Chapter II–10

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

– Needs the approval of all invitees

• Cancel event

– Propose to cancel an event

– Needs the approval of all invitees

• Accept /decline mechanism

– To vote on one of the previous actions if required

Collaborator management:

• Get group list and user profiles

• Invite a user to collaborate

– Ask a user to give someone read/write access (share) to his calendar.

• Stop collaboration with a user

– Remove the read/write access on one’s calendar for a user.

• Accept/decline an invitation for collaboration

– Give or decline read/write access on own calendar.

We can define different policies for meeting modification like priority policies. For instance,
one that only allows the creator to modify meeting information, and to add/cancel invitations.

2.2.3 General architecture of Shared Calendar Application

Figure 1: General architecture of Shared Calendar application.

Figure 1 shows the main components of the shared calendar application, and their interaction
with the environment.

Grid4All Public Page D3.1–Chapter II–11

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

The application is based on the model-view-controller design. A Visualisation layer interfaces
the user with the SC. A Registration component allows user to sign in. This registration may be
hidden from the user.

The Data component is the materialization of the information the application needs: logs, meet-
ings information, and collaborators’ profiles

A Controller component captures user’s modifications through the Visualisation layer. It gener-
ates the corresponding actions using the meeting and collaborators management functionalities.

The Reconciler component gets local and remote actions and compute correct schedules.

The Model component takes those schedules and executes them on the Data component.

Finally the View transforms the Data state into visual information.

2.2.4 Infrastructure requirements

More grid supported applications, scenarios and requirements can be found in the Grid4All de-
liverable “D4.1: Specification of scenarios, user requirements, and infrastructure requirements”
and the deliverable “D4.2: Specification of situations derived from applications”. In this section
we will summarize infrastructure requirements of the shared calendar.

The application components interact with the Grid4All framework in different ways and at
different levels. Those requirements and interactions with WPs are described in the following
section.

Registration component requires:

• Authentication services: WP2

– Get the user identifier

• Login service: WP3, Semantic Store

– Login session: Inform the SS of the current user of the application.

Data component is replicated and persistent so one can keep his documents even if he
works on different computers. It contains among other things users’ logs. Thus, Data component
requires:

• Replication and communication mechanism: WP1, WP3

– Hidden by WP3

• Log constitution and management: WP3

• Resource management services: WP2

– May be hidden by WP3.

Controller component generates actions recorded and replicated on logs. It requires:

• Log constitution and management: WP3

• Replication and communication mechanism: WP1, WP3

• Resource management services: WP2

– May be hidden by WP3.

Some Meeting Management functionalities require more services:

• Create an event:

Grid4All Public Page D3.1–Chapter II–12

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

– Create a Telex document: WP3

• Publish an event:

– Access control services: WP3 (an event is a special file)-WP2

• Import a user document:

– Get document information (Yellow pages): WP2

– Import the document: WP3

• Accept /decline mechanism:

– To vote on someone actions: WP3

– Decision notification:

∗ Communications: WP3, WP1

Similarly, Collaborator Management needs:

• Get group list and users’ profiles:

– Yellow pages and group awareness: WP2

• Invite a user to collaborate

– Access control on Telex Document: WP2, WP3

– Decision notification:

∗ Communications: WP3, WP1

• Stop collaboration with a user:

– Access control on Telex Document: WP2, WP3

– Decision notification:

∗ Communications: WP3, WP1

• Accept/decline an invitation for collaboration:

– Access control on Telex Document: WP2, WP3

– Decision notification:

∗ Communications: WP3, WP1

Finally, Reconciler component requires:

• Reconciliation and scheduling services: WP3, Semantic Store

• Collaborators’ status per Telex document: WP3.

Grid4All Public Page D3.1–Chapter II–13

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

2.3 Use case

Deploying this application using the semantic store layer means supporting optimistic replication.
Each user of this application can execute operations locally. However the execution remains ten-
tative until an agreement phase across the participants occurred to agree whether the operations
are committed or aborted. If necessary, the agreement phase decides of the order between some
concurrent operations.

A simple diagram in figure 2 shows what a concurrent execution with the calendar application
might be. Consider users Jean-Michel, Lamia and Marc, using a Grid4All calendar application to
plan some meetings between colleagues. Jean-Michel, Lamia and Marc are working separately
and communicate only via the application.

Figure 2: Execution scenario the Shared Calendar application.

Jean-Michel organizes meeting M2 on 03 of May between 11:00 and 12:00. He allocates
Room 245 for that purpose. He requires the presence of Marc and himself. Actions (2) in figure 2.

Lamia organizes meeting M1 on the same day between 10:30 and 12:00. She allocates
Room 233. She will attend the meeting, and allows other people to invited themselves. Actions
(1) in figure 2.

Suppose that, at some point in time t1, Marc has received Lamia’s actions, but not yet Jean-
Michel’s. This may happen, for instance, if Jean-Michel is working offline. Marc is interested in M1
and invites himself to that meeting. Action (3) in figure 3. Later, at t2 Marc knows Jean-Michel’s
actions.

As M1 time overlaps with M2 a conflict is detected and propagated to the concerned users
t3.

In order to resolve this conflict, Lamia might shift the start time of M1 to 13:30 (action (4))
Concurrently (t4), Marc has set the date of M1 to the 07th of May (action (5)), and Jean-Michel
has cancelled M2 (action (6)).

Grid4All Public Page D3.1–Chapter II–14

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

At t5 Lamia and Marc have received their concurrent modifications of meeting M1 . Obviously
M1 is scheduled at different times on Lamia’s and Marc’s calendar. Shared Calendar application
requires from the SS layer to reorder the actions similarly in both sites after the agreement phase.

Grid4All Public Page D3.1–Chapter II–15

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

2.4 Interfacing Shared Calendar to semantic store

This section gives details of the Shared Calendar application based on Telex as Semantic Store.
We start describing the semantics of the application using the action-constrain framework ACF [29]
in 2.4.1. Then we describe the application data in section 2.4.2. Finally in 2.4.3 present the
application architecture and list the pseudo-code using the Semantic Store API.

2.4.1 Shared Calendar semantics

One way to develop this collaborative application is to use the semantic store functionalities.

We consider a shared calendar that supports the following operations:

• createEvent(meetingId): Create some event, for instance a meeting.

• setInfo (description, time, meetingId): Modify the schedule of an event.

• invite/addUser (userId, meetingId): Invite a person to an existing event.

• allocate (roomId, meetingId): Allocate a room for an event

• cancelInvitation/cancelUser (userId, meetingId): Cancel an invitation.

• cancelAllocation (roomId, meetingId): cancel a room allocation for a meeting.

• Cancel (meetingId): Cancel a meeting.

Recall that this application supports optimistic replication. Each user of this application can
generate one of the previous actions and execute it locally. However the execution remains
tentative until an agreement phase across the participants occurred to agree whether actions are
committed, or aborted, or reordered. This commitment process is closely linked to the semantics
linking the actions tentatively executed. In the following we call reconciliation protocol, some
algorithm ensuring the commitment process.

A simple scenario will give a feel of which semantics can be expressed in the ACF.

A simple scenario Back to the use case described in the section 2.3. Users Jean-Michel,
Lamia and Marc plan some meetings using the Shared Calendar application. As said before,
Jean-Michel, Lamia and Marc are working separately and communicate only via the SC. Figure 3
shows what their multilog might look like. Recall that a multilog is a data structure recording a set
of actions with the semantics constraints between actions.

Jean-Michel organizes M2 on 03 of May between 11:00 and 12:00. He allocates Room 245
for that purpose. He requires the presence of Marc. Thus, he generates the set of actions (a) in
figure 3.

Lamia generates a CreateEvent action for M1 on the same day between 10:30 and 12:00.
She allocates Room 233. She generates the set of actions (1) in figure 3.

Jean-Michel wants his actions to act as a parcel, i.e., either all his actions occur jointly, or
none occurs. This atomic grouping of actions is expressed in the ACF with an Enables cycle.
Similarly for Lamia’s actions.

Suppose that, Marc has received Lamia’s actions, but not yet Jean-Michel’s. Marc invites
himself to M1: action (i) in figure 3. Later, Marc knows Jean-Michel’s actions.

Setting M1 time to 10h:30-12:00 and inviting Marc to it is now in conflict with inviting him to
M2 and scheduling M2 at the same time.

Grid4All Public Page D3.1–Chapter II–16

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 3: Multilog scenario of a shared calendar application.

Grid4All Public Page D3.1–Chapter II–17

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

In order to resolve this conflict, Lamia might shift the start time of M1 to 13:30. Therefor
she generates a setInfo represented by action (2) in figure 3. In the meantime, Marc has set the
date of the M1 to the 07th of May and generates action (ii). Jean-Michel has cancelled M2 by
generating action (b).

Marc’s and Lamia’s modifications (action (2), (ii)) can only be achieved only if the Cre-
ateEvent of M1 succeed. To ensure this condition, there is an Enables constraint between the
creation and the setInfo. Beside, Marc’s and Lamia’s modifications (action (2), (ii)) have to pro-
ceed only after the setInfo (1). To ensure correct ordering, there is a Before constraint between
these actions.

Similarly, Jean-Michel’s cancellation may execute only after his actions organizing M1 . Be-
sides there is a dependence constraint between the cancellation and the creation of the meeting
(actions (a), (b)).4

This guarantees two things: (i) the actions execute in the correct order at every site, and (ii)
if the first action does not execute or fails, then the second action does not execute.

Meanwhile, Lamia and Marc are modifying the same data. Therefore their actions are non-
commuting with the previous ones. The non-commutation constraint causes the reconciliation
protocol to serialise them in the same order at every site.

Note that currently there are useful constraints that ACF cannot express. For instance, a
semantics such as “Reserve either Room 245 between 10:00 and 12:00 or Room 246 between
14:00 and 16:00” is not currently supported in our framework.

However, when a conflict is set, it can’t be removed even if some actions change the state
of the calendar. For instance, if one is invited to “M1” at “10:00”. Then he gets invited to “M2”
at the same time. Thus there is a conflict between his invitation to “M1” and to “M2”. If later the
date of one of the two meeting changes or is cancelled. The conflict remains and one of the two
invitations have to be aborted.

2.4.2 Data type

Documents A user calendar is a telex document. This calendar is shared and can be modified
by other users. Thus, this document is a multilog, and is replicated in foreign user’s sites.

A created meeting is shared by a varying number of users: the one invited, and can be
modified by them in a collaborative way. Thus we made each meeting a Telex document so we
can make use of the semantic store functionalities for meeting consistency issues. A meeting
document is replicated in all invited user’s sites.

As a consequence, a user A possess his own calendar CA, and may also possess a replica
of a user B calendar CB. Calendar CA may be replicated to in user B site.

Therefore, the shared calendar application handles multiple separate documents, and multi-
ple replicas of those documents cross multiple sites as figures 4 and 5 show. This figure depict
the actions (1) (i) and (a) of the scenario in figure 3 on Marc’s and Jean-Michel sites.

Figure 5 shows that Jean-Michel has created M2 document and has imported a replica of
Marc’s calendar in order to invite him to that meeting. Beside figure 4 shows that Marc has
imported a replica of M1 to invite him self. He imported a replica of M2 because of Jean-Michel
invitation.

4 Dependence is the conjunction of Before and Enables.

Grid4All Public Page D3.1–Chapter II–18

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 4: Multiple documents replicated Handled by the Shared Calendar Application on Marc’s
site.

Figure 5: Multiple documents replicated Handled by the Shared Calendar Application on Jean-
Michel’s site.

Grid4All Public Page D3.1–Chapter II–19

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Actions In the next sections we use the following notation:

• userId : a unique ID of a user. Provide by the VO manager.

• meetingId : a unique ID of a meeting event.

• documentId : a unique ID of a document.

• dateId : time is divided into discrete slots (e.g. 30 min), numbered from an initial date. This
sequential number is a unique ID of a precise date.

• meeting information: date if not specified elsewhere, resources (room, invited users) and
an optional description of a meeting.

From now on, we have seen that the shared calendar application handles multiple docu-
ments: calendar documents, and meeting documents. Thus the application supports two classes
of actions: actions executed on calendar documents, and actions executed on meeting docu-
ments.

When one organizes an event, he creates a meeting document, import the invited calendar
document. Notify them of their invitation with an action on their calendar. To set the meeting
information, invited users create actions on the meeting document.

Figure 6: Application atomic action data type.

Figure 6 shows the structure of the application atomic actions as follows:

• Action Id: a unique Id of the action.

• Owner Id: the Id of the user that generates the action.

• TimeStamp: action generation logic time

• Keys: hash of the arguments that Telex use for a quick check whether two actions commute.

• documentId: the identifier of the document on which the action is executed.

• Type: the identity of the action.

• Arguments: the argument needed to execute the action.

In the next paragraphs we list the application atomics actions. we detail their input/output
and their structure. Their execution pseudo-code is described in section 2.5.1 and section 2.5.2.
We skip the Action Id and timestamp arguments in the description of the action structure.

The calendar application supports the following atomic actions on calendar documents:

Invite (userId, meetingId)

Input:

Grid4All Public Page D3.1–Chapter II–20

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

– userId: the user invited to the meeting meetingId ;

– meetingId: the concerned meeting.

Output:

– No output.

Structure:

– Owner: get owner Id;

– Keys: check with concurrent CancelInvitation for the same meeting

{ hash (meetingId +userCalendarId) } ;

– Document: User calendar document Id;

– Type: “Invite”;

– Arguments:

meetingId;

Description: A user x generates Invite (user1, m) on user1’s calendar document to invite
user1 to the meeting m. When user1 executes this actions, it does the following operations:

1. Import the meeting m Telex Document

2. Set the user1 statuts for the meeting m as undefined.

3. Compute meeting m data: get and execute a schedule of actions logged on the
imported meeting m Telex Document.

CancelInvitation (userId, meetingId)

Input:

– userId: the user cancelled to the meeting meetingId ;

– meetingId: the concerned meeting.

Output:

– No output.

Structure:

– Owner: get owner Id;

– Keys: Check with the concurrent invitations for the same meeting.

{ hash (meetingId + userCalendarId) } ;

– Document: User calendar document Id;

– Type: “CancelInvitation”;

– Arguments:

meetingId;

Description: A user x generates CancelInvitation(m, user1) on user1’s calendar document
to cancel the invitation of user1 to the meeting m. When user1 executes this actions, it
does the following operations:

1. Ask user1 if he accepts the cancellation. If user1 accepts:

2. Get the meeting m Telex Document.

Grid4All Public Page D3.1–Chapter II–21

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 7: Invite action structure.

3. Set the user1 statuts for the meeting m as cancelled.

4. Close the meeting m Telex Document.

Back to the scenario shown in figures 3. Figure 7 shows the structure of the action invite
(Marc, M2), generated by Jean Michel and recorded on Marc’s calendar.

For the meeting management, the calendar application supports the following atomic actions,
they are recorded and executed on meeting documents.

createEvent (meetingId)

Input:

– meetingId: the concerned meeting identifier;

– mTDoc: the corresponding document identifier.

Output:

– meeting object.

Structure:

– Owner: get owner Id;

– Keys: generated only one per meeting. Telex won’t have to check, thus the key must
be unique.

{ hash (meetingId +out of range value) } ;
// => uniqueness between createEvent of different meetings.

– Document: meetingId Telex document;

– Type: “CreateEvent”;

– Arguments:

meetingId;
meeting Telex-document Id.

Description: A user x generates CreateEvent(m, mTDoc) on meeting m’s Telex-document.
When an invited user for meeting m executes this actions, it does the following operations:

1. Create a meeting object with a meetingId = m, and corresponding Telex document =
mTDoc.

Grid4All Public Page D3.1–Chapter II–22

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

addUser (userId , meetingId)

Input:

– meetingId: the concerned meeting identifier;

– userId: the invited user identifier.

Output:

– No output.

Structure:

– Owner: get owner Id;

– Keys: check with concurrent cancelUser/cancelEvent on the same user/meeting.

// Check with cancelInvitation actions
Keys = { hash (meetingId + userId) } ;

// => we will also check with concurrent invitations
//even if they commute.

Check with the cancelEvent

Keys += { hash (meetingId + "InviteUser") } ;

– Document: meeting document;

– Type: “addUser”;

– Arguments:

meetingId;
userId.

Description:

A user x generates addUser(m, userId) on meeting m’s Telex-document to invite user1 to
the meeting m. When user1 executes this actions, it does the following operations:

1. Get the meeting object having meetingId = m.

2. If user1 has not accepted the meeting m, then:

(a) Ask him his position.

(b) Get his vote accept, refuse or wait, as user1 accepts, refuses or still not decide
on meeting m.

(c) Set consequently user1 status on m: “invited” for “accept”, “refuseInvitation” for
“refuse”, “undefined” for “wait”.

cancelUser (userId , meetingId)

Input:

– meetingId: the concerned meeting identifier;

– userId: the cancelled user identifier.

Output:

– No output.

Structure:

– Owner: get owner Id;

Grid4All Public Page D3.1–Chapter II–23

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

– Keys: check with concurrent inviteUser on the same user/meeting.

Keys = { hash (meetingId + userId) } ;
// => we will also check with concurrent cancellations
// even if they commute.

– Document: meeting document;

– Type: “cancelUser”;

– Arguments:

meetingId;
userId.

Description: A user x generates cancelUser(m, userId) on meeting m’s Telex-document to
cancel the invitation of user1 to the meeting m. When user1 executes this actions, it does
the following operations:

1. Get the meeting object having meetingId = m.

2. If user1 is not already cancelled for meeting m, then:

(a) Ask him his position.

(b) Get his vote accept or wait, as user1 accepts or still not decide on meeting m.

(c) Set consequently user1 status on m: “cancelled” for “accept”/ “undefined” for
“wait”.

setInfo (meetingId, meetingInformation)

Input:

– meetingId: the concerned meeting identifier;

– meetingInformation: the new meeting information: date, description, . . .

Output:

– modify the meeting object.

Structure:

– Owner: get owner Id;

– Keys:

Check with concurrent setInfo on the same meeting, check with concurrent can-
celEvent on the same meeting.

Keys = { hash (meetingId + ‘‘setInfo’’) } ;

Check with any concurrent setInfo for the same user and same set time, on different
meeting.

// Set of unique date identifier per slot.
Build dateId setDateId (meeting.date, slot);

For each dateId in setDateId
Keys += { hash (dateId) } ;

– Document: meeting document;

– Type: “setInfo”;

Grid4All Public Page D3.1–Chapter II–24

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

– Arguments: clear

meetingId;
meetingInformation.

Description: A user x generates setInfo (m, mInfo) on meeting m’s Telex-document to set
or modify the meeting m data. When a meeting m invited user user1 executes this actions,
it does the following operations:

1. Get the meeting object having meetingId = m.

2. If user1 his status is undefined for meeting m, then notify him with the changes.

3. If he has already accept the invitation, then ask him if he accepts the changes. If he
does then:

(a) Set user1 free on the previous meeting m date.

(b) Set user1 busy on the new meeting m date.

(c) Set/modify other informations like meeting description.

(d) if conflict occurs with other meetings, then notify user1 and ask him to vote on-
conflicting meetings.

Figure 8: SetInfo action structure.

Back to the scenario shown in figures 3. Figure 8 shows the structure of the action setInfo (
M2, 03/05/07, 11:00-12:00), generated by Jean Michel and recorded on M2 document.

cancelEvent (meetingId)

Input:

– meetingId: the concerned meeting identifier.

Output:

– No output.

Structure:

– Owner: get owner Id;

– Keys: check with concurrent inviteUser and setInfo on the same user/meeting.

Keys= { hash (meetingId + "InviteUser") } ;
// => we will also check between all concurrent invitations
// even if they commute.

Keys+={ hash (meetingId + "SetInfo") } ;

Grid4All Public Page D3.1–Chapter II–25

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

– Document: meeting document;

– Type: “cancelUser”;

– Arguments:

meetingId;
userId.

Description: A user x generates cancelEvent(m) on meeting m’s Telex-document to can-
cel it. When a meeting m invited user user1 executes this actions, it does the following
operations:

1. Get the meeting object having meetingId = m.

2. If user1 has not already accepts a cancellation for meeting m, then:

(a) Ask him his position on the cancellation.

(b) Get his vote accept / refuse or wait, as user1 accepts, refuses or still not decide
on canceling meeting m.

(c) Set consequently user1 status on m: “cancelled” for “accept”, “refuseCancella-
tion” for refuse, and “undefined” for “wait”.

Allocate/cancelAllocation (roomId, meetingId) : Allocate/Cancel the allocation of a room
for an event. The application has the same behaviour for the room resources and the user
resources. A further work will detail these actions. For the next sections we will skip this action.

Constraints As the application manages multiple documents, the constraints can be inside a
document or between documents.

In the scenario depicted in figure 3. Lamia generates the following atomic actions (actions
(1)):

1. createEvent(M1);

2. allocate (233,M1);

3. setInfo (M1; 03/05/07;11:00,15:00);

4. Invite (M1;Lamia);

These actions are logged in meeting M1 document. To express their atomicity, the application
generates an enables constraint cycle. As all constrains are between two action on meeting M1,
they are also logged on M1 document. Thus this set of constraint is an example of constraint
inside a document as shown in figure 9.

Figure 9: Scenario of constraints inside a document.

Back to the scenario of figure 3. We supposed that, at some point in time, Marc has received
Lamia’s actions (action(1)), but not yet Jean-Michel’s. Marc invites himself to M1. Action (i) in

Grid4All Public Page D3.1–Chapter II–26

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

figure 3. Later, Marc knows Jean-Michel’s actions (action (a)). He thus detect the antagonist
constraint between setting M1 time to 10h:30-12:00 and inviting Marc to it on one side, and
inviting him to M2 and scheduling M2 at 11h:00-12:00 on the other side.

As this antagonist constraint is between actions on meeting M1 and M2 documents, it is
recorded n both documents. Thus this set of constraint is an example of constraint between
documents as shown in figure 10.

Figure 10: Scenario of constraints between documents.

2.4.3 Application architecture

From now on, we have seen the description of basic actions, and their execution pseudo-code.
We have described the two sorts of constraints between those actions. The following section
details the architecture of the application and the mechanism to generate, log actions and con-
straints and execute them.

Figure 11 shows the main component of the application and it’s interaction with Telex. A
controller gets user operations through the GUI, transform them into a set of basic actions and
constraints. Log them in the corresponding document via addFragment.

When new action arrives from remote Telex instances, Telex search for possible constraints
with the logged actions. A quick check on the constraints filters the commuting actions (keys don’t
match). Otherwise, Telex asks the application for the corresponding constraints.

The compare component check the arguments of the actions and answers Telex via getCon-
straints.

Finally Telex compute possible schedules and send the to the application via Execute. The
model component executes the schedule, and the view component shows them to the user via
the GUI.

Controller description The controller thread captures the user operation:

• Create meeting;

• Cancel a meeting;

• Invite users;

Grid4All Public Page D3.1–Chapter II–27

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 11: Shared Calendar architecture.

• Cancel invitations;

• Set/modify meeting information: date, description · · ·
For each event the controller creates consequently actions and constraints. It logs the created
actions/constraints in the corresponding Telex document: meeting Telex document or a user
calendar Telex-document. Section 2.5.3 shows the executed operations for each event.

Model description Telex computes sound schedules based on the logged actions and con-
straints. It sends the to the application level via the Execute API. The model thread captures
telex Execute events. Gets the schedules and executes them on a user’s calendar and meeting
documents.

Section 2.5.4 describes the corresponding pseudo-code.

Compare description The Compare thread handels getConstraints events. When new action
is logged, Telex search for possible constraints with the previously logged actions. A quick check
on the constraints filters the commuting actions (keys don’t match). Otherwise, Telex asks the
application for the corresponding constraints by rising a getConstraints event.

As a key is just a hash of action’s arguments, the compare thread has to check real argu-
ments to get the corresponding constraints. It use the correspondence tables 1 2 3 4 5 to get the
write constraints . Section 2.5.5 shows the pseudo-code of the compare thread.

In this section, we call thisUser, the user on witch site the thread compare is lunched.

We assume that there are no constraints gotten by the getConstraint between actions on
one calendar document. This is achieved by construction, as the Invite and CancelInvitation only
open the meeting document, and close it.

Grid4All Public Page D3.1–Chapter II–28

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Table 1: Constraints matching table: createEvent

createEvent (M1) M1+ out of
range value

Action Arguments Keys Real
matching
condition

Constraints

createEvent (M2) M2+ out of
range value

M1 = M2 /0
Same action

X X X /0 /0

Table 2: Constraints matching table: addUser

addUser (M1,U1) M1 +U1;
M1+

′′InviteUser′′

Action Arguments Keys Real
matching
condition

Constraints

addUser (M2,U2) M2 +U2;
M2+

′′InviteUser′′

M1 = M2;
(M1,U1) =
(M2,U2)

/0

cancelUser (M2,U2) M2 +U2 (M1,U1) =
(M2,U2)

Non-
Commuting

setInfo
(M2,Date2)

Date2Id per
slot;
M2+

′′SetIn f o′′

/0 /0

cancelEvent (M2) M2+
′′InviteUser′′ ;

M2+
′′SetIn f o′′

M1 = M2 Non-
Commuting

Grid4All Public Page D3.1–Chapter II–29

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Table 3: Constraints matching table: cancelUser

cancelUser (M1,U1) M1 +U1

Action Arguments Keys Real
matching
condition

Constraints

cancelUser (M2,U2) M2 +U2 (M1,U1) =
(M2,U2)

/0

setInfo
(M2,Date2)

Date2Id per
slot;
M2+

′′SetIn f o′′

/0 /0

cancelEvent (M2) M2+
′′InviteUser′′ ;

M2+
′′SetIn f o′′

/0 /0

Grid4All Public Page D3.1–Chapter II–30

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Table 4: Constraints matching table: setInfo

setInfo
(M1,Date1)

Date1Id per
slot;
M1+

′′SetIn f o′′

Action Arguments Keys Real
matching
condition

Constraints

setInfo
(M2,Date2)

Date2Id per
slot;
M2+

′′SetIn f o′′

M1 = M2 Non-
Commuting

M1 6= M2 ;
∃slotS :

Date1Id1 =
Date2Id2 =

SId

Antagonist∗

cancelEvent (M2) M2+
′′InviteUser′′ ;

M2+
′′SetIn f o′′

M1 = M2 Non-
Commuting

∗To minimize the number of aborted action:
Get the previous AddUser (M1, thisUser)=A1

Get the previous AddUser (M2, thisUser)=A2

Set Constraint (Antagonist, A1,setIn f o1 ,A2,setIn f o2)
See example page D3.1–Chapter II–33

Grid4All Public Page D3.1–Chapter II–31

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Table 5: Constraints matching table: cancelEvent

cancelEvent (M1) M1+
′′InviteUser′′ ;

M1+
′′SetIn f o′′

Action Arguments Keys Real
matching
condition

Constraints

cancelEvent (M2) M2+
′′InviteUser′′ ;

M2+
′′SetIn f o′′

M1 = M2 /0

Grid4All Public Page D3.1–Chapter II–32

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Back to our example (figure 3), suppose Telex already holds the action setInfo(M1, 10:30-
12:00, 03/05/07) with keys {hash (”Slot(10:00-11:00, 03/05/07)”), hash (”Slot(11:00-12:00, 03/05/07)”),
hash (”M1setInfo”}5

When it receives action addUser(Jean-Michel, M2) with keys {hash (”M2Jean-Michel”), hash
(”M2InvitedUser”} , the latter does not (with high probability) have any common keys with the
former. Therefore Telex does not call getConstraint with these two actions.

In contrast, when Marc’s site receives SetInfo(M2,11:00-12:00,03/05/07), this action def-
initely has a key in common with the first one (the hash of their common slot (11:00-12:00,
03/05/07)).

Telex calls the getConstraints method of the calendar application. The compare thread check
the table 4 and:

• gets the previous addUser (M1, Marc) = addUser(i) , regarding to setInfo(M1, 10:30-12:00,
03/05/07)= setIn f o(1).

• gets the previous addUser (M2, Marc) = addUser(a) , regarding to setInfo(M2, 11:00-
12:00, 03/05/07)= setIn f o(a).

• Returns conflict between (addUser(i)
,setIn f o(1)) and (addUser(a)

,setIn f o(a))

• Finally record the conflict in M1 multilog and M2 multilog.

5 Slot = 60mn

Grid4All Public Page D3.1–Chapter II–33

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

2.5 Shared Calendar Pseudo-code

2.5.1 Actions on Calendar Telex-Documents

Invite(m, user1)

Invite(m, user1){
Telex Document mTDoc = import (m.Tdoc);
// set the user status for the meeting m as undefined
userStatus[m,user1]=undefined;
// get and execute a schedule of the meeting document actions
mTDoc.executeNow();
}

CancelInvitation(m, user)

CancelInvitation(m, user){
Telex Document mTDoc = getDocument (m);
// set the user status for the meeting m as cancelled
userStatus[m,user]=cancelled;
mTDoc.close(); // close the meeting m document
}

2.5.2 Actions on Meeting Telex-Documents

CreateEvent(m, mTDoc)

CreateEvent(m, mTDoc){
// create the meeting object and associate it with the meetingId m

//and the corresponding document.
create mObject (m, mTDoc);
}

addUser(m, userId)

addUser(m, userId){
// get the meeting object representing the meeting

//set with meeting information.
MeetingObject mObj= getmObject (m);
if (userStatus[m,userId] == invited) {
vote= accepted;
} else if {
Ask the user ‘‘userId’’ his position on his invitation
to the meeting ‘‘mObj’’;
if (vote = accepted) {
userStatus[m,userId]= ‘‘invited’’;
// set the meeting in the userId agenda
Agenda[userId].addmeeting(m) ;
}
else if (vote = wait)
userStatus[m,userId]= ‘‘undefined’’
else // vote = refuse invitation

Grid4All Public Page D3.1–Chapter II–34

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

userStatus[m,userId] = ‘‘refuseInvitation’’
}
// For the reconciliation: tell the collaborators whether

// the invitation is accepted, refused or not decided.
actionStatus[getActionId] = vote ;
}

cancelUser(m, userId)

cancelUser(m, userId){
// get the meeting object representing the meeting

// set with meeting information.
MeetingObject mObj= getmObject (m);
if (userStatus[m,userId] == cancelled) {
vote= accepted;
} else if {
Ask the user ‘‘userId’’ his position on cancelling his
invitation to the meeting ‘‘mObj’’;
if (vote = accepted) {
userStatus[m,userId]= ‘‘cancelled’’;
// remove the meeting in the userId agenda
Agenda[userId].removemeeting(m) ;
}
else if (vote = wait)
userStatus[m,userId]= ‘‘undefined’’
else // vote = refuse

userStatus[m,userId] = ‘‘refuseCancellationg’’
}
// For the reconciliation: tell the collaborators whether the

// invitation is accepted, refused or not decided.
actionStatus[getActionId] = vote ;
}

setInfo (m, mInfo)

setInfo (m, mInfo){
// get the userId where the action is executed
getCurrentUser= userId;

if (actionStatus [getActionId, getUserId] != refused) {
if (Agenda[userId].get(m.date) == free){

Agenda[userId].set(m.date, busy, m);
// if the user didn’t decided on the action then
// notify him of the change
if (actionStatus [getActionId, getUserId] == undefined) {

Ask the user he accepts the change
Get vote;
actionStatus [getActionId, getUserId] = vote;

} else {
// add m to the meeting list scheduled on m.date

Grid4All Public Page D3.1–Chapter II–35

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Agenda[userId].set(m.date, busy, +m);
notify the user of the conflict ;
get vote;
actionStatus [getActionId, getUserId] = vote;
// => conflicting action’s votes can be both accepted if
// the user resolves the conflict with other setInfo

// or cancelInvitation
}

}

cancelEvent(m)

cancelEvent(m){
// get the userId where the action is executed
getCurrentUser= userId;

// get the meeting object representing the meeting
// set with meeting information.

MeetingObject mObj= getmObject (m);
//Cancelled users automatically accept the cancelEvent
if (userStatus[m,userId] == cancelled) {
vote= accepted;
} else if {
Ask the user ‘‘userId’’ his position on cancelling the meeting
to the meeting ‘‘mObj’’;
if (vote = accepted)
userStatus[m,userId]= ‘‘cancelled’’;
// remove the meeting in the userId agenda
Agenda[userId].removemeeting(m) ;

else if (vote = wait)
userStatus[m,userId]= ‘‘undefined’’
else // vote = refuse
userStatus[m,userId] = ‘‘refuseCancellationg’’
}
// For the reconciliation: tell the collaborators whether

// the invitation is accepted, refused or not decided.
actionStatus[getActionId] = vote ;
}

2.5.3 Controller thread

On a create meeting event

get owner;
//all needed users but the owner
get neededInvitedUserList;
//other invited users
get optionalInvitedUserList;
//Precondition : neededInvitedUserList INTER optionalInvitedUserList

Grid4All Public Page D3.1–Chapter II–36

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

// INTER {owner} = NULL

invitedUserList = neededInvitedUserList +
+optionalInvitedUserList

+ owner;
get description;
get date;

// Create the meeting document m

CreateDocument mTDoc;
Meeting m= new Meeting (owner, InvitedUserList, description,

dateIdSet...);

Fragment meetingFragment, calendarFragement;
// Generate the createEvent action
Action create = new createEvent (m);
meetingFragment.add(create);

Action addUserAction, invite;
Document di;

// For each invited user
for (user in invitedUserList){

// Import user calendar
di=getdocument (user, calendar);

// Generate action Invite (m, user) on that calendar
invite=meeting.createInviteAction(m, user);
calendarFragment.add (invite);
di.addFragment (calendarFragment);

//Generate action addUser(user) to mTDoc
addUserAction = new action(m,addUser, user);

meetingFragment.add (addUserAction);

}

// if the meeting can’t take place if some needed users can’t come
// => Generate the parcel between:

// createEvent and addUser (neededUser) set;
meetingFragment.addConsraint (parcel, create,

set of addUser (neededInvitedUserList));

// In all case the addUser(optionalInvitedUser) need
// the createEvent action

for (user in optionalInvitedUserList){

Grid4All Public Page D3.1–Chapter II–37

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

meetingFragment.addConstraint (Enables, addUser(user), create);
}

//Set the meeting information
// Generate the setInfo action
// this action depends on the createEvent

Action setInfo = new action (m,description, date...);
meetingFragment.add(setInfo);
meetingFragment.addConstraint(Enables, setInfo, create);

//Order the invitation with the concurrent invitations
meetingFragment.addConstraint(Before, setInfo, F.getActions(AddUser));

// Add the fragment to the meeting document
mTDoc.addFragment (meetingFragment);

//Ask for a schedule
executeNow();
}

On an cancel meeting event

get Meeting m;
get owner; // the owner of the action

// Create cancelEvent action on the meeting document
Fragment meetingF;
Action cancelEvent= new action(CancelEvent, m);
meetingFragment.add (cancelEvent);
// If committed it’s execution generates the cancelEvent
//in user’s Calendar

//get the createEvent action and add the enables constraint
Schedule sc = m.getCurrentSchedule();
Action create = sc.getAction (createEvent);
meetingFragment.addConstraint (Enables, CancelEvent, create);

// add ordering constraint (Before) with the previous addUsers
// and setInfo of mTdoc

meetingFragment.addConstraint (Before,sc.getActions(addUser) ,
cancelMeeting);

meetingFragment.addConstraint (Before, sc.getActions (setInfo));

// add the fragment on the meeting document
m.getDocument().addFragmet (meetingFragment);

Grid4All Public Page D3.1–Chapter II–38

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

//Ask for a schedule
executeNow();

On an invite users event

get Meeting m;
get owner; // the owner of the action

get neededInvitedUserList; //all needed users
get optionalInvitedUserList; //other invited users
//Precondition : neededInvitedUserList INTER optionalInvitedUserList = NULL
//Precondition : Invited UserList are note already collaboration
// on the meeting document

//NOTE: owner may be in neededInvitedUserList

invitedUserList = neededInvitedUserList + optionalInvitedUserList;

// get the createEvent action for the Enables constraints
// the setInfo actions, cancelUsers actions for the ordering constraints

Schedule sc= m.getCurrentSchedule();
Action create =sc.getAction (createEvent);

Fragment meetingFragment, cancelInvitationFragment, setInfoFragment;
//the last concurrent meeting modification
setInfoFragment= sc.getActions (setInfoAction);

Action addUserAction, invite;
Document di;
Document mTDoc = m.getDocument();

// For each invited user
for (user in invitedUserList){

Fragment calendarFragment = new (Fragment);
// Import user calendar
di=getdocument (user, calendar);

// Generate action Invite (m, user) on that calendar
invite=meeting.createAction(Invite, m,user);
calendarFragment.add (invite);

// order it with the previous cancellations on the calendar document

Grid4All Public Page D3.1–Chapter II–39

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

cancelInvitationFragment = di.getSchedule().getActions(CancelInvitation);
calendarFragment.addConstraint (Before, cancelInvitationFragment, invite);

//record the calendarFragment in user calendar Document;
di.addFragment (calendarFragment);

//Generate action addUser(user) to mTDoc
addUserAction = new action(m,addUser, user);
meetingFragment.add (addUserAction);

// Generate Constraint Enables with the createEvent action.
meetingFragment.addConstrainte (Enables, addUserAction, create);

//order the generated AddUser with previous cancelUsers and setInfo
// get the scheduled cancelUser , may be multiple cancelling

cancelInvitationFragment= sc.getActions(cancelUser(user));
meetingFragment.addConstraint (before, cancelInvitationFragment, addUserAction);

// order with concurrent setInfo actions, may be multiple.
meetingFragment.addConstraint (Before, setInfoFragment,

addUserAction);

}

// If the owner presence depend on the presence of some neededUser
// and if the owner invitation status is not decided

// => then add the enables constraint between last
// recorded addUser (owner) action
// and the last addUser(neededUser)
// Note that both can either be already recorded in the meeting document
// or generated by the previous loop

if (userStatus[m,owner] =undefined){
for (usr in neededInvitedUserList){
meetingFragment.addConstrainte (Enables,
getLastAction(addUserAction(owner)),
getLastAction(addUserAction(usr))

);
}

}

// Add those information in the meeting document
mTDoc.addFragmet (F);

// Ask for a schedule
executeNow();

}

Grid4All Public Page D3.1–Chapter II–40

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

On an cancel user’s invitation event

get Meeting m;
get owner; // the owner of the action

get removedUserList; //all cancelled users
//Precondition : removed users are already collaborating
/on the meeting document
//NOTE: owner may be in removedUserList

// get the createEvent action for the Enables constraints
// the setInfo actions, cancelUsers actions for the ordering constraints

Schedule sc= m.getCurrentSchedule();
Action create =sc.getAction (createEvent);

Fragment meetingFragment, invitationFragment;
Action addUserAction, invite;
Document di;
Document mTDoc = m.getDocument();

// For each cancelled user
for (user in removedUserList){

Fragment calendarFragment = new (Fragment);
// Import user calendar
di=getDocument (user, calendar);

// Generate action cancelInvitation (m, user) on that calendar
cancelInvitation=meeting.createAction(CancelInvitation, m,user);
calendarFragment.add (cancelInvitation);

// order it with the previous invitations on the calendar document
invitationFragment = di.getSchedule().getActions(Invite);
calendarFragment.addConstraint (Before, invitationFragment,

cancelInvitation);

//record the calendarFragment in user calendar Document;
di.addFragment (calendarFragment);

//Generate action cancelUser(user) to mTDoc
cancelUserAction = new action(m,cancelUser, user);
meetingFragment.add (cancelUserAction);

// Generate Constraint Enables with the createEvent action.
meetingFragment.addConstrainte (Enables, cancelUserAction, create);

//order the generated cancelUser with previous addUsers and setInfo

Grid4All Public Page D3.1–Chapter II–41

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

// get the scheduled cancelUserInvitation , may be multiple cancelling
invitationFragment= sc.getActions(addUser(user));
meetingFragment.addConstraint (before, cancelInvitationFragment,

//cancelUserAction);

}

// Add those information in the meeting document
mTDoc.addFragmet (F);

// Ask for a schedule
executeNow();

}

On a modify meeting information event

get Meeting m;
get owner; // the owner of the action

get date;
get description;

get neededUserList; // needed users to execute the modifications
//Precondition: must already collaborate on the meeting

// get the createEvent action for the Enables constraints
// the setInfo actions for the ordering constraints

Schedule sc= m.getCurrentSchedule();
Action create =sc.getAction (createEvent);

Fragment meetingFragment, setInfoFragment;

Document mTDoc = m.getDocument();

// Generate the setInfo action and record it in the meeting document
Action setInfoAction = createAction (setInfo, m, date, description);
meetingFragment.add (setInfoAction);

// Generate Constraint Enables with the createEvent action.
meetingFragment.addConstrainte (Enables, setInfoAction, create);

// get the last concurrent meeting modification
setInfoFragment= sc.getActions (setInfoAction);
// order with the previous setInfo actions
meetingFragment.addConstraint (Before, setInfoFragment, setInfoAction);

Grid4All Public Page D3.1–Chapter II–42

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

// If the owner wants to apply the modification only if some neededUsers
// accepts to attend the meeting.

// For each needed user
for (user in neededUserList){

// get the Last scheduled addUser
// may be multiple addUsers, choose the one after the last cancelling

Fragment invitationFragment= sc.getLastActions(addUser(user));

// set the Enables constraint
meetingFragment.addConstraint (Enables, setInfoAction, invitationFragment);

}

// If the owner presence depends on this modification
// If he wants to notify the others ,

// and if the owner invitation status is not decided
// => then add the enables constraint between last recorded
// addUser (owner) action and the setInfo

if (userStatus[m,owner] =undefined){
// get the Last scheduled addUser (owner)
Fragment invitationFragment= sc.getLastActions(addUser(owner));

meetingFragment.addConstrainte (Enables, invitationFragment, setInfoAction);
}

// Add those information in the meeting document
mTDoc.addFragmet (F);

// Ask for a schedule
executeNow();

}

2.5.4 Model thread

On a Execute event

get schedules sc;
// the schedules may be on multiple documents: meetings and user calendar
for (each document d) {
get the initialState;
Restore the initialState;
Schedules subSc = sc.getsubschedule (d);

for (each Action act in subSc) {
// execute the action as described

}

Grid4All Public Page D3.1–Chapter II–43

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

execute (act);
}
}

2.5.5 Compare thread

On a getConstraints event

//get action to compare
get action1, action2;

// get the corresponding constraint from the constraint tables.
Fragment constraintFragment = correspondanceTable[action1, action2];

//record the constraints in the corresponding action documents
if (getDocument(action1) != getDocument(action2)) {
getDocument(action2).addFragment(constraintFragment);
}
getDocument(action1).addFragment(constraintFragment);

Grid4All Public Page D3.1–Chapter II–44

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

3 Collaborative Editors

3.1 State of the art

A wiki is a collaborative editor on the web: several users can edit common data from distributed
sites on the Internet. This section briefly describes the state of the art of collaborative editors and
wikis.

3.1.1 Collaborative Editors

We focus on collaborative editors based on optimistic replication (which is the focus in Grid4All).
Optimistic data replication allows users, even disconnected, to access data quickly. and support
simultaneous editions. The system is then in charge of ensuring the convergence of the updated
data towards the best possible state.

The collaborative editors that can support the management of optimistic replication are Ice-
Cube, Bayou and WOOT. These approaches ensure the consistency of the data in a state that
takes into account the modifications of the users. However, P2P networks are composed of a
very volatile population. Each node can enter or leave constantly, and arbitrarily quickly. In this
context, the existing solutions of the collaborative editors cannot be adapted.

IceCube is a general-purpose reconciliation system that exploits the application semantics to
resolve conflicting updates [12, 27, 28]. In IceCube, update operations are called actions and
they are stored in logs. IceCube captures the application semantics by means of constraints
between actions, and treats reconciliation as an optimization problem where the goal is to find
the largest set of actions that do not violate the stated constraints.

Bayou is a mobile database system that lets a user replicate a database on a mobile computer,
modify it while disconnected, and synchronize with any other replica of the database that the
user happens to find [34, 22]. In Bayou, each operation has attached a dependency check and
a merge procedure. The dependency check is run to verify if the operation conflicts with others
whereas the merge procedure is executed to repair the replica state in case of conflict. In Bayou,
a single primary site decides which operations should be committed or aborted and notifies other
sites about the sequence in which operations must be executed. Anyway, Bayou remains different
from single-master systems as it allows any site to submit operations and propagate them, letting
users to quickly see the operations effects. In single-master systems, only the master can submit
updates.

OT (Operational Transformation) was developed for collaborative editors [9, 32, 30, 31, 35]. OT
assumes that a user applies commands immediately at the local site, and then propagates these
commands to other sites. As a result, all sites perform the same set of operations but possibly
in different orders. The goal of OT is to preserve the intention of operations and assure replica
convergence. This is achieved by defining for every pair of concurrent operations a rewriting rule.
In [20] it is proved the correctness of OT for a shared spreadsheet. Molli and all [16] extend the
OT approach to support a replicated file system. Ferrié and all [10] deal with undo operations

Grid4All Public Page D3.1–Chapter II–45

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

in the context of OT by providing a general undo algorithm based on the definition of a generic
undo-fitted transformation.

WOOT [17] proposed by ECOO team of the LORIA, can also be used in a decentralized way.
WOOT is based on the monotonous calculus of the linear extension of the order partial between
the elements of a linear structure. To integrate each modification, each site is able to make
independently this calculus in a polynomial time. WOOT uses neither state vectors nor sites
having particular tasks or constraints.

Examples of collaborative editors are 6

ACE is a simple text editor with standard features such as copy/paste and load/save.Multiple
documents can be edited at the same time. Furthermore, ACE can share documents with other
users on different computers, connected by communication networks (LAN, Internet).ACE allows
the discovery of users and moreover automatically shares their documents.Users can opt to join
any discovered shared document.For all of this, no configuration is necessary since it is a zero-
conf networking approach(also known as Bonjour or Rendezvous).

ACE builds upon open technologies such as BEEP (RFC 3080) and zero-conf networking
applications that understand the public protocol of ACE. ACE is a free software, running on all of
major operating systems (Windows, Mac OS X and Linux).

The heart of the application is a concurrency control algorithm based on Operational Trans-
formation [33], which allows lock-free edition of documents by multiple users. It does not impose
editing constraints and solves conflicts automatically. designing and implementing.

Intelligent Collaboration Transparency (ICT) is an application sharing framework for sharing
familiar single-user tools (applications) for collaboration purposes without modifying their source
code. At the user level, unmodified heterogeneous applications can be shared and interoperated.
At the system level, the application sharing middleware is able to understand the behavior of the
applications being shared. The main assumption underlying this work is that allowing collabora-
tors to use familiar single-user tools for cooperative work can reduce development, deployment,
and learning costs while improving individual and group productivity.

CoWord (Microsoft Windows) is a collaborative software component which converts Microsoft
word into a real-time collaborative word processor and allows multiple users to collaboratively edit
the same word document at the same time.

DocSynch is a collaborative editing system on top of IRC (Internet Relay Chat). By transform-
ing single-user editors into multi-user editors, it allows to remotely edit text documents together.
Implementations are targeted as extensions to many popular text editors and IDEs. A working
version is available for jEdit.

6http://en.wikipedia.org

Grid4All Public Page D3.1–Chapter II–46

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

CodeWright is rich featured programmer’s editor from Borland. Its built-in CodeMeeting plugin
allows each file to be edited by one person at time. Others can watch cursor actions. Chat is also
provided. CodeWright is considered easy to use by many developers and has powerful extension
tools. The program can be configured to work with other integrated development environment
(IDE) systems, synchronise with IDEs on the fly.

Writeboard is a free collaborative (but not real time) text editor, which allows creation of an
unlimited number of web-based text documents. Each Writeboard has a separate user name
and password, and changes can be monitored via an RSS feed. Writeboard is a very simple
application but supports Diff (file comparison utility), allowing users to compare changes made to
the document.

3.1.2 Cooperative editing system, general issues

A real-time cooperative editing system such as ACE allows multiple users to view and edit the
same document at the same time from geographically dispersed sites. The following require-
ments have been identified for such systems:

• Real-time: The response to local user actions must be quick, ideally as quick as a single
user editor, and the latency for reflecting remote user actions is low (determined by external
communication latency only).

• Distributed: Cooperating users may reside on different machines connected by communi-
cation networks with non-deterministic latency.

• Unconstrained: Multiple users are allowed to concurrently and independently edit any part
of the document at any time, in order to facilitate free and natural information flow among
multiple users.

A real-time cooperative editing system consists of n instances, each instance run by a dif-
ferent user. All instances are connected by a network. One of the most significant challenges in
designing and implementing real-time cooperative editing systems is consistency maintenance
among the different document replicas (one for each site). A cooperative editing system is said
to be consistent if it always maintains the following properties:

• Convergence: Guarantees when the same set of operations (for example, an operation
can be an insert/delete of a character) have been executed at all sites, that all copies (also
known as replicas) of the shared document are identical. That is, this property ensures the
consistency of the final results at the end of a cooperative editing session.

• Causality preservation: For any pair of operations Oa and Ob, if Oa → Ob (that is, Ob
is dependent on Oa), then Oa is executed before Ob at all sites. That is, this property
ensures the consistency of the execution orders at all sites of dependent operations during
a cooperative editing session.

• Intention preservation: For any operation O, the effects of executing at all sites are the
same as the intention of O, and the effect of executing does not change the effects of inde-
pendent operations. That is, this property ensures that executing an operation at remote
sites achieves the same effect as executing this operation at the local site at the time of its
generation, and the execution effects of independent operations do not interfere with each
other.

Grid4All Public Page D3.1–Chapter II–47

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

3.1.3 Wiki

A wiki is a website that allows users to add, remove, and edit content. Thus, using web technol-
ogy, a wiki provides an easy and cheap way to foster mass collaborative authoring. The first wiki
(WikiWikiWeb) was developed by Ward Cunningham in the mid-1990s. Wikis allow for linking
among any number of pages over the web. This ease of interaction and operation makes a wiki
an effective tool for mass collaborative authoring. Wikipedia, an online encyclopedia, is one of
the best known wikis.

A wiki software 7 is a type of collaborative software that runs a wiki system. This typically
allows web pages to be created and edited using a common web browser. Examples of wiki
systems are:

XWiki (second generation wiki) is a Java wiki engine with a complete wiki feature set (version
control, attachments, etc.) and a database engine and programming language which allows
database driven applications to be created using the wiki interface.

Clearspace is a commercial J2EE application, made by Jiva Software, which combines wiki,
blog, and document management functionality into a complete enterprise collaboration solution.
Clearspace uses wiki-style markup or WYSIWYG editing to allow for clean version control and
workflow management.

Corendal Wiki is a GPL application for corporate environments, with tight integration with Mi-
crosoft Active Directory.

OpenWiki is written in VBScript, uses the ASP protocol, and stores data in XML files or Mi-
crosoft SQL Server. It combines useful features of several Wiki engines with windows integrated
authentication so users are logged in transparently.

TWiki is a structured wiki, typically used to run a project development space, a document
management system, a knowledge base, or any other groupware tool.

3.2 XWiki P2P

3.2.1 Requirements of Collaborative Applications

With the popularity of distributed applications and growing speed of internet, collaboratively cre-
ating and managing information has become an essential requirement for the success of virtual
organizations. In this section we discuss requirements of collaborative applications.

Requirements

7http ://www.wikipedia.org

Grid4All Public Page D3.1–Chapter II–48

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Distributed collaborative applications are getting common as a result of rapid progress in dis-
tributed technologies (grid, peer-to-peer, and mobile computing). As an example of such appli-
cations, consider a second generation Wiki that works over a peer-to-peer (P2P) network and
supports users on the elaboration and maintenance of shared documents in a collaborative and
asynchronous manner. Consider also that each document is an XML file possibly linked to other
documents. Therefore, such a Wiki allows collaboratively managing a single document (e.g. a
scientific paper shared by a few of authors) as well as composed, integrated documents (e.g.
an encyclopedia or a knowledge base concerning the use of an open source operating system).
Although the number of users that update in parallel a document d is usually small, the size of
the collaborative network that holds d in terms of number of nodes may be large. For instance,
the document d could belong to Wikipedia, a free content encyclopedia maintained by more than
75,000 active contributors 8.

Many users frequently need to access and update information even if they are disconnected from
the network, e.g. in an aircraft, a train or another environment that does not provide good network
connection. This requires that users hold local replicas of shared documents. Thus, a P2P Wiki
has need for multi-master replication to assure data availability at anytime. In the multi-master
approach, updates made offline or in parallel on different replicas of the same data may cause
replica divergence and conflicts, which should be reconciled.

In order to resolve conflicts, the reconciliation solution can take advantage of application se-
mantic illustrated in Figure 12. This example deals with a single document elaborated by three
authors. The document is a scientific paper organized as a tree. Each node (element) in the tree
structure corresponds to a section of the paper and holds the name of the responsible author.
Figure 12 (a) shows the initial structure of the paper whereas Figure 12 (b) shows conflicting
updates (in gray) over the initial structure. In Figure 12 (b) Esther tries to move the Background
section under Paper thereby changing the Background path from Paper/Solution/Background to
Paper/Background while Manal tries to insert two topics under Background using the path Pa-
per/Solution/Background. If the move operation is accomplished before the insert operations, the
Background’s path changes so that the insert operations do not find the Background element,
and therefore such inserts are lost. We can automatically solve this problem by introducing the
following application semantic: update operations precede move operations. In Figure 12 (a) ac-
cording to this semantic, Topic 1 and Topic 2 are inserted in the path Paper/Solution/Background,
and then the entire sub tree under Background is moved in such a way that the intents of both
users (Esther and Manal) are preserved.

In Figure 12 (a), another conflict takes place if Vidal tries to delete Background while in parallel
Manal tries to update the contents associated with Background. In this case, it is impossible to
preserve the intents of both users as we previously did, i.e. an operation will be preserved and
the other one will be discarded. By taking into account the application semantic, we can preserve
the operation that would likely be held by the users; in contrast, if we do not consider the applica-
tion semantic, either we keep this conflict to be manually solved later or we randomly resolve the
conflict. Thus, in order to automatically behave as users would likely do, we introduce the follow-
ing application semantic: ancestral responsible has higher priority than descendent responsible.
For instance, according to this semantic, the deletion of Background would be preserved and its
update would be discarded since Vidal, who proposes the deletion, is ancestral responsible wrt.

8http ://www.wikipedia.org

Grid4All Public Page D3.1–Chapter II–49

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Manal (i.e. Vidal is responsible for an element in the tree - the Solution element - that is Back-
ground’s ancestral). As in the real world, we take advantage of the authors’ hierarchy to decide
conflicts. Of course, sometimes it is better to preserve the operation submitted by the descen-
dent responsible. To cope with this situation, we improve our application semantic as follows: it
is possible to reapply discarded updates if the priority-based resolution is not satisfactory. Such
semantic can be easily implemented by allowing users to retrieve the discarded operations and
try again to execute some of these operations, if they want.

Figure 12: Producing a paper in a collaborative manner

The semantic associated with a P2P collaborative editor can be richer than the simple se-
mantic that we discussed. However, we made the example deliberately simple only to show that,
by taking advantage of the application semantic on the reconciliation, we can eliminate spurious
update conflicts (e.g. insert and move operations over the same element are not really conflicting
operations) and we can resolve the real existing conflicts in an automatic manner as users would
likely do.

To manage information, users take advantage of different devices such as notebooks, PDAs and
portable phones, which can be supported by networks of variable quality. As a result, it is not
acceptable that the replication solution make strong assumptions about the network.

3.2.2 Detailed Examination of XWIKI

We use XWiki as collaborative application to validate Semantic Store reconciliation. In this sec-
tion, we present the current structure of XWiki application, which is client server. Then we discuss
the extensions needed to do a P2P version of XWiki.

XWiki

A wiki is a website that allows users to edit, add, and delete contents. XWiki is second
generation of wiki. It is an open source wiki written in java. It provides the editing, attachment,
different skins, and full text searching facility to its users. It has also some advanced features; we
can export our data from XWiki pages to .pdf pages. It uses hibernate for storing data in relation
database and for accessing it. We can use XWiki in different languages. XWiki is a user-friendly

Grid4All Public Page D3.1–Chapter II–50

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

wiki. User can edit or create the page on just single click. For editing, it gives two basic choices
general mode and advanced mode. General mode is for basic or normal users and for expert
users it gives advanced mode. User can change profile, picture, or password. For editing we can
use GUI or direct programming language of XWiki i.e. velocity and groovy.

Any change in document is saved under version control of XWiki feature. We can access
the old documents by clicking the history button on the page. An XWiki page can contain at-
tachments, which can later be referenced from within a page. For searching, it provides a full
text-searching panel. If a user has administrator rights after searching, he/she can be delete the
page and assign specific rights of page to another user.

We can use different kinds of plug-ins with XWiki. One very user-friendly feature of XWiki is
Skins. We can use different kinds of skins according to our desire and can make our XWiki page
more nice and beautiful.

Current Design

XWiki is based on open source projects; it uses different kinds of open source projects, i.e.

• Hibernate: for accessing and working on data;

• DBCP: database connection pool for establishing connection with database;

• JRCS: used for version of documents; Struts: XWiki uses struts framework for data pre-
sentation and adding;

• OScahe: used for caching the documents;

• OSUser: used for user authentication on system.

Currently XWiki is a client server application as shown in Figure 13. Administrator on Server
creates an account for a user and user can access it through username and password using a
web browser. Administrator creates a group of users and assign specific rights to that group of
users that what kind of work they can do on documents of their XWiki. They either can do editing
or deleting or can add new documents and information into their XWiki.

XWiki uses hibernate to access and retrieve data from database. Hibernate is high performance
object ,query service and a mapping tool for java environment. Hibernate has three essential
components and some optional components. Essential components are session factory, session,
transaction. XWiki uses RDBMS; we can use HSQL, MY SQL, or any other relational database.

Scripting

XWiki uses groovy and velocity as scripting languages. Velocity is used as a carrier of data
between java layer and page or presentation layer. The programmers of the XWiki core have
gathered objects of various types and placed them in the Velocity context. These objects, and
their methods and properties, are accessible via template elements called references and effec-
tively form an API for XWiki. Groovy mainly used by administrator or those users who have rights
for programming on XWiki. Mainly it is used for integration of plug-ins or components with XWiki.
It generates XML. HTML is used at the page layer for presentation of the data. With the use of

Grid4All Public Page D3.1–Chapter II–51

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 13: XWiki Client Server

groovy and velocity we can build or write directly in XWiki without compilation. These are easily
integrates in J2EE and a programmer can build application fast.

Concept of conflict

In current client server XWiki user can create a document and other users who have rights can
easily access the document and can do work on it. From Figure 14 we can see that, if the owner
of page edits the page and at same time another user edits the page, owner has priority for
editing the page. Owner edit the page and write c ,other user also work on same page and write
d, they both save the page at same time. Owner of the document changes will be saved. While
in another case if two different users that both are not owners of the page are working together
on the same page the last user will have priority, who will update the page in last.

Grid4All Public Page D3.1–Chapter II–52

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 14: XWiki confliction

Granularity

The current granularity level of update in XWiki is its specific page, where we can edit, or updating
information or contents of the page. For XWiki P2P it should be LINE level.

Architecture of XWiki Document

From Figure 15 we can see that XWiki has different spaces (e.g. blog, news, calendar etc) and
every space has its own pages. A registered user can access the space and its pages and create,
edit the pages in different spaces if user has rights to do edition or creation.

Figure 15: Architecture of XWiki Documents

Grid4All Public Page D3.1–Chapter II–53

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

3.2.3 XWiki P2P

XWiki has client-server architecture. Thus, the centralized server can be a bottleneck and a
single point of failure. To improve XWiki data availability, in case of failure or offline mode of
server, we propose to make Xwiki peer-to-peer (P2P). The main advantage of making XWiki P2P
is availability of its data at any time. With XWiki P2P, a user with the proper access rights is able
to access any other user’s data and then use the data. Another advantage of P2P is scalability:
it is easy to add new peers in the system since administration can be distributed. Finally, XWiki
P2P does not require any new infrastructure and can simply use the peers’ computing resources,
without needing any particular server. To make XWiki P2P, we have the following requirements.

Scalability

Resource management is not an issue in small or medium sized networks. However, when
we want to manage different kinds of software’s, a large number of users, and disparate users
and service availability requirements, scalability is a major concern. Scalability is a property of
a system that can handle successfully growing amounts of work and of users. XWiki P2P must
be scalable so that it can handle larger numbers of users and work successfully. More precisely,
scalability of P2P XWiki should be defined in terms of: number of users, data sizes, update work-
loads and query response times. Scalability is also related to extensibility of the system, which
means the ability of installing new hardware and software resources easily.

Data Availability

To increase data availability in P2P systems (without relying on expensive special-purpose
availability solution), the only viable solution is data replication. Therefore, XWiki P2P exploits
data replication with the following advantages. First, replication improves XWiki data availability
by removing single points of failure since objects are accessible from multiple peers. Second,
it enhances XWiki P2P performance by reducing the communication overhead (objects can be
located closer to their access points) and increasing throughput (multiple peers serve the same
object simultaneously). Finally, replication improves the system scalability as it supports the
growth of the system with acceptable response times. Since XWiki is essentially a collaborative
application, optimistic replication is the best choice for XWiki P2P as it increases independent
updating of the data. However, with optimistic replication, updating different replicas of the same
data may cause replica divergence and conflicts, which should be reconciled.

Conflict Resolution

In client-server XWiki, users can share and update the same data using different sessions
on the server. Thus, there can be conflicting updates of the same data page. To provide data
consistency, XWiki implements a simple concept of conflict as follows. The owner of the page
always has priority over any other user. Thus, in case of conflict, only the owner’s updates are
committed. If there is an update conflict between two users, none of them being the owner, then
only the changes made by the last user are saved e.g. If user1 and user2 update a page. User1
save page before user2 and user2 save page after user1 then user2 updates will be save.
Client-server XWiki supports a page-level granularity for updating. This prevents multiple users to
update different parts of the same page at the same time. Furthermore, conflicts detected at the

Grid4All Public Page D3.1–Chapter II–54

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

page level are solved by ignoring some changes, which could be integrated if a lower granularity
were used. Thus, it makes much senses to increase the level of update granularity to line-level, a
page being a sequence of lines. Conflict resolution must then be extended to deal with line-level
granularity.

Mobility

Support of mobility is another important requirement for XWiki P2P. The objective is to pro-
vide mobile XWiki users, using lightweight devices such as PDA or smart phone, the ability to
access XWiki data from other peers with possible disconnection and reconnection. This implies
support for conflict resolution while reconnecting the network.

User Friendly Interface

Client-server XWiki provides an intuitive user-friendly interface, which made simple by the
fact that the user understands the client-server abstraction and the server provides uniform ac-
cess to all data. In XWiki P2P, with the data distributed and replicated at different peers, the same
abstraction should be provided to users. In particular, the user interface should make it easy to
deal with different peers to access data.

3.2.4 APPA (Atlas Peer-to-Peer Architecture)

APPA has a layered service-based architecture. Besides the traditional advantages of using
services (encapsulation, reuse, portability, etc.), this enables APPA to be network-independent
so it can be implemented over different structured (e.g. DHT) and super-peer P2P networks. The
main reason for this choice is to be able to exploit rapid and continuing progress in P2P networks.
Another reason is that it is unlikely that a single P2P network design will be able to address
the specific requirements of many different applications. Obviously, different implementations
will yield different trade-offs between performance, fault-tolerance, scalability, quality of service,
etc. For instance, fault-tolerance can be higher in DHTs because no node is a single point
of failure. On the other hand, through index servers, super-peer networks enable more efficient
query processing. Furthermore, different P2P networks could be combined in order to exploit their
relative advantages, e.g. DHT for key-based search and super-peer for more complex searching.
Figure16 shows the APPA architecture, which is composed of three layers of services: P2P
network services, basic services and advanced services.

P2P network services. This layer provides network independence with services that are
common to different P2P networks:

• Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a combi-
nation of super-peer id and counter in a super-peer network.

• Peer linking: links a peer to some other peers, e.g. by locating a zone in CAN.

• Key-based storage and retrieval (KSR): stores and retrieves a (key, object) pair in the
P2P network, e.g. through hashing over all peers in DHT networks or using super-peers
in super-peer networks. An important aspect of KSR is that it allows managing data using
object semantic. Object semantic means that an object stored in the P2P network consists
of a set of data attributes which can be accessed individually for read or write purposes.

Grid4All Public Page D3.1–Chapter II–55

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

This approach is appropriate for optimizing object access performance since we do not
need to transfer the entire object through the network at each object access operation as
the existing P2P networks use to do.

• Key-based time stamping (KTS): generates monotonically increasing timestamps which
are used for ordering the events occurred in the P2P system.

• Peer communication: enables peers to exchange messages (i.e. service calls).

Basic services. This layer provides elementary services for the advanced services using the P2P
network layer:

• Persistent data management (PDM): provides high availability for the (key, object) pairs
which are stored in the P2P network.

• Communication cost management: estimates the communication costs for accessing a
set of objects that are stored in the P2P network. These costs are computed based on
latencies and transfer rates, and they are refreshed according to the dynamic connections
and disconnections of nodes.

• Group management: allows peers to join an abstract group, become members of the group
and send and receive membership notifications. This is similar to group communication
systems [5, 4].

Advanced services. This layer provides advanced services for semantically rich data sharing
including schema management, replication [13, 14, 15], query processing [1, 2], security, etc.
using the basic services.

Figure 16: APPA Architecture

3.2.5 Architecture of XWiki using Semantic Store API

The Semantic Store API is an application programming interface that makes it easy for a P2P
collaborative application to take advantage of data replication. By using this API, the application
invokes the Semantic Store services while abstracts the Semantic Store architecture. Thus, the
Semantic Store API works as a façade for the Semantic Store system, which receives service
invocations, and then dispatches such invocations internally. In our case we use APPA as our
Semantic Store. Figure 17 presents the use of Semantic Store API (APPA API) to integrate a

Grid4All Public Page D3.1–Chapter II–56

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 17: APPA API

Peer to Peer XWiki with the Semantic Store (APPA). For making XWiki P2P , We use a Semantic
Store API (APPA API).The whole structure of XWiki will remain same except we will add three
additional components, Log File, Invocation of Semantic Store API(APPA API),Implementation of
IApplication Interface. Log File: The log file locally stores tentative update actions and constraints.
For instance, if the wiki documents are built in XML, tentative update actions are the insertion,
deletion, update, and move of XML elements. The Semantic Store API provide the following
operations:

• join() : it connects an instance of the P2P Wiki to the P2P network that supports the collab-
oration; this operation triggers a replica synchronization that applies on the local replicas
the global schedules produced while the peer was disconnected, if any exists. In addition,
the replica synchronization requests that the P2P Wiki publishes the local log.

• leave() : it disconnects an instance of the P2P Wiki from the P2P network that supports
the collaboration; this operation triggers a replica synchronization that applies on the local
replicas the global schedules produced while the peer was connected, if any exists. In
addition, the replica synchronization requests that the P2P Wiki publishes the local log.

• Synchronize () : it performs replica synchronization on demand, which involves applying
available global schedules and publishing the local log.

• StoreActions (log) : it stores into the P2P network the update actions present in the local
log; this operation is part of the publication of local log that takes place at every connection,
disconnection, and synchronization on demand.

• StoreUserDefinedConstraints (cnt) : it stores into the P2P network the user-defined con-
straints present in the local log; this operation is part of the publication of local log that
takes place at every connection, disconnection, and synchronization on demand.

• Start Reconciliation () : this operation launches the reconciliation of update actions al-
ready published but not yet reconciled. If the reconciliation is successfully started, a new
global schedule sch is produced.

3.3 XWiki P2P Use Cases

In this section, we illustrate the use of XWiki P2P focusing on how the XWiki application commu-
nicates with APPA through the Semantic Store (SS) API. To show the use cases, we consider a
group of three users, each being an XWiki peer. These users need to share a document with the
following simple scenario. User 1 creates a document to be shared with users 2 and 3. After user

Grid4All Public Page D3.1–Chapter II–57

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

1 has saved the document for the first time, the document is transparently replicated at users 2
and 3 using APPA. Then, users 2 and 3 can independently work on the document and update it
locally. All the local updates are captured through the SS API in the local action log at each peer.
Furthermore, the SS API allows the action logs to be published to other peers through APPA.
Upon reconciliation, the action logs are sent to a reconciler peer, which can be one of the user
peers or another peer chosen by APPA. The reconciler peer applies the reconciliation algorithm
to produce a global schedule (in a global log) which is then sent to the user peers. When receiv-
ing a global schedule through APPA, an XWiki peer applies the changes to the document and
saves it in its local database.

In this section, we give three use cases, which illustrate this scenario: creation of a replicated
document, parallel updating of the document, and reconciliation of parallel updates.

Creation of a Replicated Document

Consider user1 wants to create a document D on his XWiki, and wants to save it in the P2P
network. He is the owner of the document D in his group. Figure 18 shows a simple scenario for
replicating Document D in P2P network.

1. User1 creates a document D, to be replicated at peer2 and 3.

2. User1 updates D by adding one line L and saves D in the local database. A log file is
created and captured details about document D by using the Semantic Store API. D =
LineL = Hello

3. Semantic Store API makes easy for XWiki P2P application to take advantage of data repli-
cation. After D has been saved, the SS API is called by the XWiki client to replicate D on
peer 2 and peer3 using APPA replication service.

Figure 18: Creation of a replicated Document D

pseudo-code of Replicated Document

Grid4All Public Page D3.1–Chapter II–58

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Replicate_Doc (PeerGroup , DocId)
Input:

G: Peer Group;
DocId: Unique Identifier for a document D;

Begin:
Doc= Get_Doc (DocId); //Return Doc
For Each peer in G do {
Insert Data (Doc, p); // Store data in peer2 and peer3
}

End

Update of a Replicated Document

User 1 (the owner of D) and user 2 now work in parallel on D and perform updates. Figure
19 shows the corresponding use case.

1. User1 updates D by writing on line L1 (L1= ”Martin”) and saves the new state of D, D1, in
the local database. On Peer1, the log file Log1 stores all update actions. i.e.

{ D1 = D+L1 }
= Hello

Martin

2. User2 updates D by writing on line L2 (L2= ”How are you?”) and saves the new state of D,
D2, in the local database. On Peer2, the log file Log2 stores all update actions. i.e.

{ D2 = D+L2 }
= Hello

How are you?

Figure 19: Update Document D

Grid4All Public Page D3.1–Chapter II–59

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

pseudo-code of Update Document

Update_Doc (Actions, Doc)
Input:
Actions: Set of Actions (Insert, Delete, Update);
Doc: Document;
Output:
Logfile: Log file contains actions
Begin:
//Local Update
Insert(Actions , Doc); // Update local document
//Generate Log
Log Listener (Actions):= Logfile;
// called by XWiki peer where there is change in Document in order
// to store all tentative actions in log file
Return (Logfile);
End;

Reconciliation

Peer3 is using as reconcile peer and apply the reconciliation service to log files and send
back the global log contains schedule to peer1 and peer2. Figure 20 shows that Peer3 sends
a request to peer1 and peer2 for reconciliation. In response, peer1 and peer2 send their local
log files to peer3. Peer3, the reconciler peer, applies the reconciliation algorithm after receiving
the log files from the other peers. Log reconciliation resolves conflicting updates and produces a
global schedule that, when applied to all replicas, will lead them to a common, consistent state.
After reconciliation document D become D3. i.e.

{ D3=D+D1+D2 }
= Hello
Martin
How are you?

Figure 21 shows that after reconciliation process, peer3 generates global log named log3 con-
tains global schedule, and send it to peer1 and peer2.Peer1 and peer2 apply the global schedule
to their local replicas using their Semantic store API after extracting information from global log
i.e. log3. Now the status of document becomes D3 on each peer i.e.

Hello
Martin
How are you?

pseudo-code of Reconciliation Document

Reconciliation_Doc (LogFile)
Input:
LogFile: Log file from peer2 and peer3;
Output:
Global_log: Log file generate after reconciliation;
Attribute:
Peer Group [peer1, peer2,peer3]: set of peers;

Grid4All Public Page D3.1–Chapter II–60

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Figure 20: Reconciliation

Begin:
//Reconcile peer(peer3) send request to peer1 and peer2 for publish their log.
Request Publish Log();
For peer in Peer Group do {
// peer1 and peer2 publish their log to peer3 through APPA system.

Publish Log (Logfile);
}
If all the logfile received then {
Start Reconciliation():= global_Log;

// this operation launches the reconciliation of different log publish by
// peer1 and peer2 and return global log.
}
// Send new log generate after reconciliation
For Each peer P in Peer Group do {
sendGlobal_Log (global_Log, p); // send Global log to peer1 and peer2

}
End

pseudo-code of Apply Global Log

Apply GlobalLog (GlobalLog)
Input:
Global_Log;
Begin:
When APPA receive GlobalLog from reconcilie peer do {
//Semantic Store API extract information from GlobalLog

Grid4All Public Page D3.1–Chapter II–61

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

SS_API_ExtractActions();
//Update local database
SS_API_ApplySch();

}
End

Figure 21: Reconciliation

Grid4All Public Page D3.1–Chapter II–62

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

References

[1] R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Top-k query processing in the appa p2p
system. In In Proc.é of the Int. Conf. on High Performance Computing for Computational
Science (VecPar),, Rio de Janeiro, Brazil, july 2006.

[2] R. Akbarinia, E. Pacitti, and P. Valduriez. Reducing network traffic in unstructured p2p
systems using top-k queries. In Distributed and Parallel Databases 19(2-3), pages 67–86,
may 2006.

[3] CALCONNECT. The calendaring and scheduling consortium, Last visite 05/05/2007.
http://www.calconnect.org/index.shtml.

[4] M. Castro, M.B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and A. Wolman.
An evaluation of scalable application-level multicast built using peer-to-peer overlays. In
In Proc. of the Annual Joint Conf. of the IEEE Computer and Communications Societies
(INFOCOM), pages 1510–1520, San Francisco, California, april 2003.

[5] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications a compre-
hensive study. In ACM Computing Surveys 33(4), pages 427–469, CNAM, Paris, France,
December 2001.

[6] DateDex. A calendar sharing directory, Last visite 05/05/2007. http://www.datedex.com/.

[7] F. Dawson and Stenerson D. Internet calendaring and scheduling core object specification -
icalendar. Technical Report 2445, RFC, November 1998.

[8] W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
and Marvin M. Theimer. Designing and implementing asynchronous collaborative applica-
tions with bayou. In UIST ’97: Proceedings of the 10th annual ACM symposium on User
interface software and technology, pages 119–128, New York, NY, USA, 1997. ACM Press.

[9] C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In ACM SIGMOD Int.
Conf. on Management of Data, pages 399–407, 1989.

[10] J. Ferrié, N. Vidot, and M. Cart. Concurrent undo operations in collaborative environ-
ments using operational transformation. In Int. Conf. on Cooperative Information Systems
(CoopIS), pages 155–173, 2004.

[11] iCalShare. A calendar sharing directory, Last visite 05/05/2007. http://www.icalshare.com/.

[12] A-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The icecube approach to the
reconciliation of diverging replicas. In In Proc. of the ACM Symp. on Principles of Distributed
Computing (PODC), pages 210–218, August 2001.

[13] V. Martins, R. Akbarinia, E. Pacitti, and Patrick Valduriez. Reconciliation in the appa p2p
system. In IEEE Int. Conf. on Parallel and Distributed Systems (ICPADS). IEEE Computer
Society, Juillet 2006.

[14] V. Martins and E. Pacitti. Dynamic and distributed reconciliation in p2p-dht networks. In In
Proc. of the European Conf. on Parallel Computing (Euro-Par), pages 337–349, Dresden,
Germany, September 2006.

[15] V. Martins, E. Pacitti, R. Jimenez-Peris, and P. Valduriez. Scalable and available reconcili-
ation in p2p networks. In . In Proc. of the Journées Bases de Données Avancées (BDA),
Lille, France, October 2006.

Grid4All Public Page D3.1–Chapter II–63

http://www.calconnect.org/index.shtml
http://www.datedex.com/
http://www.icalshare.com/

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

[16] P. Molli, G. Oster, H. Skaf-Molli, and A. Imine. Using the transformational approach to build
a safe and generic data synchronizer. In ACM SIGGROUP Int. Conf. on Supporting Group
Work (GROUP), pages 212–220, 2003.

[17] G. Oster, P. Urso, P. Molli, and A. Imine. Réplicati optimiste dans les éditeurs collaboratifs
répartis. In Journées Francophones sur la Cohérence des Données en Univers Réparti
(CDUR), ACM SIGOPS, pages 155–173, 2005.

[18] Leysia Palen. Social, individual and technological issues for groupware calendar systems.
In CHI ’99: Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 17–24, New York, NY, USA, 1999. ACM Press.

[19] Leysia Ann Palen. Calendars on the new frontier: challenges of groupware technology. PhD
thesis, University of California at Irvine, Irvine, CA, USA, 1998.

[20] C. Palmer and G. Cormack. Operation transforms for a distributed shared spreadsheet. In
ACM Int. Conf. on Computer Supported Cooperative Work (CSCW), pages 69–78, 1998.

[21] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible update
propagation for weakly consistent replication. In sosp, pages 288–301, Saint Malo, October
1997. ACM SIGOPS. http://www.parc.xerox.com/csl/projects/bayou/.

[22] K. Petersen, M.J. Spreitzer, D.B. Terry, M.M. Theimer, and A.J. Demers. Flexible update
propagation for weakly consistent replication. In ACM Symp. on Operating Systems Princi-
ples (SOSP), pages 288–301, 1997.

[23] Sushil K. Prasad, Anu G. Bourgeois, Erdogan Dogdu, Raj Sunderraman, Yi Pan, Sham
Navathe, and Vijay Madisetti. Implementation of a calendar application based on syd coor-
dination links. In IPDPS ’03: Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, page 242.1, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[24] Nuno Preguiça, Marc Shapiro, and J. Legatheaux Martins. SqlIceCube: Auto-
matic semantics-based reconciliation for mobile databases. Technical Report TR-
02-2003 DI-FCT-UNL, Universidade Nova de Lisboa, Dep. Informática, FCT, 2003.
http://asc.di.fct.unl.pt/∼nmp/papers/sqlice3-rep.pdf.

[25] Nuno Preguiça, Marc Shapiro, and Caroline Matheson. Efficient
semantics-aware reconciliation for optimistic write sharing. Technical Re-
port MSR-TR-2002-52, Microsoft Research, Cambridge, UK, May 2002.
http://research.microsoft.com/scripts/pubs/view.asp?TR ID=MSR-TR-2002-52.

[26] Nuno Preguiça, Marc Shapiro, and Caroline Matheson. Semantics-based reconciliation
for collaborative and mobile environments. In Proc. Tenth Int. Conf. on Coop. Info. Sys.
(CoopIS), volume 2888 of lncs, pages 38–55, Catania, Sicily, Italy, nov 2003. springer.
http://www-sor.inria.fr/∼shapiro/papers/coopis-2003.pdf.

[27] N. Preguiça, M. Shapiro, and C. Matheson. Semantics-based reconciliation for collaborative
and mobile environments. In Int. Conf. on Cooperative Information Systems (CoopIS), pages
38–55, 2003.

[28] M. Shapiro, K. Bhargavan, and N. Krishna. A constraint-based formalism for consistency in
replicated systems. In Int. Conf. on Principles of Distributed Systems (OPODIS), 2004.

[29] Marc Shapiro and Nishith Krishna. The three dimensions of data consistency. In Journées
Francophones sur la Cohérence des Données en Univers Réparti (CDUR), pages 54–58,
CNAM, Paris, France, nov 2005. http://www-sor.inria.fr/∼shapiro/papers/cdur2005.pdf.

Grid4All Public Page D3.1–Chapter II–64

http://www.parc.xerox.com/csl/projects/bayou/
http://asc.di.fct.unl.pt/~nmp/papers/sqlice3-rep.pdf
http://research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-2002-52
http://www-sor.inria.fr/~shapiro/papers/coopis-2003.pdf
http://www-sor.inria.fr/~shapiro/papers/cdur2005.pdf

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

[30] C. Sun and C. Ellis. Operational transformation in real-time group editors: issues, algorithms,
and achievements. In ACM Int. Conf. on Computer Supported Cooperative Work (CSCW),
pages 59–68, 1998.

[31] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality-
preservation, and intention preservation in real-time cooperative editing systemss. In ACM
Transactions on Computer-Human Interaction, pages 63–108, 1998.

[32] C. Sun, Y. Yang, Y. Zhang, and D. Chen. A consistency model and supporting schemes for
real-time cooperative editing systems. In Australian Computer Science Conference, pages
582–591, January 1996.

[33] Chengzheng Sun and Clarence Ellis. Operational transformation in real-time
group editors: issues, algorithms, and achievements. In Conf. on Comp.-
Supported Cooperative Work (CSCW), page 59, Seattle WA, USA, November 1998.
http://www.acm.org/pubs/articles/proceedings/cscw/289444/p59-sun/p59-sun.pdf.

[34] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spreitzer, and C.H. Hauser. Man-
aging update conflicts in bayou, a weakly connected replicated storage system. In ACM
Symp. on Operating Systems Principles (SOSP), pages 172–183, 1995.

[35] N. Vidot, M. Cart, J. Ferrie, and M. Suleiman. Copies convergence in a distributed real-time
collaborative environment. In ACM Int. Conf. on Computer Supported Cooperative Work
(CSCW), pages 171–180, 2000.

Grid4All Public Page D3.1–Chapter II–65

http://www.acm.org/pubs/articles/proceedings/cscw/289444/p59-sun/p59-sun.pdf

CHAPTER II – REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
26th June 2007

Level of confidentiality and dissemination

By default, each document created within Grid4All is c© Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.
PP = Restricted to other programme participants (including the EC services).
RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.

Grid4All Public Page D3.1–Chapter II–66

Project no. 034567

Grid4All
Specific Targeted Research Project (STREP)

Thematic Priority 2: Information Society Technologies

Deliverable 3.1: Requirements analysis, design
and implementation plan of Grid4All data storage

and sharing facilities -- Chapter III

Due date of deliverable: 20 June 2007

Actual submission date: 20 June 2007

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA

Revision: Submitted 2007-06-20

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public √

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Revision history

Date Edited by Status Changes

2007-03-16 Hamid Mizani, Vladimir Vlassov,
Konstantin Popov

Draft Initial draft of the chapter

2007-04-05 Hamid Mizani Draft First draft of the chapter 3 for deliverable; format it
according to the deliverable template

2007-05-07 Hamid Mizani Draft Revised according to comments from Vladimir Vlassov

2007-05-15 Hamid Mizani, Vladimir Vlassov Draft Revised according to comments from Marc Shapiro

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 1

Table of Contents

List of Figures .. 3

List of Tables.. 4

Abbreviations used in this document ... 5

Grid4All list of participants... 6

Preamble... 7

1. Introduction .. 8

2. State of the art in Distributed and Grid File Systems... 10

2.1 Distributed File Systems...10
2.1.1 NFS: (Sun) Network File System..10
2.1.2 The Sprite Network Operating System ...11
2.1.3 AFS: Andrew File System ...11
2.1.4 The Coda File System ..12
2.1.5 The Ficus Replicated File System ..12
2.1.6 Frangipani : A Scalable Distributed File System...13

2.2 Serverless/Peer-to-Peer File Systems ...13
2.2.1 xFS – A Serverless Network File System ..13
2.2.2 CFS: Cooperative File System..14
2.2.3 IVY: A Read/Write P2P File System ...14
2.2.4 PASTIS ...14
2.2.5 KESO ..15
2.2.6 Farsite ...15
2.2.7 OceanStore and its Pond Prototype ...16

2.3 Grid File Systems ...16
2.3.1 The gLite File System: LCG File Catalogues..17
2.3.2 The AliEnFS File System ..18
2.3.3 The PUNCH Virtual File System...19
2.3.4 Grid Datafarm (Gfarm) File System ..20
2.3.5 Legion and Avaki ..20

2.4 File Transfer..20
2.4.1 GridFTP...21

2.5 Replica Management..22
2.6 Discussion ..22

3. Requirements and design issues for VOFS .. 23

3.1 Requirements ...23
3.2 Design Issues ...24

4. VOFS Architecture ... 26

4.1 Definition of VOFS..26
4.2 Building VOFS ..27

4.2.1 Exposing Existing Files and Directories to VOFS...28
4.2.2 VOFS Metadata ..30
4.2.3 Bootstrap VOFS..31

4.3 Mounting VOFS to a Local File System ...32
4.4 Replication and multi logs...34

4.4.1 Replication in VOFS..34
4.4.2 Support for Multi logs ..36

4.5 VOFS Interfaces (API) ..36
4.5.1 VOFS Upper Interface ..36
4.5.2 VOFS Lower Interface ..39

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 2

5. VO-Awareness of VOFS .. 40

5.1 Assumptions on the Grid4All Security Infrastructure..40
5.1.1 SAML ..40
5.1.2 VOMS..43
5.1.3 Permis ...44

5.2 Requirements for the Grid4All Security Infrastructure..45

6. VOFS Usage Scenarios ... 46

6.1 Basic Assumptions ...46
6.2 Requirements ...46
6.3 Description..47

7. Implementation Plan of a VOFS Prototype.. 50

7.1 VOFS Components ..50
7.1.1 MetaData Server ...50
7.1.2 Authentication Server..50
7.1.3 Authorization Service ..50
7.1.4 Mount Server...51
7.1.5 VOFS Client ..52

8. References.. 54

9. Appendix A: Access rights in AFS... 57

10. Appendix B: Use Cases .. 58

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 3

List of Figures

Figure 1: A VOFS ... 28
Figure 2: A VOFS structure with remote references (links) to exposed data objects............................ 28
Figure 3: VOFS using existing NFS client and server ... 32
Figure 4: VOFS using VOFS loopback adapters and VOFS servers .. 34
Figure 5: VOFS Interfaces... 36
Figure 6: Single Sign On use case... 41
Figure 7: Identity federation use case ... 42
Figure 8: SAML basic components.. 42
Figure 9: SAML and XACML integration ... 43
Figure 10: VOMS.. 43
Figure 11: Hierarchical RBAC .. 44
Figure 12: Permis architecture... 45
Figure 13: The KTH_ICCS Virtual Organization.. 46

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 4

List of Tables

Table 1: VOFS Upper Interface (POSIX API) ... 38
Table 2: VOFS Upper Interface (VOFS Specific API).. 39
Table 3: Basic POSIX file operations... 53

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 5

Abbreviations used in this document

Abbreviation / acronym Description

ACL Access Control List

AFS Andrew File System

CAS Community Authorization Service

CFS Cooperative File System

CHB Content Hash Block

DFS Distributed File Systems

DHT Distributed Hash Table

FUSE File system in User space

GFAL Grid File Access Library

GSI Grid Security Infrastructure

GT4 Globus Toolkit 4

GUID Global Unique Identifier

LFN Logical File Name

LRC Local Replica Catalogue

MDDB Meta Data Database

NFS Network File System

OGSA-DAI Open Grid Services Architecture-Data Access and Integration

PDP Policy Decision Point

PEP Policy Enforcement Point

PERMIS Privilege and Role Management Infrastructure Standards

POSIX Portable Operating System Interface

RBAC Role Based Access Control

RFT Reliable File Transfer

RLI Replica Location Index

RLS Replica Location Service

RPC Remote Procedure Call

SAML Security Assertion Markup Language

SSO Single Sing On

UFS Unix File System

VFS Virtual File System

VO Virtual organization

VOFS Virtual Organization File System

VOMS Virtual Organization Membership Service

XCAML eXtensible Access Control Markup Language

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 6

Grid4All list of participants

Role Participant N° Participant name Participant
short name

Country

CO 1 France Telecom FT FR

CR 2 Institut National de Recherche
en Informatique en
Automatique

INRIA FR

CR 3 The Royal Institute of
technology

KTH SWE

CR 4 Swedish Institute of Computer
Science

SICS SWE

CR 5 Institute of Communication
and Computer Systems

ICCS GR

CR 6 University of Piraeus
Research Center

UPRC GR

CR 7 Universitat Politècnica de
Catalunya

UPC ES

CR 8 ANTARES Produccion &
Distribution S.L.

ANTARES ES

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 7

Preamble

This document is the Chapter III of Deliverable 3.1 ”Requirements analysis, design and implementation plan
of Grid4All data storage and sharing facilities”, which comprises the following parts:

Chapter I
Chapter II
Chapter III
Appendix I

Semantic Store
Collaborative Applications
VO-aware File system
Telex application API

The following persons contributed to this chapter:

Vladimir Vlassov, KTH

Hamid Mizani, KTH

Konstantin Popov, SICS

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 8

1. Introduction

Data management is an important research and development topic in Grids because data are fundamental
to all fields of society, science, business, and engineering. Data management in Grids deals with technical
challenges and solutions aimed at providing integration, access, analysis and management of data
distributed among multiple administrative domains. There are many data-intensive scientific applications that
require mechanisms to transfer, replicate, discover, share, collect and analyze large amount of data from
diverse geographically distributed data sources. A technical challenge for data-intensive business
applications is to integrate, replicate and access data from different databases as well as to maintain
database consistency in a large scale.

In general, data-oriented services in Grids can be divided in two major categories (1) data access and
analysis, e.g. data mining and statistical analysis; (2) data transfer. In either case, a typical Grid application
processes data from multiple heterogeneous data sources (e.g. databases, file systems) and sinks
distributed among multiple administrative domains. An important issue in data management is integration of
heterogeneous data resources in order to provide a unified data access and movement with a unified VO
security mechanism.

Different applications have different demands for data-oriented services depending on what kind of data a
particular application is processing and how the data are to be processed. Some applications require a
conventional POSIX API to access files; whereas other applications require high-level services with more
sophisticated API to perform analysis (e.g. data mining) of data stored in databases or XML files. The lower
level data access services, provided to application developers, resemble POSIX data access. The higher
level data-oriented services provide ability to query databases or XML files, to query RDF and RDFS data, to
manipulate data objects with specific semantics and a specific API, e.g. multilogs. The OGSA-DAI [] software
defines the state of the art for database access. As indicated in [GT4 white paper], many Grid-related
application-oriented EU projects are using OGSA-DAI in different Grid applications which are in focus of the
projects. However, many scientific applications (including legacy applications) are using files; therefore
several large-scale (global) file systems have been proposed and implemented within Grid projects, e.g. Grid
File Access Library (GFAL) offered and used in the LHC Computing Grid (LCG) as a part of the gLite Grid
middleware, which is currently used and developed within the EGEE project.

Considering database access and high-level services is out of the scope of this document that is focused on
Grid-wide distributed file systems, specifically, Virtual Organization file systems (VOFS), and use of P2P
technologies in file systems.

In Grid4All project, we consider ad-hoc Grids, which contain different type of resources, e.g. computers,
storage, networks, etc. These resources are voluntarily provided by users and organizations, e.g. schools
and SMEs, forming VOs. VOs might have short lifetime, they might overlap each other and can be highly
dynamic. This dynamicity applies to both resources and VO members. In highly dynamic VOs, members as
well as resources can join and leave very frequently. Users and resources might simultaneously participate
in multiple VOs.

The core services of the Grid infrastructure (such as execution management, monitoring and discovery, data
management, information services and security) should be deployed on the resources which are rather
stable and (highly) available. On the other hand, the infrastructure should be able to tolerate the churn and to
use the resources provided by ordinary users as well. The ad-hoc Grid infrastructure should also be able to
react on the VO evolution (changes in the number of resources and VO members), i.e. to scale and to adapt
quality of services to changes in the VO. In order to tolerate churn, the ad-hoc Grid infrastructure should
provide efficient replication of services, data and metadata as well as efficient mechanism for service hand-
over especially for critical services. Furthermore, this should be done automatically wherever possible, i.e. an
ad-hoc Grid should be self-managing. This can be achieve by providing a control interfaces and a control
logic on services (Grid components).

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 9

File (data) transfer and replica management can be either components of the Grid file system or separate
services that compliment the file system with corresponding functionalities. Major requirements to a data
transfer service are high reliability and performance. One of the major requirements to a replica management
system is the ability to maintain consistency of mutable replicas.

VOFS should be able to aggregate different file systems including DFS (Distributed File Systems) to provide
data sharing between VOs. A DFS provides access to remotely located files to the clients in a distributed
system. DFS can be built on top of VBS (Virtual Block Store) which acts as a storage manager layer and
provides storage to other systems (like DFS) to store files. VOFS should also provide support for disconnect
operations which can be implemented using local caching and a reconciliation mechanism. VOFS should
support file replication for the sake of performance, robustness and availability. In order to obtain storage
resource for replicas and VOFS services such as Metadata servers (file catalogs), Mount services (for
persistency), VOFS will interact with a resource (VO) management system to be developed in Grid4All Work
Package 2.

In this document first we describe the state of the art in Grid file systems. We also study the state of the art in
data transfer and replica management in Grids, because those services and a VO file system are closely
related to each other. For example, a Grid file system can use file replication in order to achieve higher
performance and availability; whereas a replica management sub-system uses a file (data) transfer service
to move replicas and to maintain replica consistency. Then we specify requirements and design issues for
VOFS, and based on them describe a possible design of the Grid4All VOFS. In next section we focus on the
VO-awareness properties of VOFS and security issues, and we explain the mechanisms we plan to use.
Then we define a usage scenario to show how VOFS works in a simple but real situation. Finally we
describe the implementation details of a VOFS prototype.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 10

2. State of the art in Distributed and Grid File Systems

This section describes state of the art in distributed file systems (DFS thereafter), serverless/P2P DFSs, and
file systems developed specifically for Grid environments. We study requirements, features and solutions in
DFSs (architectures, protocols, caching, replication, consistency, and security mechanisms) that can
contribute to the VOFS design.

First, we give an overview of distributed file systems that assume the client-server model. DFS can operate
either within one administrative domain (e.g. NFS: Network File System) or across multiple administrative
domains using the same security mechanism (e.g. AFS: Andrew File System). Each administrative domain
has own users, user groups, security mechanism and administrators. Servers in DFS can be either
centralized (NFS) or distributed (AFS, Sprite, Frangipani). DFS can support replication of data over multiple
servers (Ficus, Coda) and aggressive caching supporting high availability, throughput, and/or disconnected
operation.

Next, we consider serverless/P2P-based files systems. Such DFSs do not distinguish between server and
client nodes, and have decentralized control and storage (xFS, Farsite). They aim at scalability, throughput,
and/or robustness and security. Besides such DFSs that provide, by definition, a POSIX-like interface for file
access, there are also P2P-base data storage systems that have different client requirements and interfaces
(such as support for versioning) but aim at the same properties of data storage (Pond/OceanStore,
LegionFS/AvakiFS). Some designs employ a P2P-overlay and/or DHT layer that is used for storing data and
directory blocks, as well as accessing peer nodes (Pond/OceanStore, Keso).

Finally, this chapter presents an overview of several file systems specially developed for Grids. While DFSs
design can serve as a starting point for Grid/VO-aware file systems, there are Grid/VO-specific issues like
compatibility with the VO life cycle model, security and trust, resource- and client- heterogeneity, and
necessary integration with the VO resource management.

2.1 Distributed File Systems

In this section, we consider a few most commonly used distributed file systems (DFS) that operate using the
same network file protocol with the same security mechanism. A DFS provides access to remote
(distributed) files via a local file system. A typical DFS has a client-server architecture that includes a set of
remote servers that provide access to remotely located files for clients accessing the files, and an access
protocol that is typically RPC-based. A DFS may also contain additional servers for authentication and
authorization like in AFS (Andrew File Systems). The server and the client can be in either in the kernel
space or user-level processes. Examples of ordinary DFS are NFS (Network File System), AFS (Andrew File
System), Windows DFS. Most of distributed file systems like those mentioned above, operate within one or
multiple (e.g. AFS) administrative domains but using the same security mechanism (e.g. Kerberos tickets).
For example, in AFS, each cell is a separate administrative domain with its own accounting system, i.e. own
users, users groups and administration.

2.1.1 NFS: (Sun) Network File System

NFS (Network File System)[26] was first introduced by Sun Microsystems in 1985. Since then, the NFS
protocol became the de facto standard network file protocol for Linux, Unix, SunOS, and Solaris operating
systems. Even though NFS is particularly common on UNIX-based systems, NFS implementations are
available on almost any platforms including Windows. However, only when used in a UNIX-based system,
NFS closely resembles the behaviour of a client’s local file system. The most commonly used version of the
NFS currently is NFSv3 and the latest NFSv4. The latter addresses some weaknesses in earlier NFS
versions such as ACL, security, and file system namespace, etc. However, NFSv4 is not used as extensively
as NFSv3.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 11

The NFS model is a remote file service that offers clients transparent access to remote file systems
managed by remote servers. Clients are actually unaware of the actual location of files, which is also known
as name transparency. A client can mount and access a remote file system exported by an NFS server
through the NFS mount point on the client’s local file system. The access is transparent to the client
application. Unlike many client server communications, NFS uses remote procedure calls (RPC) for
communications. The client connects to a known port on the server and then uses particulars of the protocol
to request specific action. NFS is a stateless protocol. This means that the file server stores no per-client
information, and there is no a notion of an NFS "connection" established between a client and a server. Both,
NFS client and NFS server, maintain caches of memory blocks for efficient file access. The server-side
cache is “write-through” using time stamps on file open; whereas the client-side cache is “write-back” with
delayed writes on file close and sync. The “write-through” caching policy at the server side is a consequence
of server statelessness, and it severely impacts the ‘write’ NFS performance. NFS supports open-close weak
consistency.

2.1.2 The Sprite Network Operating System

The Sprite network operating system [27] aimed at true network transparency for applications running on
workstations interconnected by a local-area network. The Sprite OS included an efficient distributed file
system that provided network transparency for applications.

A Sprite file system consists out of domains on different server machines that together represent a single
hierarchical directory structure shared by all workstations. The Sprite file system offers name transparency.
The Sprite file system utilizes all available workstation memory for caching at both the client and the server
sides, yielding far superior performance compared to e.g. NFS. Sprite uses a simple cache consistency
mechanism that guarantees that applications running on different workstations always observe the most up-
to-date version of data. The consistency mechanism optimizes the case when a file open for update is not
open at any other workstation. Locating a workstation responsible for a particular file is facilitated by so-
called prefix tables which map path prefixes corresponding to domains onto workstations currently
responsible for those domains. Prefix tables are updated automatically using a LAN broadcast, which greatly
simplifies management of a Sprite installation site while providing satisfactory performance. The statefullness
of the Sprite file system protocol actually provided a solution for application-transparent recovery after server
crashes [28]: clients cache and provide the necessary information to a server after its reboot. This achieves
the level of robustness provided by NFS but with far better performance, albeit at the expense of the protocol
complexity and certain memory requirements.

The Sprite file system paved the way for more efficient prototypes such as log-based striped distributed file
systems Zebra [36].

2.1.3 AFS: Andrew File System

The Andrew File System (AFS)[29] is a distributed networked file system developed by Carnegie Mellon
University as part of the Andrew Project and now funded by IBM within the OpenAFS project [13]. The main
AFS design principles are that (a) whenever possible, perform an operation on a client workstation thus
relieving servers, (b) cache data whenever possible, (c) minimize system wide knowledge, (d) trust the
fewest entities possible, and (e) batch operations whenever possible.

AFS distinguish local and shared files. The latter are stored on AFS servers and cached on the client’s disk.
Shared files are named in the AFS uses global name space with the root directory called /afs that is (can be)
mount to a local file system to the /afs mount point. The AFS file system is formed of a collection of basic
administrative units called cells. In the AFS directory structure, cells are located under /afs. A cell, e.g.
“it.kth.se”, constitutes a separate administrative domain of authority; it has its own list of users, groups, and
system administrators. Each cell is made up of volumes. A volume is a named collection of files and
directories that are grouped together as a data unit (e.g. a user’s home directory) that can be moved from
one server to another, backed up, replicated or destroyed..Volumes are assigned volume quotas in K-byte
blocks.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 12

Like many other distributed file systems, AFS uses client-side caching in order to reduce network traffic
when accessing remote files. A special client cache manager is used to maintain a file cache on the client’s
computer. The cache manager is invoked by the local operating system when the latter misses in the file
cache or the cached copy needs to be written back to the AFS server on file close. On open, the AFS server
issues a “callback” promise to notify the client if the file is updated. On close, the cache manager sends the
file to the server, which, in its turn, invalidates callback promises on copies (if any). The callback mechanism,
thus, requires the AFS server to maintain information on clients holding cached copies of the file. AFS also
has provides replication by using a single read/write copy backed by one or more read-only duplicates. This
paradigm also permits users to read data from a duplicate copy, while reserving the read/write master for
operations requiring write access which improves availability. AFS clients are also provided with an
automatic fail-over capability, allowing them to detect the loss of a server and connect to another machine
with no user intervention required. Like NFS, the AFS file system supports a weak consistency model with
the open-to-close (download-to-upload) semantics.

The security mechanism (authentication and authorization) in AFS is based on and Kerberos and ACLs
(Access Control Lists) set on the directory level. An ACL can contain up to 20 users and/or group entries with
specified granted rights, e.g. read, write, delete, etc. AFS assumes integrity of servers while client
workstations are considered untrustworthy.

2.1.4 The Coda File System

The Coda file system[29][30] is a descendant of AFS. Coda strives for high data availability, allowing users
to work with data even when some or even all file servers are temporarily not accessible. Coda retains AFS’
caching schema with server callbacks for maintaining cache coherence, dynamic discovery of file locations
and caching of that information, and using token-based authentication and end-to-end encryption as the
basis for file system security. Coda relies on two mechanisms to achieve its failure resilience goal: server
replication and disconnected operation mode. Update conflicts between different servers are resolved as
soon as possible. In normal operation, when all servers are available, Coda clients read data from a singe
server, check data status from all servers, and update all servers. Disconnected operation relies on
aggressive caching of data. During disconnected operation, Coda client software acts as a server replica,
and latter on is converted back to cache management function. Coda attempts automatic conflict resolution
on the directory structure, and relies on manual conflict resolution on files. The latter is assisted by certain
CODA tools that make conflicting versions of data to be easily accessible to the user who attempts to resolve
conflicts.

2.1.5 The Ficus Replicated File System

The Ficus replicated file system[32] design provides for highly-available file storage built from “off-the-shelf”
native file systems available on Unix platforms, and NFS used to access remote native file systems. Ficus
allows operation under the network partitioning, though it requires manual replica reconciliation should
conflicting updates emerge. Conflicting updates to directories are repaired automatically.

Ficus has a layered architecture, each layer using the vNode interface. The vNode interface is used within
most flavours of Unix (including Linux) for managing file systems, abstracting file system-specific details from
the rest of the operating system. In the Ficus architecture, there is a “Ficus Physical” layer between the
native file system layer and NFS, and a “Ficus Logical” layer between NFS and the OS system calls
available to file system clients. The logical layer manages the file name space and file replicas, while the
physical layer implements file replicas.

 A Ficus file system consists out of volumes that are grafted (mounted) together. A volume is a collection of
files that are managed together. A mount point is represented by a special entry that contains the volume
identifier and a list of volume replicas. Such entries are used during path translation to cross the boundaries
between volumes. Replication and consistency of such entries is managed using the standard Ficus
mechanisms for data replication.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 13

2.1.6 Frangipani : A Scalable Distributed File System

The Frangipani DFS[31] aims at scalability, high availability and minimal administration by humans. The
Frangipani design attempts to address these challenges by utilizing a two-layer structure, where the lower
layer is a distributed storage service providing a single shared virtual disk with aforementioned properties
and the upper layer is a file system that runs on top of the virtual disk storage. Upper layer servers do not
communicate with each other, but only with the lower layer virtual disk storage (and the lock server).
Frangipani assumes a cluster-like environment which has common administration and where communication
is secure. More disk space can be added to a Frangipani DFS through the lower level, without affecting
configuration of any of the existing Frangipani servers. Also, it is possible to take a backup of a file system
while it is being used.

Frangipani’s file system layout is reminiscent to original Unix file systems like Sun’s UFS. Such a simple
layout is allowed by the sparse storage provided by the virtual disc layer. Crash recovery is facilitated by the
write-ahead redo log of metadata (user data is not logged). A fine-grained locking schema facilitates
scalability of the file system.

2.2 Serverless/Peer-to-Peer File Systems

P2P is decentralized networking paradigm in which peers communicate and work collaboratively to share
resources, provide and consume services.

The convergence of peer-to-peer (P2P) and Grid systems has been recognized as a natural evolution to
bridge the gap between the two, merging their respective strengths and resolving their respective
weaknesses. Both P2P and Grid systems are build to share resources and to provide access to shared
resource. However, in contrast to Grids, a typical P2P system has low guarantees and low trust.

Traditionally, P2P techniques are used for building file sharing systems such as Gnutella, Kazaa, Freenet as
well as content delivery networks (CDN) such as Akamai. A P2P file sharing system is formed of peers
making their files available for each other to download. There exist a large number of file sharing systems
and CDNs.

There exist three types of P2P systems: unstructured system with random topologies, structured system with
regular topologies (e.g. exponential P2P networks) and hybrid. In addition to traditional overlay network
functionality, structured P2P systems such as Chord, Pastry, Tapestry, CAN, Tulip, and DKS, provide the
DHT (Distributed Hash Table) functionality. DHT allows storing and retrieving different kind of data objects
identified by keys. In a Grid system, DHT can used for a decentralized lookup (index) service, for example, to
keep track of Grid resources and services, to store and retrieve RDF triples of semantic information, and, in
particular, to store and retrieve files or file blocks.

A number of recent P2P file systems [CFS, Ivy, Pastis, Keso, MyriadStore] have been designed by providing
distributed file system functionalities on top of DHTs (Distributed Hash Tables) offered by the structured P2P
overlay. A global P2P DFS is built over the set of local file storage systems of individual peers. Like in
ordinary file system, inodes and contents of files and directories are stored in fixed-size blocks which are put
into the underlying DHT using public keys and content hashes as block identifiers. Inheriting the self-
organizing properties of the overlay, these file systems are resilient, robust, and scalable.

2.2.1 xFS – A Serverless Network File System

The xFS[35] prototype demonstrated the feasibility of the “serverless network file system” approach. In xFS,
every node can act as both client and a server, and any server node can store, control and cache any block
of data, giving good availability. This approaches uses the location-independence principle, which, combined
with caching and fast local area networks, gives better performance and scalability than traditional file

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 14

systems. Designs like xFS became timely because of (a) massive introduction of high-performance switched
local area networks, and (b) new applications such as multimedia, process migration and parallel processing
put higher requirements on file systems than can be handled cost-efficiently using client-server approaches.

xFS distributes control and storage evenly over all participating server nodes, it implements a software RAID
using log-based network striping similar to Zebra[36], and it uses cooperative caching taking advantage of
available memory and network bandwidth. The primary limitation of the approach is that it assumes trust
between OS kernels running xFS server nodes. Also, there can be scalability problems in large-scale
environments as xFS server nodes share certain globally replicated data structures.

The xFS’s philosophy is to allow to store any information, both data and all kinds of metadata, anywhere.
xFS maps file names to file indices, which, in turn, are mapped to disk log addresses of file’s metadata
(location of data blocks in the file). Log segments are partitioned among subsets of server nodes. Ultimately,
a server node can retrieve any log block in the system. Additionally, xFS performs aggressive caching, and
xFS server nodes prefer to request a data block from a peer server node than from a disk. xFS also features
support for distributed cleaning of logs and crash recovery.

2.2.2 CFS: Cooperative File System

CFS [1] is a decentralized read-only DFS based upon the Chord P2P system and the DHash distributed
block storage that is a DHT layer on top of Chord. DHash provides the block storage, caching and replication
using Chord as a routing infrastructure. Files and directories are stored and retrieved as blocks in the DHT
using cryptographic hashes of block contents as keys. CFS allows storing multiple file trees in the same DHT
with one publisher (owner) per a tree. Each tree is immutable. In CFS, a publisher (an owner) of a tree stores
all the data in content hash blocks using content hashes as identifiers; then she creates the root-block, signs
it using her private key and stores it in to DHT using her public key as the block identifier. To improve the
system performance, CFS uses virtual servers for load balancing.

2.2.3 IVY: A Read/Write P2P File System

Ivy is a read/write P2P FS that provides NFS-like semantics if the underlying P2P network is fully populated.
The Ivy file system was developed by the same group that developed CFS and Chord, and, like CFS, Ivy is
based upon Chord and the DHash distributed block storage. Ivy supports the open-to-close consistency and
uses logs to support concurrent writes. It is intended for a small group of participants, in which each of the
participants keeps her log. The log is split into blocks stored in DHT. The log-head is identified by an owner’s
private key and is signed by the corresponding private key. The reminder of the log entries are content hash
blocks. Ivy uses views and snapshots to maintain consistency of multiple logs. A view is a set of logs that a
number of participants have agreed to trust. The view comprises the file system. It has a view-block that
contains all the log heads of trusted participants. Each node pf the system keeps private snapshot with the
current state of the FS. This allows to avoid traversing the all snapshots. Snapshots are stored in DHash
using content hashing. A snapshot is updated with log entries newer than the last snapshot.

2.2.4 PASTIS

Pastis [49] is a read-write file system that can scale to large numbers of nodes and users. It uses a modified
version of the Past DHT based on Pastry [50] to store file system data. Pastis stores its data in data
structures similar to the UNIX file system (UFS). The metadata of a file, similar to a UFS inode, is stored in
mutable blocks which we call User Certificate Blocks (UCBs). In order to guarantee data authenticity, each
UCB is digitally signed by the writer before it is inserted into the DHT. File and directory contents are stored
in fixed-size immutable blocks called Content-Hash Blocks (CHBs). The key of a CHB is obtained from the
hash of its contents, which makes the block self-certifying. The keys of a file's CHBs are stored in the file's
inode block pointer table.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 15

Pastis uses close-to-open and a variant of read-your-write consistency models. The close-to-open model is
implemented by retrieving the latest inode from network when the file is opened and keeping a cached copy
until the file is closed. Any following read requests are satisfied using the cached inode. New CHBs are also
buffered locally instead of being inserted immediately into the DHT. Finally, when the file is closed all cached
data are flushed to the network and removed from the local buffer. Since the immutable data blocks (CHBs)
that store the contents of each different version of a given file (a new version appears each time the file is
closed) are never removed from the network, a complex garbage collection mechanism would have to be
employed to safely remove unused immutable block from the DHT. The read-your-writes model guarantees
that when an application opens a file, the version of the file that it reads is not older than the version it
previously wrote. Once the file is opened, file updates are performed as in the close-to-open model.

Pastis ensures write access control and data integrity through the use of standard cryptographic techniques
and ACL certificates. Pastis does not currently provide read access control, but users may encrypt files’
contents to ensure data confidentiality if needed.

2.2.5 KESO

KESO is a read/write file system built on top of the DKS P2P middleware. KESO supports file replication,
versioning, access control using PKI, data privacy using encryption. The main goal of Keso is to use of spare
resources and to avoid storing unnecessarily redundant data. It is a versioning file system, which means that
old versions of files are kept in the file system after then have been changed. It provides a reliable file
system on top of untrusted components. Security assumptions are based on minimizing trust, trust users and
not computers, and finally correctness of the received data should be verifiable.

Keso splits files into same size blocks and encrypt them when it wants to save a file. These datablocks are
then referenced from an inode. An inode consists of a blocklist of the datablocks of the file and the related
metadata to the file. The inode also contains the keys needed for decryption of the datablocks.

The metadata contains data about the file itself, such as the time this version of the file was created, the list
of permissions to use when users tries to access the file and who created it.

Directories provide a mapping between names and inodes. A directory contains a set of metadata, a
directory lookup table and a signature. The directory lookup table is a list of entries which each contains a
name and a list of file change entries. Subdirectories are treated in the same way as files. Each entry
consists of an operation, the inode this operation relates to, and the user which has performed the operation.
Operation can be one of either Create or Delete, where Create means that a new file version has been
created and Delete means that the file has been deleted.

2.2.6 Farsite

Farsite[2], developed at Microsoft Research, Redmond, is a P2P (serverless) DFS that aims at harnessing
available resources in large sets of insecure and unreliable machines in order to provide reliable and secure
file systems. Farsite mimics the semantics of NTFS, the native FS of Windows NT.

In Farsite, a number of hosts dynamically form a directory group to manage a virtual namespace root. The
hosts are responsible for metadata of that part of the FS. The directory group of hosts provides a group
service on the metadata and maintains consistency of metadata using a variation of the Byzantine
agreement protocol. Each file is replicated on a number of hosts (not necessarily those of the directory
group) in order to distribute system load. File data is opaque to the file system; Farsite uses encryption and
one way hashing provide for privacy and data integrity. A directory entry for a file contains a cryptographic
hash of the file contents and a list of hosts where the file is stored. A client can retrieve the file data from any
of the hosts and use the hash to verify the contents. The file content can be also encrypted such that only
authorized users can read it. Since clients can verify data integrity, hosts keeping file data do not have to
form groups running a Byzantine agreement protocol, which reduces the number of hosts needed to store

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 16

file data, as well as improves performance. Furthermore, file data integrity/privacy implementation allows
incremental updates of file content without recomputing hashes resp. encrypting entire files after a
modification. File directories are also encrypted so that hosts forming directory groups cannot read file
names. The security mechanism in Farsite is based on public key cryptography, a certification a and ACLs.

Client’s updates to a directory group’s metadata are logged (similar to e.g. Coda) and propagated to the
directory group periodically or when the client’s lease expires or is revoken/updated. The Farsite’s lease
mechanism allows to control consistency of files under concurrent access. There are four classes of leases:
content leases (that govern access to files), name leases (that govern access to directory structure), mode
leases (that specify what a client is allowed to do with a data object) and access leases (that specify what
other clients are allowed to do with the file concurrently with the client that obtained a given access lease).

2.2.7 OceanStore and its Pond Prototype

OceanStore [37][38] is an “.. internet-scale, persistent data store designed for incremental scalability, secure
sharing, and long-term durability”[37]. The OceanStore architecture is two-layered: the upper layer
comprises a set of tightly-knit set of powerful hosts that serialize changes and archive results. The lower
layer encompasses hosts which provide storage for the system. The unit of storage in OceanStore is a data
object. OceanStore does not explicitly deal with directory structures, and does not provide a POSIX-like
interface. OceanStore provides for name transparency, well-defined data privacy, integrity and consistency
models, OceanStore assumes that (a) the infrastructure is untrusted except in aggregate, and (b) the
infrastructure is volatile.

Every OceanStore data object is represented by a sequence of read-only versions each of which is a B-tree
of [read-only] blocks. Blocks are identified by secure hashes of their content. The same block can appear in
multiple versions of the same data object (or different objects). An update is a set of actions each protected
by a predicate. This flexible schema was inspired by the Bayou architecture which is “.. a platform of
replicated, highly-available, variable-consistency, mobile databases on which to build collaborative
applications”[39][40]. OceanStore resources, in particular data blocks, have globally unique identifiers and
are stored in the Tapestry overlay network[41]. Each data object has a primary replica which manages
consistency of object updates. Primary replicas are implemented as a set of hosts called the inner ring that
run a computationally efficient version of the Byzantine agreement protocol. Archival storage of data object
blocks is performed using the erasure coding scheme[42] that allows to reconstruct a data block from an
arbitrary subset of certain minimal size of fragments into which the data block has been encoded. Since re-
computing a data block from its erasure codes is expensive, OceanStore employs aggressive caching of
data blocks.

2.3 Grid File Systems

Several Grid (global) file systems have been proposed and implemented that allow to provide their clients a
global file system abstraction with logical file names, symbolic links, and POSIX-like APIs. Such file systems
allow to support existing clients and legacy applications in Grids without major modifications, as well as
developing new Grid applications using convenient file APIs familiar to users.

In this section we present several Grid (global) file systems, such as the gLite LCG File Catalogues and the
Grid File Access Library (GFAL), AliEnFS, which define the state of the art in Grid file systems.

The major difference between an ordinary distributed file system and a Grid file system and is the former
provides access to remotely located files using one protocol and one security mechanism (authentication,
authorization and accounting), whereas the latter allows aggregating heterogeneous native file systems from
multiple administrative domains in a global file system in which files are accessed and transferred using
different standard and custom protocols such as NFS, HTTP, FTP, etc and POSIX-like APIs.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 17

There are many similarities in designs and implementation approaches in different proposed Grid file
systems. Most (if not all) of the proposed Grid file systems provide a global hierarchical name space in which
files are identified by their Logical Files Names (LFNs). Typically, each VO has its own name space.
Mappings of logical file names to physical names (including local information and access/transfer protocols)
are typically stored in file catalogues, which, typically, use backend databases. Typically, file catalogs also
maintain information on replicas, unless there is a separate replica location service or a replica catalog.

A grid file system can be mounted to local file systems of clients in order to allow applications to seamlessly
access the grid file systems. A typical architecture of a Grid file system is client-server with P2P-like
interactions between servers. Like in an ordinary homogeneous distributed file system, a Grid file system
uses caching of files or parts of files on client sites in order to reduce network traffic and to achieve high-
performance file access. Most of existing Grid file systems use replication to improve performance and
robustness.

Most of file systems use loopback adapters or user-space file system solutions, e.g. LUFS (Linux Userland
File System) [11] and FUSE (Filesystem in Userspace) [12] in order to avoid modification of local operating
systems of participating computers. Such solutions allows to provide a plug-and-play mechanism to
aggregate file systems of different types with different protocols as well as to provide VO-level security
mechanism in the Grid file system without the need to modify the operating system.

2.3.1 The gLite File System: LCG File Catalogues

[3][4] The gLite Grid middleware used in the LHC Computing Grid (LCG) of the EGEE project, includes the
following three main service groups that relate to data and file access:

• Storage Element (SE) that provides uniform access and services to large storage spaces. Each site
includes at least one SE.

• Catalog services that, in particular, include LCG File catalogs (LFC). LFC is a file catalog service that
keeps track of the location of copies (replicas) of files and relevant metadata (e.g. checksums and file
sizes). It uses either Oracle or mySQL as a backend databases.

• Data movement services that allow for efficient managed data transfers between SEs.

All the data management services act on single files or collections of files. In overall, the EGEE data services
present to clients a global file system abstraction with logical file names, symbolic links and a POSIX-like
API. A client can browse and navigate this virtual file system by listing files, changing directories, etc. The
files can be accessed via the Storage Element (SE) responsible for the files. The access to the files is
controlled by Access Control Lists (ACL).

gLite provide several naming schemas to identify files and their replicas. Different file identifiers mentioned
below are used by different data management services and client applications to access, to keep track of the
files or/and to move files.

In gLite, a file can be identified by a human readable mutable Logical File Name (LFN) in a global
hierarchical name space; and by immutable Global Unique Identifier (GUID). The Grid data management
maintains logical-to-physical file name mappings in a scalable manner. A client application uses LFNs in a
global hierarchical LFN namespace like in an ordinary file system, e.g. UNIX. Each Virtual Organisation can
have its own namespace. In contrast to LFNs, which are mutable (files can be renamed by the user), GUIDs
are immutable. The logical namespace also provides the concept of symbolic links that point to LFNs.

A replica (an instance) of the file can be identified by its logical Site URL (SURL) with the srm (Storage
Resource Manager) protocol; and by a Storage URL (StURL) that is the actual file name inside the storage
system. The SURL consists of two parts: the SRM end point and the LFN. An instance of the file (a replica)

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 18

can be also identified by its Transport URL (TURL) that specifies a standard transport protocol, e.g. HTTP or
FTP, used to transfer the file and the file location (host and port).

gLite Storage: gLite provides several storage systems which are available to users via a unified SRM
(Storage Resource Manager) interface. In addition on the SRM interface, the storage systems provide APIs
for POSIX-like file access and file transfer.

Grid File Access Library (GFAL): To hide differences in POSIX-like APIs of the different storage systems,
the gLite Grid middleware provides a Grid File Access Library (GFAL), which is a C POSIX-like API that
includes functions such as gfal_open, gfal_read, etc. GFAL provides interface to different existing SRM
implementations for file access and to gridFTP for file transfer.

LCG File Catalogues (LF): Mapping of LFNs or GUIDs to SURLs is stored in the LCG File Catalogs (LFC).
A LFC uses either Oracle or MySQL as a backend database, and is integrated with GFAL mentioned above.
The LFC exposes methods to its clients through the GFAL interface that, in turn, interacts with the SRM
implementations (for file access) and gridFTP (for file transfer). The LFC client has a POSIX-like command
line interface with commands such as lfc-chmod, lfc-ls, lfc-rm, etc.

2.3.2 The AliEnFS File System

AliEnFS [5] is a Linux File System for the AliEn (ALICE Environment [20]) Grid services. AliEnFS integrates
the AliEn virtual file catalogue into the Linux kernel via the Linux Userland File System (LUFS) [11] . The
AliEn file catalogue allows transparent access to distributed data sets using various file transfer protocols.
Thus, AliEnFS makes the file catalogue available for the Grid users and applications under the Linux
operating system as a new file system.

Like in the gLite file system framework described in the previous section, files in the AliEnFS are identified by
their logical file names (LFNs), which are mapped to corresponding physical file names (including access
protocols) in the AliEn virtual file catalogue. Directories and subdirectories are connected like inodes in an
ordinary file system. As reported in [5], the AliEn file catalog uses MySQL DBMS as a backend database.
Virtual directories are represented as tables in the database where subdirectories are linked to directories via
sub-tables entries. While an LFN is mapped to a single “master” PFN, locations of replicas (if any) of the file
are stored in a dedicated table that contains mapping of LNFs to replica locations. An additional table keeps
file metadata, i.e. mapping of LFNs to file attributes such as size, owner, group, and file access permissions.

As already mentioned, implementation of the AliEn virtual file system under Linux is based on LUFS (Linux
Userland File System) that has a modular file system plug-in architecture. LUFS includes a generic LUFS
VFS (Virtual File System) kernel module, which can communicate with various user-space file system
modules. The kernel module redirects VFS calls via UNIX domain sockets to a LUFS-daemon in the user-
space, which, in its turn, loads according to the mount parameters, the requested file system module, e.g.
the alienfs module for the AliEn file system. Implementation details of the AliEn file system, and also a more
general gridfs module that allows to pug-and-play different grid file systems, can be found in [5].

The AliEn file system offers POSIX-like API in C++ for applications and users. To access the AliEn file
system, each individual user has to mount it to its local file system. User authentication (actually
authentication of the user-level thread) is performed only once during the mount operation. Authentication of
users in the AliEn file system is based on certificates.

In AliEn FS, a file is a write-once entity, i.e. applications are assumed to write to a new file instead of
updating an existing file.

An access operation to a file starts with the LNF resolution using a dedicated AliEn service that operates with
the AliEn file catalogues. The lookup service determines all locations of the requested file given its LFN and

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 19

selects the “best” (e.g. closest) location of a file replica. On the open operation, the alienfs client connects to
remote server and possibly downloads the entire (or a part of) file to its cache. On the open operation the
user permissions are checked on the client and the server sites. The open operation is followed by either
read or write, and then by close. In the case of the write operation, on close the entire file, or a part of it, is
transferred to the remote server; and a new LFN-PFN mapping is inserted into the file catalogue. The
authorization in AliEn is based on ACLs.

As described in [5], a new architecture, called Crosslink-Cache Architecture, for the file transport layer of the
AliEn file system as been developed. With this architecture of the transport layer, all file accesses are routed
through distributed cache site-servers to use the server caches in order to improve the performance,
availability and scalability of the file system. Authors claim that with this architecture, for each file access, a
Grid service will provide information about most “efficient” file access route. In particular, this service can
allow automatic file replication by routing write operations through caches. Use of the distributed server
caches also enables load balancing. For the time of publication of [5], the work on the -Cache Architecture
was in progress.

2.3.3 The PUNCH Virtual File System

The PUNCH virtual file system is a proxy-based virtual file system for computational grids. The PUNCH VFS
allows transferring data on demand between storage and compute servers. It is based on the standard NFS
server and client protocols, plus software proxies that act as brokers. It has several main features like user
transparency and on-demand data transfer. It also does not require modification of the application and it
relies on native file systems.

PUNCH also introduces the concept of logical user accounts. The motivation is that data and applications
are usually tied to local administrative domains therefore users need real accounts on every single machine
which they want to have access to the resources. So, automatic resource management and allocation will be
complex because of management of user accounts and access rights.

Another problem is that each local administrative domain might add, remove or modify user accounts and
access rights that affect other domains in the Grid, therefore these changes must be propagated in a proper
time. Local domains also use policies to control access to their resources. These policies might be dynamic
and depend on some real time events. It is difficult to manage these policies with permanent user accounts
that have direct access to the resource.

Finally, local file systems like NFS assume that users have unique local Ids, which might cause scalability
problem in the Grid.

To address the above problems, PUNCH uses an abstract layer between the physical layer (local resources)
and the Grid. This layer includes two major components: Logical user accounts and a virtual file system.

A logical user account consists of two parts: Shadow account and File account. Shadow accounts consist of
user ids on compute servers (uids in Unix) that assign to the user dynamically when needed. Shadow
accounts will be reclaimed by the system when the user session is completed. File accounts are used to
store user’s files. Users access the files through virtual file system. Different user files can be multiplexed
into one file account that contains sub directories for each user. One of the main tasks of the virtual file
system is to map shadow account to file account for each user.

PUNCH performs authentication using extra proxy called intra-proxy between user level and privileged
proxy. These proxies are transparent to NFS and are parts of GRID middleware. The inter proxy controls the
transactions between the user proxy and the privileged proxy. This process ensures that privileged proxies
response only to requests from authorized user proxies.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 20

2.3.4 Grid Datafarm (Gfarm) File System

The Gfarm file system [21][22][23] developed within the Grid Datafarm project is a world-wide-range virtual
file system that provides transparent access to dispersed file data in a Grid accessed by different network file
and file transfer protocols. The file system is based on mapping from virtual directory tree to physical files.
The Gfarm supports file replication for load balancing and fault tolerance. The Gridfarm file system available
at [21] can be referred as one of the reference implementations of the OGF (Open Grid Forum) Grid file
system proposed and considered in the OGF Grid File System Working Group [24], [25].

The Gfarm FS provides global virtual name space rooted at /gfarm. The file system is based on two major
components: Gfarm filesystem nodes and Gfarm metadata servers. Each Gfarm filesystem node serves as
both I/O node and a compute node with a large local disk(s). Each node executes the Gfarm File System
Daemon (gfsd) that processes remote file operations with access control as well as performs user
authentication, file replication, fast invocation, node resource status monitoring, and control.

Like in the AliEn FS [5], a Gfarm file is a write-once entity, i.e. applications are assumed to write to a new file
instead of updating an existing file. Gfarm files are divided into fragments which are distributed across the
disks of the Gfarm File System; this allows parallel access to the files. A file fragment has an arbitrary length
and can be stored on any node, transferred and replicated in parallel (independently). Gfarm files can be
replicated (on the fragment level) for backup and load balancing. The Gfarm FS Metadata servers keep track
of file replicas. Gfarm file replicas can be transparently accessed by a Gfarm URL as long as at least one
replica is available for each fragment of the target file. If there is no replica, Gfarm files are dynamically
recovered by re-computation using access history stored in the Gfarm Metadata Database.

Clients access Gfarm files via the Gfarm parallel I/O API that provides a local file view in which each
processor (client) operates on its own file fragment of the Gfarm file. The local file views are also used for
newly created Gfarm files.

The Gfar FS metadata are stored in the Gfarm Metadata Database. The database contains different
information including mappings from Gfarm logical filenames (LFNs) to physically distributed fragment
filenames, a replica catalog, platform information such as the OS and CPU architecture, file status
information (e.g. file size, protection, modification time, etc.) and file checksums. It also keeps access history
that is used to re-compute the data when a node or a disk fails and to indicate how the data was generated.

2.3.5 Legion and Avaki

Avaki[43] is a commercial Grid solution that claims to address the issues of security, providing a global
name space, fault tolerance, accommodating heterogeneity, scalability, persistence, extensibility, site
autonomy and complexity management. Avaki’s core design principles are providing a single system view,
providing transparency as a means of hiding detail, providing flexible semantics, providing reasonable
defaults, reducing “activation energy”, do not require changing host OSs and network interfaces, and do not
require to run Grid in the privileged mode. Avaki includes a so-called “Avaki Data Grid”[45] which is based
on the LegionFS file system[44] developed earlier during the Legion project. The LegionFS offers location-
independent naming, security with ACLs, scalability, extensibility and adaptability. LegionFS (and Legion
itself) is “.. an object-based system comprised of idependent, logically address space-disjoint, active objects
that communicate via remote procedure calls (RPCs)”[44]. LegionFS provides abstractions encapsulating
files in Unix file system. The Avaki data grid provides a service that allows remote clients to access the data
grid using the NFS protocol, and, thus, existing NFS clients.

2.4 File Transfer

File transfer is an important service of data management in Grids that is used by many other Grid services
and components such as replica management, a Grid file system (storage), resource allocation and

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 21

scheduling, job management. File transfer allows moving files to the location where the files are accessed
and processed. GridFTP, shortly described below, defines the state of the art for file transfer in Grids.

2.4.1 GridFTP

Defined by the Open Grid Forum, GridFTP is a data transfer protocol that extends the standard FTP
protocol, which is the most commonly used protocol for data transfer on the Internet. GridFTP provides
secure and high performance data movement in grid systems.

There are several implementations of the GridFTP protocol but the most commonly used one has been
provided by the Globus Toolkit (GT). GT GridFTP defines the state of the art for file transfer in Grids. This
protocol has several features like support for Grid Security Infrastructure (GSI), third-party control and data
transfer (initiated by site A, a file transfer between sites B and C), parallel data transfer using multiple TCP
streams, Striped data transfer using multiple servers, Partial file transfer and support for reliable and re-
startable data transfer (automatic restarting after a network failure) and automatic negotiation of TCP
buffer/window sizes. It also supports the following URL prefixes (schemas): file://; ftp://; gsiftp://; http://;
https://.

A URL, specified as an argument in the file transfer operation, is used to identify the target file (or directory)
on the destination server. For example, the URL that points to the file /home/user/grid4all/doc.txt on the
“server s1.kth.se” is gsiftp://s1.kth.se/home/user/grid4all/doc.txt

GridFTP operates under a client-server model, where the server runs at a remote site. One improvement to
the regular FTP protocol that uses two TCP connections between the client and the server (one for control
messages, and another for actual data transfer) is that GridFTP introduces the possibility of multiple data
connections that improves efficiency of data transfer. GridFTP is used mainly for transferring data between
applications, but its additional commands (for example list files and make directories) allow GridFTP servers
to be used as secure data repositories.

Like the regular FTP protocol, GridFTP is a session protocol. The host which provides the service must listen
on a known port and wait for clients to send a request. Therefore a daemon must be running and listening for
incoming connections. This daemon creates and starts a GridFTP server process when a new connection is
received. After connection is established, the connected client can send commands to the GridFTP server.
The following components are involved in transfer:

• Security component: This component provides authentication and encryption over control channel.

• Setup component: This component specifies some information about the transfer which can be set/get
by the client, such as the type of the file (Binary or ASCII), the MODE of the transfer, the size of a file
before transferring it, etc.

• Data channel: This component provides information and negotiation for the data channel. The transfer
can be done using store (STOR), retrieve (RETR), extended store (ESTO) or extended retrieve (ERET).

Globus provides two libraries to access the protocol:

• The Globus FTP control library: It provides low-level services needed to implement FTP client and
servers. The API provided by this library is protocol specific.

• The Globus FTP client library: It provides a convenient way of accessing files on remote FTP servers.

GridFTP security is based on X.509 certificates and proxies. GridFTP can work with both full and limited
proxies. In order to access a particular file on the server, the client should be mapped to a server side
account and this account should have enough privileges to access the file.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 22

There are different modes for authentication in GridFTP:

• No authentication (N): No authentication handshake will be done upon data connection establishment.

• Self authentication (S): A security-protocol specific authentication will be used on the data channel.
The identity of the remote data connection will be the same as the identity of the user which
authenticated to the control connection.

• Subject-name authentication (S): A security-protocol specific authentication will be used on the data
channel. The identity of the remote data connection must match the supplied subject-name string.

2.5 Replica Management

One of the state of the art mechanisms in replica management is replica management in GT4. Replica
Location Service (RLS) and GridFTP are the basic data management services involved in replica
management in GT4. RLS provides access to information about the location of replicated data. Higher-level
services such as Reliable File Transfer (RFT) [9] and Data Replication Service (DRS) [10] use GridFTP and
RLS.

Replica management in GT4 is based on the Giggle framework [8] that provides a hierarchical distributed
index of replicas in which each replica is identified by a pair of a logical file name (LFN) and a physical file
name (PFN). Local Replica Catalogs (LRC) store the PFN-to-LFN mappings. Replica Location Indices
(RLIs), which collect the mapping information from LRCs, are organized into a hierarchical distributed index.
Information in RLIs is periodically refreshed by LRCs according to a soft-state-update protocol.

The Giggle-based replica location framework in GT4 has a certain limitation: LRCs and RLIs are deployed
statically and must be reconfigured manually whenever the system configuration changes. It is also not easy
to recover from RLI failures.

2.6 Discussion

Many works have been done in ordinary file systems as well as distributed, Grid and P2P file systems.
However, most (if not all) of their design and implementation are based on assumption of stable and robust
infrastructures (pool of file servers and storage devices) which is a unrealistic assumption for Grid4All
scenarios. The observed systems do not provide sufficient support for self management in dynamic
infrastructures. To provide self management, VOFS components should have monitoring and control
interfaces that would allow plugging in self management logic (controllers) in VOFS.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 23

3. Requirements and design issues for VOFS

Virtual Organization (VO) is a dynamic federation (run-time entity) of heterogeneous organizational entities
(individuals, organizations, institutions, and resources) united by some common interest or task, and sharing
data, metadata, and processing and security infrastructure [6].

Virtual Organization File System (VOFS) is a virtual distributed file system that aggregates data resources
(file systems and disk space) exposed by VO members, in order to provide seamless access to those
objects for VO members and their applications, making an illusion of a distributed file system such as NFS
(Network File System). VOFS is a one of the data-oriented services that could be provided in Grids, e.g.
replica management, file transfer, etc. VOFS should provide transparent access to data objects (files and
directories) exposed by different VO members from different administrative domains. VOFS should hide the
heterogeneity of aggregated file systems and security mechanisms used to control access to exposed data
objects.

The most important difference of VOFS from ordinary distributed file systems such as NFS and AFS, is its
VO-awareness, i.e. it aggregates files from different administrative domains in a Virtual Organization that has
own security model and security mechanisms for authentication, authorization and accounting. VO support
notion of membership, roles, and policies governing who can (or is obligated to) do what [7]. Data objects
(files and directories) in VOFS are accessed by VO members and their applications that act upon VO
security policy and mechanisms used in order to control access to data resources exposed by VO members
and data services provided by the VO. Thus, one of the important challenges in design of VOFS is to provide
consistent and efficient interaction of the VO-level security model and mechanisms with local security
mechanisms of administrative domains forming the VO as well as with external administrative domains,
providing resources and services for the VO.

3.1 Requirements

Using VOFS, VO members can share their files with each other and provide access to those files for VO
applications. A Virtual Organization File System (VOFS) should aggregate heterogeneous native file systems
exposed by VO members to VOFS.

There are several important requirements to be fulfilled when designing and developing VOFS, as listed
below:

1. Aggregation of heterogeneous file systems: VOFS should be able to aggregate multiple native file
systems of different types and protocols. VOFS should enable the plug-n-play of heterogeneous FS
and data storage resources. A VO member should be able to expose her local file and storage to
VOFS and should be able to mount VOFS to her local file system to make it accessible for her
operating system and applications. A file can be exposed to several VOFS at the same time.

2. Operate in the presence of churn and high dynamicity of VO: In highly dynamic VOs, nodes as well
as VO members join and leave frequently. VOFS should have a mechanism to provide a persistent
(highly available) and consistent file system that can deal with this high dynamism. The lifetime of
VO itself also could be long or short. Some VOs might be created and stay alive for very short time
while other VOs might stay alive for long time. VOFS should provide support for both cases.

3. Operate across different administrative domains: VOFS usually consists of different administrative
domains. Each domain has its own specific systems like security, access control mechanisms,
protocol etc. VOFS should be able to aggregate file systems from these domains and provide a
general uniform system which can interact with each different domain.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 24

4. Self-management. As FS and storage can be dynamically added/removed, VOFS should be self-
organizing and self-managing so that adding or removing data resource should be managed without
much efforts (if at all) of VO members or human administrators.

5. Convenient to use APIs (to some degree familiar to users). VOFS should provide familiar to users
IEEE standard POSIX file API, e.g. open, close, read, write, mkdir, etc. With the ability to mount
VOFS to a local file system, the standard POSIX API should allow to support existing clients and
applications, e.g. Windows explore and Acrobat Reader, other legacy applications, as well as to
develop new applications that uses files. VOFS should also provide an API to data objects with
specific semantics, e.g. multilogs.

6. Operate under VO security (authentication, authorization and accounting). VOFS as one of the VO
resources should operate under the VO security policies and use Grid security infrastructure to
enforce the policies. The Grid security infrastructure should provide interoperability of the VO-level
security mechanisms (including authentication, authorization, accounting, and encryption) with
various local security mechanisms used in real organization forming a VO.

7. Support for explicit disconnected operations and reconciliation: Because of the high dynamism
feature of VOs VOFS should provide mechanism to let user to continue to work even after he/she is
disconnected from the VOFS. When user is connected again, VOFS should provide a best effort
consistency mechanism synchronize the files that modified offline with the online files. The stronger
forms of consistency should be delegated to higher-level applications like semantic store.

8. VO membership: VOFS should provide a membership mechanism to allow users join and leave the
VOFS and make user groups. Groups can be used in assigning access rights to resources. A user
might be member of several VOs at the same time.

9. Scalability: The size of a VO might be small or large. Number of users in a VO might be tens while in
another VO might be thousands. The VOFS should support this variety and have same performance
despite of the size of the VO.

3.2 Design Issues

Some of the design issues listed below (e.g. aggregation, self-management, and security) are specific for
VO-aware FS, i.e. VOFS; whereas other issues are rather common for ordinary distributed file systems that
provide access to remotely located files based on the same communication and access protocol with the
same security mechanism.

1. A global (federated) hierarchical name space. Each VOFS should have its own name space and
should belong to only one VO. However, a VO may have several VOFS. A name of a file in the
VOFS name space is logical name, which can be mapped to several physical replicas of the file.
Multiple logical names can point to one physical file. Data objects (files and directories) exposed to
and created in VOFS need to be uniquely identified within a VO. On the other hand names to
exposed and new data objects should be given by VOFS users (humans and applications). In order
to achieve this, VOFS should provide a global (federated) name space for VOFS objects with POSIX
operations on logical names, familiar to users file/directory attributes, ability to make soft symbolic
links like in ordinary hierarchical file system. VOFS should provide at least simple file search
operations (e.g. find by name), and it should also provide more sophisticated (e.g. find by attributes,
keywords) search operations.

2. Support for data objects with specific semantics. Grid4All will provide support for collaborative
applications in the form of the semantic store.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 25

3. Latency tolerance mechanisms such as caching, prefetching that allow to reduce network traffic;
streaming, network coding, and bulk (collative) operations to improve communication efficiency.

4. Data caching, replication and consistency. Use of caching (on clients) causes the cache coherency
problem, which is typically addressed by using a write-invalidate (callback) mechanism. Most of
existing DFS support single-writer open-to-close consistency model and provide lock-based
synchronization for mutual exclusion. VOFS should provide also data replication to improve remote
file access time (performance) as well as fault tolerance.

5. Data persistency and availability. Grid4All assumes high dynamicity of VO members and resources.
VOFS should provide a mechanism that should guarantee availability of exposed data objects in
presence of churn, i.e. when a node from which data objects were exposed to VOFS goes offline or
fails. The data objects can be uploaded to a stable file server (we call it mount server).

6. Metadata management. Metadata of a VOFS is a collection of information on objects exposed to
VOFS, which includes traditional information on files and directories such as file size, last
modification time, creation time, list of files in a directory, etc.; and the VOFS-specific metadata such
as local-to-global name mapping, access points (URI) of the exposed objects, access control lists,
etc. VOFS should maintain a (distributed) hierarchical metadata catalog.

7. Role-based policy-based security. VOFS will use a role-based policy-based security mechanism for

authentication, authorization and accounting with language support for policies and authorization.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 26

4. VOFS Architecture

This section presents the design of the Grid4All Virtual Organization File System (VOFS) that is a VO-aware
virtual distributed file system that aggregates data resources (file systems and disk space) exposed by VO
members, in order to provide seamless access to those objects for VO members and their applications,
making an illusion of an ordinary distributed file system, e.g. NFS. VOFS should provide transparent access
to data objects (files and directories) exposed by different VO members from different administrative
domains. VOFS should hide the heterogeneity of aggregated file systems and security mechanisms used to
control access to exposed data objects.

We also define a notion of VO-awareness of VOFS. In particular, it describes authentication and
authorization control mechanisms used in VOFS in order to control access to data resources exposed by VO
members and data services provided by VOFS, and how those mechanisms interact with local security
mechanisms of administrative domains of Grdi4All VO members and external administrative domains, which
are not-members of Grid4All, providing data resources for Grid4All.

VOFS security mechanism will be a single sign-on, role-based security infrastructure that uses certificates
(credential) for authentication, credential delegation and proxies (to issue and delegate short-term
credentials to processes that execute/act on behalf of VO members), and so-called Grid-mapfiles or
Community Authorization Services” (CAS) that define mapping of VO members to local users at a resource
site. The Policy Enforcement Point (PEP) maintained at a VO-layer at the resource site performs
authorization control in Grid4All. The PEP intercepts the access requests from clients and sends requests to
a Policy Decision Point (PDP) that checks whether access can be granted or denied given an access
operation, a name of a calling client, her role, her access rights to the resource and the VO policy. In the
case of VOFS, VO authentication and authorization should be integrated and combined with local access
control mechanisms.

4.1 Definition of VOFS

Virtual Organization (VO) is a dynamic federation (run-time entity) of heterogeneous organizational entities
sharing data, metadata, and processing and security infrastructure.

VO file system (VOFS) is a virtual distributed file system that aggregates data resources (file systems and
disk space) exposed by VO members, in order to provide seamless access to those objects for VO members
and their applications, making an illusion of a distributed file system, e.g. NFS. VOFS is a forest of directory
trees and files exposed by VO members from file systems of different types and from different administrative
domains. VOFS operates under the VO security policy and security mechanisms of participating VO
members (real organizations).

VOFS is a part of the Grid4All data storage that can offer the following services for VO members and
applications:

• VOFS that is a distributed file system with a standard POSIX API that can be mounted to a local file
system as an NFS-type file system;

• (reliable) file transfer;

• data replications;

• replica location service;

• file access monitoring;

• distributed Web server; distributed FTP server; distributed database;

• file sharing;

• backup service;

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 27

• semantic store;

• other data services on demand.

VOFS supports several types of data objects, including not only the classical files and directories, but also in
the final version of prototype the multilog objects of the Semantic Store layer. The architecture is sufficiently
general to support more specialised types such as databases, but this is out of the scope of Grid4All.

VOFS can use different data access and transfer protocols such as HTTP, FTP. We can image a situation
when data objects, e.g. files, exposed to VOFS can be accessed only in a standard way with some standard
protocol, e.g. FTP, because a Provider (an Owner) of exposed data objects does not want to execute any
special (Grid4All) VOFS servers, but the FTP server. The Provider might suspect that the VOFS server
contains security “holes “and therefore she does not trust the VOFS server. In this situation, we might need
to implement a NFS-like distributed file system on top of FTP, in order to expose those files to VOFS.

In this document, we consider only files and directories (and disk space) as data objects in VOFS accessed
with the NFS protocol (NFS-like protocol).

4.2 Building VOFS

A VOFS should provide illusion of a distributed file system that can be mounted to the local file system as an
NFS-type file system. We need to provide ability to mount VOFS to a local file system so that VO members
and their applications can transparently access files of VOFS as if they were on a local file system.

A VOFS is built by aggregating data objects (existing files, directories and disk space) exposed by VO
members and by creating new files and directories on the exposed disk space. Each VO has its own VOFS
structure. A data object might be exposed to several VOFS instances at the same time, under the same
name or different names. The process of aggregating existing data objects in a VOFS is called exposing
data objects to VOFS. Objects (files and directories) can be exposed to any directory of VOFS, which we call
a target directory (or expose directory). An exposed data object becomes a part of VOFS. Note the exposed
data object is not physically moved or copied from its home location to a new location but rather virtually
linked to the VOFS. In general, the Owner can expose not only files stored on her local disks, i.e. local files,
but also remote files of a distributed file system that might be mounted to her local file system.

When an Owner exposes a directory, she implicitly exposes disk space by allowing other VO-members to
create new files and directories in the exposed directory. A disk space can be explicitly exposed by exposing
a directory to VOFS. Disk space can be also consumed by adding more data to an existing file. To give the
Owner ability to control the amount of disk space exposed, VOFS should provide a disk space quota
mechanism.

A resulting VOFS is a forest of file trees exposed from different sites (computers) within one VO. VOFS has
a hierarchical structure of directories and files rooted at a (virtual) root “/”. In the section below that
describes VOFS bootstrap we consider possible design options of hosting the VOFS root directory “/”.

For example, the VOFS depicted in figure 1 is constructed of files and directories exposed from four sites:
Site A, Site B, Site C, and Site D, as shown in figure 2. Site A is hosting the root directory of the VOFS and
provides access to its local files under directory /vo1; whereas sub-directories /volcano and /documents

are remote references (links) to directories /docs and /volcano-sim exposed from Sites B and D,

respectively.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 28

Figure 1: A VOFS

We distinguish between local and remote objects depending on whether they are exposed from a given site.
For example, for the site B, all files exposed from that site are local, whereas the sub- directory
/vo1/projects/volcano/models (or ./models) and the parent directory /vo1/projects/ (or ../)

are remote objects at the site B.

Figure 2: A VOFS structure with remote references (links) to exposed data objects

4.2.1 Exposing Existing Files and Directories to VOFS

If a VO member wants to give an access to her data objects to other VO members and their applications,
she exposes the objects to VOFS under a specified VOFS directory (a target directory). It is possible that
one object is exposed to several VOFS instances.

/vo1

/volcano

(local directory c:/home/vlad/volcano-sim)

/projects

/documents

(local directory d:/docs)

/models

(“local” directory /afs/it.kth.se/models)

/documents

/volcano

Site A

Site B

Site C

Site D

R

R

R

/models

R

R /..

/..

R /..

/vo1

/volcano

/projects /documents

/models

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 29

When exposing a data object, the Owner specifies which data object she wants to be exposed and where in
the VOFS directory tree and under which name she would like that data object to appear. The exposed data
object can be given a new name in VOFS. If the target directory already contains an object with the same
name, the expose operation fails and reports the name collision error. The expose operation also fails if the
target directory is not there, i.e. cannot be accessed.

For example (see figure 2) , the local directory c:/home/vlad/volcano-sim on Site B is exposed to

VOFS as /vo1/projects/volcano; the local directory d:/docs is exposed to VOFS as

/vo1/documents; the directory /afs/it.kth.se/models is exposed to VOFS as

/vo1/projects/volcano/models.

When exposing data objects, the Owner can also specify ACL (an access control list) that defines access
rights of VO members on the exposed objects, e.g. directories. An ACL defines who can do what with a data
object for which the ACL is set. The VO management and the Owner should agree on ACL or/and Grid map
that maps VO members to local user accounts at the object cite and used to control access to the exposed
objects.

At the level of VOFS, we can consider definition of access rights similar to those used in the Andrew File
System (see Appendix for a short description of ACL mechanism used in AFS). Note that for the sake of
efficiency, AFS ACLs are applied and exist at the directory level, e.g. ACL is applied to all files in a given
directory.

We assume that to expose files, the Owner will be using a VOFS client that we call VOFS Explorer (to be
developed) or a special utility client expose (to be developed). The VOFS Explorer (similar to Windows
Explorer) should allow to browse VOFS, to expose, copy, move, delete, and rename files and directories, to
open or edit files with appropriate applications. A special Expose Wizard (a part of VOFS Explorer) will
support the expose operation.

We also provide ability to mount VOFS on a local file system so that existing file clients and applications
such as Windows explorer can be used to access files in VOFS.

We assume that each site from which data objects are exposed is responsible to start a Grid4All VOFS
server process (VOFS demon) that provides access to the data objects exposed from that site. The server is
also responsible to maintain a policy enforcement point (PEP) to control access to the exposed files, e.g. for
mutual authentication of a client and the server, and for access control.

An object can be exposed from a distributed file system that already includes native servers to provide
access to remote files but those servers are VO unaware. We should study possibility of using existing native
file servers in VOFS.

It may happen that a directory tree exposed to VOFS from some site contains remote directories attached
(mounted) to the tree in a native distributed file system. Access to those remote directories should be
provided by the native distributed file system. In this case, the VO-level authentication and access control is
performed at a PEP maintained on the VOFS server indicated as an access point for that directory.

For example, a VOFS server on Site B (see figure 2) is responsible to provide access for files exposed from
Site B, i.e. it provides access to its local files under the local directory c:/home/vlad/volcano-sim,

which is exposed to VOFS as /vo1/projects/volcano.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 30

4.2.2 VOFS Metadata

Metadata of a VOFS is a collection of information on objects exposed to VOFS. These metadata, in
particular, include traditional information on files and directories such as file size, last modification time,
creation time, list of files in a directory, etc. The ordinary metadata can be obtained from a VOFS server
responsible for a given exposed object. The server can retrieve this information from a local file system using
a native file API.

As VOFS is a virtual distributed file system, the VOFS-specific metadata include the following information
(but not limited to):

• Expose point that defines where in VOFS directory tree the objects are attached (exposed);

• Access points to the objects, e.g. IP addresses and port numbers of VOFS servers;

• Access control lists; ownership; Gridmaps
1
 (if any).

These metadata, in particular, allows finding access points to VOFS files and directories identified by their
names in the VOFS tree hierarchy; to browse the VOFS directory tree. Further we discuss how to store,
maintain and query VOFS-specific metadata mentioned above.

By analogy to a UNIX file system, we call i-node (or inode) a data structure holding VOFS-specific
information on an exposed data object (file or directory). Each inode contains information including the type
of the object (file or directory), access point (or end point reference) to the object, e.g. IP address, port
number and an optional access protocol of the VOFS server responsible for the object, e.g.
tcp://130.237.212.6:9700. It also has information about the type of the native file system from which the
object is exposed, e.g. NFS or DFS, optional access points to native file servers (if any) to access the file
using native file system protocol and native clients, information on owners of exposed files and access
control lists and Gridmaps.

We assume that metadata (inodes) are collected, stored and maintained by a special VOFS information
service that we call Metadata Database (MDDB)

2
 [ICCS] that can be either centralized or distributed. MDDB

is an index of exposed data objects. MDDB, in particular, provides a lookup service to find a VOFS server
responsible for some exposed directory given fully-qualified name of file in that directory. For example given
the file name /vo1/projects/volcano/models/myModel.java, the lookup query to MDDB should

return an access point to VOFS server on Site C, from which the directory sub-tree
/vo1/projects/volcano/models/ is exposed.

There are different ways to design and implement a metadata server. Each one has its advantages and
disadvantages. In the following we explain three different approaches for comparison. These approaches are
centralized, distributed directory and distributed hash table.

A centralized MDDB stores metadata on all VOFS objects (i.e. inodes) in one place; whereas a decentralized
(distributed) MDDB is a distributed index of exposed data objects that can be organized either as a
Distributed Directory of inodes or as a Distributed Hash Table of inodes.

In the first version of our prototype we have used the centralized MDDB. But we believe that due to problems
of a centralized server (single point of failure, scalability) the distributed directory is better than the others.
Using DHT is very similar to centralized approach and the whole tree structure will be stored in a DHT, while
in distributed directory each node is responsible only for a part of the tree.

1
 Gridmap is a simple list on the resource which keeps information about grid users. The users have unique names and

they are associated with the local user names (credentials).
2
 It might be better to call it file catalogue by analogy to other Gird file systems.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 31

Each VOFS is correspondent with only one VO. Therefore it is natural to have several VOFS at the same
time and some nodes might be participating in more than one VOFS. Since the tree structure of VOFS is
separate for each VO, in all following approaches we should consider to handle several VOFS.

A Centralized MDDB

In a centralized MDDB, inodes of all exposed objects are stored in one place. MDDB can reside on a
dedicated server known to clients querying MDDB. With a centralized MDDB, a VOFS server does not need
to know about remote objects exposed under its local directories. If an application (a client) tries to access a
file of VOFS mounted to its local file system, it issues a lookup request to MDDB to find a server responsible
for a file given the VOFS file name. Obvious advantage of a centralized MDDB is a short (1 hop) lookup
latency. Obvious disadvantage of the centralized solution is that MDDB is a single point of failure and a
potential bottleneck.

Decentralized MDDB as a Distributed Directory (Tree)

In a decentralized MDDB structured as a distributed directory (tree), idones are distributed among MDDB
components in the following way. Each site of exposed objects provides an MDDB component that contains
inodes of remote objects known to the site, i.e. remote objects exposed to local directories and remote
parent directories, to which local objects are exposed. Distributed MDDB components form a P2P system
with a tree structure that corresponds to the structure of VOFS tree. Each MDDB component can directly
communicate with a set of MDDB components on sites hosting remote objects. To find a site (a VOFS
server) responsible for a file given its fully-qualified VOFS name, the VOFS client initiates a resource lookup
procedure similar to the one in the conventional NFS. The lookup operation can be initiated at any node in
the MDDB P2P directory. The distributed lookup algorithm is based on traversing the distributed directory
either up or down (depending on the initial point) until inode of the requested file is found and information on
access point(s) is obtained. Each MDDB node can maintain a cache of lookup results similar to the one in an
NFS client. The content of the cache is considered as a hint because there is no guarantee that the content
is up-to-date.

Decentralized MDDB as a Distributed Hash Table

The third design option in developing of the MDDB index service is to store inodes in a distributed hash table
(DHT) using names under which objects are exposed to VOFS as keys. Like in VOFS with the centralized
MDDB, in VOFS with a DHT of inodes, a VOFS server does not need to know about remote objects exposed
under its local directories. If an application (a client) tries to access a file of VOFS mounted to its local file
system, it issues a lookup request to DHT to find a server responsible for a file given the VOFS file name.
Worst-case lookup latency in DHT is log (N); average lookup latency is ½ log (N).

4.2.3 Bootstrap VOFS

Bootstrapping a VOFS is similar to bootstrapping a P2P system when a first peer starts and creates the
system so that other peers can join it. The VOFS P2P network is formed of Grid4All VOFS servers running
on participating sites (nodes). As mentioned above, VOFS is a collection of aggregated file systems (files
and directories) rooted at a root “/”.

In our view, there are two options to bootstrap VOFS, i.e. to create a (virtual) root directory.

In first approach, there is a dedicated bootstrap server which is responsible for the root directory, i.e. it
provides a disk space to create new files and directories in the root directory and keeps information
(metadata) on objects that are exposed under the root directory; the server is contacted first to obtain
information on the root directory when an Owner wants to expose a data object to VOFS first time.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 32

Another approach is that a site (an owner) that first exposes a data object to the virtual root directory “/”
becomes a responsible owner of the root directory, i.e. it provides a disk space for creating new files and
directories in the root directory and maintains metadata on data objects exposed under the root. There is a
bootstrap server(s) that maintains information on the site that hosts the root directory “/”. The difference from
the first option is that any of sites can host the root.

In order to provide a DHT for storing inodes of exposed objects as described above, the distributed system
of VOFS nodes should be organized as a structured P2P system with DHT functionality. There are many
proposals in literature on how to bootstrap a structured P2P system and how nodes can join and leave the
system.

4.3 Mounting VOFS to a Local File System

In order to provide a transparent and seamless access to VOFS for applications, e.g. Acrobat Reader, and
existing files clients, e.g. MS Windows, the entire tree or a sub-tree of VOFS need to be mounted to a local
file so that the applications can access the VOFS files using an ordinary POSIX file API of the local
Operating System.

As stated in the UNIX manual page on the mount (8) command, “mount attaches a named file system to the
file system hierarchy at the pathname location directory…” The major parameters to be specified when
mounting a foreign (distributed) file system to a local file system include a type of the file system, the URI of
the foreign remote directory to mount and the mount point on the local file system. For example, the following
command mounts the remote NFS file system at 130.237.151.1 to the local file system on the /mnt/xyz

mount point:

mount -t nfs 130.237.151.1:/root /mnt/xyz

The major difficulties (obstacles) in supporting mounting of VOFS to local file system include:

• Heterogeneity of aggregated file systems;

• Spanning of multiple administrative domains;

• Heterogeneity of access control mechanisms in those domains;

• Necessity of enforcing the role-based VO security policy.

In the first approximation, to support mounting of VOFS to a local file system, we can use existing ordinary
file system clients and servers that communicate with each other using a file system specific protocol.
Assume for example, that some directory from an ordinary distributed file system, e.g. NFS, is exposed to
VOFS from a site S1. A User could mount a sub-tree the VOFS rooted at that directory as an NFS-type file
system exported from Site A. In this case, the Operating System on the User computer can use an existing
ordinary NFS client to access the ordinary NFS file server on S1, as shown in figure 10.

Figure 3: VOFS using existing NFS client and server

VFS

FS1 FS2 NFS Client

VFS

NFS Server FS1 FS2

User

Kernel

Application User

Kernel

CLIENT SERVER

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 33

However, we cannot assume that VOFS data objects are exposed from local file systems of the same type.
Heterogeneity of exposed objects requires providing a plug-and-play mechanism in VOFS that should allow
to access different types of file system in a unified way.

As VOFS spans multiple administrative domains, it should provide a security mechanism to control file
access across administrative domains in a unified way using role-based security policy. A resource provider
(VOFS file server) controls file access rights of requesting clients according to its local policy.

To illustrate the security issue, assume, for example, that VOFS uses an RPC-based protocol to access
remote files, similar to NFS. Assume a VOFS file client process of the User UA in the administrative domain
DA (known as a VO member A) makes an RPC to a VOFS file server process in the administrative domain
DB (known as a VO resource B). First, the member A (as a service consumer) and the resource B (as a
service provider) have to mutually authenticate each other by exchanging certificates. Next, the resource B
checks whether A is authorized by local policy to access the requested file in DB, i.e. whether she is allowed
to spawn a process to service the call. This two-step procedure (authentication and authorization check)
should be performed on the VO-level at PEP (Policy Enforcement Point) on the VOFS server.

The above discussion calls for development of special VOFS client and VOFS server that should provide
unified connectivity to file systems of different types (i.e. ability to mount VOFS to a local file system) as well
as a VO-aware security mechanism to control access of VO members (VOFS Users) to data objects
exposed from different administrative domains.

One way to provide unified connectivity to foreign file systems of different types is to use a loopback adapter
as a “remote” file server and to mount VOFS as an ordinary conventional file system, e.g. NFS. We argue for
NFS because, to our best knowledge, almost all well-known and widely-used operating systems support
mounting of NFS file system (i.e. there exist NFS clients for almost all operating systems).

To use a loopback VOFS adapter, a User indicates localhost (instead of an IP address of a file server
responsible for the root directory of the mounted sub-tree) in the URI of the mounted VOFS directory, and
NFS as a type of the mounted file system. In this case the local operating system will use an existing NFS
client to access the loopback VOFS adapter with the RPC-based NFS protocol. The adapter calls the VOFS
server that checks access rights of the requesting VO member, and, if access is allowed, the server
accesses the native file system on client’s behalf. The VOFS loopback adapter communicates with the
VOFS server with VOFS-specific protocol (to be developed). The server converts NFS calls issued by the
NFS client in to local calls on the exposed file system as illustrated in figure 4.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 34

Figure 4: VOFS using VOFS loopback adapters and VOFS servers

In this document, we do not consider design and implementation details of the VOFS adapter and the VOFS
server, leaving this to next milestone in M24.

The Distribute File System (DFS) designed in Task 3.1 has a design similar to the one described above. The
DFS design is also based on the use of user-space file system, and includes features that fulfills most of the
functional requirements to VOFS presented above (e.g. support for disconnect operations). However, the
DFS is designed with an assumption that it is deployed and used in a single administrative domain, i.e. it is
not VO-aware. The VOFS design presented here addresses the issue to integrated files from different
administrative domains, different file systems, as well as to achieve high availability. We expect the two
designs to merge.

4.4 Replication and multi logs

4.4.1 Replication in VOFS

In our design we consider two options for replication, transparent replication that provides high availability
and explicit replication. There are several requirements in VOFS that can be addressed by using replication
mechanisms. In this part we explain how we use replication to fulfil those requirements.

One of the main reasons for using replication is to increase availability. In a highly dynamic environment (like
the one we are considering in Grid4All) nodes can join and leave frequently. On the other hand they expose

NFS Client

FS

VOFS Server

file

User

Kernel

Application

User

Kernel

CLIENT SERVER

Loopback
adapter

VFS

open()

NFS Client

FS

VOFS Server

file

User

Kernel

Application

User

Kernel

CLIENT SERVER

Loopback
adapter

VFS

handle

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 35

parts of their local file system to the VO. Therefore if some node joins the VO, exposes some files and then
leave, those files will not be accessible to the other members of the VO anymore.

Another problem that might accurse in VO is failures of nodes. If a node joins the VO, exposes some files
and then crashes the data will not be available anymore.

To address these problems, we can use replication to create replicas of the actual data on the other nodes
or on some servers in the VO so if the original node leaves VO the data will be still available. The underlying
mechanism of replication should be transparent to the users but they should be able to specify if they wish
their data to be replicated or not. They might do it through some options when they expose their files.

Another reason for using replication is to increase performance. We are also considering using local caching
on nodes. When a node gets access to some remote resources (files), it can create a local cache of the file
and work with this copy. Then the changes which have been made to the local cache will be propagating to
other copies.

Use of caching (on clients) causes the cache coherency problem, which is typically addressed by using a
write-invalidate (callback) mechanism. Most of existing DFS support single-writer open-to-close consistency
model and provide lock-based synchronization for mutual exclusion.

Caching mechanism is widely used in distributed file systems. There are two modes of caching strategies
that are mainly used: write-back mode and write-through mode. In write-through mode, every write operation
at client side is immediately forwarded to server. In the write-back mode, client operates a series of write
operations on cached data (at client), before flushing it to server. Caching at client side itself varies in
different implementations of distributed file system: some cache file data blocks, or data at arbitrary
granularity, others like AFS and Coda cache the whole file.

In the current design of VOFS prototype, we adopt whole-file caching at client side. The wanted file at
remote client will be downloaded to the local working directory. Client users need to manually trigger the
flushing operation of the cached file to replace the original one (master copy) at another client.

As for synchronization, if a client locally modifies a cached file and shortly thereafter another client reads the
file from the server, the second client will get an obsolete file. So the synchronization strategy of distributed
file system could be essential yet complex. In order to achieve read consistency in VOFS, we employ a
synchronization model similar to that of NFS: A master file at a client can only be written by one remote client
at a given time and is locked from other reading or writing operations during interval. This intends to
guarantee readers to cache a consistent copy of the master file. When it comes to writer competition of
multiple clients, so far the prototype simply employs last-writer-wins policy, which means the master file
always represents the last modification applied.

In some cases a master file is cached by several clients and they want to keep their local cached copies
synchronized with the master file. After finish caching, those clients sends request to master file holder to
create call-backs. Whenever a write operation has been performed to this master file, all registered call-
backs will be triggered except the writer’s. Such call-back includes the endpoint of requestor and both the
absolute paths of cached copy and master file. Thus master file holder knows exactly which client to notify
and which cached file at that client to replace. So if the call-backs are able to be received by those
requestors, they start to receive the latest copy of the master file and replace their local cached copies that
are stale. As to the stale cached copy, it can be versioned to another new file with timestamp appended after
the file name; also we can set a max number for versioned copies of a single cached file. The call-back
registrations can be simply stored in plain text files in hashed form in case of loss. On the other side, Client
GUI can serve as observer for call-back notifications and thus pop warning message to notify end user that
the cached file has been synchronized.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 36

4.4.2 Support for Multi logs

Semantic store layer needs special objects called multi logs. They keep changes made by each user to an
original document. Each user writes locally to his own log in the multilog; his writes are propagated to other
replicas of the same log. We believe that extending the basic caching mechanism with explicit replication or
cache-aware file API can provide special support for multi logs.

In Grid4All, we consider multi logs support as an application on top of VOFS. The multi logs support should
provide its own API on top of an ordinary file system API.

For example, multi logs support ensures that each user gets a local copy of a shared file and has an ability to
initiate a reconcile operation. When the user disconnects she works with her local copy of the log. When
connected, she can perform the reconcile operation to synchronize her copy with other logs. The multi log
API should provide ability to specify semantics in the form of action constraints to be enforced on
reconciliation. In order to achieve this functionality VOFS should provide support for specific multilog object.

4.5 VOFS Interfaces (API)

This part specifies the API of the VOFS, which presents the upper level and lower level interfaces.

Figure 5: VOFS Interfaces

4.5.1 VOFS Upper Interface

The upper interface specifies the API that can be used by clients of VOFS and other layers and components
built on top of it. The API should be compatible with POSIX standard however additional functionality is
required to support VOFS specific features.

POSIX API

This API is a subset of standard POSIX API and NFS V4. The following is a list of functions and their input
and output parameters.

Name Description

1 ACCESS

It checks what access rights the user has to the resource.

Input:

The user identifier (User credential)
The resource identifier (URI to the resource)

APPLICATION

VOFS

DFS

Upper Level API

Lower Level API

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 37

Output:

A bit flag indicating different access rights including:
Read, Lookup, Modify, Extend, Delete, Execute.

2 CLOSE Close the file.

Input:

Filehandle of the file to be closed.

Output:

The result of the close operation (if it was successful or not).

3 COMMIT It flushes cached file on local file system to the VOFS, if the file is
cached.

Input:

Filehandle of the file to be committed.

Output:

The result of the operation (if it was successful or not).

4 CREATE Create a new directory (or other objects but not regular files).

Input:

URI of the place to create the new object
Name of the new object.
Type of the new object.

Output:

The result of the operation (if it was successful or not).

5 GETATTR It gets attributes of an object in VOFS.

Input:

Filehandle of the object.

Output:

The set of attributes if it was successful or an error massage.

6 LOCK It requests for a lock on a specific range of bytes in a file.

Input:

Filehandle of the file.
Offset of the range of the bytes in the file to be locked.
Length of the range.

Output:

The result of the operation.

7 LOCKT Test if there is a lock on a byte range in a file or not.

Input:

Filehandle of the file.
Offset of the range of the bytes in the file to be checked.
Length of the range.

Output:

If there is a lock it returns the information about it. Otherwise
returns OK.

8 LOCKU Unlock the range of bytes in a file.

Input:

Filehandle of the file.
Offset of the range of the bytes in the file to be unlocked.
Length of the range.

Output:

The result of the operation.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 38

9 LOOKUP It searches for an object (file or directory).

Input:

Name of the object

Output:

The result of the operation. If it was successful it returns the
filehandle of the object.

10 OPEN It opens a regular file. If the file does not exist it will be created.

Input:

URI of the file to be opened/created

Output:

If it was successful it returns the filehandle of the file. Otherwise it
returns an error message.

11 READ It reads data from a regular file.

Input:

The filehandle to the file
Number of bytes to be read
The offset in the file to start reading

Output:

If it was successful it returns data in form of a byte array. Otherwise
it returns an error message.

12 REMOVE Delete a regular file.

Input:

URI of the file to be deleted

Output:

The result of the operation.

13 RENAME Rename a regular file.

Input:

URI of the file to be renamed
The new name of the file

Output:

The result of the operation.

14 WRITE Write data to a regular file.

Input:

Filehandle of the file
The offset in the file to start writing data
Number of bytes to be written
A byte array including data to be written

Output:

The result of the operation.

Table 1: VOFS Upper Interface (POSIX API)

VOFS Specific API

Name Description

1 EXPOSE User can expose a local object (i.e. file) to the VOFS.

Input:

The user identifier (User credential)

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 39

URI to the local object to be exposed
URI to the target place in VOFS
ACL
Options (i.e. replication, caching)

Output:

The result of the operation. It indicates if the operation was
successful or if there was an error (i.e. name collision)

2 MOUNT User can mount a remote object in VOFS as a local object.

Input:

The user identifier (User credential)
URI to the remote object in VOFS
Target place in local file system to mount the object

Output:

The result of the operation. It indicates of the operation was
successful or if there was an error.

Table 2: VOFS Upper Interface (VOFS Specific API)

4.5.2 VOFS Lower Interface

This interface specifies the API to the services that VOFS uses. In our design, VOFS needs only standard
POSIX API to be provided by the DFS layer.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 40

5. VO-Awareness of VOFS

5.1 Assumptions on the Grid4All Security Infrastructure

VOFS spans multiple administrative domains. We assume that each administrative domain has its own
administration and a security policy. When joining a VO, each organization typically retain ultimate control
over its policy. The VO may apply its own policy that should not (could not) override or replace local policy
decisions. For example, some VO members may have full access to some of VOFS files, while others may
have read-only access.

The local security policy can be implemented by different methods, e.g. Kerberos and SSH. Furthermore, the
local security policy may be changed dynamically.

We assume that each User (process acting on behalf of the User) and each Resource
3
 (process acting on

behalf of the Resource) has two names, a global name (i.e. the name in the VO) and a possibly different
local name. There exists a partial mapping (Grid map) of global names of Users to local names for each
resource in each administrative domain. The mapping is resource-specific and global names can be mapped
to local names in various ways:

• Static one-to-one mapping of a global name to a predefined local name;

• Dynamic one-to-one mapping of a global name to a dynamically allocated local name;

• Static many-to-one mapping of a set of global names to a single local “group” name;

• Dynamic many-to-one mapping.

If to consider role-based security mechanism, then a particular identity (a VO member) can be assigned a
role via its role attribute. In this case, authorization decision can be made depending of the role of the
identity, and it might require an extra check of whether the identity is bound to the role. In any case, use of
global names makes it possible to provide single sign-on.

We require from WP2 the following mechanism as a base-line for authentication and authorization in the
Gird4All VOFS. The mechanism is a variant version of CAS (Community Authorization Service) in Globus
Toolkit 4. It is combined with the GT Grid Security Infrastructure (GSI) based on X.509 proxy certificates to
provide credentials for users, delegation and single sing-on.

The VOFS policy is a consistent combination of VO policies, maintained by the VO and communicated to
participating sites, with local policies on those sites. A VO policy defines what the individual VO member or a
group of members are allowed to do; whereas the local site policy defines what the VO is allowed to do.

In the next section we introduce some of the state of the art mechanisms which can be used in Grid4All to
provide security features needed in VOFS.

5.1.1 SAML

The Security Assertion Markup Language [48] (SAML) is an XML based framework that uses assertions to
exchange security information (e.g. authentication and authorization information) between different
administrative domains. The major purposes of using SAML are the followings:

3
 Resource Provider

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 41

Single Sign On (SSO):

If user wants to have access to resources from different security domains she should be authenticated and
authorized by each domain, which means user should login to each domain separately. But with SSO, user
can login to one domain and the other domains authenticate user automatically. Web browsers use cookies
to do SSO. But they work only in one domain and not across multiple domains. SAML solves this problem by
providing standards for exchanging security information between different domains.

Federated Identity:

Another problem in multiple security domains is handling different user identifications. One user need to
have an identity and associated attributes in each domain. With help of federated identity, domains can
communicate with each other and use and share the identification information about users.

There are three major participants in a SAML transaction:

1) Assertion party, which is also called Identity Provider (IdP) or SAML authority. IdP identifies the user
locally and provides an assertion and sends it to relying party.

2) Relying party: which is also called service provider (SP). It receives the assertion and identifies the user
based on it and makes access control decisions.

3) User: which is also called subject or principal. This is the entity to be identified.

Use Cases:

Use case 1: Single Sign On (SSO)

In this case, user is authenticated by a security domain (e.g. by password) which is called IdP and can have
access to resources in other security domains which are called SP. There should be a federation agreement
between these domains to share the information about the user identifications. This scenario is called IdP-
initiated SSO (figure 1). Another scenario is that user tries to have access to resources from SP that needs
authentication and access control. In this case SP will send the user to IdP with an authentication request.
After identifying user at IdP, IdP will send an assertion to SP. This scenario is called SP-initiated SSO.

Figure 6: Single Sign On use case

Use Case 2: Identity Federation

SAML provides ability to perform dynamic identity federation between different domains. Assuming one user
has different local identities at different domains, in SSO scenario (figure 2) these domains need to have a
federation agreement to share those identities.

Domain 1 (IdP)

Domain 2 (SP)

User

1: Authenticate

2: Access resources

Business Agreement

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 42

Figure 7: Identity federation use case

SAML Architecture

Figure 3 shows the major components in SAML. One of the basic components is Assertion. Assertions carry
statements about a subject (principal) and they are produced by IdPs. Three types of statements in an
assertion are authentication statements, attribute statements (name-value) and authorization decision
statements (A subject is permitted to perform action A on resource R given evidence E).

Another basic component is Protocol which defines the request and response messages which carry
assertions. Next component is binding component. They define the relation between protocols and the
underling communication systems like HTTP or SOAP. Some examples of bindings are SAML SOAP
Binding (based on SOAP 1.1), Reverse SOAP (PAOS) Binding, HTTP Redirect (GET) Binding, HTTP POST
Binding, HTTP Artifact Binding and SAML URI Binding. Finally, the last component is Profile. They define
particular use cases by encapsulating assertions, protocols and bindings.

Figure 8: SAML basic components

Profiles

(Defines a particular use case)

Bindings

(Defines mapping of SAML protocols to communication protocols)

Protocols

(Defines request/response for obtaining assertions)

Assertions

(Authentication, Attribute and Authorization statements)

User

Domain 1 (IdP) Domain 2 (SP) Domain 3 (SP)

1: Authenticate

2: Access

resources

3: Access

resources

Agree on a common
identity

Agree on a common
identity

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 43

Using SAML with XACML

The eXtensible Access Control Markup Language (XACML) defines how to express and evaluate policies for
access control. Since SAML provides a way to exchange security information, it can be used with XACML.
The next figure illustrates how these two systems can be combined:

Figure 9: SAML and XACML integration

5.1.2 VOMS

Virtual Organization Membership Service [47] (VOMS) is a framework to provide management of policy
based authorization information in virtual organizations. The two major concepts in VOMS are VO (Virtual
Organization), which is an entity to group users and resources, and RP (Resource Provider), which provide
resources. User information is managed in a server (centralized), but the information about the relation
between the user and resources is managed at each RP (decentralized).

Groups and sub groups are presented in a DAG (Direct Acyclic Graph) in VO with the root VO. Users must
provide both credentials (for authentication) and authorization information to RP when they want to have
access to a resource (Push model). VOMS consists of the following services:

• User Server: Provides user information.

• User Client: Fetch user information from user server.

• Administration Server: Keeps the administrative data (users, groups, roles etc.) in a database.

• Administration Client: To be used by administrators to manage information on administration server.

Figure 10: VOMS

Client

VOMS DataBase

Authentication

Request

VOMS

Certificate

Requester

PEP

PDP

Resource

Policies

Request Access,
providing SAML

assertion

Collect other
external

Retrieve

resource

Request
evaluation

Return

decision

Obtain

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 44

5.1.3 Permis

PERMIS [46] (Privilege and Role Management Infrastructure Standards) is a privilege management
infrastructure based on hierarchical RBAC model and X.509 for authorization.

Authorization Models:

The traditional model for authorization is DAC (Discretionary Access Control) which users have been
assigned access rights to the resources. These access rights are managed in ACL (Access Control List).
Another model is MAC (Mandatory Access Control) which every resource has a security label called
classification which indicates the security level of that resource, and each user has a list of classifications
which is called clearance. User can access resources that she has corresponding classification. Another
authorization model is RBAC (Role Based Access Controls). In this model user has one or more roles (e.g.
manager, employee etc.). Each role has a set of permissions. When user requests to have access to a
resource, she presents her role to the resource. Resource checks the permissions of that role and either
accept or reject user’s request. RBAC roles can be simple which means there is only one level of roles, or
can be hierarchical which means there are nested roles. A typical example of nested roles is like this:

Figure 11: Hierarchical RBAC

It is clear that if permission is given to a role, all its nested roles also will have that permission implicitly. In
most systems normally the number of roles is much fewer than number of users. Therefore, RBAC can
easily handle systems with large number of users. But DAC systems have scalability problem since for each
user an ACL should be defined.

PERMIS has three main components:

• Authorization policy: It specifies the access rights of users to resources using policy based
authorization.

• Privilege allocator: It assigns roles to users by defining attribute certificates (AC). An attribute certificate
is a binding between user name and her privilege attributes. ACs are kept in a public LDAP (Lightweight
Directory Access Protocol).

• PMI (Privilege Management Infrastructure) API: This is the application gateway which accepts
requests from users to get access to resources. When it receives a request, the AEF (Access control
Enforcement Function) component authenticates the user and then checks with ADF (Access control
Decision Function) component if the user can get access to the resource or not. The ADF retrieves
policies from LDAP for the roles in the user’s AC and makes a decision and sends it back to AEF.

EMPLOYEE

MANAGER

DIRECTOR

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 45

Figure 12: Permis architecture

5.2 Requirements for the Grid4All Security Infrastructure

The VO management system should maintain a list of VO members and the VO’s access control policies for
its resources including the VO itself (e.g. who can define rights, form groups, etc.). In the case of VOFS, the
VO policy, for example, defines which member can read which file.

A Resource Provider (resource site) maintains her policy regarding the VO and VO members using her
native mechanism used for local (non-VO) users. The Provider can, for example, map the entire VO to one
local identity that represents the VO. In this way, each VO-member (i.e. client presenting a VO certificate)
will be mapped to that identity. A VO-member can be also mapped to her individual local identity to enforce
site policies regarding that member.

When an authenticated VO-member makes an access request to the resource, the Provider (resource
server) first enforces the site’s policies regarding the VO as the whole, next, enforces the VO’s policy
regarding that member, and, finally, enforces that the site’s policies (if any) regarding that member. Note
that, in this way, site’s policies have priority over the VO’s policies. Thus, the effective rights granted to the
requesting member is an intersection of the set of the rights granted to the VO by the resource provider, the
set of the rights granted to the VO member by the VO and (optionally) the set of the rights granted to the VO
member by the resource Provider.

When a user wants to access a file hosted by VOFS server, a VO member, as a VOFS client, is
authenticated using her certificate that also includes a policy statement of that user’s rights. Note that, in
general case, the authentication should be mutual. After authentication, the VO member is mapped to a local
identity (e.g. a Unix account) of the VO by a local Grid-mapfile. This mapping is the very first access control
check: if the VO is not listed in the Grid-mapfile, access to the file is denied.

Once the VO is successfully mapped to a local identity, the VOFS server checks whether the VO (as the
whole) is allowed to make the requested action. Then, as described above, the site (the Policy Decision
Point, PDP) computes the effective rights based on the policies of VO in respect to the VO member and the
policies of the site in respect to the VO member and makes a policy enforcement decision whether that
member is authorize to perform the requested action.

LDAP
ADF

AEF

User

Decision

Request
Decision

Get

Policies

Access

Request

Access

Request

Resource
1

2

3

4

5

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 46

6. VOFS Usage Scenarios

This section presents a usage scenario for a VO file system (VOFS). The main aim of designing this
scenario is to help developing semantics of the expose and mount operations as well as developing of the
MDDB (Metadata Database) component which is a catalog of files exposed to the VOFS. The scenario has
been developed with collaboration with researchers from ICCS Georgios Tsoukalas, Aris Sotiropoulos.

6.1 Basic Assumptions

In this scenario we assume two real organizations, KTH (Royal Institute of Technology), Stockholm, Sweden
and ICCS (Institute of Communications and Computer Systems), Athens, Greece. Assume two users
KTH_User at KTH and ICCS_User at ICCS. Both users use MS Windows as an operating system on their
computers. KTH_User stores her files in her local file system on her machine. Assume, KTH and ICCS have
created a VO called KTH_ICCS as illustrated in figure 13. Both KTH_User and ICCS_User are members of
that VO. Suppose, KTH_User wants to expose some of her files to the VO because she and ICCS_User
work on the same project and need to share the files.

Figure 13: The KTH_ICCS Virtual Organization

KTH-User has a folder C:\projects\documents\ that she wants to expose to the VO. There are 3 sub

folders under that directory:

C:\projects\documents\meetings

C:\projects\documents\pictures

C:\projects\documents\maps

We assume there is only one file in each of the folders:

C:\projects\documents\meetings\meeting1.txt

C:\projects\documents\pictures\pic1.jpg

C:\projects\documents\maps\map1.pdf

6.2 Requirements

In this scenario we require that Grid4All VOFS should allow some actions to be performed. The first action is
to create one VO with the name KTH_ICCS. Then KTH_User exposes some files from her local file system
to this VO. Finally ICCS_User mounts those files into her local file system.

ICCS
KTH

ICCS_User
KTH_User

KTH_ICCS

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 47

• Both users should be able to see the same directory structure and files, and they should also see the
changes made by each other. However, for now, we assume that the Users should not be able to
modify/write the same object (file) at the same time, or, there must be a mechanism to find write
collisions and inform users about it.

6.3 Description

KTH_User starts her client program and selects the Expose function. She should be able to specify the
name of the VO to which she wants her files to be exposed. If the VO does not exist it should be created.
Then she selects the files to be exposed by using an explorer that shows a directory tree structure. In this
case she selects the “documents” folder. Note that the following description includes some details of possible
implementation that can be ignored at this stage of the VOFS design.

The following steps should be taken by KTH_User:

1. KTH_User searches for VO KTH_ICCS:

a) KTH_Users queries the Resource (VO) Discovery Service (provided that such a service is available)
for information on the VO named “KTH_ICCS”.

b) The VO Discovery Service replies with information that includes a “FileSystem Resource Authority”
property, which is, actually, a URI/URL is pointing to the MDDB serving the “KTH_ICCS” filesystem.

2. If there exists no VO called “KTH_ICCS”, it is created:

a) A new DFS User, KTH_ICCS, is created, probably by the “VO Management” (or VOMAN for short).

b) A new MDDB server is started (or an existing is used) to serve the KTH_ICCS filesystem (there is
exactly one filesystem per DFS User). This should be arranged by the VOMAN as all other VO
Resource Management issues (such as where the VO Membership Service executes).

c) As the VOMAN completely controls the KTH_ICCS filesystem, it grants access permissions to the
KTH_ICCS VO members.

d) The KTH_ICCS filesystem is empty at this time.

3. KTH_User exposes her local folder C:\projects\documents\ to the KTH_ICCS filesystem (which is the
authoritative KTH_ICCS VO filesystem) with the same name “documents” under the filesystem root directory.
There are several approaches to do this:

(i) Exposition via copy

a) KTH_User copies her files data in a storage Provider and the filesystem structure and metadata in
the KTH_ICCS MDDB server.

b) The storage Provider can be a third party or can be just a local copy of data. If the actual data are to
be exported see alternative (ii). Now anyone can access the filesystem KTH_ICCS/documents.

c) KTH_User can decide whether and how to copy/synchronize back and forth his local and MDDB
versions of 'documents', manually.

(ii) Exposition via export / mount-back

a) KTH_User exports the 'documents' folder as in the previous case (i). The storage Provider can be
herself, offering direct access to the files.

b) The local folder “documents” is hidden from the OS FS hierarchy but remains accessible by the
Provider server. The KTH_ICCS/documents directory is mounted on top of the local “documents”
directory.

c) Now even local access to “documents” is really remote and upon unmounting, the local (“real”)
documents directory can be synchronized if any modifications have been made when it was
exposed.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 48

d) KTH_User can decide that this folder is really a shared one and configure her system so that an
MDDB server always present, and the “documents” folder is mounted from the local MDDB. Then a
link can be created under “KTH_ICCS/documents” that point to KTH_User/documents. At this point,
the actual data can be anywhere in the network, including the local storage Provider.

(iii) Exposition via exporter / synchronizer

a) The 'documents' directory is exported as in (i), with the local copy being independently accessible.

b) Another daemon, the 'exporter' or 'synchronizer' monitors both the MDDB version at
KTH_ICCS/documents and the local version and tries to propagate changes between each other, in
some way.

Note that the second solution (ii) might be the most interesting of all, especially considering the (d.) step.

KTH_User also should be able to specify a quota value for this expose. This value indicates how much
storage space other users will have when they mount this folder and create new objects (files) or modify
and extend existing objects (files).

Quotas can easily be maintained as metadata in the MDDB. The real problem, though, is enforcing
quotas. But if each user is using his own storage resources for hosting file data, then quota is really a
local issue. Shared storage resource quota can be managed within the framework that makes them
shared anyway, irrespective of what the MDDB says about it.

By exposing, the necessary metadata of the file system of KTH_User will be sent to MDDB (Meta data
database). KTH_User should also run a server program on her machine to provide access to the files
she has exposed. Now other members of the KTH_ICCS VO (including KTH_User) should be able to
see and browse this exposed set of files in the VOFS file hierarchy.

As presented in the second solution above entitled “(ii) Exposition via export / mount-back", the MDDB,
which serves KTH_ICCS, may either include the whole filesystem structure or just a link from
KTH_ICCS/documents to KTH_User/documents. In the first case, KTH_User doesn't have to run an
MDDB. In the second case, KTH_User doesn't have to mirror her filesystem within another users' (i.e.
KTH_ICCS) MDDB. But note, a KTH_User can request KTH_ICCS's MDDB to host her own filesystem.
Then, KTH_ICCS/documents can be a link to a separate filesystem KTH_User/documents, but
practically both filesystems are served by the same machine. This eliminates the need to run an MDDB
per user while it maintains the flexibility of linking into filesystems rather than copying them in order to
include them elsewhere. Therefore we strongly propose the use of linking where possible.

ICCS_User also runs her client and selects the Mount function. As a parameter she should indicate
which VO she wants to browse, or she should be able to get a list of existing VOs. This list can be fetch
from the metadata server. After specifying VO name (in this case KTH_ICCS), she browses the directory
structure of the exposed files. She should be able to see the document folder that is exposed by
KTH_User and possibly other folders that are exposed by other members of the VO.

4. ICCS_User browses VOs.

This can be provided as a VO Management service. Nevertheless, one can create a well-known Super-
VO, which will include in its filesystem links to all available VOs. Anyway, we assume that ICCS_User
knows how to contact the MDDB for KTH_ICCS.

5. ICCS_User mounts KTH_ICCS/documents

The filesystem client stores the KTH_ICCS/documents URI and the MDDB contact. All subsequent file
requests under the mountpoint will be translated to MDDB requests for files under
KTH_ICCS/documents. This is done incrementally, if necessary.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 49

For example, ICCS_User isses a request

 RETR(/local_mountpoint/projects/dow.pdf),

which is translated to an MDDB request to KTH_ICCS:

 RETR(KTH_ICCS/documents/projects/dow.pdf)

If the file exists, then its metadata (its inode) is returned. But assume that 'KTH_ICCS/documents' is a
link. Then the KTH_ICCS MDDB will reply with the deepest inode it found within its database that existed
along the requested path. This will be, of course, 'KTH_ICCS/documents'. Now the ICCS_User
filesystem client will realize that this was not what it asked for. Then it will attempt to continue, checking if
the returned inode is actually a link. As it is a link that points to 'KTH_User/documents', so the MDDB
request becomes:

 RETR(KTH_User/documents/projects/dow.pdf)

This procedure is repeated until the client has reached and obtained the desired inode. Then it can
retrieve the file data. In this way, as described above, one can browse through file systems in a P2P
way, just like a web surfer follows the private links of each www user's webpage.

Now ICCS_User can choose a drive letter that is not in use in her local file system (assume MS
Windows), for example Z: and selects the mount operation. The client program should create a remote
drive Z: which contains the “documents” folder and all other sub folders in it. After mount, ICCS_User
should see the following folders on the Z drive:

 Z:\documents\meetings\meeting1.txt

 Z:\documents\pictures\pic1.jpg

 Z:\documents\maps\map1.pdf

She should be able to open and work with files in those folders in the same way as with her local files. If
she tries to create new files on drive Z:\, the available free storage space should be checked. This
parameter was indicated by KTH_User when she exposed her files.

6. The KTH_ICCS namespace is presented to the local FS.

This is quite independent from the DFS layer. The local filesystem can retrieve and cache DFS files and
data in a similar way other filesystems retrieve and cache files from disk or network places.

If ICCS_User wants to create a new file, she has to find her own storage in a p2p or arbitrary way -- only
storage pointers are needed in the MDDB. Of course, a storage allocation layer should be present to
simplify this task. This is actually what the VBS will do. Storage quotas can be enforced in this level.
Note that can stop anyone to create an impossibly large file if he himself provides the storage unless
there is an explicit rule within the MDDB to only allow storage pointers of a certain origin.

From now on ICCS_User should be able to work on these files with arbitrary relevant application.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 50

7. Implementation Plan of a VOFS Prototype

KTH has developed a prototype implementation of the VOFS in MS Windows. We used Java as main
language. The prototype is based on component model. The system is constructed using several software
components implemented in Java.

The first version of the prototype uses all components developed in WP3. However, in the future versions we
plan to use some components from WP2, including authentication server and authorization server.

7.1 VOFS Components

7.1.1 MetaData Server

The MetaData Server is the central repository of all VOFS meta-data. Such meta-data includes endpoint
information of all joining nodes, the logical naming space of VOFS files, physical addresses of VOFS files
(including node endpoint information and file absolute path) and the mapping of logical and physical naming
space. MetaData Server in the same time also provides catalog and search services for both VOFS file and
directory information: The file/directory information records and maintains all kinds of file/directory
attributions (meta-data). Catalog service aims to providing necessary operations to build a tree-like
hierarchical catalog of VOFS and traverse on the tree. Search service aims to enabling query to locate a
specific file or directory in the catalog tree.

7.1.2 Authentication Server

The Authentication Server serves as a centralized security center responsible for validating VOFS Clients
and granting / issuing token to Clients. Being successfully authenticated by signing digital signature, clients
hold certificated token to access other nodes in the system. The Authentication Server thus stores all public
keys of users (key-store) which users hold their private keys. Besides, this server also maintains all ACL
information of VOFS files. A Client can check permission of a file operation (a specific operation on a specific
file) by checking it in the Authentication Server.

7.1.3 Authorization Service

Many conventional network file systems provide only coarsely grained ACL mechanism. For example, read
only / write only / full operation of specific file or directory. VOFS aims at providing more finely grained ACL
which includes more permission levels and more flexible role control such as which VOs or Groups are
permitted for what kinds of file operation or which are not. The main mechanism is introduced as follows.

Each VOFS Logical Name (LN) has an Access Control List (ACL) attached. The permission types of ACL
granted to User, Group or VO upon such LN can be included as:

1. List (L): Permission to list all sub-entries under directory.
2. Attribute (A): Permission to see all file/directory attributes
3. Read (R): Permission to read the file
4. Write (W): Permission to write the file
5. Rename (N): Permission to rename this file/directory
6. Mkdir (M): Permission to create new directory under this directory
7. Full (F): Full permissions including all above
8. Prohibit (P): Not able to access the file/directory

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 51

Except for “Full” and “Prohibit”, each every permission has three positive list and negative list pairs for User,
Group and VO respectively to define which entities are allowed to such permission or not. (“Full” has only
positive lists and “Prohibit” has only negative lists for User, Group and VO.) Meanwhile, similar to UNIX file
system, each VOFS file entry has positive and negative permission. For example, a file entry has positive
permission “F” means the file entry is of Full control and “LAR” means the file entry is subject to only “List”,
“Attribute” and “Read” permissions, and vice versa for negative permission. When the positive permission
and negative permission of the file entry have been identified, the according permission lists will be checked
to see which entities are subject to these permissions. A more detailed explanation of VOFS authorization is
given as follow.

The authorization of VOFS happens at file operation level. Assume authentication is successful and the
connection between client user Ua and Ub has been established. Every time when Ua requests a file
operation (say, delete operation) on a file Fx at Ub, Ua needs to first provide its identity and Ub will check
with Authentication Server for ACL of that file, ACL(Fx). In a logical view, the negative lists (user/group/VO)
of ACL(Fx) will be scanned first and then the positive lists. Ua’s identity will finally be validated in ACL(Fx).

It is guaranteed that user side can never fake or manipulate ACL since the authentication always takes place
between trusted parities: the Authentication Server and file holder clients. In fact, those clients can always
have their ACL at local. The reason Authentication Server is involved is that those clients can store the ACL
information at the server in case the VOFS client program is terminated and the ACL in memory lost.

In order to deploy authorization service at Authentication Server, there will be one more step to store ACL of
LNs. The client needs to exposes its local file entries to MetaData Server, and in addition, he needes to
provide ACLs of those entries at the same time if there is any. The storage of ACL is realized by
communication between user and the Authentication Server. Client users are able to store their ACLs at
Authentication Server database and modify them at any time later. Every time a client logs to VOFS, it loads
the ACLs from Authentication Server into its memory so as to reduce network communication and improve
performance.

There is another option that is to deploy Authorization service with naming service at MetaData Server. In
this scheme, local file exposure and ACL will no longer be split into two connections to different servers. But
in order to make MetaData Server properly loaded, it is better option to adopt the first approach and assign
authorization service to Authorization Server. In the current design of VOFS, it is essential to decouple the
authorization service from MetaData Server since the naming resolution service, although not expensive,
can be very frequently invoked by numerous client users. In addition, if all database related services are
deployed at MetaData Server, it could become bottle neck or a single point of failure because of uncertainty
of server’s disconnection from network or crashing. But it is feasible to have replications of MetaData data
base and Authentication data base on both servers to improve the availability.

It is inevitable that there will be lots of requests for ACL checking which makes the program slowly
responsive. To improve, a leisure mode can be added to exposed file entries (LNs) to bypass authorization.
For those less sensitive entries, VOFS simply sets a symbol and treats them as shared ones, either read-
only or with full operations.

Authorization and authorization have many requirements of VOFS security mechanism. It is never too safe to
say a system is completely secure and immune from malicious attacks. In addition, employing too heavy
security mechanism could be very expensive. VOFS should choose a medium level of security, easy to
implement and with reasonable overhead.

7.1.4 Mount Server

The VOFS network has several Mount Servers that are running on top of stable workstations always
connecting to the network and providing mounting service for VOFS client nodes. Before VOFS clients
perform disconnection from VOFS, they can proactively upload their shared files/directories to MountServer

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 52

so that other client nodes can still access those file entries in a native way. More precisely, the accessing to
those file entries is realized through native mounting of client nodes, as the mounting server is based on
WebDAV which is a protocol natively supported by Linux similar OS as well as MS Windows. In some sense,
the Mount Server is similar to file servers of AFS, but a simplified version with other administration features
decoupled from it.

7.1.5 VOFS Client

The VOFS Client is defined as program installed at user computers. The VOFS Client program consists of
two parts: the client interface and the file server. Client interface enables VOFS users to perform operations
to expose their local file system, access remote files and call related services. The file server, on the other
hand, provides service for remote access to local exposed file system.

Client Interface

Client Interface has layered structure. At the bottom is the communication layer responsible for sending
messages and receiving responses. This layer is based on java network package and implemented with
Java Socket. The communication is through message exchange in plain text.

Client Interface API is the core part which encapsulates user logics to operation all services.

The Client API includes the following functions:

1. Authentication service to log in user.
2. Local file system exposure to VOFS LN space.
3. Trigger VOFS LN resolution to locate PN.
4. Request catalog service of VOFS LN tree / search LN in the tree.
5. POSIX operations of remote file.
6. Asynchronous file transfer / block operation of file
7. Setting ACL for local exposed file system.
8. Mount remote directory to local.

On the top of Client Interface is Client UI of VOFS, including a GUI developed with Java Swing components
and a command line tool. The core of GUI is VOFS explorer which includes two JTree based components:
one built on native local file system and the other on VOFS LN hierarchy. Since different mouse events will
be captured, the friendly GUI will help user locate any file entity in both hierarchical structures easily. The
command line tool is more similar to UNIX style and user can input commands instead of clicking buttons to
invoke Client APIs.

File Server

The file server in general is a user space daemon that receives file operation requests from other clients,
checks authorization of the requests and executes the operations. Another feature is file-locking. When one
remote client’s is writing to local, the file server creates a lock for the file being written and other write or read
requests will be blocked until the current write is done.

File server has a same layered structure as client interface, with a communication layer and file server API
layer. File server API enables to invalidate the authorization of operation requests by checking with
Authentication Server. It also enables all basic POSIX file operations at local file system which includes:

Name Description

1 canRead to check if the file can be read

2 canWrite to check if the file can be written

3 createNewFile to create a new file

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 53

4 delete to delete a file or an empty folder

5 isFile to check if it is a file

6 isDirectory to check if it is a folder

7 Length length of the file

8 Mkdirs create hierarchy directories

9 List list all files of the folder

10 renameTo rename the file or folder

11 Exists to check if the file or folder exists

12 Lock to lock the file from accessing

Table 3: Basic POSIX file operations

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 54

8. References

[1] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide-area cooperative storage with CFS,
SOSP'01, 2001

[2] A. Adya, et al., Farsite: federated, available, reliable storage for an incompletely trusted
environment, ACM SIGOPS Operating Systems Review, Vol.36, pp. 1—14, 2002.

[3] E. Laure, et al., Programming the Grid with gLite, EGEE-TR-2006-001, 2006. URL:
http://doc.cern.ch/archive/electronic/egee/tr/egee-tr-2006-001.pdf

[4] EGEE Middleware Design Team. EGEE Deliverable 1.4: EGEE Middleware Architecture.
https://edms.cern.ch/document/594698/

[5] A.-J. Peters, P. Saiz, and P. Buncic, AliEnFS - a Linux File System for the AliEn Grid Services, In
Proc. Conf on Computing in High Energy and Nuclear Physics, 2003

[6] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual
Organizations, Int’l J. High-Performance Computing Applications, vol. 15, no. 3, 2001, pp. 200-222.

[7] I. Foster, C. Kesselman, Scaling System-Level Science: Scientific Exploration and IT Implications,
IEEE Computer, v. 39, no.11, Nov 2006, pp.31-39.

[8] A. Chervenak, E. Deelman, I. Foster, et al.., “Giggle: A Framework for Constructing Scalable Replica
Location Servcies”, In Proc. of Supercomputing’2002, 2002.

[9] W. Allcock, I. Foster, R. Madduri, “Reliable Data Transport: A Critical Service for the Grid”, Building
Service Based Grids Workshop, Global Grid Forum 11, June 2004.

[10] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe, “Wide Area Data Replication for
Scientific Collaborations”, in Proc. of 6th IEEE/ACM International Workshop on Grid Computing
(Grid2005), 2005.

[11] LUFS: Linux Userland File System, URL: http://lufs.sourceforge.net/

[12] FUSE: Filesystem in Userspace, URL: http://fuse.sourceforge.net/

[13] OpenAFS, URL: http://www.openafs.org/

[14] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A Security Architecture for Computational Grids,
Proc. 5th ACM Conference on Computer and Communications Security Conference, pp. 83-92,
1998

[15] J. Zhang, and P. Honeyman, NFSv4 Replication for Grid Storage Middleware, Proc. of the 4th Int’l
Workshop on Middleware for Grid Computing (MGC'06), Melbourne, Australia, ACM Press, 2006

[16] R.J. Figueiredo, N.H. Kapadia, J.A.B. Fortes, The PUNCH Virtual File System: Seamless Access To
Decentralized Storage Services In A Computational Grid, Proc. of the 10th IEEE Int’l Symposium on
High Performance Distributed Computing (HPDC’01), 2001

[17] S. Maad, et al., Towards a Complete Grid Filesystem Functionality – to appear in Future Generation
Computer Systems, vol. 23, no. 1, 2007, 123–131.
URL: http://dx.doi.org/10.1016/j.future.2006.06.006

[18] F. García-Carballeira, et al., A Global and Parallel File System for Grids – to appear in Future
Generation Computer Systems, vol. 23, no. 1, 2007, pp. 116-122,
URL: http://dx.doi.org/10.1016/j.future.2006.06.004

[19] R. Figueiredo, N. Kapadia and J. Fortes, “The PUNCH Virtual File System: Seamless Access to
Decentralized Storage Services in a Computational Grid”, In Proc. of HPDC-10, San Francisco, CA,
August 2001.

[20] AliEn: ALICE Environment, URL: http://alien.cern.ch

[21] Grid Datafarm – Gfarm file system, URL: http://datafarm.apgrid.org/

[22] Osamu Tatebe, et al, Grid Datafarm Architecture for Petascale Data Intensive Computing. In Proc. of
the 2nd IEEE/ACM Int’l Symp. on Cluster Computing and the Grid (CCGrid 2002), pp. 102–110,
2002.

[23] Osamu Tatebe, et. Al, Grid Data Farm for Petascale Data Intensive Computing, Techn. Report TR-
2001-4, Electrotechnical Laboratory, 2001 URL: http://datafarm.apgrid.org/pdf/gfarm-ETL-TR2001-
4.pdf

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 55

[24] Grid File System Working Group (GFS-WG), URL: http://phase.hpcc.jp/ggf/gfs-rg/

[25] A. Jagatheesan, The GGF Grid File System Architecture Workbook, Tech’l memo, OGF Grid File
System Working Group, URL: http://www.ggf.org/documents/GFD.61.pdf

[26] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of the
Sun Network Filesystem. In Proceedings of the Summer USENIX Technical Conference, pages 119-
130, Portland, OR (USA), June 1985.

[27] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite network operating
system. Computer, 21(2):23-36, 1988.

[28] John K. Ousterhout. The role of distributed state. In R. Rashid, editor, CMU Computer Science: A
25

th
 Anniversary Perspective, pages 199-217. ACM Press, 1991.

[29] M. Satyanarayanan. Scalable, Secure, and Highly Available Distributed File Access. Computer,
23(5):9-18, 20-21, 1990.

[30] J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM
Transactions on Computer Systems (TOCS), 10(1):3-25, 1992.

[31] C. Thekkath, T. Mann, and E. Lee. Frangipani: a scalable distributed file system. In SOSP '97:
Proceedings of the Sixteenth ACM Dymposium on Operating Systems Principles, pages 224-237,
Saint Malo, France, 1997. ACM Press.

[32] R. Guy, J. Heidemann, W. Mak, T. Page, Jr., G. Popek, and D. Rothmeier. Implementation of the
Ficus replicated file system. In USENIX Conference Proceedings, pages 63-71, Anaheim, CA, June
1990. USENIX.

[33] S. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX. In USENIX Summer,
pages 238-247, 1986.

[34] D. Rosenthal. Evolving the Vnode interface. In USENIX Summer, pages 107-118, 1990.

[35] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Serverless network file
systems. ACM Transactions on Computer Systems (TOCS), 14(1):41-79, 1996.

[36] J. Hartman and J. Ousterhout. The Zebra striped network file system. ACM Transactions on
Computer Systems (TOCS), 13(3):274-310, 1995.

[37] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: The OceanStore
prototype. In FAST'03: Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, pages 1-14, San Francisco, CA, 2003. USENIX.

[38] J. Kubiatowicz. Extracting guarantees from chaos. Communications of the ACM, 46(2):33-38, 2003.

[39] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The Bayou architecture:
Support for data sharing among mobile users. In Proceedings of IEEE Workshop on Mobile
Computing Systems & Applications, pages 2-7, Santa Cruz, California, December 8-9 1994.

[40] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated storage system. In SOSP '95: Proceedings of the
fifteenth ACM Symposium on Operating Systems Principles, pages 172-182, Copper Mountain,
Colorado, US, 1995. ACM Press.

[41] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry: A resilient global-
scale overlay for service deployment. IEEE Journal on Selected Areas in Communications (Special
Issue: Recent Advances In Service Overlay Networks), 22(1):41-53, January 2004.

[42] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman. An XOR-based Erasure-
resilient coding scheme. Technical Report TR-95-048, International Computer Science Institute
(ICSI), Berkley, CA, USA, 1995.

[43] A. Grimshaw, A. Natrajan, M. Humphrey, M. Lewis, A. Nguyen-Tuong, J. Karpovich, M. Morgan, ,
and A. Ferrari. From Legion to Avaki: The Persistence of Vision. In F. Berman, G. Fox, and A. Hey,
editors, Grid Computing: Making the Global Infrastructure a Reality, pages 265-298. John Wiley &
Sons, March 2003.

[44] B. White, M. Walker, M. Humphrey, and A. Grimshaw. LegionFS: a secure and scalable file system
supporting cross-domain high-performance applications. In Supercomputing '01: Proceedings of the
2001 ACM/IEEE conference on Supercomputing, page 59, Denver, Colorado, 2001. ACM Press.

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 56

[45] A. Grimshaw, M. Herrick, and A. Natrajan. Avaki data grid - secure transparent access to data. In
Ahmar Abbas, editor, Grid Computing: A Practical Guide To Technology And Applications. Charles
River Media, 2003.

[46] D.W. Chadwick and A. Otenko. The PERMIS X.509 role based privilege management infrastructure.
Future Generation Computer Systems, 19(2):277-289, February 2003.

[47] R. Alfieri, R. Cecchini, V. Ciaschini, L. Dell Agnello, A . Frohner, A. Gianoli, K. Lorentey, and F.
Spataro. VOMS, an Authorization System for Virtual Organizations

[48] Security Assertion Markup Language (SAML) V2.0 Technical Overview. Working Draft 10, 9 October
2006. URL: http://www.oasis-open.org/committees/documents.php?wg_abbrev=security

[49] Pastis: A scalable multi-writer peer-to-peer file system:
http://regal.lip6.fr/projects/pastis/pastis_en.html

[50] Pastry: A substrate for peer-to-peer applications: http://research.microsoft.com/%7Eantr/Pastry/

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 57

9. Appendix A: Access rights in AFS

Access rights in the Andrew File System (AFS) are shown in the table below. Every directory in AFS has its
own ACL list. A newly created directory inherits the ACL of its parent directory. Any changes to the parent's
ACL will not alter ACLs of subdirectories. Access permission area grated to users or/and groups of users.

Related to Denotation Access permission (access right)

R The right to read the contents of the file

w The right to write the contents of the file.

File

k The right to lock the file

L The right to list the names of files in the directory.

I The right to insert a file in the directory, e.g. the right to create a
new file or directory

d The right to delete a file in the directory

Directory

a The right to change the ACL list. It does not grant any other
rights.

Aliases for some common access rights Refers to

all All rights, i.e. rlidwka

write Standard rights for writing file, i.e. rlidwk

read standard rights for reading a file, i.e. rl

none No rights whatsoever

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 58

10. Appendix B: Use Cases

1. CreateNewVO

Scenario Name CreateNewVO

Actor(s) Tom: SystemAdmin

Flow of events Tom, the system administrator of VOFS, is asked to create a new
VO called Alpha in VOFS. He fills in all necessary information of
new VO including unique identifier of VO and other contact
information such as group email address. Also, a name virtual
directory for Alpha is created in VOFS logical directory tree. Its
attributes such as if it can be modified by other VO(s) or user group
should be set.

2. CreateVOAdmin / CreateFileUser

Scenario Name CreateVO Admin/ CreateFileUser

Actor(s) Tom: SystemAdmin, John: VOAdmin, Mary: FileUser

Flow of events Tom, after creating the new VO, creates VOAdmin account for John
of VO Alpha.

John logs in and now he has permission to create FileUser account
of the VO Alpha he’s managing. He creates a FileUser account for
Mary.

Mary, the VOFS end user, now logs in as member of Alpha and can
perform operations in VOFS. A default logic folder under Alpha is
automatically created for her by her username.

3. ExpandDirectoryTree

Scenario Name ExpandDirectoryTree

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events Alice logs into VOFS client and by default she sees only root of
VOFS tree, say “/vo1” and all VO directory under root.

She left clicks on expand icon besides a directory and the directory
is expanded by one level deeper. All attached files and sub folders
will be shown.

There are two types of sub folders under VO directory. One is
linked, meaning it targets to an external endpoint. The other is
unlinked, meaning it still has not linked yet.

4. CreateDir / DeleteDir

Scenario Name CreateDirectory

Actor(s) Tom: SystemAdmin, John: VOAdmin, Mary: FileUser

Flow of events Tom is able to create virtual directory in VOFS tree at any place by
using “ExpandDirectoryTree”. At any directory he right clicks and

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 59

chooses “create sub directory” in menu.

A new form will pop with all attributes to fill. The owner attribute is
set to Tom’s user name and can’t be changed. Only one attribute,
the unique name of the directory should be provided in compulsory.
Once he confirms the action, the new directory is created.

The created directory is either unlinked, which means the external
link and machine endpoint attributes are left empty, or linked, with
those two attributes filled.

Tom can also set other attributes such as access permission (by
which VO(s) and by which user group), read only, or extra
accessing code, etc. He can also delete any virtual folder in the
tree.

John is able to do the same thing, but only in the VO he is
administrating by default.

Mary, the VOFS end user, by default can only do the same thing in
her own directory named after her username in the directory of VO
Alpha.

5. ModifyDirectoryAttribute

Scenario Name ModifyDirectoryAttribute

Actor(s) Tom: SystemAdmin, John: VOAdmin, Mary: FileUser

Flow of events Tom is able to modify attributes of existent VOFS directory by right
clicking the directory and choose “modify attributes” in menu.

The attributes include directory name, target link, access permission
(by which VO(s) and by which user group), read only or hidden and
extra accessing code, etc. He can also delete any virtual folder in
the tree.

John is able to do the same thing, but only in the VO he is
administrating by default.

Mary, the VOFS end user, by default can only do the same thing in
the directory named by her username in the directory of VO Alpha.

6. SetWorkingSpace

Scenario Name SetWorkingSpace

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events In VOFS client, Alice needs to set working space to store cached
replications of files exposed by other FileUsers. The directory of
VOFS corresponds to the root “/vo1” of virtual directory tree by
default.

She needs to manually create a folder in her local file system and
explicitly appoint this folder as working space in VOFS client.

7. ExposeLocalDirectory

Scenario Name ExposeLocalDirectory

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events In VOFS client explorer, Alice expands virtual directory tree and

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 60

locates a virtual directory which has not been targeted to any
external link yet (unlinked).

She right clicks on a directory icon and menu appears. If option
“expose here” is enabled, it mean she is able to expose her local
directory / driver here. Otherwise the option is disabled and grey in
colour.

Alice chooses to expose her local directory to that point. By default
this will trigger “ModifyDirectoryAttribute”. The local directory path
and physical machine net address will be filled automatically in this
case. She can set the rest attributes.

After she confirms the action, sub-entries of the exposed local folder
will be listed under the virtual directory she chooses. The names of
the entries are same as local while their attributes inherit from the
virtual directory.

By refreshing the VOFS client explorer, all FileUsers are able to
view this change.

8. UnexposeLocalDirectory

Scenario Name ExposeLocalDirectory

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events In VOFS client explorer, Alice is able to view all the exposed entries
in her local file system.

She selects one exposed directory and right clicks “Unexpose”.

After confirmation, the local directory and its sub-entries are no
longer exposed to VOFS.

9. ExposedDirectoryChange

Scenario Name ExposedDirectoryChange

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events If Alice creates or saves some new entries into exposed directory,
the action will not lead to auto-exposing of those entries. She needs
to do “ExposeLocalDirectory” again to expose those new entries.

If Alice removes entries from directory, the system will automatically
do “UnexposeLocalDirectory” of those entries.

10. GetExposedEntity

Scenario Name GetExposedEntity

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events Based on “SetWorkingspace”, Alice expands virtual directory tree
and right clicks a linked directory or a sub-entry file. In the menu she
chooses “download remote entry”.

The popped form will give options of the local saving path of the
remote entry. Default is the logical name path of the entry.

The popped form also provides option if the downloaded entry is in
consistent mode, which means to keep consistent with other
replications of this entry in the same mode. By default the

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 61

downloaded entry is not in consistent mode.

After Alice confirms the operation, the target entry is downloaded to
local working space in the saving path.

11. KeepEntityConsistent

Scenario Name GetExposedEntity

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events Based on “GetExposedEntity”, Alice can optionally set downloaded
entity in consistent mode in popped form.

If a replication is in consistent mode, it binds to the master copy at
the file source provider. As long as Alice is online and the file is not
open, system can update replication based on any source changes
at runtime. If the file is open, client will pop warning message to
notify Alice to save the current file to a new name and get her a
latest replication of the source.

12. EnableMount

Scenario Name EnableMount

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events Alice wishes to set a local directory as mountable to other VOFS
users. She right clicks on the local directory and chooses “set
mount”. Popped form will provide access user name and password.
The defaults are blank. After she confirms, the folder is mountable.

Alice uses laptop and decides to go offline. She wants other users
of VOFS keep on using her files by means of mounting. In client UI,
she connects to a mount server and uploads the directory and set it
as mountable. She can also set access username and account for
her directory.

Next time when Alice reconnects, she can choose to synchronize
her local folder with the one on mount server.

13. DisableMount

Scenario Name DisableMount

Actor(s) Alice: FileUser / All Deriving Actors

Flow of events Alice wishes to disable the mount directory she previously set. She
right clicks on the mountable local directory and chooses “disable
mount”. (If the folder is not mountable, this option is not seen.) After
she confirms, the folder is no longer mountable.

14. GetMountDirectory

Scenario Name GetMountDirectory

Actor(s) Bob: FileUser / All Deriving Actors

Chapter III -- Requirements, design and implementation plan of data facilities Grid4All-034567
 20/06/2007

Grid4All Public D 3.1 – Chapter III - Page 62

Flow of events Bob needs to mount Alice’s mount folder. He expands the VOFS
directory tree and right clicks Alice’s folder. If the folder is set as
mountable by Alice already, he can choose “get mount”.

The popped form asks information about the access username and
password and local path / drive Bob wants to mount to.

After Bob confirms, he can access the remote directory in a native
way. Also one entry will be added to Bob’s UI about his mount
information.

15. RemoveMountDirectory

Scenario Name GetMountDirectory

Actor(s) Bob: FileUser / All Deriving Actors

Flow of events Bob no longer needs to mount Alice’s mount folder. He goes to
mount information in his UI and deletes the entry of Alice’s directory.
The local path/drive is disconnected from the remote directory.

D 3.1 – Appendix I

Project no. 034567

Grid4All

Specific Targeted Research Project (STREP)
Thematic Priority 2: Information Society Technologies

Deliverable 3.1: Requirements analysis, design and
implementation plan of Grid4All data storage and

sharing facilities - Appendix I

Due date of deliverable: June, 2008.

Actual submission date: June, 2008.

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: INRIA Regal

Revision: Submitted 2007-06-20

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

D 3.1 – Appendix I

APPENDIX I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
20th June 2007

Grid4All list of participants

Part.
Role Part. Participant name short Country

name
CO 1 France Telecom FT FR
CR 2 Institut National de Recherche en Informatique en

Automatique
INRIA FR

CR 3 The Royal Institute of technology KTH SWE
CR 4 Swedish Institute of Computer Science SICS SWE
CR 5 Institute of Communication and Computer Systems ICCS GR
CR 6 University of Piraeus Research Center UPRC GR
CR 7 Universitat Politècnica de Catalunya UPC ES
CR 8 ANTARES Produccion & Distribution S.L. ANTARES ES

Grid4All Public Page D 3.1-Appendix I–1

D 3.1 – Appendix I

APPENDIX I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
20th June 2007

Preamble

This document is the appendix I of Deliverable 3.1 ”Requirements analysis, design and imple-
mentation plan of Grid4All data storage and sharing facilities”, which comprises the following
parts:

Chapter I Semantic Store
Chapter II Collaborative Applications
Chapter III VO-File system
Appendix I Telex application API

The following persons contributed to this appendix: Jean-Michel Busca INRIA-Regal, Marc
Shapiro INRIA-Regal, Pierre Sutra INRIA-Regal.

Grid4All Public Page D 3.1-Appendix I–2

D 3.1 – Appendix I

Package

fr.inria.gforge.telex

Provides classes and interfaces of objects instanciated by Telex.

Page 1 of 87

D 3.1 – Appendix I

fr.inria.gforge.telex
Class ClosedDocumentException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.ClosedDocumentException

public class ClosedDocumentException
extends java.lang.Exception

Thrown when an application accesses a document that has been closed. The pathname of the document is provided in the detail
message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public ClosedDocumentException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ClosedDocumentException
public ClosedDocumentException(java.lang.String message)

Page 2 of 87

fr.inria.gforge.telex.ClosedDocumentException

D 3.1 – Appendix I

fr.inria.gforge.telex
Interface Document

public interface Document
extends

A shared document edited by a TelexApplication. This interface provides methods for viewing, updating and saving the
document. These methods operate on the persistent state of the document, which comprises:

• A multi-log. It is the core data structure that represents the current state of the document. It contains a set of Actions, bound

by Constraints, that users submit to update to the document.
• A set of user-defined filters. each user may define its own view of the document, by applying ActionFilters. Filters are

named and stored as part of the document state, in a per-user name space.
• a set of per-user snapshots: each user may define StateSnapshot of the document that are of particular interest to him.

Snapshots are named and stored stored as part of the document state, in a per-user name space.

When the document is open in Telex.OpenMode.READ_ONLY mode, only the methods that do not modify the persistent state of

the document are allowed. When it is open in Telex.OpenMode.READ_WRITE or Telex.OpenMode.CREATE mode, all of the

methods are allowed. Most of theses methods operate on behalf of the user who invoked the Virtual Machine, hereafter named

invoking user.

Document updating. Invoking user may update the document by adding actions and constraints through the
addAction(Action), addConstraint(Constraint) and addFragment(Fragment) methods. Telex propagates these
actions and constraints to peer Telex sites when connectivity permits, using a best-effort epidemic replication protocol. Updates to
the document are periodically notified to the application through the TelexApplication.execute(Document,
ScheduleGenerator) method.

Document viewing. Invoking user may assign a set of filters to the document through the defineFilter(ActionFilter) and
the removeFilter(ActionFilter) methods. Filters are saved as part of the persistent state of the document, in the name space
of invoking user. When invoking user opens a document, the set of filters that he has defined for this document is automatically
restored and applied. This set may be obtained through the listFilters() method.

Document saving. Invoking user may define a set of document snapshots to retain through the
defineSnapshot(StateSnapshot) and the removeSnapshot(StateSnapshot) methods. Snapshots are saved as part of the
persistent state of the document, in the name space of invoking user. The set of snapshots currently defined by invoking user may
be obtained through the listSnapshots() method.

Author:
J-M. Busca INRIA/Regal

Field Summary
public static final DEFAULT_TYPE

The type of a document whose name has no suffix.
Value:

Method Summary
void addAction(Action action)

Adds the specified action to this document.

void addConstraint(Constraint constraint)

Adds the specified constraint to this document.

void addFragment(Fragment fragment)

Adds the specified multilog fragment to this document.

Page 3 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

void close()

Closes this document.

boolean defineFilter(ActionFilter filter)

Adds the specified action filter to the set defined by invoking user for this document.

boolean defineSnapshot(StateSnapshot snapshot)

Adds the specified snasphot to the set defined by invoking user for this document.

boolean executeNow(boolean force)

Calls the execute() method on this document according to the specified mode.

void garbageCollect(StateSnapshot snapshot)

Garbage-collects the history of this document up to the specified snapshot.

TelexApplication getApplication()

Returns the application that is currently editing this document.

java.lang.String getType()

Returns the type of this document.

boolean isClosed()

Returns the open/closed status of this document.

boolean isOffline()

Returns the on-line/off-line status of this document.

ActionFilter[] listFilters()

Returns the set of action filters that are currently defined by invoking user for this
document.

StateSnapshot[] listSnapshots()

Returns the set of snapshots that are currently defined by invoking user for this document.

boolean removeFilter(ActionFilter filter)

Removes the specified action filter from the set defined by invoking user for this document.

boolean removeSnapshot(StateSnapshot snapshot)

Removes the specified snaspshot from the set defined by invoking user for this document.

void setSchedulingParameters(SchedulingParameters parameters)

Applies the specified scheduling parameters to this document.

void startFrom(Schedule schedule)

Requests Telex to start from the specified schedule when generating new schedules.

void voteFor(Schedule schedule)

Votes for the specified schedule of actions.

Fields

DEFAULT_TYPE
public static final java.lang.String DEFAULT_TYPE

The type of a document whose name has no suffix.
Constant value:

(continued on next page)

Page 4 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

(continued from last page)

Methods

getType
public java.lang.String getType()

Returns the type of this document. The type of a document is the suffix of its name, or DEFAULT_TYPE if the name has no
suffix.

Returns:
the string representing the type of this document, possibly DEFAUL_TYPE.

getApplication
public TelexApplication getApplication()

Returns the application that is currently editing this document. This method returns null if this document was automatically
opened because it is bound to another document.

Returns:
the the application that is currently editing this document, or null if there is no such application.

isOffline
public boolean isOffline()

Returns the on-line/off-line status of this document.

Returns:
true if this document is closed or off-line, and false otherwise.

isClosed
public boolean isClosed()

Returns the open/closed status of this document.

Returns:
true if this document is closed, and false otherwise.

close
public void close()
 throws java.io.IOException

Closes this document. After this call returns, the application will not be allowed any action on this document, and it will
stop being notified of new events regarding this document.

Throws:
IOException - if an I/O error occurs.

addAction
public void addAction(Action action)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 InvalidFragmentException,
 java.io.IOException

(continued on next page)

Page 5 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

(continued from last page)

Adds the specified action to this document. This is a convenience method which is semantically equivalent to:

 Fragment fragment = new Fragment();

 fragment.add(action);

 addFragment(fragment);

See addFragment(Fragment) for more details.

Parameters:
action - the action to add.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
InvalidFragmentException - if the specified action is invalid.
IOException - if an I/O error occurs.

addConstraint
public void addConstraint(Constraint constraint)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 InvalidFragmentException,
 java.io.IOException

Adds the specified constraint to this document. This is a convenience method which is semantically equivalent to:

 Fragment fragment = new Fragment();

 fragment.add(constraint);

 addFragment(fragment);

See addFragment(Fragment) for more details.

Parameters:
constraint - the constraint to add.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
InvalidFragmentException - if the specified constraint is invalid.
IOException - if an I/O error occurs.

addFragment
public void addFragment(Fragment fragment)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 InvalidFragmentException,
 java.io.IOException

(continued on next page)

Page 6 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

(continued from last page)

Adds the specified multilog fragment to this document. This document must be open in read-write mode. The specified
fragment must be valid, which means that (i) none of the specified actions must be associated with a document yet, (ii) all
of the specified constraints must bind actions that are either in the specified fragment, or already associated with a
document. When this method returns successfully, the document and timestamp attributes of all of the ctions contained in
the specified fragment are set.

Parameters:
fragment - the fragment to add.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
InvalidFragmentException - if the specified fragment is invalid.
IOException - if an I/O error occurs.

executeNow
public boolean executeNow(boolean force)

Calls the execute() method on this document according to the specified mode. Re-generation of sound schedules is not
necessary if (i) no action or constraint has been added to the document (ii) the set of active filters has not changed since the
last time the execute() method was called. Nonetheless, the execution of the method can be forced in this case by setting
the parameter of this method to true. If the execute() method is actually called, it excutes within the current (invoking)
thread, and completes before this method returns.

Parameters:
force - the execute() method is called unconditionally when true, or only if necessary when false.

Returns:
true if the execute() has been called, and false otherwise.

startFrom
public void startFrom(Schedule schedule)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 InvalidScheduleException

Requests Telex to start from the specified schedule when generating new schedules. The request takes effect for schedules
provided through the calls to the execute() that are made after this method returns.

Parameters:
schedule - the schedule to start from.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
InvalidScheduleException - if the specified schedule does not relate to this document.

voteFor
public void voteFor(Schedule schedule)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 InvalidScheduleException,
 java.io.IOException

Votes for the specified schedule of actions. [...]

Parameters:
schedule - the schedule to vote for.

(continued on next page)

Page 7 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

(continued from last page)

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
InvalidScheduleException - if the specified schedule is not legal.
IOException - if an I/O error occurs.

setSchedulingParameters
public void setSchedulingParameters(SchedulingParameters parameters)

Applies the specified scheduling parameters to this document. [...]

Parameters:
parameters - the scheduling parameters to apply.

defineFilter
public boolean defineFilter(ActionFilter filter)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 java.io.IOException

Adds the specified action filter to the set defined by invoking user for this document. If this method returns successfully,
the specified filter is permanently saved as part of the persistent state of this document. This method itself does not force
immediate re-generation of sound schedules: call the executeNow(boolean) method to do so.

Parameters:
filter - the filter to define.

Returns:
true if the filter is actually added, and false if the filter already existed for invoking user.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
IOException - if an I/O error occurs.

removeFilter
public boolean removeFilter(ActionFilter filter)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 java.io.IOException

Removes the specified action filter from the set defined by invoking user for this document. If the method returns
successfully, the specified filter is permanently removed from the persistent state of this document. This method itself does
not force immediate regeneration of sound schedules: call the executeNow(boolean) method to do so.

Parameters:
filter - the filter to remove.

Returns:
true if the filter is actually removed, and false if the filter did not exist for invoking user.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
IOException - if an I/O error occurs.

Page 8 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

listFilters
public ActionFilter[] listFilters()
 throws ClosedDocumentException,
 java.io.IOException

Returns the set of action filters that are currently defined by invoking user for this document.

Returns:
the current set of action filters.

Throws:
ClosedDocumentException - if this document is closed.
IOException - if an I/O error occurs.

defineSnapshot
public boolean defineSnapshot(StateSnapshot snapshot)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 java.io.IOException

Adds the specified snasphot to the set defined by invoking user for this document. If this method returns successfully, the
specified snapshot is permanently saved as part of the persistent state of this document.

Parameters:
snapshot - the snasphot to define.

Returns:
true if the snapshot is actually saved under its name, and false if a snapshot with the same name already existed for
invoking user.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
IOException - if an I/O error occurs.

removeSnapshot
public boolean removeSnapshot(StateSnapshot snapshot)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 java.io.IOException

Removes the specified snaspshot from the set defined by invoking user for this document. If the method returns
successfully, the specified snapshot is permanently deleted from the persistent state of this document.

Parameters:
snapshot - the snasphot to remove.

Returns:
true if the snapshot is actually removed, and false if the snapshot was not saved for invoking user.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
IOException - if an I/O error occurs.

(continued on next page)

Page 9 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

(continued from last page)

listSnapshots
public StateSnapshot[] listSnapshots()
 throws ClosedDocumentException

Returns the set of snapshots that are currently defined by invoking user for this document.

Returns:
the current set of snasphots.

Throws:
ClosedDocumentException - if this document is closed.

garbageCollect
public void garbageCollect(StateSnapshot snapshot)
 throws ClosedDocumentException,
 IncompatibleOpenModeException,
 java.io.FileNotFoundException,
 InvalidDocumentStateException,
 java.io.IOException

Garbage-collects the history of this document up to the specified snapshot. The specified snapshot must be in the current
set of snapshots defined by invoking user. It must be also materialized and stable.

Parameters:
snapshot - the state up to which garbage-collect this document.

Throws:
ClosedDocumentException - if this document is closed.
IncompatibleOpenModeException - if this document is opened in read-only mode.
FileNotFoundException - if the specified state is not found.
InvalidDocumentStateException - if the specified state is not stable.
IOException - if an I/O error occurs.

Page 10 of 87

fr.inria.gforge.telex.Document

D 3.1 – Appendix I

fr.inria.gforge.telex
Class IncompatibleOpenModeException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.IncompatibleOpenModeException

public class IncompatibleOpenModeException
extends java.lang.Exception

Thrown when a application writes to a document opened in read-only mode. The pathname of the document is provided in the
detail message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public IncompatibleOpenModeException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

IncompatibleOpenModeException
public IncompatibleOpenModeException(java.lang.String message)

Page 11 of 87

fr.inria.gforge.telex.IncompatibleOpenModeException

D 3.1 – Appendix I

fr.inria.gforge.telex
Class InvalidDocumentFormatException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.InvalidDocumentFormatException

public class InvalidDocumentFormatException
extends java.lang.Exception

Thrown when an application accesses a document whose internal structure is not valid. The pathname of the document is provided
in the detail message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public InvalidDocumentFormatException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

InvalidDocumentFormatException
public InvalidDocumentFormatException(java.lang.String message)

Page 12 of 87

fr.inria.gforge.telex.InvalidDocumentFormatException

D 3.1 – Appendix I

fr.inria.gforge.telex
Class InvalidDocumentStateException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.InvalidDocumentStateException

public class InvalidDocumentStateException
extends java.lang.Exception

Thrown when an application garbage-collects a document up to a state that is not valid. The name of the state is provided in the
detail message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public InvalidDocumentStateException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

InvalidDocumentStateException
public InvalidDocumentStateException(java.lang.String message)

Page 13 of 87

fr.inria.gforge.telex.InvalidDocumentStateException

D 3.1 – Appendix I

fr.inria.gforge.telex
Class InvalidFragmentException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.InvalidFragmentException

public class InvalidFragmentException
extends java.lang.Exception

Thrown when an application passes as parameter a fragment that is not valid. The id of the fragment is provided in the detail
message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public InvalidFragmentException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

InvalidFragmentException
public InvalidFragmentException(java.lang.String message)

Page 14 of 87

fr.inria.gforge.telex.InvalidFragmentException

D 3.1 – Appendix I

fr.inria.gforge.telex
Class InvalidScheduleException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.InvalidScheduleException

public class InvalidScheduleException
extends java.lang.Exception

Thrown when an application passes as parameter a schedule that is not valid. The id of the schedule is provided in the detail
message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public InvalidScheduleException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

InvalidScheduleException
public InvalidScheduleException(java.lang.String message)

Page 15 of 87

fr.inria.gforge.telex.InvalidScheduleException

D 3.1 – Appendix I

fr.inria.gforge.telex
Interface Schedule

public interface Schedule
extends

A schedule of Actions to be applied on a Telex Document. It is defined by the sequence of actions to apply and the
DocumentState to start from. A schedule is identified by an id of type String assigned by Telex when generating the schedule. A
schedule only contains actions that belong to the document it relates to.

Author:
J-M. Busca INRIA/Regal

Method Summary
Action[] getActions()

Returns the sequence of actions corresponding to this schedule.

Document getDocument()

Returns the document this schedule relates to.

java.lang.String getId()

Returns the unique Id of this schedule.

Action[] getNonActions()

Returns the set of action that are excluded from this shedule.

Schedule[] getSchedules()

Returns the list of schedules that this schedule corresponds to in the case of bound
documents.

DocumentState getState()

Returns the document state this schedule must be applied on.

Methods

getState
public DocumentState getState()

Returns the document state this schedule must be applied on.

Returns:
the document state this schedule must be applied on.

getActions
public Action[] getActions()

Returns the sequence of actions corresponding to this schedule.

Returns:
the sequence of actions corresponding to this schedule.

Page 16 of 87

fr.inria.gforge.telex.Schedule

D 3.1 – Appendix I

getNonActions
public Action[] getNonActions()

Returns the set of action that are excluded from this shedule. These action are excluded because they conflict with actions
that belong to this schedule. The set of non actions is computed on demand.

Returns:
the set of action that are excluded from this shedule.

getId
public java.lang.String getId()

Returns the unique Id of this schedule.

Returns:
the unique Id of this schedule.

getDocument
public Document getDocument()

Returns the document this schedule relates to.

Returns:
the document this schedule relates to.

getSchedules
public Schedule[] getSchedules()

Returns the list of schedules that this schedule corresponds to in the case of bound documents.

Returns:
the list of schedules that this schedule corresponds to, or null if this schedule does not.

Page 17 of 87

fr.inria.gforge.telex.Schedule

D 3.1 – Appendix I

fr.inria.gforge.telex
Class Telex

java.lang.Object
 |
 +-fr.inria.gforge.telex.Telex

public abstract class Telex
extends java.lang.Object

The main class of the Telex middleware. Several TelexApplication may run concurrently within a single Virtual Machine and
use the services of Telex. Each application must first create a instance of Telex associated with it. Using this instance, the
application may then open Telex Documents.

An application may process documents of various types. The type of a document is defined by the suffix of its name, e.g. "tdoc".
Telex allows an application to associate ProcessingParameters with each of the document types it handles. When opening a
document, Telex will apply to the document the parameters corresponding to its type. Note that the same document type may be
registered by several applications in their respective Telex instance.

Each application may open one or more documents. The number of documents that can be opened is only limited by system
ressources, mainly memory. A document that already exists may be open in either Telex.OpenMode.READ_ONLY or
Telex.OpenMode.READ_WRITE mode. A new document may be created by opening it in Telex.OpenMode.CREATE mode. All
opened documents are automatically closed when the Virtual Machine exits.

All applications running in a Virtual Machine execute on behalf of the user who invoked the VM. All the actions and all the
constraints that these applications create will be attributed to this user. All Telex documents that these applications create will be
owned by this user.

Depending on the value of the telex.mode java property, the Telex middleware may run in two modes:

• Stand-alone mode (telex.mode="standalone"). In this mode, Telex peers communicate through a P2P communication library.

Each peer is responsible for keeping its own replica of the multi-log up-to-date. Telex manages only one document, and peers
are known via static configuration files.

• Grid4All mode (telex.mode="grid4all"). In this mode, Telex relies on the underlying distributed file system for storing and
replicating multi-logs, and for transmitting messages between Telex peers. Telex can handle several documents and the peers
accessing a given document are determined dynamically.

Author:
J-M. Busca INRIA/Regal

Nested Class Summary
class Telex.OpenMode

Telex.OpenMode

Constructor Summary
protected Telex()

Method Summary
static Telex getInstance(TelexApplication application)

Creates a Telex instance for the specified Telex application.

Page 18 of 87

fr.inria.gforge.telex.Telex

D 3.1 – Appendix I

static Telex getInstance(TelexApplication application, ProcessingParameters
parameters)

Creates a Telex instance for the specified Telex application and registers its default
processing parameters.

static User getInvokingUser()

Returns the Id of the user who has invoked this Virtual Machine.

static boolean isStandaloneMode()

Indicates whether Telex is running in stand-alone mode in this Virtual Machine.

Document openDocument(java.lang.String pathname)

Opens the Telex document with the specified pathname in READ_WRITE mode.

abstract Document openDocument(java.lang.String pathname, Telex.OpenMode mode)

Opens the Telex document with the specified pathname in the specified mode.

abstract boolean registerType(java.lang.String type, ProcessingParameters parameters)

Registers the specified document type in this Telex instance and associates it with the
specified processing parameters.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

Telex
protected Telex()

Methods

getInstance
public static Telex getInstance(TelexApplication application)

Creates a Telex instance for the specified Telex application. No document type is registered in this Telex instance after this
method returns. The application must define at least one document type by calling the registerType(String,
ProcessingParameters) method to be allowed to open documents.

Parameters:
application - the Telex application that registers.

Returns:
a Telex instance associated with application.

getInstance
public static Telex getInstance(TelexApplication application,
 ProcessingParameters parameters)

Page 19 of 87

fr.inria.gforge.telex.Telex

D 3.1 – Appendix I

(continued from last page)

Creates a Telex instance for the specified Telex application and registers its default processing parameters. This is a
convenience method that is equivalent to:

 Telex instance = Telex.getInstance(application);

 instance.registerType(DEFAULT_TYPE, parameters);

Parameters:
application - the Telex application that registers.
parameters - the default processing parameters for application.

Returns:
a Telex instance associated with application.

getInvokingUser
public static User getInvokingUser()

Returns the Id of the user who has invoked this Virtual Machine. This user will be attributed all actions created within this
VM and he will own all documents created within this VM.

Returns:
the Id of the user who has invoked this VM.

isStandaloneMode
public static boolean isStandaloneMode()

Indicates whether Telex is running in stand-alone mode in this Virtual Machine. If so, the behaviour of the following
methods is affected: openDocument(), Document.isOffline(), [...]. See the description of these methods for more
information.

Returns:
true if Telex runs in stand-alone mode, and false otherwise.

registerType
public abstract boolean registerType(java.lang.String type,
 ProcessingParameters parameters)

Registers the specified document type in this Telex instance and associates it with the specified processing parameters. If
the specified type is Document.DEFAULT_TYPE, the specified parameters will be applied to documents whose type is not
otherwise registered. A given document type can only be registered once: subsequent attempts to register it again will fail,
as indicated by the value returned by this method.

Parameters:
type - the document type to register.
parameters - the processing parameters for type.

Returns:
true if the type was registered successfully, and false if the type was already registered.

Page 20 of 87

fr.inria.gforge.telex.Telex

D 3.1 – Appendix I

(continued from last page)

openDocument
public Document openDocument(java.lang.String pathname)
 throws UnknownDocumentTypeException,
 java.io.FileNotFoundException,
 java.io.IOException,
 InvalidDocumentFormatException

Opens the Telex document with the specified pathname in READ_WRITE mode.

Parameters:
pathname - the pathname of the document.

Returns:
the corresponding Document object.

Throws:
UnknownDocumentTypeException - if the type of the document is not registered.
FileNotFoundException - if the document is not found.
IOException - if an I/O error occurs.
InvalidDocumentFormatException - if the internal structure of the document is incorrect.

openDocument
public abstract Document openDocument(java.lang.String pathname,
 Telex.OpenMode mode)
 throws UnknownDocumentTypeException,
 java.io.FileNotFoundException,
 java.io.IOException,
 InvalidDocumentFormatException

Opens the Telex document with the specified pathname in the specified mode. The type of the document, or the
Document.DEFAULT_TYPE type, must be registered for the call to succeed. The specified document will be processed
according to the parameters associated with its type.

Parameters:
pathname - the pathname of the document.
mode - the mode in which to open the document.

Returns:
the corresponding Document object.

Throws:
UnknownDocumentTypeException - if the type of the document is not registered.
FileNotFoundException - if the document is not found.
IOException - if an I/O error occurs.
InvalidDocumentFormatException - if the internal structure of the document is incorrect.

Page 21 of 87

fr.inria.gforge.telex.Telex

D 3.1 – Appendix I

fr.inria.gforge.telex
Class Telex.OpenMode

java.lang.Object
 |
 +-java.lang.Enum
 |
 +-fr.inria.gforge.telex.Telex.OpenMode

public static final class Telex.OpenMode
extends java.lang.Enum

The open mode of a Telex Document.

All Implemented Interfaces:
java.io.Serializable, java.lang.Comparable

Field Summary
public static final CREATE

Create the specified document if it does not exist, and open it in read-write mode.

public static final READ_ONLY

Open the specified document in read-only mode.

public static final READ_WRITE

Open the specified document in read-write mode.

Method Summary
static Telex.OpenMode valueOf(java.lang.String name)

static
Telex.OpenMode[]

values()

Methods inherited from class java.lang.Enum

clone, compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString,
valueOf

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface java.lang.Comparable

compareTo

Fields

Page 22 of 87

fr.inria.gforge.telex.Telex.OpenMode

D 3.1 – Appendix I

(continued from last page)

READ_ONLY
public static final fr.inria.gforge.telex.Telex.OpenMode READ_ONLY

Open the specified document in read-only mode.

READ_WRITE
public static final fr.inria.gforge.telex.Telex.OpenMode READ_WRITE

Open the specified document in read-write mode.

CREATE
public static final fr.inria.gforge.telex.Telex.OpenMode CREATE

Create the specified document if it does not exist, and open it in read-write mode.

Methods

values
public final static Telex.OpenMode[] values()

valueOf
public static Telex.OpenMode valueOf(java.lang.String name)

Page 23 of 87

fr.inria.gforge.telex.Telex.OpenMode

D 3.1 – Appendix I

fr.inria.gforge.telex
Class UninstantiableClassException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.UninstantiableClassException

public class UninstantiableClassException
extends java.lang.Exception

Thrown when an application provides a parameter class that can not be instanciated. The name of the class is provided in the detail
message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public UninstantiableClassException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

UninstantiableClassException
public UninstantiableClassException(java.lang.String message)

Page 24 of 87

fr.inria.gforge.telex.UninstantiableClassException

D 3.1 – Appendix I

fr.inria.gforge.telex
Class UnknownDocumentTypeException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-fr.inria.gforge.telex.UnknownDocumentTypeException

public class UnknownDocumentTypeException
extends java.lang.Exception

Thrown when an application accesses a document whose type is not registered. The pathname of the document is provided in the
detail message.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public UnknownDocumentTypeException(java.lang.String message)

Methods inherited from class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

UnknownDocumentTypeException
public UnknownDocumentTypeException(java.lang.String message)

Page 25 of 87

fr.inria.gforge.telex.UnknownDocumentTypeException

D 3.1 – Appendix I

fr.inria.gforge.telex
Class User

java.lang.Object
 |
 +-fr.inria.gforge.telex.User

public class User
extends java.lang.Object
implements java.security.Principal, java.lang.Comparable

The description of a TelexApplication user. Each user is uniquely identified throughout the system by an id of type long.

This class has a natural ordering consistent with equals(). Moreover, objects of this class are canonical: no two distinct
instances of this class may be equals().

All Implemented Interfaces:
java.lang.Comparable, java.security.Principal

Author:
J-M. Busca INRIA/Regal

Field Summary
public static final NOBODY

The nobody user.

Method Summary
int compareTo(User to)

static User getInstance(long id)

Returns the description of the user with the specified id.

java.lang.String getName()

java.lang.String toString()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface java.security.Principal

equals, getName, hashCode, toString

Methods inherited from interface java.lang.Comparable

compareTo

Fields

Page 26 of 87

fr.inria.gforge.telex.User

D 3.1 – Appendix I

(continued from last page)

NOBODY
public static final fr.inria.gforge.telex.User NOBODY

The nobody user.

Methods

getInstance
public static User getInstance(long id)

Returns the description of the user with the specified id.

Parameters:
id - the id of the user to look up.

Returns:
the description of the user with the specified id.

toString
public java.lang.String toString()

getName
public java.lang.String getName()

compareTo
public int compareTo(User to)

Page 27 of 87

fr.inria.gforge.telex.User

D 3.1 – Appendix I

Package

fr.inria.gforge.telex.application

Provides classes and interfaces of objects instanciated by Telex applications.

Page 28 of 87

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class Action

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.Action

public class Action
extends java.lang.Object

The generic representation of an action in Telex. As defined by the ACF, an action represent an operation on a Document. It has
several generic attributes that applications may use as ActionFilter criteria. It also defines the application-specific keys
attribute, which Telex uses to determine whether to call the appropriate ConstraintChecker. All of these attributes are
immutable and they are all set when the action is created, except the document and timestamp attributes. These are set after a
sucessfull call to Document.addFragment(Fragment).

Unlike Constraints, an action may belong to only one document. The triple (document, issuer, timestamp) uniquely identifies an
action throughout the system. See the Constraint class on how constraints between actions are generated.

The keys of an action are a set of int values representing the application object that the action targets. Action keys are used to
improve performance of constraint checking by avoiding unnecessary calls to the constraint checker. Given two actions of the same
document, issued by distinct users, Telex calls the ConstraintChecker.getConstraints(Action, Action) method iif the
key sets of the two actions intersect.

This class is meant to be sub-classed by Telex applications in order to define application-specific attributes such as the operation
that the action represents, its parameters, etc. These attributes will be stored in the multi-log along the generic attributes and they
will be transmitted to other peer Telex instances.

Author:
J-M. Busca INRIA/Regal

Field Summary
public static final INIT

The INIT special action as defined by the ACF.

Constructor Summary
public Action()

Creates a new action with no associated action key.

public Action(int[] keys)

Creates a new action associated with the specified keys.

Method Summary
Document getDocument()

Returns the Telex document this action belongs to.

User getIssuer()

Returns the user who created this action.

int[] getKeys()

Returns the keys associated with this action.

long getTime()

Returns the time this action was generated.

Page 29 of 87

fr.inria.gforge.telex.application.Action

D 3.1 – Appendix I

long getTimestamp()

Returns the timestamp of this action.

void setDocument(DocumentImpl document)

Deprecated.

void setTimestamp(long timestamp)

Deprecated.

java.lang.String toString()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Fields

INIT
public static final fr.inria.gforge.telex.application.Action INIT

The INIT special action as defined by the ACF. By convention, this action is issued by user User.NOBODY at time 0. It has
no associated key, it belongs to no specific document and it has an offset of 0.

Constructors

Action
public Action()

Creates a new action with no associated action key.

Action
public Action(int[] keys)

Creates a new action associated with the specified keys.

Methods

toString
public java.lang.String toString()

getKeys
public final int[] getKeys()

Returns the keys associated with this action. If this action is not associated with any action key, this method returns null.
This attribute is set by Action constructors.

Returns:

Page 30 of 87

fr.inria.gforge.telex.application.Action

D 3.1 – Appendix I

(continued from last page)

the keys associated with this action, or null if no action key is associated with this action.

getIssuer
public final User getIssuer()

Returns the user who created this action. It is the user who invoked the Vitual Machine within which this action has been
created. This attribute is set by Action constructors.

Returns:
the Id of the user who created this action.

getTime
public final long getTime()

Returns the time this action was generated. It is the time read on the system clock of the site that issued this action. This
attribute should be considered with caution, since the system clocks of cooperating sites may not be accurate and/or
synchronized. This attribute is set by Action constructors.

Returns:
the time this action was generated.

setDocument
public final void setDocument(DocumentImpl document)

Deprecated.

For Telex's internal use only.

getDocument
public final Document getDocument()

Returns the Telex document this action belongs to. This attribute is set after a successful call to the
Document.addFragment(Fragment) with this action as parameter. Before such a call is made, this attribute is null.

Returns:
the Telex document this action belongs to, or null if no call to addFragment() with this action as parameter ever
succeeded.

getTimestamp
public final long getTimestamp()

Returns the timestamp of this action. This attribute is set after a successful call to the
Document.addFragment(Fragment) with this action as parameter. Before such a call is made, this attribute is -1.

Returns:
the timestamp of this action, or -1 if no call to addFragment() with this action as parameter ever succeeded.

setTimestamp
public final void setTimestamp(long timestamp)

Deprecated.

For Telex's internal use only.

Page 31 of 87

fr.inria.gforge.telex.application.Action

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ActionFilter

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ActionFilter

public abstract class ActionFilter
extends java.lang.Object
implements java.io.Serializable

An object that specifies Actions to exclude from the view of a Document. An action filter may be associated with one or more
documents by calling the Document.defineFilter(ActionFilter) method.

An action filter may be activated or de-activated by calling the setActive(boolean) method. The change of activity status
applies to all documents that the filter is associated with. When generating sound Schedules on the document, only the active
filters of the document are applied. The activity status of an action filter is saved as part of the persistent state of each of the
documents it is associated with when closing the document.

This class may be sub-classed by applications, for instance to provide methods for naming and/or describing a filter. A filter must
be serializable in order to be saved as part of the persistent state of a document. This class provides several filters of general
interest, as the ActionFilter.RetainMyActionsOnly filter.

All Implemented Interfaces:
java.io.Serializable

Direct Known Subclasses:
RetainThisDocumentActionsOnly, ExcludeTheseUsersActions, RetainTheseUsersActionsOnly,
RetainMyActionsOnly

Author:
P. Sutra INRIA/Regal, J-M. Busca INRIA/Regal

Nested Class Summary
class ActionFilter.ExcludeTheseUsersActions

ActionFilter.ExcludeTheseUsersActions

class ActionFilter.RetainMyActionsOnly

ActionFilter.RetainMyActionsOnly

class ActionFilter.RetainTheseUsersActionsOnly

ActionFilter.RetainTheseUsersActionsOnly

class ActionFilter.RetainThisDocumentActionsOnly

ActionFilter.RetainThisDocumentActionsOnly

Constructor Summary
public ActionFilter()

Creates an active action filter.

public ActionFilter(boolean active)

Creates an action filter with the specified activity status.

Method Summary

Page 32 of 87

fr.inria.gforge.telex.application.ActionFilter

D 3.1 – Appendix I

boolean isActive()

Determines whether this action filter is active.

abstract boolean isFiltered(Action a)

Determines whether the specified action must be filtered out.

void setActive(boolean on)

Sets the activity status of this action filter to the specified value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ActionFilter
public ActionFilter()

Creates an active action filter.

ActionFilter
public ActionFilter(boolean active)

Creates an action filter with the specified activity status.

Parameters:
active - the activity status of the new action filter.

Methods

setActive
public final void setActive(boolean on)

Sets the activity status of this action filter to the specified value.

Parameters:
on - true is this filter must be activated, and false if this filter must be de-activated.

isActive
public final boolean isActive()

Determines whether this action filter is active.

Returns:
true is this action filter is active, and false otherwise.

isFiltered
public abstract boolean isFiltered(Action a)

Page 33 of 87

fr.inria.gforge.telex.application.ActionFilter

D 3.1 – Appendix I

(continued from last page)

Determines whether the specified action must be filtered out. This method is meant to be overriden by sub-classes: no
default implementation is provided.

Parameters:
a - the action to check.

Returns:
true if the action must be filtered out, and false otherwise.

Page 34 of 87

fr.inria.gforge.telex.application.ActionFilter

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ActionFilter.RetainMyActionsOnly

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ActionFilter
 |
 +-fr.inria.gforge.telex.application.ActionFilter.RetainMyActionsOnly

public static class ActionFilter.RetainMyActionsOnly
extends ActionFilter

An action filter that retains only the actions that are issued by invoking user.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public ActionFilter.RetainMyActionsOnly()

An action filter that retains only the actions that are issued by invoking user.

Method Summary
boolean isFiltered(Action a)

Methods inherited from class fr.inria.gforge.telex.application.ActionFilter

isActive, isFiltered, setActive

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ActionFilter.RetainMyActionsOnly
public ActionFilter.RetainMyActionsOnly()

An action filter that retains only the actions that are issued by invoking user.

Methods

isFiltered
public final boolean isFiltered(Action a)

Page 35 of 87

fr.inria.gforge.telex.application.ActionFilter.RetainMyActionsOnly

D 3.1 – Appendix I

(continued from last page)

Determines whether the specified action must be filtered out. This method is meant to be overriden by sub-classes: no
default implementation is provided.

Page 36 of 87

fr.inria.gforge.telex.application.ActionFilter.RetainMyActionsOnly

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ActionFilter.RetainTheseUsersActionsOnly

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ActionFilter
 |
 +-fr.inria.gforge.telex.application.ActionFilter.RetainTheseUsersActionsOnly

public static class ActionFilter.RetainTheseUsersActionsOnly
extends ActionFilter

An action filter that retains only the actions that are issued by a set of users.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public ActionFilter.RetainTheseUsersActionsOnly(java.util.Collection users)

Creates an action filter that retains only the actions that are issued by the specified set of
users.

Method Summary
boolean isFiltered(Action a)

Methods inherited from class fr.inria.gforge.telex.application.ActionFilter

isActive, isFiltered, setActive

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ActionFilter.RetainTheseUsersActionsOnly
public ActionFilter.RetainTheseUsersActionsOnly(java.util.Collection users)

Creates an action filter that retains only the actions that are issued by the specified set of users.

Methods

isFiltered
public final boolean isFiltered(Action a)

Page 37 of 87

fr.inria.gforge.telex.application.ActionFilter.RetainTheseUsersActionsOnly

D 3.1 – Appendix I

(continued from last page)

Determines whether the specified action must be filtered out. This method is meant to be overriden by sub-classes: no
default implementation is provided.

Page 38 of 87

fr.inria.gforge.telex.application.ActionFilter.RetainTheseUsersActionsOnly

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ActionFilter.ExcludeTheseUsersActions

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ActionFilter
 |
 +-fr.inria.gforge.telex.application.ActionFilter.ExcludeTheseUsersActions

public static class ActionFilter.ExcludeTheseUsersActions
extends ActionFilter

An action filter that excludes all the actions that are issued by a set of users.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public ActionFilter.ExcludeTheseUsersActions(java.util.Collection users)

Creates an action filter that excludes all the actions that are issued by the specified set of
users.

Method Summary
boolean isFiltered(Action a)

Methods inherited from class fr.inria.gforge.telex.application.ActionFilter

isActive, isFiltered, setActive

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ActionFilter.ExcludeTheseUsersActions
public ActionFilter.ExcludeTheseUsersActions(java.util.Collection users)

Creates an action filter that excludes all the actions that are issued by the specified set of users.

Methods

isFiltered
public final boolean isFiltered(Action a)

Page 39 of 87

fr.inria.gforge.telex.application.ActionFilter.ExcludeTheseUsersActions

D 3.1 – Appendix I

(continued from last page)

Determines whether the specified action must be filtered out. This method is meant to be overriden by sub-classes: no
default implementation is provided.

Page 40 of 87

fr.inria.gforge.telex.application.ActionFilter.ExcludeTheseUsersActions

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ActionFilter.RetainThisDocumentActionsOnly

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ActionFilter
 |
 +-fr.inria.gforge.telex.application.ActionFilter.RetainThisDocumentActionsOnly

public static class ActionFilter.RetainThisDocumentActionsOnly
extends ActionFilter

An action filter that retains only the actions belonging to a document.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public ActionFilter.RetainThisDocumentActionsOnly(Document document)

Creates an action filter that retains only the actions belonging to the specified document.

Method Summary
boolean isFiltered(Action a)

Methods inherited from class fr.inria.gforge.telex.application.ActionFilter

isActive, isFiltered, setActive

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ActionFilter.RetainThisDocumentActionsOnly
public ActionFilter.RetainThisDocumentActionsOnly(Document document)

Creates an action filter that retains only the actions belonging to the specified document.

Parameters:
document - the document whose actions must be retained only.

Methods

Page 41 of 87

fr.inria.gforge.telex.application.ActionFilter.RetainThisDocumentActionsOnly

D 3.1 – Appendix I

(continued from last page)

isFiltered
public final boolean isFiltered(Action a)

Determines whether the specified action must be filtered out. This method is meant to be overriden by sub-classes: no
default implementation is provided.

Page 42 of 87

fr.inria.gforge.telex.application.ActionFilter.RetainThisDocumentActionsOnly

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class Constraint

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.Constraint

public class Constraint
extends java.lang.Object

The generic representation of a constraint in Telex. As defined by the ACF, a constraint binds two Actions and its
Constraint.Type expresses the scheduling invariant between these actions. A constraint may reference the special
Action.INIT action. INIT must then be the first action of the constraint and the type of the constraint must be
Constraint.Type.ENABLES.

Most often, a constraint binds two actions of the same document: such a constraint is called an intra-document constraint. A
constraint, however, may bind actions of two distinct documents: such a constraint is called a cross-document constraints, and the
corresponding documents are said to be bound.

Intra-document constraints. These constraints may bind actions issued by either two distinct users or the same user. Telex
automatically generates constraint of the former type by calling the ConstraintChecker associated with the document. By
constrast, constraints of the latter type must be explicitely created and added to the document by calling one of the
Document.addFragment(Fragment) method.

Cross-document constraints. These constraints must be explicitely created and added to both documents by calling one of the
addFragment() methods, as in the following example:

A constraint generator may generate constraints in a deterministic fashion or not. A constraint is deterministically generated if the
process of generating it only depends on the actions that the constraint binds. In particular, this process does not depend on the site
where the constraint is generated, or on the state of the document when the constraint is generated. If a constraint is
deterministically generated, Telex saves storage space and network bandwidth consumption by logging the constraint only once.

This class may be sub-classed by Telex applications in order to define application-specific attributes. These attributes will be stored
in the multi-log along the generic attributes and they will be transmitted to other peer Telex instances.

 // a1 and a2 are allocated actions, d1 and d2 are opened document

 Constraint c = new Constraint(a1, ENABLES, a2);

 d1.addAction(a1);

 d2.addAction(a2);

 d1.addConstraint(c);

 d2.addConstraint(c);

Author:
J-M. Busca INRIA/Regal

Nested Class Summary
class Constraint.Type

Constraint.Type

Constructor Summary
public Constraint(Action first, Constraint.Type type, Action second)

Creates a constraint of the specified type between the specified actions.

Page 43 of 87

fr.inria.gforge.telex.application.Constraint

D 3.1 – Appendix I

Method Summary
Action getFirstAction()

Returns the first action that this constraint binds.

Action getSecondAction()

Returns the second action that this constraint binds.

Constraint.Type getType()

Returns the type of this constraint.

boolean isDeterministic()

Returns the generation mode of this constraint.

java.lang.String toString()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

Constraint
public Constraint(Action first,
 Constraint.Type type,
 Action second)

Creates a constraint of the specified type between the specified actions. If the type is ENABLES, the constraint specifies
that the first action enables the second action. If the type is NOT_BEFORE, the constraint specifies that the first action is
not scheduled before the second action.

Parameters:
first - the first action that this constraint binds.
type - the type of the constraint between first and second.
second - the second action that this constraint binds.

Methods

toString
public java.lang.String toString()

getType
public final Constraint.Type getType()

Returns the type of this constraint.

Returns:
the type of this constraint.

Page 44 of 87

fr.inria.gforge.telex.application.Constraint

D 3.1 – Appendix I

getFirstAction
public final Action getFirstAction()

Returns the first action that this constraint binds.

Returns:
the first action that this constraint binds.

getSecondAction
public final Action getSecondAction()

Returns the second action that this constraint binds.

Returns:
the second action that this constraint binds.

isDeterministic
public boolean isDeterministic()

Returns the generation mode of this constraint. Telex only checks this attribute on constraints issued by a constraint
generator.

The default implementation of this method provided by this class always return true. It should be overriden by sub-classes
if needed.

Returns:
true if this constraint is generated deterministically, and false otherwise.

Page 45 of 87

fr.inria.gforge.telex.application.Constraint

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class Constraint.Type

java.lang.Object
 |
 +-java.lang.Enum
 |
 +-fr.inria.gforge.telex.application.Constraint.Type

public static final class Constraint.Type
extends java.lang.Enum

The type of an ACF constraint.

All Implemented Interfaces:
java.io.Serializable, java.lang.Comparable

Field Summary
public static final ENABLES

The enable constraint.

public static final NON_COMMUTING

The non-commuting constraint.

public static final NOT_AFTER

The not-after constraint.

Method Summary
static

Constraint.Type
valueOf(java.lang.String name)

static
Constraint.Type[]

values()

Methods inherited from class java.lang.Enum

clone, compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString,
valueOf

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface java.lang.Comparable

compareTo

Fields

Page 46 of 87

fr.inria.gforge.telex.application.Constraint.Type

D 3.1 – Appendix I

(continued from last page)

ENABLES
public static final fr.inria.gforge.telex.application.Constraint.Type ENABLES

The enable constraint.

NOT_AFTER
public static final fr.inria.gforge.telex.application.Constraint.Type NOT_AFTER

The not-after constraint.

NON_COMMUTING
public static final fr.inria.gforge.telex.application.Constraint.Type NON_COMMUTING

The non-commuting constraint.

Methods

values
public final static Constraint.Type[] values()

valueOf
public static Constraint.Type valueOf(java.lang.String name)

Page 47 of 87

fr.inria.gforge.telex.application.Constraint.Type

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Interface ConstraintChecker

public interface ConstraintChecker
extends

An application-specific object that checks for Constraints between Actions. Telex associates with each Document the
constraint checker that the application has registered for the type of the document, if any. Whenever an action a1 is added to the
document, Telex checks for constraints between a1 and all existing action a2 that are not issued by the same user as a1. Telex
performs this check whether action a1 is added by a local or a remote user.

Telex first tests whether actions a1 and a2 are likely to be bound by comparing their keys. If so, Telex then calls the
getConstraints(Action, Action) method to get the actual set of contraints between a1 and a2. Finally, Telex adds the
returned set, if any, to the document. See the the Constraint.isDeterministic() method for more details on how theses
constraints are logged.

Note that Telex never checks for constraints between actions that are issued by the same user or that belong to two distinct
documents, even if these documents are bound. See the Constraint class for more details on the classification of constraints.

This class provides two examples of constraint checkers.

All Known Implementing Classes:
CreationTimeOrder, NonCommutingActions

Author:
P. Sutra INRIA/Regal, J-M. Busca INRIA/Regal

Nested Class Summary
class ConstraintChecker.CreationTimeOrder

ConstraintChecker.CreationTimeOrder

class ConstraintChecker.NonCommutingActions

ConstraintChecker.NonCommutingActions

Method Summary
Fragment getConstraints(Action a, Action b)

Determines the set of constraints between the specified actions.

Methods

getConstraints
public Fragment getConstraints(Action a,
 Action b)

Determines the set of constraints between the specified actions. Telex calls this method only on actions that belongs to the
same document and that are not isused by the same user.

Parameters:
a - an action.
b - another action.

Returns:

Page 48 of 87

fr.inria.gforge.telex.application.ConstraintChecker

D 3.1 – Appendix I

(continued from last page)

the set of constraints between action a and b, or null if there are no constraints.

Page 49 of 87

fr.inria.gforge.telex.application.ConstraintChecker

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ConstraintChecker.NonCommutingActions

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ConstraintChecker.NonCommutingActions

public static final class ConstraintChecker.NonCommutingActions
extends java.lang.Object
implements ConstraintChecker

A constraint checker that specifies that no two actions commute.

All Implemented Interfaces:
ConstraintChecker

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public ConstraintChecker.NonCommutingActions()

Creates constraint generator that specifies that no two actions commute.

Method Summary
Fragment getConstraints(Action a, Action b)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface fr.inria.gforge.telex.application.ConstraintChecker

getConstraints

Constructors

ConstraintChecker.NonCommutingActions
public ConstraintChecker.NonCommutingActions()

Creates constraint generator that specifies that no two actions commute.

Methods

getConstraints
public Fragment getConstraints(Action a,
 Action b)

Page 50 of 87

fr.inria.gforge.telex.application.ConstraintChecker.NonCommutingActions

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ConstraintChecker.CreationTimeOrder

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ConstraintChecker.CreationTimeOrder

public static final class ConstraintChecker.CreationTimeOrder
extends java.lang.Object
implements ConstraintChecker

A constraint checker that forces scheduling in creation-time order. This constraint checker relies on the system clock of
cooperating sites, which may not be synchronized with one another.

All Implemented Interfaces:
ConstraintChecker

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public ConstraintChecker.CreationTimeOrder()

Creates constraint generator that that forces scheduling in creation-time order.

Method Summary
Fragment getConstraints(Action a, Action b)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface fr.inria.gforge.telex.application.ConstraintChecker

getConstraints

Constructors

ConstraintChecker.CreationTimeOrder
public ConstraintChecker.CreationTimeOrder()

Creates constraint generator that that forces scheduling in creation-time order.

Methods

getConstraints
public Fragment getConstraints(Action a,
 Action b)

Page 51 of 87

fr.inria.gforge.telex.application.ConstraintChecker.CreationTimeOrder

D 3.1 – Appendix I

(continued from last page)

Page 52 of 87

fr.inria.gforge.telex.application.ConstraintChecker.CreationTimeOrder

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Interface DocumentState

public interface DocumentState
extends java.io.Serializable

The state of a Document as maintained by a TelexApplication. This may be the Java object representing the document itself or
any object that the application uses to identify such object. Document states are used when specifying Schedules or materialized
StateSnapshots.

When saving a document state on persistent storage, Telex first splits it in fixed-size fragments. Telex then computes the SHA-1
hash of each fragment and saves the fragment under the (file) name representing this value. Consequently, fragments that remain
unchanged from one snapshot of the state to another are reused instead of being stored twice, thus saving storage space. Moreover,
fragments are stored in a storage space common to all users, thus enabling fragment sharing.

The application may help Telex to improve fragment re-use and sharing by specifying the appropriate fragments to use. This is the
purpose of the split() and assemble(Serializable[]) methods, which Telex calls before saving and after restoring the
document state respectively.

The state of a document must be serializable in order to be saved on persistent storage.

Author:
J-M. Busca INRIA/Regal

Method Summary
void assemble(java.io.Serializable[] parts)

Provides the fragments that make up this document state.

java.io.Serializable[
]

split()

Returns the fragments that make up this document state.

Methods

split
public java.io.Serializable[] split()

Returns the fragments that make up this document state. Telex calls this method before saving this state on persistent
storage.

Returns:
the fragments that make up this document state.

assemble
public void assemble(java.io.Serializable[] parts)

Provides the fragments that make up this document state. Telex calls this method after restoring this document state from
persistent storage.

Parameters:
parts - the fragments that make up this state.

Page 53 of 87

fr.inria.gforge.telex.application.DocumentState

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class Fragment

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.Fragment

public class Fragment
extends java.lang.Object

A set of Actions and Constraints considered as a whole.

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public Fragment()

Creates an empty fragment.

public Fragment(java.util.Collection actions, java.util.Collection
constraints)

Creates a new fragment containing the specified sets of actions and constraints.

public Fragment(Fragment fragment)

Creates a new fragment containing the same elements as the given fragment.

Method Summary
boolean add(Action action)

Adds the specified action to this fragment.

boolean add(Constraint constraint)

Adds the specified constraint to this fragment.

boolean add(Fragment fragment)

Adds the elements of the specified fragment to this fragment.

void clear()

Removes all of the elements of this fragment.

java.util.Set getActions()

Returns the set of actions of this fragment.

java.util.Set getConstraints()

Returns the set of constraints of this fragment.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

Page 54 of 87

fr.inria.gforge.telex.application.Fragment

D 3.1 – Appendix I

(continued from last page)

Fragment
public Fragment()

Creates an empty fragment.

Fragment
public Fragment(java.util.Collection actions,
 java.util.Collection constraints)

Creates a new fragment containing the specified sets of actions and constraints. This is a convenience method which is
equivalent to:

 Fragment fragment = new Fragment();

 for (Action a : actions) {

 fragment.add(a);

 }

 for (Constraint c : constraints) {

 fragment.add(c);

 }

Parameters:
actions - the set of actions to initially place in this fragment, or null if the set is empty.
constraints - the set of constraints to initially place in this fragment, or null if the set is empty.

Fragment
public Fragment(Fragment fragment)

Creates a new fragment containing the same elements as the given fragment. The new fragment is created by using a copy-
on-write mechanism.

Parameters:
fragment - the fragment whose elements are to be placed in this fragment.

Methods

getActions
public java.util.Set getActions()

Returns the set of actions of this fragment. The returned set is backed by this fragment, so changes to this fragment are
reflected in the set, and vice-versa.

Returns:
the set of actions of this fragment.

getConstraints
public java.util.Set getConstraints()

Page 55 of 87

fr.inria.gforge.telex.application.Fragment

D 3.1 – Appendix I

(continued from last page)

Returns the set of constraints of this fragment. The returned set is backed by this fragment, so changes to this fragment are
reflected in the set, and vice-versa.

Returns:
the set of constraints of this fragment.

add
public boolean add(Action action)

Adds the specified action to this fragment.

Parameters:
action - the action to add.

Returns:
true if this fragment did not already contain the specified action, and false otherwise.

add
public boolean add(Constraint constraint)

Adds the specified constraint to this fragment.

Parameters:
constraint - the constraint to add.

Returns:
true if this fragment did not already contain the specified constraint, and false otherwise.

add
public boolean add(Fragment fragment)

Adds the elements of the specified fragment to this fragment.

Parameters:
fragment - the fragment whose elements are to be added; null stands for the empty set.

Returns:
true if this fragment changed as a result of the call, and false otherwise.

clear
public void clear()

Removes all of the elements of this fragment. This fragment will be empty after this call returns.

Page 56 of 87

fr.inria.gforge.telex.application.Fragment

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class ProcessingParameters

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.ProcessingParameters

public class ProcessingParameters
extends java.lang.Object

The application-defined parameters for processing a Document. These fall into the followinf categories:

Constraint generation

Action scheduling

State storage

Functional extensions

These parameters comprise a ConstraintChecker, a set of default SchedulingParameters, a ReplicaReconciler and a
ScheduleGenerator. The last two parameters are actually Java classes rather than Java object, as Telex needs to instanciate
them.

Most TelexApplications only have to define a specific constraint checker and possibly specific default scheduling parameters.
Telex provides default implementations of the replica reconciler and the schedule generator that suit most of the needs. Only
applications with very specific requirements need to provide their own replica reconciler and/or schedule generator.

Author:
J-M. Busca INRIA/Regal

Field Summary
public static final DEFAULT_PARAMETERS

The constant for "default processing parameters".

Constructor Summary
public ProcessingParameters()

Creates an instance of processing parameters with default values.

public ProcessingParameters(ConstraintChecker checker)

Creates an instance of processing parameters with the specified constraint checker.

public ProcessingParameters(ConstraintChecker checker, SchedulingParameters
parameters)

Creates an instance of processing parameters with the specified constraint checker and
default scheduling parameters.

public ProcessingParameters(ConstraintChecker checker, SchedulingParameters
parameters, java.lang.Class reconciler)

Creates an instance of processing parameters with the specified constraint checker, default
scheduling parameters and replica reconciler class.

public ProcessingParameters(ConstraintChecker checker, SchedulingParameters
parameters, java.lang.Class reconciler, java.lang.Class scheduler)

Creates an instance of processing parameters with the specified constraint checker, default
scheduling parameters, replica reconciler class and schedule generator class.

Page 57 of 87

fr.inria.gforge.telex.application.ProcessingParameters

D 3.1 – Appendix I

Method Summary
ConstraintChecker getConstraintChecker()

Returns the constraint checker defined by these parameters.

java.lang.Class getReplicaReconciler()

Returns the replica reconciler class defined by these parameters.

java.lang.Class getScheduleGenerator()

Returns the schedule generator class defined by these parameters.

SchedulingParameters getSchedulingParameters()

Returns the default scheduling parameters defined by these parameters.

ReplicaReconciler instanciateReplicaReconciler()

Returns a new instance of the replica reconciler class defined by these parameters.

ScheduleGenerator instanciateScheduleGenerator()

Returns a new instance of the schedule generator class defined by these parameters.

java.lang.String toString()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Fields

DEFAULT_PARAMETERS
public static final fr.inria.gforge.telex.application.ProcessingParameters
DEFAULT_PARAMETERS

The constant for "default processing parameters". This constant is created by calling the ProcessingParameters()
constructor.

Constructors

ProcessingParameters
public ProcessingParameters()

Creates an instance of processing parameters with default values. These values are no constraint checker,
SchedulingParameters.DEFAULT_PARAMETERS, ReplicaReconciler.DEFAULT_RECONCILER and
ScheduleGenerator.DEFAULT_SCHEDULER.

ProcessingParameters
public ProcessingParameters(ConstraintChecker checker)

Creates an instance of processing parameters with the specified constraint checker.

Parameters:
checker - the constraint checker to select.

Page 58 of 87

fr.inria.gforge.telex.application.ProcessingParameters

D 3.1 – Appendix I

ProcessingParameters
public ProcessingParameters(ConstraintChecker checker,
 SchedulingParameters parameters)

Creates an instance of processing parameters with the specified constraint checker and default scheduling parameters.

Parameters:
checker - the constraint checker to select.
parameters - the default scheduling parameters to select.

ProcessingParameters
public ProcessingParameters(ConstraintChecker checker,
 SchedulingParameters parameters,
 java.lang.Class reconciler)

Creates an instance of processing parameters with the specified constraint checker, default scheduling parameters and
replica reconciler class.

Parameters:
checker - the constraint checker to select.
parameters - the default scheduling parameters to select.
reconciler - the class extending ReplicaReconciler to select.

Throws:
UninstantiableClassException - if the specified reconciler can not be instanciated.

ProcessingParameters
public ProcessingParameters(ConstraintChecker checker,
 SchedulingParameters parameters,
 java.lang.Class reconciler,
 java.lang.Class scheduler)

Creates an instance of processing parameters with the specified constraint checker, default scheduling parameters, replica
reconciler class and schedule generator class.

Parameters:
checker - the constraint checker to select.
parameters - the default scheduling parameters to select.
reconciler - the class extending ReplicaReconciler to select.
scheduler - the class extending ScheduleGenerator to select.

Throws:
UninstantiableClassException - if the specified reconciler or the specified scheduler can not be instanciated.

Methods

getConstraintChecker
public ConstraintChecker getConstraintChecker()

Returns the constraint checker defined by these parameters.

Returns:
the constraint checker defined by these parameters.

Page 59 of 87

fr.inria.gforge.telex.application.ProcessingParameters

D 3.1 – Appendix I

(continued from last page)

getSchedulingParameters
public SchedulingParameters getSchedulingParameters()

Returns the default scheduling parameters defined by these parameters.

Returns:
the default scheduling parameters defined by these parameters.

getReplicaReconciler
public java.lang.Class getReplicaReconciler()

Returns the replica reconciler class defined by these parameters.

Returns:
the replica reconciler class defined by these parameters.

getScheduleGenerator
public java.lang.Class getScheduleGenerator()

Returns the schedule generator class defined by these parameters.

Returns:
the schedule generator class defined by these parameters.

instanciateReplicaReconciler
public ReplicaReconciler instanciateReplicaReconciler()

Returns a new instance of the replica reconciler class defined by these parameters.

Returns:
a new instance of the replica reconciler class defined by these parameters.

instanciateScheduleGenerator
public ScheduleGenerator instanciateScheduleGenerator()

Returns a new instance of the schedule generator class defined by these parameters.

Returns:
a new instance of the schedule generator class defined by these parameters.

toString
public java.lang.String toString()

Page 60 of 87

fr.inria.gforge.telex.application.ProcessingParameters

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class SchedulingParameters

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.SchedulingParameters

public class SchedulingParameters
extends java.lang.Object

The action scheduling parameters of a Document. These parameters control how often Telex automatically calls the
TelexApplication.execute(Document, ScheduleGenerator) method in response to new fragments being added to the
document. Telex calls this method whenever one of the following conditions is true:

• the number of fragments added to the document since the last call exceeds a given value (threshold parameter),
• the time since a new fragment was added after the last call exceeds a given value (delay parameter).

When evaluating these conditions, Telex considers fragments added by both local site and remote sites, as well as calls to execute()

that the application may trigger unconditionally by calling the Document.executeNow(boolean) method.

Automatic calls to execute() may be de-activated by specifying the UNSPECIFIED_THRESHOLD and UNSPECIFIED_DELAY
values for the threshold and delay parameters, respectively. In this case, the application may obtain new sound schedules only by
calling executeNow().

When a document is opened, it is assigned the default scheduing parameters defined for its type. These parameters may be
dynamically changed by calling the Document.setSchedulingParameters(SchedulingParameters). When several
documents are bound by cross-document constraints, Telex automatically set the scheduling parameters of all of the bound
documents to the most restrictive values currently defined for these documents.

Author:
J-M. Busca INRIA/Regal

Field Summary
public static final DEFAULT_PARAMETERS

The constant for "default scheduling parameters".

public static final NO_DELAY

The constant for "no delay".
Value: 0

public static final NO_THRESHOLD

The constant for "no threshold".
Value: 1

public static final UNSPECIFIED_DELAY

The constant for "unspecified delay".
Value: -1

public static final UNSPECIFIED_THRESHOLD

The constant for "unspecified threshold".
Value: 0

Constructor Summary

Page 61 of 87

fr.inria.gforge.telex.application.SchedulingParameters

D 3.1 – Appendix I

public SchedulingParameters()

Creates an instance of scheduling parameters with default values.

public SchedulingParameters(int threshold, long delay)

Creates an instance of scheduling parameters with the specified values.

public SchedulingParameters(SchedulingParameters parameters)

Creates an instance of scheduling parameters by duplicating the specified values.

Method Summary
long getDelay()

Returns the delay value of these scheduling parameters.

int getThreshold()

Returns the threshold value of these scheduling parameters.

void merge(SchedulingParameters parameters)

Merges the specified scheduling parameters into these scheduling parameters.

java.lang.String toString()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Fields

DEFAULT_PARAMETERS
public static final fr.inria.gforge.telex.application.SchedulingParameters
DEFAULT_PARAMETERS

The constant for "default scheduling parameters". This constant is created by calling the SchedulingParameters()
constructor.

NO_THRESHOLD
public static final int NO_THRESHOLD

The constant for "no threshold". If threshold is set to this value, sound schedules are computed every time a new fragment
is added to the document, regardless of the delay value.
Constant value: 1

UNSPECIFIED_THRESHOLD
public static final int UNSPECIFIED_THRESHOLD

The constant for "unspecified threshold". If threshold is set to this value, schedule computing is only governed by the delay
parameter.
Constant value: 0

NO_DELAY
public static final int NO_DELAY

Page 62 of 87

fr.inria.gforge.telex.application.SchedulingParameters

D 3.1 – Appendix I

(continued from last page)

The constant for "no delay". If delay is set to this value, sound schedules are computed every time a new fragment is added
to the document, regardless of the threshold value.
Constant value: 0

UNSPECIFIED_DELAY
public static final int UNSPECIFIED_DELAY

The constant for "unspecified delay". If delay is set to this value, schedule computing is only governed by the threshold
parameter.
Constant value: -1

Constructors

SchedulingParameters
public SchedulingParameters()

Creates an instance of scheduling parameters with default values. The threshold parameter is set to NO_THRESHOLD,
and the delay parameter is set to NO_DELAY.

SchedulingParameters
public SchedulingParameters(int threshold,
 long delay)

Creates an instance of scheduling parameters with the specified values. if the threshold (resp. delay) value is less or equal
to 0, it is silently set to NO_THRESHOLD (resp. NO_DELAY).

Parameters:
threshold - the value of the threshold parameter.
delay - the value of the delay parameter, in millisecond.

SchedulingParameters
public SchedulingParameters(SchedulingParameters parameters)

Creates an instance of scheduling parameters by duplicating the specified values.

Parameters:
parameters - the parameters to duplicate.

Methods

getThreshold
public int getThreshold()

Returns the threshold value of these scheduling parameters.

Returns:
the threshold value of these scheduling parameters.

getDelay
public long getDelay()

Returns the delay value of these scheduling parameters.

Page 63 of 87

fr.inria.gforge.telex.application.SchedulingParameters

D 3.1 – Appendix I

(continued from last page)

Returns:
the delay value of these scheduling parameters.

toString
public java.lang.String toString()

merge
public void merge(SchedulingParameters parameters)

Merges the specified scheduling parameters into these scheduling parameters. This method compares both parameters and
retains the most restrictive, i.e. the smallest, value of each of the threshold and delay fields.

Parameters:
parameters - the scheduling parameters to merge into these ones.

Page 64 of 87

fr.inria.gforge.telex.application.SchedulingParameters

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Class StateSnapshot

java.lang.Object
 |
 +-fr.inria.gforge.telex.application.StateSnapshot

public abstract class StateSnapshot
extends java.lang.Object
implements java.io.Serializable

A snapshot of the state of a Document. It is defined by the Schedule of actions producing the state that the snapshot represents. A
snapshot is identified by a name, which Telex uses to save the snasphot to persistent storage when the
Document.defineSnapshot(StateSnapshot) method is called. Telex also records the time when the snapshot is saved

A snapshot is said to be materialized if the corresponding DocumentState is provided with the snapshot. A snapshot is said to be
stable if all of the actions of the corresponding schedule are stable. Materialized and stable snasphots are the only snapshots that
may be considered as garbage-collection points.

This class may be sub-classed by applications, for instance to provide the description and the creation time of the snapshot. A
snapshot must be serializable in order to be saved as part of the persistent state of the document.

All Implemented Interfaces:
java.io.Serializable

Author:
J-M. Busca INRIA/Regal

Constructor Summary
public StateSnapshot(java.lang.String name, Schedule schedule)

Creates a simple snapshot with the specified name corresponding to the specified schedule.

public StateSnapshot(java.lang.String name, Schedule schedule, DocumentState
state)

Creates a materialized snapshot with the specified name corresponding to the specified
schedule and state.

Method Summary
boolean equals(java.lang.Object object)

java.lang.String getName()

Returns the name of this snapshot.

Schedule getSchedule()

Returns the schedule of actions producing the state that this snasphot defines.

DocumentState getState()

Returns the state that this snapshot defines.

long getTime()

Returns the time this snasphot was created.

int hashCode()

Page 65 of 87

fr.inria.gforge.telex.application.StateSnapshot

D 3.1 – Appendix I

boolean isMaterialized()

Determines whether this snapshot is materialized.

boolean isStable()

Determines whether this snapshot is stable.

void remove()

void save()

void setDocument(DocumentImpl document)

Deprecated.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

StateSnapshot
public StateSnapshot(java.lang.String name,
 Schedule schedule)

Creates a simple snapshot with the specified name corresponding to the specified schedule.

StateSnapshot
public StateSnapshot(java.lang.String name,
 Schedule schedule,
 DocumentState state)

Creates a materialized snapshot with the specified name corresponding to the specified schedule and state. The constructor
stores a copy of the specified state that it creates via serialization - de-serialization. The specified state must not be updated
during the time this constructor executes.

Methods

setDocument
public final void setDocument(DocumentImpl document)

Deprecated.

Associate this snaspshot with the specified document. This methods checks that the snapshot do relate to the specified
document. Then it saves this snasphot on persistent storage.

For Telex's internal use only.

getName
public final java.lang.String getName()

Returns the name of this snapshot.

Page 66 of 87

fr.inria.gforge.telex.application.StateSnapshot

D 3.1 – Appendix I

(continued from last page)

Returns:
the name of this snapshot.

getTime
public final long getTime()

Returns the time this snasphot was created. This attribute is set by Telex when the
Document.defineSnapshot(StateSnapshot) method is called on this snasphot.

Returns:
the time this snasphot was created.

getSchedule
public final Schedule getSchedule()

Returns the schedule of actions producing the state that this snasphot defines.

Returns:
the schedule of actions producing the state that this snasphot defines.

getState
public final DocumentState getState()

Returns the state that this snapshot defines. If this snapshot is not materialized, this method returns null.

Note that when a snapshot is retrieved from persistent storage, the corresponding state, if any, is not loaded into memory
until this method is called. In order to know whether this snapshot is materialized, call the isMaterialized() method
instead.

Returns:
the state that this snapshot defines, or null if this snapshot is not materialized.

hashCode
public int hashCode()

equals
public boolean equals(java.lang.Object object)

isMaterialized
public final boolean isMaterialized()

Page 67 of 87

fr.inria.gforge.telex.application.StateSnapshot

D 3.1 – Appendix I

(continued from last page)

Determines whether this snapshot is materialized. This method is semantically equivalent to:

 getState() != null

Nonetheless, this method should be prefered to getState() since calling the latter method actually load the state in
memory.

Returns:
true if this snapshot is materialized, and false otherwise.

isStable
public final boolean isStable()

Determines whether this snapshot is stable.

Returns:
true if this snapshot is stable, and false otherwise.

save
public void save()

remove
public void remove()

Page 68 of 87

fr.inria.gforge.telex.application.StateSnapshot

D 3.1 – Appendix I

fr.inria.gforge.telex.application
Interface TelexApplication

public interface TelexApplication
extends

An application that uses the services of Telex. This interface defines upcalls that Telex uses to notify the application of various
events.

All these events relate to a specific Document that the application has opened by calling the Telex.openDocument(String,
Telex.OpenMode) method. Telex never notifies the application of events regarding documents that the application has not
opened explicitely, or that it has closed. In particular, the application is not notified of events regarding a document d2 that is
bound to document d1 that the application has opened, unless the application explicitely opens d2.

Author:
P. Sutra INRIA/Regal, J-M. Busca INRIA/Regal

Method Summary
void bindDocument(Document opened, Document bound)

Notifies this application that the specified documents are bound.

void execute(Document document, Schedule schedule)

Request this application to execute the specified schedule on the specified document.

void execute(Document document, ScheduleGenerator generator)

Requests this application to trigger the specified schedule generator on the specified
document and apply the generated schedule(s).

Methods

execute
public void execute(Document document,
 ScheduleGenerator generator)

Requests this application to trigger the specified schedule generator on the specified document and apply the generated
schedule(s). Telex automatically calls this method whenever conditions for generating new schedules are met on the
specified document. This method is also called as a result of this application calling the
Document.executeNow(boolean) on the specified document.

Parameters:
document - the document generator relate to.
generator - the schedule generator for document.

bindDocument
public void bindDocument(Document opened,
 Document bound)

Notifies this application that the specified documents are bound. Telex calls this method when it discovers that document
opened, currently opened by this application, is actually bound with document bound by a cross-document constraint. For
each pair (opened, bound), Telex calls this method only once after document opened has been opened. Note that when this
method is called, document bound may be opened or closed. If opened, the application that edits it may be this application
or another application.

Page 69 of 87

fr.inria.gforge.telex.application.TelexApplication

D 3.1 – Appendix I

(continued from last page)

Parameters:
opened - a document currently opened by this application.
bound - the document that is bound to current.

execute
public void execute(Document document,
 Schedule schedule)

Request this application to execute the specified schedule on the specified document. This method is only called when the
specified document is bound to another document bound, which is opened in read-write mode by some application app.
Application app uses it to synchronize with this application in order to display related schedules on document and the
specified document.

Parameters:
document - the document schedule relates to.
schedule - the schedule to apply on document.

Page 70 of 87

fr.inria.gforge.telex.application.TelexApplication

D 3.1 – Appendix I

Package

fr.inria.gforge.telex.extensions

Provides classes and interfaces for extending the core functionalities of Telex.

Page 71 of 87

D 3.1 – Appendix I

fr.inria.gforge.telex.extensions
Class ComponentIterableScheduleGenerator

java.lang.Object
 |
 +-fr.inria.gforge.telex.extensions.ScheduleGenerator
 |
 +-fr.inria.gforge.telex.extensions.ComponentIterableScheduleGenerator

public abstract class ComponentIterableScheduleGenerator
extends ScheduleGenerator

A connected component-aware iterable ScheduleGenerator.

Author:
J-M. Busca INRIA/Regal

Fields inherited from class fr.inria.gforge.telex.extensions.ScheduleGenerator

_activeFilters, _graphSnapshot, _previousGenerator, _relatedDocuments, DEFAULT_SCHEDULER

Constructor Summary
public ComponentIterableScheduleGenerator()

Method Summary
abstract Schedule getCommittedSchedule()

Returns the schedule that has been committed so far.

abstract Action[] getDeadActions()

Returns the set of dead actions.

abstract Action[] getIndependentActions()

Returns the set of independent actions.

abstract
java.util.Iterator[]

getScheduleIterators()

Returns a set of iterators over sound schedules, one for each connected component of the
action-constraint graph.

Methods inherited from class fr.inria.gforge.telex.extensions.ScheduleGenerator

getInstance, isReleased, setParameters

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

Page 72 of 87

fr.inria.gforge.telex.extensions.ComponentIterableScheduleGenerator

D 3.1 – Appendix I

(continued from last page)

ComponentIterableScheduleGenerator
public ComponentIterableScheduleGenerator()

Methods

getDeadActions
public abstract Action[] getDeadActions()

Returns the set of dead actions.

Returns:
the set of dead actions.

getCommittedSchedule
public abstract Schedule getCommittedSchedule()

Returns the schedule that has been committed so far.

Returns:
the schedule that has been committed so far.

getIndependentActions
public abstract Action[] getIndependentActions()

Returns the set of independent actions.

Returns:
the set of independent actions.

getScheduleIterators
public abstract java.util.Iterator[] getScheduleIterators()

Returns a set of iterators over sound schedules, one for each connected component of the action-constraint graph.

Returns:
an set of iterator over sound schedules.

Page 73 of 87

fr.inria.gforge.telex.extensions.ComponentIterableScheduleGenerator

D 3.1 – Appendix I

fr.inria.gforge.telex.extensions
Class IterableScheduleGenerator

java.lang.Object
 |
 +-fr.inria.gforge.telex.extensions.ScheduleGenerator
 |
 +-fr.inria.gforge.telex.extensions.IterableScheduleGenerator

public class IterableScheduleGenerator
extends ScheduleGenerator
implements java.lang.Iterable

A ScheduleGenerator that generates schedules upon request. Generating a sound schedule is CPU-consumming, and a large
number of them may exist for a given action-constraint graph. It is therefore not possible to compute all sound schedules
beforehand. Beside, the application may be interested only in a few or even just one of them. The purpose of this schedule
generator is to save CPU power by generating sound schedule dynamically, upon application request. The application may iterate
through the generated schedule and stop when satisfied. This schedule generator complies with the guidelines described in
ScheduleGenerator.

All Implemented Interfaces:
java.lang.Iterable

Author:
J-M. Busca INRIA/Regal

Fields inherited from class fr.inria.gforge.telex.extensions.ScheduleGenerator

_activeFilters, _graphSnapshot, _previousGenerator, _relatedDocuments, DEFAULT_SCHEDULER

Constructor Summary
public IterableScheduleGenerator()

Creates a iterable schedule generator.

Method Summary
Schedule getCommittedSchedule()

Returns the schedule that has been committed so far.

Action[] getDeadActions()

Returns the set of dead actions.

IterableScheduleGener
ator

getInstance(DocumentImpl document)

boolean isReleased()

java.util.Iterator iterator()

Returns an iterator over sound schedules.

void release()

Releases this schedule generator.

Methods inherited from class fr.inria.gforge.telex.extensions.ScheduleGenerator

getInstance, isReleased, setParameters

Page 74 of 87

fr.inria.gforge.telex.extensions.IterableScheduleGenerator

D 3.1 – Appendix I

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface java.lang.Iterable

iterator

Constructors

IterableScheduleGenerator
public IterableScheduleGenerator()

Creates a iterable schedule generator.

Methods

getInstance
public IterableScheduleGenerator getInstance(DocumentImpl document)

Returns a schedule generator instance responsible for the specified document. Telex calls this method for each document of
the ScheduleGenerator._relatedDocuments list, even if it contains only one element. Telex passes the returned
schedule generator to the execute() method.

isReleased
public boolean isReleased()

Determines whether this schedule generator has been released. Telex calls this method to check whether it can call the
TelexApplication.execute(Document, ScheduleGenerator) method again for the same document.

getDeadActions
public Action[] getDeadActions()

Returns the set of dead actions.

Returns:
the set of dead actions.

getCommittedSchedule
public Schedule getCommittedSchedule()

Returns the schedule that has been committed so far.

Returns:
the schedule that has been committed so far.

iterator
public java.util.Iterator iterator()

Page 75 of 87

fr.inria.gforge.telex.extensions.IterableScheduleGenerator

D 3.1 – Appendix I

(continued from last page)

Returns an iterator over sound schedules. Calling the Iterator.hasNext() method on the returned iterator actually
compute a new sound schedule, if any. Calling the Iterator.next() method retrieves the schedule just computed. The
Iterator.remove() method is not supported: a call to this method throws the UnsupporteOperationException.

Returns:
an iterator over sound schedules.

release
public void release()

Releases this schedule generator.

Page 76 of 87

fr.inria.gforge.telex.extensions.IterableScheduleGenerator

D 3.1 – Appendix I

fr.inria.gforge.telex.extensions
Class ReplicaReconciler

java.lang.Object
 |
 +-fr.inria.gforge.telex.extensions.ReplicaReconciler

public abstract class ReplicaReconciler
extends java.lang.Object

An object that reconciles Schedules generated at different sites. Sites that cooperatively edit a Document may generate different
sound schedules from the same set of actions and constraints. The purpose of the replica reconciler is to make cooperating sites
agree on a common schedule and thus achieve (eventual) mutual consistency.

Telex provides a default general-purpose reconciler: DEFAULT_RECONCILER. A TelexApplication with specific needs may
replace this default reconciler with its own by specifying it in its ProcessingParameters. The application-specific reconciler
must extend the class ReplicaReconciler class and provide a public nullary constructor.

Telex creates a new reconciler object whenever a new Document is opened. The reconciler is then passed the document it is
associated with. The reconciler must interface with the fr.inria.gforge.telex.scheduling.Scheduler associated with the
document. On one hand, the scheduler notifies the reconciler of new fragment being added to the action-constraint graph it
maintains. On the other hand, the reconciler materializes scheduling decisions as a set of constraints that it adds to the action-
constraint graph. The reconciler may also interface with the fr.inria.gforge.telex.communication.Transmitter
associated with the document in order to communicate with peer Telex instances that are currently editing this document.

Direct Known Subclasses:
VotingReplicaReconciler

Author:
J-M. Busca INRIA/Regal

Field Summary
protected _targetDocument

public static final DEFAULT_RECONCILER

The default replica reconciler of Telex.

Constructor Summary
protected ReplicaReconciler()

Creates a replica reconciler.

Method Summary
Scheduler getScheduler()

Returns the scheduler associated with this reconciler.

Transmitter getTransmitter()

Returns the message transmitter associated with this reconciler.

abstract void graphUpdate()

Notifies this reconciler that the action-constraint graph was updated.

abstract void receiveVote(ScheduleImpl schedule)

Notifies this reconciler that a vote for the specified schedule has been received.

Page 77 of 87

fr.inria.gforge.telex.extensions.ReplicaReconciler

D 3.1 – Appendix I

void setParameters(DocumentImpl document)

Sets the parameters of this replica reconciler.

abstract void voteFor(ScheduleImpl schedule)

Requests this reconciler to favor the specified schedule when making scheduling decisions.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Fields

DEFAULT_RECONCILER
public static final java.lang.Class DEFAULT_RECONCILER

The default replica reconciler of Telex. This constant is the VotingReplicaReconciler class.

_targetDocument
protected fr.inria.gforge.telex.implementation.DocumentImpl _targetDocument

Constructors

ReplicaReconciler
protected ReplicaReconciler()

Creates a replica reconciler.

Methods

setParameters
public final void setParameters(DocumentImpl document)

Sets the parameters of this replica reconciler. Telex calls this method just after creating this replica reconciler, and before
any other method is called.

Parameters:
document - the document that this reconciler must handle.

getScheduler
protected final Scheduler getScheduler()

Returns the scheduler associated with this reconciler.

Returns:
the scheduler associated with this reconciler.

Page 78 of 87

fr.inria.gforge.telex.extensions.ReplicaReconciler

D 3.1 – Appendix I

(continued from last page)

getTransmitter
protected final Transmitter getTransmitter()

Returns the message transmitter associated with this reconciler.

Returns:
the message transmitter associated with this reconciler.

graphUpdate
public abstract void graphUpdate()

Notifies this reconciler that the action-constraint graph was updated. The scheduler associated with this reconciler calls this
method whenever a new fragment is added to the action-constraint graph that it maintains.

voteFor
public abstract void voteFor(ScheduleImpl schedule)
 throws java.io.IOException

Requests this reconciler to favor the specified schedule when making scheduling decisions. This method is the actual
implementation of the Document.voteFor(Schedule) method.

receiveVote
public abstract void receiveVote(ScheduleImpl schedule)

Notifies this reconciler that a vote for the specified schedule has been received. The transmitter associated with this
reconciler calls this method whenever it receveives a vote message.

Page 79 of 87

fr.inria.gforge.telex.extensions.ReplicaReconciler

D 3.1 – Appendix I

fr.inria.gforge.telex.extensions
Class ScheduleGenerator

java.lang.Object
 |
 +-fr.inria.gforge.telex.extensions.ScheduleGenerator

public abstract class ScheduleGenerator
extends java.lang.Object

An object that generates sound Schedules. Telex passes such an object to a TelexApplication through the
TelexApplication.execute(Document, ScheduleGenerator) method when the specified document is updated, as
described in SchedulingParameters. The application can then learn about the new state of the document by invoking the
provided generator. When the application is finished, it must release the generator to indicate that it is ready to accept new
generators.

In the general case, several sound schedules may exist for a given set of actions and constraints. A schedule generator should not
generate just one schedule, but rather a set of alternative schedules. Indeed, the application must present these alternatives to user
so that he can choose the one he prefers. A schedule generator should comply as much as possible with the following guidelines,
by order of priority:

• only one of each set of equivalent schedules (according to non-commuting constraints) should be handed to the application,
• in case of conflict between actions of local user and that of remote users, schedules containing actions of local user should be

handed to the application first,
• if the application has previously specified one or more preferred schedules, newly-generated schedules should be prefixed

with one of the preferred schedules whenever possible,
• schedules should include as many of the actions of the action-constraint graph as possible.

A schedule generator is passed the action-constraint graph which it must compute sound schedules from. Most often, the actions of

this graph belong to only one document. A schedule generator, however, must handle the case in which the graph contains the

actions of several bound documents. In addition, an action-constraint graph may have several connected components. By definition

of the ACF, the schedules generated on distinct components are independent. A schedule generator should let the application

known that these schedules are independent. This allows the user to identify independent alternatives, and specify his choice for

each of them.

Telex provides a default general-purpose generator: DEFAULT_SCHEDULER. A TelexApplication with specific needs may
replace this default generator with its own by specifying it in its ProcessingParameters. The application-specific generator
must extend the ScheduleGenerator class and provide a public nullary constructor.

Telex creates a new generator whenever it calls the execute() method. The generator is passed the following parameters: a snapshot
of the action-constraint graph, a snasphot of the list of the documents this graph relates to and the generator that Telex created on
the previous call to execute().

Direct Known Subclasses:
IterableScheduleGenerator, ComponentIterableScheduleGenerator

Author:
J-M. Busca INRIA/Regal

Field Summary
protected _activeFilters

The snapshot of the list of active filters to apply on the graph snapshot.

protected _graphSnapshot

The snapshot of the action-constraint graph to process.

Page 80 of 87

fr.inria.gforge.telex.extensions.ScheduleGenerator

D 3.1 – Appendix I

protected _previousGenerator

The schedule generator that Telex previously created for the same graph.

protected _relatedDocuments

The snapshot of the list of documents the graph snapshot relates to.

public static final DEFAULT_SCHEDULER

The default schedule generator of Telex.

Constructor Summary
protected ScheduleGenerator()

Creates a schedule generator.

Method Summary
abstract

ScheduleGenerator
getInstance(DocumentImpl document)

Returns a schedule generator instance responsible for the specified document.

abstract boolean isReleased()

Determines whether this schedule generator has been released.

void setParameters(TelexMultilog graph, DocumentImpl[] documents,
ActionFilter[][] filters, ScheduleGenerator previous)

Sets the parameters of this schedule generator.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Fields

DEFAULT_SCHEDULER
public static final java.lang.Class DEFAULT_SCHEDULER

The default schedule generator of Telex. This constant is the IterableScheduleGenerator class.

_graphSnapshot
protected fr.inria.gforge.telex.scheduling.TelexMultilog _graphSnapshot

The snapshot of the action-constraint graph to process.

_relatedDocuments
protected fr.inria.gforge.telex.implementation.DocumentImpl _relatedDocuments

The snapshot of the list of documents the graph snapshot relates to.

_activeFilters
protected fr.inria.gforge.telex.application.ActionFilter _activeFilters

Page 81 of 87

fr.inria.gforge.telex.extensions.ScheduleGenerator

D 3.1 – Appendix I

(continued from last page)

The snapshot of the list of active filters to apply on the graph snapshot.

_previousGenerator
protected fr.inria.gforge.telex.extensions.ScheduleGenerator _previousGenerator

The schedule generator that Telex previously created for the same graph.

Constructors

ScheduleGenerator
protected ScheduleGenerator()

Creates a schedule generator.

Methods

setParameters
public final void setParameters(TelexMultilog graph,
 DocumentImpl[] documents,
 ActionFilter[][] filters,
 ScheduleGenerator previous)

Sets the parameters of this schedule generator. Telex calls this method just after creating this schedule generator, and
before any other method is called.

Parameters:
graph - the action-constraint graph to process.
documents - the set of documents this graph relates to.
previous - the schedule generator that Telex previously created on the graph.

getInstance
public abstract ScheduleGenerator getInstance(DocumentImpl document)

Returns a schedule generator instance responsible for the specified document. Telex calls this method for each document of
the _relatedDocuments list, even if it contains only one element. Telex passes the returned schedule generator to the
execute() method.

Parameters:
document - the document for which to return a schedule generator instance.

Returns:
a schedule generator instance.

isReleased
public abstract boolean isReleased()

Determines whether this schedule generator has been released. Telex calls this method to check whether it can call the
TelexApplication.execute(Document, ScheduleGenerator) method again for the same document.

Returns:
true if this schedule has been released, and false otherwise.

Page 82 of 87

fr.inria.gforge.telex.extensions.ScheduleGenerator

D 3.1 – Appendix I

fr.inria.gforge.telex.extensions
Class VotingReplicaReconciler

java.lang.Object
 |
 +-fr.inria.gforge.telex.extensions.ReplicaReconciler
 |
 +-fr.inria.gforge.telex.extensions.VotingReplicaReconciler

public class VotingReplicaReconciler
extends ReplicaReconciler

A distributed ReplicaReconciler based on voting. The reconciler works as follows. Each site proposes and votes for the
schedule(s) of its choice. The schedule that receives a majority or a plurality of votes wins and is committed.

[To rephrase: sites actually exchange multilogs].

Author:
J-M. Busca INRIA/Regal

Fields inherited from class fr.inria.gforge.telex.extensions.ReplicaReconciler

_targetDocument, DEFAULT_RECONCILER

Constructor Summary
public VotingReplicaReconciler()

Method Summary
void graphUpdate()

void receiveVote(ScheduleImpl vote)

void voteFor(ScheduleImpl schedule)

Methods inherited from class fr.inria.gforge.telex.extensions.ReplicaReconciler

getScheduler, getTransmitter, graphUpdate, receiveVote, setParameters, voteFor

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

VotingReplicaReconciler
public VotingReplicaReconciler()

Page 83 of 87

fr.inria.gforge.telex.extensions.VotingReplicaReconciler

D 3.1 – Appendix I

Methods

graphUpdate
public void graphUpdate()

Notifies this reconciler that the action-constraint graph was updated. The scheduler associated with this reconciler calls this
method whenever a new fragment is added to the action-constraint graph that it maintains.

voteFor
public void voteFor(ScheduleImpl schedule)
 throws java.io.IOException

Requests this reconciler to favor the specified schedule when making scheduling decisions. This method is the actual
implementation of the Document.voteFor(Schedule) method.

receiveVote
public void receiveVote(ScheduleImpl vote)

Notifies this reconciler that a vote for the specified schedule has been received. The transmitter associated with this
reconciler calls this method whenever it receveives a vote message.

Page 84 of 87

Index

D 3.1 – Appendix I

Index
_

_activeFilters 81

_graphSnapshot 81

_previousGenerator 82

_relatedDocuments 81

_targetDocument 78

A

Action 30

ActionFilter 33

add 56

addAction 5

addConstraint 6

addFragment 6

assemble 53

B

bindDocument 69

C

clear 56

close 5

ClosedDocumentException 2

compareTo 27

ComponentIterableScheduleGenerator 72

Constraint 44

CREATE 23

CreationTimeOrder 51

D

DEFAULT_PARAMETERS 58, 62

DEFAULT_RECONCILER 78

DEFAULT_SCHEDULER 81

DEFAULT_TYPE 4

defineFilter 8

defineSnapshot 9

E

ENABLES 46

equals 67

ExcludeTheseUsersActions 39

execute 69, 70

executeNow 7

F

Fragment 54, 55

G

garbageCollect 10

getActions 16, 55

getApplication 5

getCommittedSchedule 73, 75

getConstraintChecker 59

getConstraints 48, 50, 51, 55

getDeadActions 73, 75

getDelay 63

getDocument 17, 31

getFirstAction 45

getId 17

getIndependentActions 73

getInstance 19, 27, 75, 82

getInvokingUser 20

getIssuer 31

getKeys 30

getName 27, 66

getNonActions 17

getReplicaReconciler 60

getSchedule 67

getScheduleGenerator 60

getScheduleIterators 73

getScheduler 78

getSchedules 17

getSchedulingParameters 59

getSecondAction 45

getState 16, 67

getThreshold 63

getTime 31, 67

getTimestamp 31

getTransmitter 78

getType 4, 44

Page 85 of 87

Index

D 3.1 – Appendix I

graphUpdate 79, 83

H

hashCode 67

I

IncompatibleOpenModeException 11

INIT 30

instanciateReplicaReconciler 60

instanciateScheduleGenerator 60

InvalidDocumentFormatException 12

InvalidDocumentStateException 13

InvalidFragmentException 14

InvalidScheduleException 15

isActive 33

isClosed 5

isDeterministic 45

isFiltered 33, 35, 37, 39, 41

isMaterialized 67

isOffline 5

isReleased 75, 82

isStable 68

isStandaloneMode 20

IterableScheduleGenerator 75

iterator 75

L

listFilters 9

listSnapshots 9

M

merge 64

N

NO_DELAY 62

NO_THRESHOLD 62

NOBODY 26

NON_COMMUTING 47

NonCommutingActions 50

NOT_AFTER 47

O

openDocument 20, 21

P

ProcessingParameters 58, 59

R

READ_ONLY 22

READ_WRITE 23

receiveVote 79, 84

registerType 20

release 76

remove 68

removeFilter 8

removeSnapshot 9

ReplicaReconciler 78

RetainMyActionsOnly 35

RetainTheseUsersActionsOnly 37

RetainThisDocumentActionsOnly 41

S

save 68

ScheduleGenerator 82

SchedulingParameters 63

setActive 33

setDocument 31, 66

setParameters 78, 82

setSchedulingParameters 8

setTimestamp 31

split 53

startFrom 7

StateSnapshot 66

T

Telex 19

toString 27, 30, 44, 60, 64

U

Page 86 of 87

Index

D 3.1 – Appendix I

UninstantiableClassException 24

UnknownDocumentTypeException 25

UNSPECIFIED_DELAY 63

UNSPECIFIED_THRESHOLD 62

V

valueOf 23, 47

values 23, 47

voteFor 7, 79, 84

VotingReplicaReconciler 83

Page 87 of 87

Index

D 3.1 – Appendix I

APPENDIX I - REQUIREMENTS, DESIGN AND IMPLE-
MENTATION PLAN OF DATA FACILITIES

Grid4All–034567
20th June 2007

Level of confidentiality and dissemination

By default, each document created within Grid4All is c© Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months implemen-
tation plan, all deliverables listed in Section 7.7 have a specific dissemination level. This dissemination
level shall be mentioned in the document (a specific section for this is included in the template, both on the
cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public.
PP = Restricted to other programme participants (including the EC services).
RE = Restricted to a group specified by the Consortium (including the EC services).
CO = Confidential, only for members of the Consortium (including the EC services).
INT = Internal, only for members of the Consortium (excluding the EC services).

This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case,
a new document code should be given so as to distinguish between the different versions.

Grid4All Public Page D 3.1-Appendix I–90

