
Project no. 034567

Grid4All
Specific Targeted Research Project (STREP)

Thematic Priority 2: Information Society Technologies

D4.8 User Manual

Due date of deliverable: 01-06-2009

Actual submission date: 20-07-2009

Start date of project: 1 June 2006 Duration: 36 months

Contributors : Antares, ICCS, INRIA, FT, KTH, SICS, UPC, UPRC

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public 

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D4.8 User Manual Grid4All-034567

Table of Contents

 Abbreviations used in this document ... 2

 Grid4All list of participants .. 3

1 Executive Summary .. 4

2 Introduction ... 5

3 Core VO services .. 7

3.1 Niche, a Distributed Component Management System .. 7
3.2 Security Infrastructure .. 10

4 Inter-VO services ... 14

4.1 Market Information Service .. 14
4.2 Semantic Information System .. 15

5 Collaborative and federative services ... 17

5.1 Telex, a Principled System Support for Write-Sharing in Collaborative Applications 17
5.2 Virtual Organization File System .. 18
5.3 WebDAV Virtual Organization File System .. 19
5.4 Yet Another Storage Service .. 21
5.5 Yet Another Computing Service ... 23

6 End-user oriented Applications .. 27

6.1 Collaborative Network Simulation Environment ... 27
6.2 Collaborative File Sharing .. 28
6.3 eMeeting, an on-line Multimedia Collaborative Environment .. 29
6.4 Sakura, a Shared Calendar .. 30

7 Conclusions .. 32

Annex 1. Niche, a Distributed Component Management System

Annex 2. Security Infrastructure

Annex 3. Market Information Service

Annex 4. Semantic Information System

Annex 5. Telex, a Principled System Support for Write-Sharing in Collaborative Applications

Annex 6. Virtual Organization File System

Annex 7. WebDAV Virtual Organization File System

Annex 8. Yet Another Storage Service

Annex 9. Yet Another Computing Service

Annex 10. Collaborative Network Simulation Environment

Annex 11. Collaborative File Sharing

Annex 12. eMeeting, an on-line Multimedia Collaborative Environment

Grid4All Public Page 1

D4.8 User Manual Grid4All-034567

Abbreviations used in this document

Abbreviation / acronym Description

ACF Action-Constrain Framework

ADL Architectural Description Language

AFS Andrew File System

API Application Programming Interface

CAS Combinatorial Auction Service

CFS Collaborative File Sharing

CIFS Common Internet File System

CNSE Collaborative Network Simulation Environment

DAV Distributed Authoring and Versioning

DHT Distributed Hash Table

FUSE Filesystem in User SpacE

GPL GNU General Public License

GSI Globus’s Grid Security Infrastructure

GUI Graphical User Interface

IDE Integrated Development Environment

IP Internet Protocol

JDK Java Development Kit

JVM Java Virtual Machine

LGPL GNU Lesser General Public License

MIS Market Information System

NFS Network File System

OASIS Organization for Advancement of Structured Information Standards

OWL Web Ontology Language

P2P Peer-to-Peer

PIP Policy Information Points

PAP Policy Administration Points

PDP Policy Decision Points

PEP Policy Enforcement Points

PERMIS PrivilEge and Role Management Infrastructure Standards

POSIX Portable Operating System Interface for Unix

SDK Software Development Kit

SIS Semantic Information Service

SOA Service-Oriented Architecture

URL Universal Resource Locator

VLC VideoLAN Client

VO Virtual Organisation

VOFS VO oriented File System

WebDAV DAV

WSDL Web Service Description Language

XACML eXtensible Access Control Markup Language

YACS Yet Another Computing Service

YASS Yet Another Storage Service

Grid4All Public Page 2

D4.8 User Manual Grid4All-034567

Grid4All list of participants

Role Participant
N°

Participant name Participant
short name

Country

CO 1 France Telecom FT FR

CR 2 Institut National de Recherche en Informatique en Automatique INRIA FR

CR 3 The Royal Institute of technology KTH SWE

CR 4 Swedish Institute of Computer Science SICS SWE

CR 5 Institute of Communication and Computer Systems ICCS GR

CR 6 University of Piraeus Research Center UPRC GR

CR 7 Universitat Politècnica de Catalunya UPC ES

CR 8 ANTARES Produccion & Distribution S.L. ANTARES ES

Grid4All Public Page 3

D4.8 User Manual Grid4All-034567

1 Executive Summary

This document is part of the research project Grid4All (IST­FP6­034567). The document reports on
the main software results of Grid4all, serving as a guide to how the Grid4All results can be used by
the target stakeholders. It includes a summary table for each result and the user manuals appear as
annexes.

Grid4All Public Page 4

D4.8 User Manual Grid4All-034567

2 Introduction

This document is part of the research project Grid4All (IST­FP6­034567). The document reports on
the main software results of Grid4all, serving as a guide to how the Grid4All results can be used by
the target stakeholders. It includes a summary table for each result and the user manuals appear as
annexes.

Project results are grouped in terms of the architectural elements following the architecture of the
Grid4All middleware in figure 1.

Figure 1: Grid4all architecture.

Core VO services:

• Connectivity (Overlay) and deployment, execution, self­management: Niche, a Distributed
Component Management System (DCMS).

Inter­VO services:

• Matching service requests: the Semantic Information System (SIS)

• Brokering resources in markets: the Market Information System (MIS)

Collaborative & federative services:

• Telex, a Principled System Support for Write­Sharing in Collaborative Applications.

Grid4All Public Page 5

D4.8 User Manual Grid4All-034567

• Virtual Organization File System (VOFS), a POSIX­like peer­to­peer file system that adds to
traditional file systems the capabilities to federate, share files and storage for collaboration.

• WebDAV: a VO­aware file system based on the WebDAV protocol.

• Niche has been used to develop the following two self­managing services with self­healing
and self­configuration capabilities:

◦ Yet Another Storage Service (YASS), which is a distributed storage system used to store
and retrieve files on a network of computers;

◦ Yet Another Computing Service (YACS) a distributed computing system used to submit
and execute jobs containing independent tasks (a bag of tasks).

End­user oriented applications:

• Collaborative Network Simulation Environment (CNSE)

• Collaborative File Sharing (CFS)

• eMeeting, an on­line Multimedia Collaborative Environment

• Sakura, a Shared Calendar

For each result, the description is structured according to a table with the following items:

Name of the result; What it does; Where it can be obtained; Targeted stakeholders; Scope,
“best use” scenarios; Distinguishing features and benefits; Environmental conditions and
requirements; Recommendations for deployment (including prerequisites);
Experience/lessons learned; Comparison with state of the art.

Grid4All Public Page 6

D4.8 User Manual Grid4All-034567

3 Core VO services

3.1 Niche, a Distributed Component Management System

Table for Niche distributed component management system

Name of result: Niche, a Distributed Component Management System (DCMS)

What it does (summary):

Niche is a Distributed Component Management System (DCMS) which is used to develop, to
deploy and to execute self­managing distributed component­based applications on a structured
overlay network of computers. Niche includes (1) a component­based programming model with a
set of APIs for the development of self­managing distributed applications; (2) a run­time execution
environment for the deployment and execution of the applications together with the appropriate
encoded management elements. Niche supports sensing changes in the state of components and
environment, and allows individual components to be found and appropriately manipulated. It
deploys both functional and management components and sets up the appropriate sensor and
actuation support infrastructure.

Where it can be obtained:

http://niche.sics.se/

Targeted stakeholders:

Developers: Niche is a general­purpose system for developers that require that the applications they
develop be self­managing. Niche can be used to develop, deploy and provide robust and scalable
self­managing services with self­configuration, self­healing and self­tuning capabilities, on a
network of computers donated by end­users or/and service service/resource providers.

Scope, “best use” scenarios:

As Niche makes use of structured overlay infrastructure, it has, in particular, good scalability, and is
tolerant to churn (high rates of nodes joining, leaving and failing). Examples of services that can be
developed using Niche are either general storage and computing services of a Grid environment
similar to the storage and computing elements of gLite, or storage and compute clouds, similar to
Amazon S3 and ES2, or more specific services such as a parameter­sweep simulation environment,
a movie transcoding service (gMovie).

Distinguishing features and benefits:

Niche is a full­fledged programming system for self­managing applications/services in dynamic
environments. Niche is used both as a development environment and as an execution run­time

Grid4All Public Page 7

D4.8 User Manual Grid4All-034567

environment. It separates functional and non­functional (management) parts of the application.

The Niche development environment includes a set of APIs for development of functional and
management parts of a distributed application. Functional components, component groups and
bindings, are first­class entities in Niche that can be monitored and manipulated by the management
components (via sensors and actuators) using an extensible monitoring and actuation API provided
by Niche. The management part is organized as a network of Management Elements interacting
through events. Niche provides basic classes of Management elements, event and actuation APIs.
All entities, e.g. components, groups, bindings, and management elements are uniquely identified in
Niche; this allows finding and controlling them.

The Niche run­time environment is a set of containers that reside on a structured overlay network of
VO computers, and a set of the overlay services (resource discovery, deployment, publish/subscribe,
metadata DHTs) provided on each of the containers.

The Niche run­time environment allows initial deployment of a service or an application. The initial
deployment code can be either manually written by the developer, or generated by Niche from an
ADL (Architecture Description Language) description of the application architecture. The ADL
compiler for describing initial configurations of Niche applications is made available together with
Niche. In principle, most self­* behaviors could be described in high­level (and often declarative)
languages, and compiled to Niche as is done with the ADL, but this is not currently available.

Environmental conditions/requirements:

Niche requires a number of networked computers (depending on the application) to execute. The
only restriction is that the computers should be fully connected with real IP addresses. Niche
currently does not support Network Address Translation (NAT). For development and testing, Niche
can be executed on a single PC.

Recommendations for deployment (including prerequisites):

Niche requires Java SE 6 JDK to execute. Apache Ant (1.7 or later) is needed for reusing build
scripts that come with Niche. Any IDE such as Eclipse can be used for development of applications
using Niche.

Experience/lessons learned:

Niche has been used to develop the following two self­managing services with self­healing and self­
configuration capabilities: (1) YASS: Yet Another Storage Service, which is a distributed storage
system used to store and retrieve files on a network of computers; (2) YACS: Yet Another
Computing Service, which is a distributed computing system used to submit and execute jobs
containing independent tasks (a bag of tasks). These two services are typical services of a Grid
environment, e.g. gLite storage and computing elements. The services can be deployed and
provided on computers donated by users of the service or by a service provider. The services can
operate even if computers join, leave or fail at any time. Each of the services has self­healing and

Grid4All Public Page 8

D4.8 User Manual Grid4All-034567

self­configuration capabilities and can execute on a dynamic overlay network.

When designing and developing the self­managing service YACS using Niche, the developers have
experienced that separating functional and self­management parts simplifies design by making
responsibilities clearer. It also improves quality of the implementation as individual components and
respective source code are focused on one main role, i.e. either functional or self­management
functionality. The alternative of mixing those roles would make the logic more complex and harder
to program, thereby increasing chances of faulty code. The Niche model of management elements –
sensors, watchers, aggregators and managers – is in line with the control loop pattern suggested for
self­management. Another positive feature mentioned by the developers is the group abstraction
introduced in the extended Fractal model supported by Niche. It allows the developer to masks
changes resulting from node failures leaves or joins, which simplifies programming considerably.

In overall, a middleware, such as Niche, clearly reduces burden from an application developer
because it enables and supports self­management by leveraging self­organizing properties of
structured P2P overlays and by providing useful overlay services such as deployment and name­
based communication. However it comes at a cost of self­management overhead, in particular, the
cost of monitoring and replication of management; though this cost is necessary for the democratic
grid (or cloud) that operates on a dynamic environment and requires self­management. This opens
new opportunities for research on efficient monitoring and information gathering/aggregating
infrastructures to reduce this overhead. Another research focus is on high­level programming
abstractions and a language support that should facilitate development of self­managing
applications.

Comparison with state of the art:

Niche is an environment for autonomic computing. There is big interest in autonomic computing in
academia and industry; and there exist different approaches and solutions to enabling and achieving
self­management in distributed environments and applications. However most of the solutions are
application specific.

There also exit a number of component­based environments (e.g. the proActive implementation of
the Fractal component model; CoreGRID component model) that allow development of component­
based applications and services.

Niche advances the state of art in component­based and autonomic­computing environments as
follows. Niche includes the novel use of overlays, where an adapted structured overlay provides a
network­transparent sensing and actuation infrastructure that enables and simplifies self­
management. The use of overlays makes the system, scalable, tolerant to churn, and provides the
framework for assigning (and reassigning upon churn) responsibilities to nodes in the system. For
instance, a sensor reports an event such a component failure or overload, to the responsible node(s)
for hosting the management element(s) that earlier subscribed to this type of event. We have also
adapted known distributed algorithms to dynamic groups. Replication of management elements
allows achieving robust self­management. All above features of Niche facilitate development of self­
managing applications.

Grid4All Public Page 9

D4.8 User Manual Grid4All-034567

3.2 Security Infrastructure

Name of result: Grid4All Security Infrastructure (security components, API, and tools)

What it does (summary):

The Grid4All policy­based Security Infrastructure has been developed to protect resources
(services) from unauthorized access; access can be controlled through Virtual Organization (VO)­
wide authorization policies. VO members (resource owners) set security policies, dictating how
users may access VO resources. The Grid4All security infrastructure protects resources, enforcing
the VO policy.

Security infrastructure provides authentication and authorization to other Grid4All modules with
which it is integrated, e.g. VOFS. Authentication establishes the identity of a user; while
authorization checks whether the use has rights to access the requested resource (e.g. a file).
Authorization guarantees that the user can only access resources she has the right to access,
according to VO policies. Authorization is policy­based; policies are expressed in XACML
(eXtensible Access Control Markup Language).

The Grid4All security components include Policy Enforcement Points (PEP), Policy Decision
Points (PDP), Policy Administration Points (PAP), Policy Information Points (PIP), and VO
Membership Service (VOMS). The security components have been developed using Sun’s XACML
implementation.

Where it can be obtained:

http://www.isk.kth.se/~leifl/vofs/

Targeted stakeholders:

• End users authenticating to the VO.

• Administrators managing the VO Membership Service and VO policy repository.

• Developers of software which needs security infrastructure (authentication and
authorization) for access control.

Scope, “best use” scenarios:

Security infrastructure (authentication and authorization) is required to protect course resources
(course material, simulation engines, results, etc.) from unauthorized access in the educational
usage scenario described in the deliverable D4.6. The scenario assumes that teachers and students
will be given different roles, with different access rights to course resources. A teacher will have the
right to construct and to modify access policies and assign a student (a student group) the right to

Grid4All Public Page 10

D4.8 User Manual Grid4All-034567

access the material related to the classes in which the student (the group) is enrolled, during specific
hours. The security infrastructure enforces mandatory checks whenever a student wants to access
the course documents (e.g., reports) or resources, e.g., simulation engine.

Distinguishing features and benefits:

Functional features include:

• Authentication, including login, functionality is used by the end user for login, and by
authorization components for identity checks. Using a login application or web browser, the
end user logs in to the VO Membership Service (VOMS) in order to obtain an authentication
token.

• Authorization functionality is used to check whether the user (her application) is allowed to
access a protected resource and to perform an operation on it. This functionality can be used
by any resource or service that requires access control.

• Policy administration (CRUD) operations used by VO administrators and resource owners.
This functionality allows setting and updating access policies of resources protected by the
security infrastructure. A client program used by the administrator and a server updating the
policies are available.

Non­functional features include:

• Caching (of recent authorization decisions, of policies and results of authentication checks)
in order to improve performance.

• Robust error handling.

• Configurability using configuration files. Neither the end user nor the application developer
is required to recompile security components when changing security configuration
(settings) in the configuration files.

• Easy to install, all that is needed is to unpack a zip archive. The only extra installation
needed is to install a Java Runtime Environment (JRE).

• Easy to use for both application developer and end user. Security infrastructure has a rather
simple API and user­friendly tools (e.g. for setting policies); it is well documented, and there
are scripts for starting all applications. No need to compile or run ant scripts.

• The services can be called in many ways: through TCP, RMI, a direct method call and
standard input.

Environmental conditions/requirements:

Java SDK 6 SE, Sun's XACML Implementation (http://sunxacml.sourceforge.net/)

Recommendations for deployment (including prerequisites):

Grid4All Public Page 11

D4.8 User Manual Grid4All-034567

No specific requirements for deployment but only Java SE 6 JRE.

Experience/lessons learned:

The Grid4All security components (Policy Enforcement Point, Policy Decision Point, Policy
Administration Point, etc) have been used to develop a policy­based security infrastructure for VO
file systems (see VOFS and WebDAV VOFS).

Some lessons learnt: Access time is sensitive to the security overhead and the overhead should be
reduced by caching of security information. There might be also a scalability issue if security
actions are performed at a fine­grained level, e.g. at the level of individual users rather than groups,
level of files rather than directories. To improve scalability, security control in Grid4All should be
done at higher­level of granularity, e.g. at the group (role, community) level. In order to improve
access time by reducing the security overhead, we have implemented role­based security; caching of
resolved authorization requests at Policy Enforcement Points, caching policies at Policy Decision
Points, and caching resolved authentication requests at Policy Information Points.

Comparison with state of the art:

Globus’s Grid Security Infrastructure (GSI) defines the state of the art in Grid security. Reasons for
not using existing Grid security infrastructures, e.g. Globus GSI or PERMIS, in Grid4All are:

• Globus GSI components are very tightly coupled with GT4 and are heavy­weight (complex,
with high administration cost) to be used in Grid4All that assumes dynamic environments
and requires autonomic deployment;

• Globus GSI is intended to protect web­services, whereas most of Grid4All components (e.g.
VOFS) do not use web­service interfaces in the current prototypes;

• PERMIS has a proprietary policy language.

Grid4All has chosen XACML (the eXtensible Access Control Markup Language, OASIS standard)
as a security policy language for its flexibility, which allows, in particular, defining any complex
conditions in policy rules, including timing conditions useful for Grid4All. We used Sun’s XACML
implementation (http://sunxacml.sourceforge.net/) to develop Grid4All security components.

A security infrastructure is required in Grid4All to provide VO­wise security (authentication and
authorization). We should indicate that the Grid4All security infrastructure is in line with state of
the art in Grid security. It does not significantly improve the state of the art, although it has the
following innovative features:

• Support for validity periods (time, date, day of week ranges and combinations of these) in
policies;

• A caching mechanism for security data (decisions, identities, policies) which improves
performance;

• Extendable generic API that allows extension of generic security components PEP and PAP
in order to provide more convenient application­specific interface for setting access rights

Grid4All Public Page 12

http://sunxacml.sourceforge.net/

D4.8 User Manual Grid4All-034567

(PAP) and application­specific access control (PEP). The considered use case: access control
in VOFS – illustrates this approach of extending generic security components in order to
provide application specific access control, e.g. an AFS­like access control in VOFS.

• Easy to install and use compared to other similar products.

Grid4All Public Page 13

D4.8 User Manual Grid4All-034567

4 Inter-VO services

4.1 Market Information Service

Name of result: Market Information Service (MIS)

What it does (summary): This MIS a publish/subscribe service based on peer­to­peer (P2P), used
by participants at the market place. The main objective is to disseminate and obtain information
revealing the market situation. Information is published at the MIS by auctions either during their
execution or at their completion. This information is disseminated to clients who may either query
or subscribe for notifications. The distributed market information service provides aggregated and
summarized and forecast information.

Where it can be obtained: The MIS result prepared for the Grid4All integration can be found at
the Gforge Server: https://scm.gforge.inria.fr/svn/grid4all/wp2/GRIMP The MIS is basically based
on the Distributed Market Information System (DMIS), information and source code of that project
can be found at: https://code.ac.upc.edu/projects/dmis

Targeted stakeholders: End­users and resources providers (humans or agents).

Scope, “best use” scenarios: Users retrieve information about a certain product such as resources
within the market and can check the market for current price to place their product. This allows to
get an entry price for a product placement and it allows to a fair trading in a distributed markets.

Distinguishing features and benefits: Avoidance of hot­spots (market instances with excess supply
or demand) and stabilization of prices. The MIS should handle increase in number of subscribers to
MIS, volumes of queries, subscriptions and publications. The MIS includes a uncertainty
management component to reduce the number of sent messages and guarantee a certain level of
accurate information.

Environmental conditions/requirements: The MIS needs Java 6 JRE, which can run under Unix
and Windows machines. The installed machine needs and open port which is not blocked by a
firewall or is behind a NAT.

Recommendations for deployment (including prerequisites): For the deployment it have to been
set the used ports within the properties file and the IP direction to the bootstrap node.

Experience/lessons learned: The MIS has been executed on a small­scale test bed of three different
machines in a network to test the communication protocol. Scalability tests have been executed on a
local machine up to 30000 participants. The MIS has also been evaluated with the CAS component
of Grid4All project and evaluated with software bidding agents.

Comparison with state of the art: A few other systems bases on distributed information

Grid4All Public Page 14

D4.8 User Manual Grid4All-034567

acquisition based on P2P to allow a large scalability. However, the MIS differs as it is developed for
market information and treats and optimize problems arising from P2P systems such us uncertainty
and forecasting in market specific environments.

4.2 Semantic Information System

Name of result: Semantic Information System (SIS)

What it does (summary): The Semantic Information System (SIS) provides a matching and
selection service concerning offers and requests (place any of the two kinds of orders i.e. either
offers or requests) of resources and services, placed by peers (humans or software agents) within
grid environments. This service is used by the Grid4All market place.

Where it can be obtained: http://icsd-ai-lab.aegean.gr:8080/grid4all_sis/downloads.jsp
(source + binaries + documents)

Targeted stakeholders: Services developers that advertise markets or application services in Grid
environments, peers (humans or software agents) that query such information.

Scope, “best use” scenarios: Application developers in grid and SOA environments need to
discover available services based on service characteristics.

Distinguishing features and benefits: The discovery of services/resources using semantics
(semantic matchmaking of services’ profiles), the support of such matchmaking in Grid Economies
(the semantic discovery of traded resources/services according to economic characteristics also), the
support of the advertisement, querying and selection functionalities through an API (for human and
software agents use), scalability.

Environmental conditions/requirements: SIS is supported by an external tool, namely WSDL­AT
for the textual annotation of WSDL profiling information and the automatic computation of
semantic annotations (mapping WSDL part names to OWL classes). Also it integrates a Selection
module (as a black­box) for the ranking of services resulted from the matchmaking module of SIS.

Recommendations for deployment (including prerequisites): Apache Tomcat, Axis (required
libraries also included in the .war file), JDK 1.6, MySql (optional)

Experience/lessons learned: SIS has been evaluated with some test data for performance reasons.
It does not scale well for complex queries and large number of offered resources/services (more than
500) due to the non­flat and heavily axiomatized ontology (based on projects’ requirements).

Comparison with state of the art: Although SIS has many advantages over state­of­the­art
systems (grid economy features considered in the semantic matchmaking process, automatic
annotation of services, a selection functionality is provided, an API has been developed, etc.) it is
restricted in terms of the provided architecture which is a centralized one (central semantic registry).

Grid4All Public Page 15

http://icsd-ai-lab.aegean.gr:8080/grid4all_sis/downloads.jsp

D4.8 User Manual Grid4All-034567

The design of a decentralized SIS will be provided in the frame of the project, however such an
implementation is out of the projects’ scope.

Grid4All Public Page 16

D4.8 User Manual Grid4All-034567

5 Collaborative and federative services

5.1 Telex, a Principled System Support for Write-Sharing in
Collaborative Applications

Name of result: Telex

What it does (summary): The Telex middleware facilitates the design of peer­to­peer collaborative
applications. It takes care of complex application­independent aspects, such as replication, conflict
repair, and ensuring eventual commitment. Telex allows an application to access a local replica
without synchronizing with peer sites. The application makes progress, executing uncommitted
operations, even while peers are disconnected.

Where it can be obtained: http://telex2.gforge.inria.fr (source + binaries + documents).

Targeted stakeholders: Collaborative application designers.

Scope, “best use” scenarios: Telex targets peer­to­peer collaborative applications: no central site is
required to store shared data; updates are asynchronous and can be performed even while
disconnected. Telex is also helpful when designing decision­support applications: its conflict
detection and resolution engine allows users to examine a number of “what­if” scenarios.

Distinguishing features and benefits: The Telex approach enables separation of concerns:
application designers focus on semantics and need not worry about distribution or conflict
resolution. Telex is based on a principled approach, the Action Constraint Framework, which
enables the design of applications with proven safety and liveness guarantees. As applications share
the same middleware, novel cross­application scenarios are possible.

Environmental conditions/requirements: Telex requires Java runtime 1.5 and two external
libraries: jgrapht (graph management), daisylib/fractal (communication).

Recommendations for deployment (including prerequisites): Telex is a library. It must be
deployed with applications that use it.

Experience/lessons learned: Static constraints defined by the ACF do not cover all needs: some
applications require dynamic constraints, others require the “isolation” constraint. The engineering
of large dynamic graphs raises performance issues: mechanisms for lock­free updates and
lightweight snapshots are needed. Scalability requires the support of partial replication, which is an
unexplored problem.

Comparison with state of the art: Compared to previous systems such as Coda, Bayou or Unison,
Telex is based on a principled framework (ACF). Furthermore, Telex is completely decentralized
and thus can be used in a peer­to­peer environment.

Grid4All Public Page 17

http://telex2.gforge.inria.fr/

D4.8 User Manual Grid4All-034567

5.2 Virtual Organization File System

Name of result: Virtual Organization File System (VOFS)

What it does (summary): VOFS is a POSIX­like peer­to­peer file system that modernises the
traditional file system utility with capabilities to federate and share files and storage for ad hoc or
organised collaboration. The features introduced are available both interactively to users and
programmatically to applications via extended semantics of POSIX. VOFS users can create shared
workspaces and quickly populate them with files from other peers by linking them in. Users may
also contribute storage to workspaces where new files will be stored. Files are cached locally and
peers allow loss of communication as a normal condition.

Where it can be obtained: http://www.cslab.ece.ntua.gr/vofs/ (source + documents).

Targeted stakeholders: Collaborating Internet users, organisers of collaborative tasks, designers of
collaborative applications with generic communication and file­sharing needs.

Scope, “best use” scenarios: VOFS is intended as a personal tool that will replace the cumbersome
and nonstandard procedures that users exchange and share files and gather and share collections of
documents. While most activities are expected to be ad­hoc, users can develop their own usage
patterns and maintain workspaces for long term if they remain useful. VOFS can also be used as a
substrate for applications that need simple file­sharing and publish­subscribe messaging.

Distinguishing features and benefits: VOFS extends the traditional file system utility in a non­
intrusive way and simplifies common sharing workflows of collaborating users. Ideally, the simple
but powerful file sharing primitives introduced by VOFS would become as essential as the rest of
file system primitives in modern users' every­day activities.

Environmental conditions/requirements: VOFS requires FUSE 2.7 for Linux, python 2.5, and
sqlite3.

Recommendations for deployment (including prerequisites): VOFS is launched as a number of
daemon processes with no dependences beyond those specified in requirements.

Experience/lessons learned: Democratising access to the many, elaborate, and highly technical
modern computing capabilities is better feasible by introducing simple new concepts and actions to
the users' workflows. This way, users are independent from external technical support and free to
adapt their tools to their own patterns. Complex services and sophisticated applications can then be
available to the users through the same simple environment, requiring no unfamiliar interaction
from users.

Comparison with state of the art: The solution of simple new primitives to our everyday
collaboration workflows for document sharing is explored by Google Wave, which is currently
under development. Google Wave also forces applications and sophisticated services to be treated

Grid4All Public Page 18

http://telex2.gforge.inria.fr/

D4.8 User Manual Grid4All-034567

through the same environment, requiring no unfamiliar interaction from users. Contrary to VOFS
which targets a system­wide utility as the filesystem, Google Wave provides its own environment.

5.3 WebDAV Virtual Organization File System

Name of result: WebDAV VOFS (Virtual Organization File System)

What it does (summary):

The WebDAV VOFS (Virtual Organization File System) is a VO­aware file system based on the
WebDAV protocol.

VOFS allows VO members (users) to build a distributed file system on multiple computers donated
by the VO members or external resource providers. In order to do that, VOFS allows users to expose
their files and directories to a VO file system, i.e. to make them accessible (read, written, renamed,
deleted and so on) within the VO. It also allows users to mount the VO file system to their local file
systems, so that files in VOFS can be accessed by ordinary applications such as text editors, PDF
and picture viewers, etc. In technical terms, files in VOFS can be accessed using the standard
POSIX file API.

VOFS includes a policy­based security, which ensures that only VO members can access files in
VOFS. Access rights in VOFS confirm to VO policies set by resource (file and storage) owners.

The WebDAV­based VOFS prototype can be used with multiple Operating Systems, such as Linux
and Microsoft Windows.

Compared to the FUSE­based VOFS, the WebDAV­based prototype is a simpler solution for VOFS
that supports the complete set of standard file operations (defined in POSIX file API) but it does not
support the reconciliation functionality achieved by using Telex as implemented in the FUSE­based
VOFS.

Where it can be obtained:

http://www.isk.kth.se/~leifl/vofs/

Targeted stakeholders:

End­users: VOFS can be used by any end­users who need a common file system, e.g. for file
sharing, common working space for collaboration.

Developers: VOFS can also be used by developers who need a distributed file system to be used as a
part of a distributed system or application.

Scope, “best use” scenarios:

Cooperative or collaborative learning, networks of schools engaged in collaborative activities such

Grid4All Public Page 19

D4.8 User Manual Grid4All-034567

as joint projects and courses that require a shared file system as a shared workspace. Jointly­taught
courses may involve students and instructors from multiple sites, spanning different departments,
schools, countries, time zones or cultures. VOFS can be used in such scenarios as a common
distributed file system.

Distinguishing features and benefits:

Functional features include:

• Single shared namespace;

• Computers can join and leave VOFS at any time;

• (Un)Expose files and directories from the local (native) file system to VOFS, i.e. making
them accessible to VO members;

• (Un)mount the VOFS to the local file system;

• Access to exposed files using the standard POSIX file API;

• Allows work offline (disconnect operation) with “last­writer­wins” reconciliation;

• VO­wise authentication and policy­based authorization (AFS­like access control);

• Support for validity periods in access rights;

• Allows accessing the exposed files using WebDAV or HTTP.

Non­functional features include:

• Caching to improve performance and for disconnect operation;

• Easy to mount using for example davfs2;

• Can operate under any Operating System that has the WebDAV mount support, e.g.
Microsoft Windows, Linux, Solaris.

• The VOFS name space is kept either in a DHT or completely distributed. In the latter case
each node stores the entire name space.

Environmental conditions/requirements:

Recommendations for deployment (including prerequisites):

WebDAV requires the Apache Tomcat (included in the WebDAV prototype), Java SE 6 JDK, and
some mount utility that supports WebDAV, e.g. davfs2

Experience/lessons learned:

The WebDAV VOFS prototype has been successfully tested under Linux and Windows operating
systems. A distributed solution to the name space maintenance using DHTs or name­space views at

Grid4All Public Page 20

D4.8 User Manual Grid4All-034567

each peer, improves scalability and robustness of the name space compared to a centralized solution,
e.g. a central database. However it comes at the cost of increased complexity of the consistent name
space maintenance that requires replication and a distributed algorithm for name­space
maintenance, e.g. a gossip­based algorithm.

To improve file access, the security overhead should be minimized by means of access control at the
directory level, caching of access decisions and policies.

Comparison with state of the art:

There are many distributed file systems, including systems specifically developed for Grids, e.g.
gLite file catalogs, XtreemOS file system. For detailed state­of­the­art analysis, see Grid4All
deliverable D3.1 (Chapters I and III). The major feature of WebDAV VOFS that distinguishes it
from ordinary distributed file systems is VO­awareness, i.e. VO­policy­based access control that
supports AFS (Andrew File System)­like access rights.

Innovative features of WebDAV VOFS can be summarized as follows.

• Support for single global name space;

• Tolerance to resource churn (computer leaves and failures);

• VOFS can be mounted by the end­user to access exposed files via the standard POSIX API;

• VO awareness: VO­wise authentication and policy­based authorization; support of the AFS­
like access control;

• VOFS can operate under any Operating System that has the WebDAV mount support, e.g.
Microsoft Windows, Linux, and Solaris.

5.4 Yet Another Storage Service

Name of result: Yet Another Storage Service, YASS

What it does (summary):

YASS is a storage service that allows a client to store, read and delete files on a set of computers.
The service replicates files in order to achieve high availability of files and to improve access time.

YASS can be deployed and provided on computers donated by users of the service or by a service
provider. YASS operates even if computers join, leave or fail at any time.

The current version of YASS maintains the specified number of file replicas despite of nodes
leaving or failing, and it can scale (i.e. increase available storage space) when the total free storage
is below a specified threshold.

Where it can be obtained:

Grid4All Public Page 21

D4.8 User Manual Grid4All-034567

http://niche.sics.se/

Targeted stakeholders:

End­users: YASS can be used by any end­users who need a reliable and scalable storage to store and
retrieve files, e.g. for backup or file sharing. End­users can access the service by executing and
interacting with the YASS client (front­end) on their computers. Executing YASS storage
components on their computers, end­users can share their storage.

Developers: YASS can also be used by developers who need a reliable and scalable distributed file
storage service to be used as a part of a distributed system or application.

Service provider: YASS can be offered by a service provider.

Scope, “best use” scenarios:

Cooperative or collaborative learning, networks of schools engaged in collaborative activities such
as joint projects and courses that require shared file storage as a shared workspace. Jointly­taught
courses may involve students and instructors from multiple sites, spanning different departments,
schools, countries, time zones or cultures.

Distinguishing features and benefits:

Self­managing capability of YASS allows the users to minimize the human resources required for
the service management.

YASS supports transparent replication of files for the sake of robustness (i.e. files are not lost when
nodes fail or leave the storage system) and for the sake of performance (multiple replicas of the
same file can be accessed in parallel). YASS has the following self­managment capabilities in order
to improve file access (availability and performance):

• self­healing: it maintains a specified number of file replicas despite of resource failures and
leaves;

• self­configuration: it adds new storage, if any available, when the total free storage space is
lower than a specified threshold;

YASS can be extended with self­tuning capability so that the service optimizes the number of
replicas depending on access rate, i.e. add new replicas when access rate is high, and remove
replicas when the access rate is low.

Environmental conditions/requirements:

YASS requires Java SE 6 JDK and Apache Ant 1.7. YASS client requires swt.jar (Eclipse Standard
Widget Toolkit, SWT) compatible with your operating system. YASS deployment requires a Niche

Grid4All Public Page 22

D4.8 User Manual Grid4All-034567

bootstrap node to initiate the deployment process.

Recommendations for deployment (including prerequisites):

YASS requires the Niche environment to be deployed and configured on a number of distributed
computers.

Experience/lessons learned:

YASS has been developed as a demonstrator application (service) using Niche to illustrate the
development of a self­managing application and to evaluate self­management overhead. Niche
provides the basic support to enable self­management, such as an event notification mechanism for
monitoring, an actuation API, dynamic (re)binding, and a set of classes to develop self­management
code. This simplifies development of the monitoring and actuation parts of the management code,
whereas development and implementation of the control algorithm itself is a responsibility of a
developer. The control algorithm can be arbitrary complex.

When developing YASS we have learned necessity of coordination and synchronization of activities
of different managers with different responsibilities (management objectives). Based on this
experience, Niche has been extended to support direct interaction between managers.

Comparison with state of the art:

There are many P2P files storage systems, such as the gLite file catalog, that provide functionalities
similar to YASS. Many of the systems do not support self­management (self­healing or self­
configuration), however some of them do. YASS is in line with state­of­the­art self­managing
storage systems. YASS implements relatively simple self­management algorithms, which can be
improved to be more sophisticated; while reusing existing monitoring and actuation code of YASS.

5.5 Yet Another Computing Service

Name of result: Yet Another Computing Service (YACS)

What it does (summary):

YACS is a robust distributed computing service that allows a client to submit and execute jobs (bags
of independent tasks) on a network of nodes (computers). To be executed, tasks need to be
programmed (or wrapped) by extending the abstract Task class provided by YACS.

YACS can be deployed and provided on computers donated by users of the service or by a service
provider. YACS operates even if computers join, leave or fail at any time.

YACS guarantees execution of jobs despite of nodes leaving or failing. Furthermore, YACS scales
by itself, i.e. changes the number of execution components, when the number of jobs/tasks changes.

Grid4All Public Page 23

D4.8 User Manual Grid4All-034567

Where it can be obtained:

http://niche.sics.se/

Targeted stakeholders:

Developers: YACS can be used by developers who need a robust and scalable distributed bag­of­
tasks execution service to be used as a generic computing service or a job­specific execution
service, e.g. a parameter­sweep simulator, a movie transcoder, etc. YACS can be used as a part of
another distributed service or application.

Service provider: A job­specific execution service based on YACS can be offered by a service
provider. YACS can be used as a part of other services that require a robust bag­of­task execution
service.

End­users: A job­specific execution service based on YACS can be used by any end­users who need
a robust execution service to execute a bag of tasks, e.g. for parameter­sweep simulation, movie
transcoding, etc. End­users can access the job­specific service by executing and interacting with a
YACS client (front­end) on their computers. Executing YACS computing components (masters and
workers) on their computers, end­users can share their computing resources.

Note that to be executed by YACS, tasks need to be programmed (or wrapped) in Java by extending
the Task class provided by YACS.

Scope, “best use” scenarios:

The YACS service can be used to execute different kinds of batch jobs or bag­of­task applications
such as parameter­sweep simulation, video transcoding, ray­tracing and other applications that
follow the master­worker paradigm. Therefore the service can be deployed and used in cooperative
or collaborative learning, networks of schools engaged in collaborative activities such as joint
projects and courses that require execution of computational jobs on a set of (shared) computers
donated by schools or the users. Jointly­taught courses may involve students and instructors from
multiple sites, spanning different departments, schools, countries, time zones or cultures.

Distinguishing features and benefits:

The service automatically distributes tasks among available distributed resources (masters and
workers), monitors task execution and restarts failed tasks. YACS guarantees execution of jobs
despite of nodes leaving or failing. YACS supports checkpointing that allows restarting execution
from the last checkpoint. Furthermore, YACS scales, i.e. changes the number of master and
workers, when the number of jobs/tasks changes. In order to achieve high availability, the service
always maintains a number of free masters and workers so that new jobs can be accepted without
delay.

YACS has the following self­management capabilities in order to improve bag­of­tasks execution:

Grid4All Public Page 24

D4.8 User Manual Grid4All-034567

• Self­healing: When a worker component fails or leaves, YACS transparently assigns a task
performed by the failed component to another component and restarts the task from the last
checkpoint or from the initial state (if there are no checkpoints);

• Self­configuration: YACS adds new execution components (masters and workers), when the
total number of execution components is lower than a specified threshold.

Self­managing capabilities of YACS allows the users to minimize the human resources required for
the service management. YACS can be extended with self­tuning capability so that the service
optimizes the number of masters and workers depending on job submission rate, i.e. it adds new
masters and workers when submission rate is high, and removes masters and workers when the
submission rate is low.

Environmental conditions/requirements:

YACS requires Java SE 6 JDK and Apache Ant 1.7. YACS deployment requires a Niche bootstrap
node to initiate the deployment process.

The gMovie demonstrator application using YACS requires a common file system and the VLC
media player.

Recommendations for deployment (including prerequisites):

YACS requires the Niche environment to be deployed and configured on a number of distributed
computers.

Experience/lessons learned:

YACS has been developed as a demonstrator application (service) using the Niche distributed
component management system (also developed in Grid4 All) to illustrate the development of a self­
managing distributed application and to evaluate self­management overhead of YACS.

YACS can be used as a part of some other service that needs a robust execution service. In order to
illustrate this, we have developed a job­specific service called gMovie, which is a movie transcoding
service using the VLC media player. The g­Movie application has its front­end (a GUI­controlled
client) and uses YACS to execute the trascoding tasks (scripts) in parallel on a set of computers.

The developer of YACS has indicated convenience of the Niche API that allows separating of
concerns when developing functional and self­management parts of an application. This separation
also improves quality of the implementation as individual components and respective source code
are focused on one main role, i.e. either functional or self­management functionality.

Comparison with state of the art:

Grid4All Public Page 25

D4.8 User Manual Grid4All-034567

There is a number of computing (execution) services that defines the state of the art, such as
Amazon execution cloud EC2, Apache Hadoop, Grid execution services Globus GRAM, gLite
computing element, UNICORE, OGSA­BES. Most of the execution services have self­managing
compatibilities similar to those in YACS (self­healing and self­configuration). YACS is in line with
state­of­the­art self­managing execution services. The current version of YACS implements
relatively simple self­management algorithms; however its self­managing capabilities can be
extended with more sophisticated management logic for more complex and effective management
objectives, while reusing existing monitoring and actuation code of YACS.

Grid4All Public Page 26

D4.8 User Manual Grid4All-034567

6 End-user oriented Applications

6.1 Collaborative Network Simulation Environment

Name of result: Collaborative Network Simulation Environment (CNSE)

What it does (summary): CNSE provides an environment for the execution of simulations (both
single and parameter­sweep) based on ns­2 as well as the visualization of the results with nam and
xgraph.

Where it can be obtained: http://www.grid4all.eu/index.php?page=cnse (source + binaries +
documents+ demo videos).

Targeted stakeholders: Educators (creation of activities that involve network simulations), students
(perform the simulations, study the visualizations and understand the results), local administrators
(application and server installation).

Scope, “best use” scenarios: CNSE can be use in educational scenarios for collaborative learning
and project­based learning. The main scope is the analysis of computer networks, and it supports
the comprehension of theoretical concepts by simulating different topologies, varying parameters
and visualizing the results.

Distinguishing features and benefits: CNSE leverages the advantages of grid service technology
in order to enable the use of computational and storage resources to run parameter­sweep
simulations and store the output files. Additionally, it provides collaborative features to support
collaborative learning scenarios.

Environmental conditions/requirements: CNSE is supported by three external tools. Ns­2 to
carry out network simulations, nam to visualize network animations, and xgraph to plot output
results.

Recommendations for deployment (including prerequisites): The CNSE servers need Globus
Toolkit 4.0 full version, JDK 1.6 and Apache Ant 1.6.5. In addition the machines in which CNSE
clients are going to be used need also JDK 1.6.

Experience/lessons learned: CNSE has been evaluated in a real scenario with students of an
undergraduate course in Telecommunication Engineering. The results have proven that CNSE
supports the performance of parameter­sweep simulations in a computer network scenario.
Moreover, students highlighted the easiness of easiness of this tool and its convenience in the
realization of the course.

Comparison with state of the art: The ns­2 is one of the most used simulators in Computer
Network education. However, its use is hindered by the number of computational and storage

Grid4All Public Page 27

http://www.grid4all.eu/index.php?page=cnse

D4.8 User Manual Grid4All-034567

resources and the lack of collaborative features. To the best of our knowledge there are any
simulator that provides collaborative features using the grid service technology.

6.2 Collaborative File Sharing

Name of result: Collaborative File Sharing (CFS)

What it does (summary): The Collaborative File Sharing (CFS) application allows users to
collaborate, interact and share information. The collaboration is asynchronous. CFS exports notions
of files and forums. Workspaces may contain forums, files and other workspaces thus allowing a
hierarchical organization. Users may access an existing item or create a new one. Access to items
may be restricted by the creator. In addition, a notion of roles is supported. All users that can access
an item have a role that determines what the user can do and this role may differ from item to item.
This role may be changed at any time by the creator or the item administrators. Interaction and
collaboration between participants may be either through messages posted in a forum or through file
versions uploaded in a file.

Where it can be obtained: http://www.grid4all.eu/index.php?page=cfs

Targeted stakeholders: End­users.

Scope, “best use” scenarios: Computer­supported collaboration or learning tasks based on sharing
documents and potential concurrent modification of the structure of folders and the content of files.

Distinguishing features and benefits: Management of a shared directory tree (workspace)
structure: create, delete, move, change, list; Management of files: create file, create version version,
delete, move, rename, list versions, read version; Management of forums (messages): post message,
reply, view, modify, delete. These operations can be performed concurrently (uses Telex to
automatically resolve conflicts among concurrent actions).

Environmental conditions/requirements: Java 6 JRE, (CFS as a Firefox extension [does not work
with the current version of Firefox]: Mozilla Firefox v2, Java 6 Plugin for Firefox or above), (CFS as
command­line interface: Apache Ant)

Recommendations for deployment (including prerequisites): Needs a shared repository service:
can be VOFS or a shared folder (e.g. DAV/NFS/CIFS based, no locking needed as concurrent access
is handled by CFS with the Telex library)

Experience/lessons learned: Difficulties with the use of Telex (understanding the API, stability of
Telex, due to the concurrent development of Telex and CFS). More info from experiments with real
users under way (results by end of May)

Comparison with state of the art: There are a few other client­based applications for document­
based file sharing and argumentation. The main advantages of CFS are that it is based on the

Grid4All Public Page 28

D4.8 User Manual Grid4All-034567

Mozilla platform (inheriting some advantages: portability, the application is offered in three forms:
command­line, Firefox extension, standalone application), and that it automatically handles
conflicts, that otherwise will be very confusing, that can occur in collaborative situations where
multiple participants work on the same file workspace.

6.3 eMeeting, an on-line Multimedia Collaborative Environment

Name of result: eMeeting

What it does (summary): eMeeting gives a communication channel between Grid4All users. It
allows multiple connected users to share an online experience using a video and audio conference,
shared slides, shared documents, and a text tool for collaborative text editing.

Where it can be obtained: eMeeting is not a downloadable application, but it’s possible to run an
e­meeting session typing the following URL in the web browser: http://emeeting.antares.es/.
In order to get required user and password, please contact Antares at alicia@antares.es

Targeted stakeholders: End users.

Scope, “best use” scenarios: The expected use scenarios are:

On­line learning sessions in which multimedia material is required to support the tutor speech.
Business meetings benefiting from costs reduction and lower transportation time.

Distinguishing features and benefits: It allows making a session reservation, launching it, and
once started up users can share documents, audio and video conversation, chat and slide shows. The
main benefit is that it shortens distances so it can lower travel costs and allow people to connect in
different time frames.

Environmental conditions/requirements: The eMeeting application has the following
requirements:

• Internet browser and broadband connection (512kb minimum).

• Client must have JVM (Java Virtual Machine ­ for future integration, so far, there are no
concerns about version)

• Flash Player 9+ installed

• Cookies activated in the browser

Experience/lessons learned: The challenge was to integrate the existing and centralized eMeeting
application in a decentralized environment as Grid4All. Having analyzed the characteristics of we
saw the possibilities of integration are through VOFS, VOMS, and Shared Calendar.

Grid4All Public Page 29

mailto:alicia@antares.es

D4.8 User Manual Grid4All-034567

Since the characteristics of these applications had been already developed in a centralized way
eMeeting was modified to allow control through web services. While it has been able to integrate
most of the features, the conversion of the video conferencing system means a too high cost for this
stage, since the current Grid4All provided services.

Comparison with state of the art: While there are applications allowing p2p on­line audiovisual
communication between two single users, the challenge was to get a p2p tool capable of allowing
simultaneous communication between multiple users. As stated above, we could not get the
distribution of video and audio in a decentralized way even when it is technologically feasible but
not possible due to its high cost of development.

6.4 Sakura, a Shared Calendar

Name of result: Sakura a shared calendar application (INRIA)

What it does (summary): The Sakura application is a peer to peer calendaring system that enables
a user to share his calendar, to create and invite users to a meeting, to change its time, or to cancel it.
Sakura relies on Telex, a platform for decentralized sharing developed in WP3. Sakura maintains
the invariant that the user is not double­booked into two different meetings at the same time.

Where it can be obtained: https://gforge.inria.fr/projects/sakura­sc/

Targeted stakeholders: Collaborative application developers who produce new application over
Telex, and end­users once a user friendly GUI is developed.

Scope, “best use” scenarios: Optimistic collaboration where users can concurrently organize
meetings even if disconnected.

Distinguishing features and benefits: In contrast to common calendar systems such as Doodle,
Sakura over Telex ensures consistency even when a user is tentatively engaged in several meetings,
i.e., the agreement protocol will not commit conflicting meetings. Additionally, Sakura over Telex
correctly supports alternative dates for a meeting and meeting grouping, and automatically propose
best solution in presence of conflicts.

Environmental conditions/requirements: Java 5 JRE, and Telex library.

Recommendations for deployment (including prerequisites): Each user needs to download
Sakura and install Telex.

Experience/lessons learned: Non­intuitive design of the consistency model due to the reasoning
difficulties for optimistic systems and the challenges of partial replication.

Comparison with state of the art: Many collaborative calendars exist. The main contribution of
Sakura is a fully decentralized implementation, automatic conflict resolution and eventual

Grid4All Public Page 30

D4.8 User Manual Grid4All-034567

consistency thanks to Telex. Additionally, the classical calendaring systems store all calendars in a
single large database. Instead, for scalability and privacy reasons, Sakura maintains a separate
calendar document per user, replicated only where some user has the right to access it.

Grid4All Public Page 31

D4.8 User Manual Grid4All-034567

7 Conclusions

The deliverable reports the main software results of the project. Each result is described following
the Grid4All architecture under one of the three groups of services (core­VO, inter­VO,
collaborative and federative) or end­user oriented applications. The user manuals are presented as
annexes.

Level of confidentiality and dissemination

By default, each document created within Grid4All is © Grid4All Consortium Members and should be
considered confidential. Corresponding legal mentions are included in the document templates and should
not be removed, unless a more restricted copyright applies (e.g. at subproject level, organisation level
etc.).

In the Grid4All Description of Work (DoW), and in the future yearly updates of the 18-months
implementation plan, all deliverables listed in section 7.7 have a specific dissemination level. This
dissemination level shall be mentioned in the document (a specific section for this is included in the
template, both on the cover page and in the footer of each page).

The dissemination level can be defined for each document using one of the following codes:

PU = Public

PP = Restricted to other programme participants (including the EC services);

RE = Restricted to a group specified by the Consortium (including the EC services);

CO = Confidential, only for members of the Consortium (including the EC services).

INT = Internal, only for members of the Consortium (excluding the EC services).
This level typically applies to internal working documents, meeting minutes etc., and cannot be used for
contractual project deliverables.

It is possible to create later a public version of (part of) a restricted document, under the condition that the
owners of the restricted document agree collectively in writing to release this public version. In this case, a
new document code should be given so as to distinguish between the different versions.

Grid4All Public Page 32

This page is intentionally left blank

Niche Quick Start Guide

Leif Lindbäck and Vladimir Vlassov

Royal Institute of Technology (KTH), Stockholm, Sweden
{leifl,vladv}@kth.se

 !!"#$%&$'()*"+$,$-(./0(12/"3$45675!"!/$8,!,9"6"!/$:;./"6

Table of Contents

1 Downloading Niche . 1
2 Installing Niche . 1
3 Starting Niche . 2
4 Defining Niche Components with Fractal . 3
5 The Niche Hello World Program . 3

5.1 Functional Components of Hello World . 4
Front-End Component . 4
Service Component . 5

5.2 Management Elements of Hello World . 7
ServiceSupervisor. 7
ConfigurationManager. 9
StartManager. 9

5.3 Deploying Hello World . 9
5.4 Starting Hello World . 13

Niche Quick Start Guide 1

Introduction

Niche is a Distributed Component Management System (DCMS), which is used
to develop, deploy and execute self-managing distributed component-based ap-
plications on a structured overlay network of computers. Niche includes (1) a
set of APIs for the development of self-managing distributed applications; (2)
a run-time execution environment for the deployment and execution of the ap-
plications together with its management elements. The Niche run-time environ-
ment includes a set of containers that reside on a structured overlay network
of computers; and a set of the overlay services (resource discovery, deployment,
publish-subscribe, metadata DHTs) provided in each of the containers.

The main innovation in Niche is the novel use of overlays, where a structured
overlay provides a network-transparent sensing/actuation infrastructure that en-
ables self-management of distributed component-based applications. Functional
components, component groups and bindings are first-class entities in Niche that
can be monitored and manipulated by management components (via sensors and
actuators) using the extensible monitoring and actuation APIs of Niche. Man-
agement components are organized as a network of Management Elements inter-
acting through events. Niche supports sensing changes in the state of components
and environment, and allows individual components to be found and appropri-
ately manipulated. Niche deploys both functional and management components
and sets up the appropriate sensor and actuation support infrastructure. The
initial deployment code can be either manually written by the developer, or gen-
erated by Niche from an ADL (Architecture Description Language) description
of the application architecture. The ADL compiler for describing initial config-
urations is made available together with Niche.

1 Downloading Niche

Download and unpack the niche-0.2.zip archive from http://niche.sics.

se/

2 Installing Niche

1. In order to be deployed and to operate, Niche requires the Apache Ant
build tool to be installed. For Ant download and installation, see http:

//ant.apache.org/index.html.
2. Niche requires Java (http://java.sun.com), version 1.6 or higher.
3. In the file niche-0.2/Jade/etc/dks/dksParam.prop, substitute localhost

for your real host (host could be given as either host name or ip address) in
the entry ip. Note that you can not run Niche without a working network
connection.

4. In the file niche-0.2/Jade/etc/oscar/bundle-jadeboot.properties, sub-
stitute localhost for your real host in the entries
jadeboot.registry.host and jadeboot.discovery.host.

2 Leif Lindbäck and Vladimir Vlassov

5. In the file niche-0.2/Jade/etc/oscar/bundle-jadenode.properties, sub-
stitute localhost for your real host in the entries
jadeboot.registry.host and jadeboot.discovery.host.

6. Make sure your host name is associated with your correct host. On Linux/U-
NIX machines this is done the following way:
(a) Find the host name with the command uname -n

$ uname -n

myHostName

(b) Make sure there is a line in the /etc/hosts file that looks like
<ip address> <host name>, where <host name> is the host name re-
turned by the uname command in the previous step.

7. Change all occurrences of <Path to Jade> to the absolute path to the
niche-0.2/Jade directory in the following files:
– niche-0.2/Jade/etc/execute.properties
– niche-0.2/Jade/etc/oscar/bundle.properties
– niche-0.2/Jade/etc/oscar/bundle-jadeboot.properties

8. Copy the version of niche-0.2/Jade/externals/swt-3349-*.jar,
where * corresponds to the name of your operating system, e.g windows, to
niche-0.2/Jade/externals/swt.jar

9. Niche uses a web server to provide addresses of existing nodes to new joining
nodes. The web server must be installed separately since it is not part of the
Niche distribution. The only requirement on the web server is that it must
support PHP. When you have a working web server, do the following:
(a) Copy the directory niche-0.2/Jade/webcache to the www root of the

web server.
(b) In niche-0.2/Jade/etc/dks/dksParam.prop, specify the host and port

number of the web server in the entry
publishAddress. Note that you can not specify localhost, you must
use a real host.

3 Starting Niche

1. Create run-time archives by running Ant with the target
bundles specified in the build file niche-0.2/Jade/build-src.xml, as fol-
lows.
cd niche-0.2/Jade/

ant -f build-src.xml bundles
2. Start the first node by running Ant with the target jadeboot in the build file

niche-0.2/Jade/build.xml, as follows.
cd niche-0.2/Jade/

ant jadeboot
3. Start more nodes by by running Ant with the target jadenode in the build

file niche-0.2/Jade/build.xml, as follows. You can start nodes on the same
or different machines. The following commands should be executed for each
node you want to start.
cd niche-0.2/Jade/

ant jadenode

Niche Quick Start Guide 3

4 Defining Niche Components with Fractal

Niche uses the Fractal Architecture Description Language (ADL) to define com-
ponents. For more information about Fractal and ADL see the Niche Program-
ming Guide or the Fractal home page (http://fractal.ow2.org/).

Briefly, Fractal components are runtime entities that communicate exclu-
sively through well-defined access points, called interfaces. In Niche the interfaces
are regular Java interfaces. Interfaces are divided into two kinds: client interfaces
that emit operation invocations and server interfaces that receive them. Inter-
faces are connected through communication paths, called bindings. Each Fractal
component has (at least) two basic controllers, (1) binding controller, which
supports binding and unbinding; (2) life-cycle controller supports starting and
stopping the execution of the component.

5 The Niche Hello World Program

Fig. 1. The Hello World program’s GUI.

The Hello World program has front-end components and service components.
The number of components is configurable. By default there are three service
components and one front-end component. The service components are placed in
a component group. The front-end component displays the GUI showed in Figure
1. There is a one-to-any binding from the front-end to the service component
group, which is invoked when the Hello Any button in the GUI is clicked. When
this happens, one of the service components will print the string Hello World.
There is also a one-to-all binding from the front-end to the service component
group, which is invoked when the Hello All button in the GUI is clicked. In this
case all service components will print the string Hello World.

The Hello World program is self-healing, which means that if one service
component crashes a new component will be instantiated, deployed and started.
The self-healing control loop consists of two Management Elements (MEs),
the ServiceSupervisor aggregator and the ConfigurationManager manager.
ServiceSupervisor is notified whenever a service component leaves or joins the
service component group. It notifies ConfigurationManager if the number of
components in the group drops below 3. When notified, ConfigurationManager
deploys and starts a new service component.

4 Leif Lindbäck and Vladimir Vlassov

1 <component name=” frontend ”>
2 < i n t e r f a c e name=”helloAny”
3 r o l e=” c l i e n t
4 s i gna tu r e=” he l l owor ld . i n t e r f a c e s . He l l oAnyInte r face ”
5 cont ingency=” opt i ona l ”
6 />

7 < i n t e r f a c e name=” h e l l oA l l ”
8 r o l e=” c l i e n t ”
9 s i gna tu r e=” he l l owor ld . i n t e r f a c e s . H e l l oA l l I n t e r f a c e ”

10 cont ingency=” opt i ona l ”
11 />

12 <content c l a s s=” he l l owor ld . f rontend . FrontendComponent”/>

13 <v i r tua l−node name=” l i gh twe i gh t1 ” resourceReqs=”10”/>

14 </component>

Listing 1. ADL definition of front-end component.

The Hello World program also includes StartManager, which instantiates
and deploys the service component group, ServiceSupervisor and
ConfigurationManager. This is necessary since the current Niche prototype
does not allow defining groups or configuring MEs in ADL.

The Hello World program is included in the Niche distribution, in the direc-
tory NicheHelloWorld; it is explained in detail below.

5.1 Functional Components of Hello World

There are two types of functional components, front-end component and service
component.

Front-End Component The front-end component has two tasks: (1) to ac-
cept input from the user through a GUI; (2) call service component methods in
response to user commands entered through the GUI.

The GUI is in a separate class, helloworld.frontend.UserInterface, which
is not explained here. For an introduction to writing user interfaces with Swing,
see http://java.sun.com/docs/books/tutorial/uiswing/. This class is not
aware of Niche, its only task is to handle the GUI.

The frontend component is defined in the ADL file,
NicheHelloWorld.fractal, located in the root directory of the Hello World
program (niche-0.2/NicheHelloWorld). The component definition is showed
in Listing 1. Lines 2-6 define the interface used for the one-to-any binding ex-
plained in 5. Note that the role of the interface is client (line 3), which means
that the front-end component invokes this interface. Line 4 specifies the Java
interface that defines the operations in the helloAny interface. Lines 7-11 spec-
ifies the interface used for the one-to-all binding explained in 5. Line 12 spec-
ifies the main Java class of the component. This class must implement server
interfaces of the component, and also implement the interfaces of the Fractal
controllers, see 4. Line 13 defines (1) a logical name for the Niche node on which
the front-end component will be deployed; (2) a requirement for the node. This

Niche Quick Start Guide 5

requirement has no meaning, it is just a number. It is matched against the avail-
able resource specified for each node in the file niche-0.2/Jade/lines. Each
line in this file contains a node number and a resource. A component speci-
fied in NicheHelloWorld.fractal will only be deployed on nodes with resource
value (in lines) at least the value specified in the requirement for that node
(i.e greater than or equal to 10 in this case). In a real application this feature
could be used to specify for example available memory or CPU speed. This is
explained in the Niche Programming Guide.

As specified in the ADL definition in Listing 1, it is the class
helloworld.frontend.FrontendComponent that implements the Fractal con-
troller interfaces. This part of the class is shown in Listing 2. The listFc method
(lines 1-3) returns an array with the names of all components to which the front-
end component can be bound to. These are the components implementing the
front-end’s client interfaces and component, which is a reference to the front-end
component itself. All components should be able to handle such a reference to
itself. The lookupFc method (lines 5-15) returns the front-end’s current refer-
ence to the specified component. The bindFc method (lines 17-27) stores the
given reference to a component. The unbindFc method (lines 29-39) removes
the reference to the specified component. The getFcState method (lines 41-43)
tells whether the front-end is active or not, status is a boolean instance param-
eter not showed in the listing. startFc (lines 45-50) is called by Niche when the
front-end should become active, line 47 instantiates the UserInterface class
containing the GUI. This is when the GUI is displayed. Finally, stopFc (lines
52-54) is called by Niche when the front-end should become inactive.

Listing 3 shows the methods that are invoked when the user clicks one of the
GUI buttons (HelloAny or HelloAll). The component bound to the appropriate
client interface is invoked. When the user clicks HelloAny, the GUI event handler
will invoke the helloAny method defined in lines 5-7 in Listing 3. This method
in turn invokes the method helloAny in the component who’s reference is stored
in the helloAny instance parameter as shown in line 6. The correct reference
is stored in this instance parameter by the StartManager, as explained in 5.2.
HelloAll is handled in a similar way as HelloAny.

Service Component The service component’s task is to print the specified
string when any of its server interfaces is invoked.

The service component consists of one class who’s source code is in
src/helloworld/service/ServiceComponent.java. Listing 4 shows its imple-
mentation of the server interfaces (helloAny and helloAll). These methods
print the specified string.

The ADL definition is in the same fractal file as the front-end component’s
definition, NicheHelloWorld.fractal, which is located in the root directory
of the Hello World program (niche-0.2/NicheHelloWorld). Note that there
must be one component entity for each service component that shall be started.
Since there are three such entities there will be three instances of the service
component.

6 Leif Lindbäck and Vladimir Vlassov

1 public St r ing [] l i s t F c () {
2 return new St r ing [] { ”component” , ” hel loAny” , ” h e l l oA l l ” } ;
3 }
4
5 public Object lookupFc (f ina l St r ing itfName) throws

NoSuchInter faceExcept ion {
6 i f (itfName . equa l s (” hel loAny”)) {
7 return hel loAny ;
8 } else i f (itfName . equa l s (” h e l l oA l l ”)) {
9 return h e l l oA l l ;

10 } else i f (itfName . equa l s (”component”)) {
11 return mysel f ;
12 } else {
13 throw new NoSuchInter faceExcept ion (itfName) ;
14 }
15 }
16
17 public void bindFc (f ina l St r ing itfName , f ina l Object i t fVa lu e)

throws NoSuchInter faceExcept ion {
18 i f (itfName . equa l s (” hel loAny”)) {
19 hel loAny = (He l loAnyInte r face) i t fVa lu e ;
20 } else i f (itfName . equa l s (” h e l l oA l l ”)) {
21 h e l l oA l l = (He l l oA l l I n t e r f a c e) i t fVa lu e ;
22 } else i f (itfName . equa l s (”component”)) {
23 myse l f = (Component) i t fVa lu e ;
24 } else {
25 throw new NoSuchInter faceExcept ion (itfName) ;
26 }
27 }
28
29 public void unbindFc (f ina l St r ing itfName) throws

NoSuchInter faceExcept ion {
30 i f (itfName . equa l s (” hel loAny”)) {
31 hel loAny = null ;
32 } else i f (itfName . equa l s (” h e l l oA l l ”)) {
33 h e l l oA l l = null ;
34 } else i f (itfName . equa l s (”component”)) {
35 myse l f = null ;
36 } else {
37 throw new NoSuchInter faceExcept ion (itfName) ;
38 }
39 }
40
41 public St r ing getFcState () {
42 return s t a tu s ? ”STARTED” : ”STOPPED” ;
43 }
44
45 public void s ta r tFc () throws I l l e g a lL i f eCy c l eEx c ep t i o n {
46 // Create the GUI.
47 new Use r In t e r f a c e (this) ;
48 s t a tu s = true ;
49 System . e r r . p r i n t l n (”Frontend Started . ”) ;
50 }
51
52 public void stopFc () throws I l l e g a lL i f eCy c l eEx c ep t i o n {
53 s ta tu s = fa l se ;
54 }

Listing 2. Implementation of Fractal controllers in front-end component.

Niche Quick Start Guide 7

1 // ///
2 // ///////////////// Cal led from the user in t e r f a c e . /////////////
3 // ///
4
5 public synchronized void helloAny () {
6 hel loAny . hel loAny (”HelloWorld”) ;
7 }
8
9 public synchronized void h e l l oA l l () {

10 h e l l oA l l . h e l l oA l l (”HelloWorld”) ;
11 }

Listing 3. Calls from GUI in front-end component.

1 public void hel loAny (St r ing s) {
2 System . out . p r i n t l n (s) ;
3 }
4
5 public void h e l l oA l l (S t r ing s) {
6 System . out . p r i n t l n (s) ;
7 }

Listing 4. Implementations of server interfaces in service component.

The component’s definition and implementation of Fractal controllers are
very similar to the front-end component’s and are therefore not shown.

5.2 Management Elements of Hello World

Management elements (ME) can be defined in ADL in a Fractal file that should
have the same name as the Java class implementing the element, and be located
in the same directory. Such a definition will not cause the deployment of the
ME, it must be deployed programmatically.

The MEs are:

– ServiceSupervisor, which is notified whenever a service component joins
or leaves the service component group. If the number of components in this
group drops below three it notifies ConfigurationManager

– ConfigurationManager, which deploys a new service component, starts it
and makes it join the service component group.

– StartManager, which instantiates and deploys the service component group,
ServiceSupervisor and ConfigurationManager. This is necessary since
the current prototype does not allow defining groups or configuring MEs in
ADL.

Management elements are described in detail below.

ServiceSupervisor. The ServiceSupervisor is an aggregator, which is de-
fined in ServiceSupervisor.fractal, shown is Listing 5. Lines 2-4 define the
following server interfaces implemented by this ME.

8 Leif Lindbäck and Vladimir Vlassov

1 <d e f i n i t i o n name=” he l l owor ld . agg regato r s . S e rv i c eSupe r v i s o r ” >

2 < i n t e r f a c e name=” i n i t ” r o l e=” s e rv e r ”
s i gna tu r e=”dks . n iche . f r a c t a l . i n t e r f a c e s . I n i t I n t e r f a c e ” />

3 < i n t e r f a c e name=” eventHandler ” r o l e=” s e rv e r ”
s i gna tu r e=”dks . n iche . f r a c t a l . i n t e r f a c e s . EventHandle r Inter face ” />

4 < i n t e r f a c e name=”movable” r o l e=” s e r v e r ”
s i gna tu r e=”dks . n iche . f r a c t a l . i n t e r f a c e s . Movable Inte r face ” />

5 < i n t e r f a c e name=” t r i g g e r ” r o l e=” c l i e n t ”
s i gna tu r e=”dks . n iche . f r a c t a l . i n t e r f a c e s . T r i g g e r I n t e r f a c e ” />

6 <content c l a s s=” he l l owor ld . agg rega to r s . S e rv i c eSupe rv i s o r ” />
7 </ d e f i n i t i o n>

Listing 5. ServiceSupervisor definition.

1 St r ing idAsStr ing =
fa i l edEvent . getFailedComponentId () . ge t Id () . t oS t r i ng () ;

2
3 i f (! currentComponents . containsKey (idAsStr ing)) {
4 // The f a i l e d component was not in our l i s t o f
5 // ac t i v e s e rv i c e components .
6 return ;
7 }
8
9 // Remove f a i l e d component from l i s t of ac t i v e components .

10 currentComponents . remove (idAsStr ing) ;
11 currentAl locatedServiceComponents−−;
12
13 i f (myId . getReplicaNumber () < 1) {
14 System . out . p r i n t (” Se rv i c eSupe rv i s o r ”) ;
15 } else {
16 System . out . p r i n t (” Se rv i c eSupe rv i s o r REPLICA ”) ;
17 }
18 System . out . p r i n t l n (”has r e c e i v ed a ComponentFailEvent !\n”
19 + ”The r e s u l t i s that there are now ” +

currentAl locatedServ iceComponents
20 + ” s e r v i c e components”) ;
21
22 i f (currentAl locatedServ iceComponents <

MINIMUM ALLOCATED SERVICE COMPONENTS) {
23 // There are too few serv i ce components .
24 i f (myId . getReplicaNumber () < 1) {
25 System . out . p r i n t l n (” Se rv i c eSupe rv i s o r t r i g g e r i n g ! ”) ;
26 }
27
28 // Cancel eventua l running timers s ince we are t e l l i n g
29 // ConfigurationManager now .
30 actuator . cancelTimer (ava i l ab i l i t yT ime r I d) ;
31 // Te l l ConfigurationManager there are too
32 // few serv i ce components .
33 eventTr igger . t r i g g e r (new Serv i ceAva i lab i l i tyChangeEvent ()) ;
34
35 // When the timer goes o f f we w i l l check i f enough serv i c e
36 // components have become ac t i v e .
37 ava i l ab i l i t yT ime r Id =
38 actuator . r eg i s t e rT imer (this ,
39 Avai labi l i tyTimerTimeoutEvent . class ,
40 CHECK NR OF COMPONENTS AFTER THIS TIME) ;
41 }

Listing 6. Handling of ComponentFailEvent in ServiceSupervisor.

Niche Quick Start Guide 9

– InitInterface, which contains (1) method for receiving a reference to a
component implementing the Niche API; (2) methods for receiving initial-
ization attributes specified at deploy time.

– EventHandlerInterface, which lets the ME receive events.
– MovableInterface, which enables reading the ME’s state when the ME is

copied or moved.

Line 5 defines the client interface, TriggerInterface, to which this ME should
be bound. This interface is used to send events, in this case to
ConfigurationManager. A reference to a component implementing this inter-
face will automatically be handed to ServiceSupervisor when it is deployed. Fi-
nally, line 6 defines the implementing class, ServiceSupervisor. Listing 6 shows
what happens when ServiceSupervisor receives a
ComponentFailEvent: it sends an event to ConfigurationManager if there are
less than three active service components. Comments in the listing explain how
it works.

ConfigurationManager. The ConfigurationManager is a manager, which is
defined in ConfigurationManager.fractal; it is very similar to the definition of
ServiceSupervisor. Listing 7 shows what happens when ConfigurationManager

receives a
ServiceAvailabilityChangedEvent: it deploys and starts a new ServiceComponent.
Comments in the listing explain how it works.

StartManager. The StartManager is a manager which is defined in
NicheHelloWorld.fractal; the definition is shown in Listing 8. Note that the
value of the definition attribute is ManagementType (line 1). This definition
contains a set of client interfaces that correspond to the Niche API. These in-
terfaces are automatically bound after StartManager is instantiated. Listing 9
show how the StartManager creates the service component groups; Listing 10
shows how the ServiceSupervisor and ConfigurationManager are configured
and deployed. Both listings are explained by comments in the code.

5.3 Deploying Hello World

1. Place the file NicheHelloWorld.fractal in niche-0.2/Jade/examples and
the file nichehelloworld.jar in niche-0.2/Jade/externals. This is al-
ready done in the downloadable Niche distribution.

2. The files listed below all need the correct properties concerning the Hello
World program. In the distribution all needed properties are already defined.

– niche-0.2/Jade/build-src.xml

– niche-0.2/Jade/etc/build.properties

– niche-0.2/Jade/META-INF/jadenode/MANIFEST.MF

– niche-0.2/Jade/META-INF/jadeboot/MANIFEST.MF

10 Leif Lindbäck and Vladimir Vlassov

1 // Find a node tha t meets the requirements for a se rv i ce component .
2 NodeRef newNode = null ;
3 try {
4 newNode = myManagementInterface .
5 oneShotDiscoverResource (nodeRequirements) ;
6 } catch (OperationTimedOutException e r r) {
7 System . out . p r i n t l n (”Discover operat ion timed out . ”) ;
8 continue ;
9 }

10 i f (newNode == null) {
11 System . out . p r i n t l n (”Could not get a new re sou r c e .) ;
12 break ;
13 }
14 System . out . p r i n t l n (”Got a r e sou r c e ”) ;
15
16 // Al l o ca t e r e s ou r c e s f o r a s e r v i c e component at the found node .
17 L i s t a l l o ca t edResour c e s = nu l l ;
18 try {
19 a l l o ca t edResour c e s = myManagementInterface . a l l o c a t e (newNode ,

nu l l) ;
20 } catch (OperationTimedOutException e r r) {
21 System . out . p r i n t l n (” A l l o ca t e operat ion timed out . ”) ;
22 cont inue ;
23 }
24 ResourceRef a l l o ca t edResource = (ResourceRef)

a l l o ca t edResour c e s . get (0) ;
25
26 // Deploy a new s e r v i c e component in s tance at the a l l o c a t e d r e sou r c e .
27 St r ing deploymentParams = nu l l ;
28 try {
29 deploymentParams = S e r i a l i z a t i o n . s e r i a l i z e (serviceCompProps) ;
30 } catch (IOException i o e) {
31 i o e . pr intStackTrace () ;
32 }
33 L i s t deployedComponents = nu l l ;
34 try {
35 deployedComponents =
36 myManagementInterface . deploy (a l l ocatedResource ,

deploymentParams) ;
37 } catch (OperationTimedOutException e r r) {
38 System . out . p r i n t l n (”Deploy operat ion timed out . ”) ;
39 cont inue ;
40 }
41
42 ComponentId c id =
43 (ComponentId) ((Object []) deployedComponents . get (0)) [1] ;
44 System . out . p r i n t l n (”ConfigurationManager i s adding new component”) ;
45
46 // Add the newly deployed component to the s e r v i c e group
47 // and s t a r t i t .
48 myManagementInterface . update (componentGroup , cid ,
49 NicheComponentSupportInterface .ADD TO GROUP AND START) ;
50 System . out . p r i n t l n (”ConfigurationManager says : Al l done ! ”) ;

Listing 7. Handling of ServiceAvailabilityChangeEvent in
ConfigurationManager.

1 <component name=”StartManager ”
d e f i n i t i o n=”org . objectweb . jasmine . jade . ManagementType”>

2 <content c l a s s=” he l l owor ld . managers . StartManager ”/>
3 </component>

Listing 8. StartManager definition.

Niche Quick Start Guide 11

1 // Get a re ference to the Niche API.
2 NicheActuator Inte r face myActuatorInter face =

n i cheSe rv i c e . getOver lay () . getJadeSupport () ;
3
4 // Find the front−end component .
5 ComponentId frontendComponent =
6 (ComponentId) n i che IdReg i s t ry . lookup (APPLICATION PREFIX +

FRONTENDCOMPONENT) ;
7
8 // Find a l l s e r v i c e components .
9 ArrayList<ComponentId> serviceComponents = new ArrayList () ;

10 int serviceComponentIndex = 1 ;
11 ComponentId serviceComponent =
12 (ComponentId) n i che IdReg i s t ry . lookup (APPLICATION PREFIX +

SERVICE COMPONENT
13 + serviceComponentIndex) ;
14 while (serviceComponent != null) {
15 serviceComponents . add (serviceComponent) ;
16 serviceComponentIndex++;
17 serviceComponent =
18 (ComponentId) n i che IdReg i s t ry . lookup (APPLICATION PREFIX

+ SERVICE COMPONENT
19 + serviceComponentIndex) ;
20 }
21
22 // Create a component group containing a l l s e r v i c e components .
23 GroupId serviceGroupTemplate =

myActuatorInter face . getGroupTemplate () ;
24 serviceGroupTemplate . addServerBinding (”hel loAny” ,

JadeBindInter face .ONE TO ANY) ;
25 serviceGroupTemplate . addServerBinding (” h e l l oA l l ” ,

JadeBindInter face .ONE TO MANY) ;
26 GroupId serv iceGroup =
27 myActuatorInter face . createGroup (serviceGroupTemplate ,

serviceComponents) ;
28
29 // Create a one−to−any binding from the front−end
30 // to the se rv i ce group .
31 // This binding uses the helloAny in t e r f a c e .
32 St r ing c l i en t In te r f a ceName = ”helloAny” ;
33 St r ing server Inter faceName = ”helloAny” ;
34 myActuatorInter face . bind (frontendComponent ,

c l i ent Inte r faceName , serviceGroup ,
35 serverInter faceName ,

JadeBindInter face .ONE TO ANY) ;
36
37 // Create a one−to−a l l b inding from the front−end
38 // to the se rv i ce group .
39 // This binding uses the h e l l oA l l i n t e r f a c e .
40 c l i en t In te r f aceName = ” h e l l oA l l ” ;
41 server Inter faceName = ” h e l l oA l l ” ;
42 myActuatorInter face . bind (frontendComponent ,
43 c l i ent Inte r faceName ,
44 serviceGroup ,
45 serverInter faceName ,
46 JadeBindInter face .ONE TO MANY) ;

Listing 9. Creation of service component groups in StartManager.

12 Leif Lindbäck and Vladimir Vlassov

1 // Configure and deploy the ServiceSuperv isor aggregator .
2 ManagementDeployParameters params =
3 new ManagementDeployParameters () ;
4 params . desc r ibeAggregator (S e rv i c eSupe rv i s o r . class . getName () ,
5 ”SA” , null ,
6 new S e r i a l i z a b l e [] {

serv iceGroup . get Id () }) ;
7 params . s e tR e l i a b l e (true) ;
8 NicheId s e r v i c e Supe r v i s o r =
9 myActuatorInter face . deployManagementElement (params ,

serv iceGroup) ;
10 myActuatorInter face . sub s c r i b e (serviceGroup ,
11 s e rv i c eSupe rv i s o r ,
12 ComponentFailEvent . class . getName ()) ;
13 myActuatorInter face . sub s c r i b e (serviceGroup ,
14 s e rv i c eSupe rv i s o r ,
15 MemberAddedEvent . class . getName ()) ;
16
17 // Grab the se rv i c e component ’ s proper t i e s from a
18 // serv i ce component which i s a lready deployed .
19 // The ConfigurationManager needs these when
20 // i t dep loys a new serv i c e component .
21 ComponentId grabParametersFromThis =
22 (ComponentId) n i che IdReg i s t ry . lookup (APPLICATION PREFIX +

SERVICE COMPONENT + ”1”) ;
23 DeploymentParams serv iceComponentPropert ies = null ;
24 try {
25 serv iceComponentPropert ies =
26 (DeploymentParams)

S e r i a l i z a t i o n . d e s e r i a l i z e (grabParametersFromThis .
27 getSer ia l i z edDep loyParamete r s ()) ;
28 } catch (IOException e) {
29 e . pr intStackTrace () ;
30 } catch (ClassNotFoundException e) {
31 e . pr intStackTrace () ;
32 }
33
34 // Configure and deploy the ConfigurationManager manager .
35 St r ing minimumNodeCapacity = ”200” ;
36 params = new ManagementDeployParameters () ;
37 params . descr ibeManager (ConfigurationManager . class . getName () ,
38 ”CM” , null ,
39 new S e r i a l i z a b l e [] { serviceGroup ,
40 serviceComponentPropert ies ,
41 minimumNodeCapacity }) ;
42 params . s e tR e l i a b l e (true) ;
43 NicheId conf igurat ionManager =
44 myActuatorInter face . deployManagementElement (params ,

serv iceGroup) ;
45 myActuatorInter face . sub s c r i b e (s e rv i c eSupe rv i s o r ,

conf igurat ionManager ,
46 Serv i ceAva i lab i l i tyChangeEvent . class . getName ()) ;

Listing 10. Configuration and deployment of management elements in
StartManager.

Niche Quick Start Guide 13

3. The file niche-0.2/Jade/NicheHelloWorld-Deploy.bsh is a script needed
for deployment of Hello World.

4. Start Niche as described in Section 3. You should start at least four nodes
including the first node started with the Ant target jadeboot.

5. Deploy the Hello World program by running Ant with the target
testG4A-NicheHelloWorld-Deploy, as follows.
cd niche-0.2/Jade/

ant testG4A-NicheHelloWorld-Deploy

5.4 Starting Hello World

1. Start the Hello World program by running Ant with the target
testG4A-NicheHelloWorld-Start, as follows.
cd niche-0.2/Jade/

ant testG4A-NicheHelloWorld-Start

Note that this target needs the script file niche-0.2/Jade/NicheHelloWorld-Start.bsh.
2. When this target is executed, the GUI in Figure 1 will be displayed. How

the program works is explained in the beginning of Section 5.

This page is intentionally left blank

Niche Programming Guide

(SICS, KTH, INRIA)

July 8, 2009

Abstract

Deploying and managing distributed applications in dynamic Grid envi-
ronments requires a high degree of autonomous management. Programming
autonomous management in turn requires programming environment sup-
port and higher level abstractions to become feasible. We present Niche,
which is a Distributed Component Management System (DCMS) that pro-
vides an API for programming self-managing component-based distributed
applications. Application’s functional and self-management code are pro-
grammed separately. The framework extends the Fractal component model
by the component group abstraction and one-to-any and one-to-all commu-
nication patterns. Niche can automatically move application components
responsible for self-management when necessary due to resource churn. The
framework supports a network-transparent view of system architecture sim-
plifying designing application self-* code. The framework provides a con-
cise and expressive API for self-* code. Programming application self-* be-
haviours with Niche requires just a few dozens lines per application compo-
nent. The implementation of the framework relies on scalability and robust-
ness of the Niche structured p2p overlay network. We have also developed a
distributed file storage service to illustrate and evaluate our framework. We
discuss the current status of the Niche implementation and outline future
work.

Contents

1 Introduction 5

2 Component Programming Primer 8
2.1 The Fractal Component Model 8
2.2 Implementing Fractal Components in Java 9

2.2.1 Creating the component interfaces 10
2.2.2 Implementing the component classes 11

2.3 Deploying Fractal applications 13
2.4 Extensions of standard Fractal ADL 14

2.4.1 Deployment extensions 14
2.4.2 Binding extensions . 15
2.4.3 Self-management extensions 16

3 Self-Managing Applications with Niche 18
3.1 Functional Code and Self-Management 18
3.2 Component-Based Functional Code 19
3.3 Application Self-Management by Control Loops 20
3.4 Watchers, Aggregators and Managers 22
3.5 Orchestration of Multiple Control Loops 23
3.6 Scalability and Fault-Tolerance of Control Loops 24
3.7 Management Elements and Sensors with Niche 25
3.8 Management Events . 27
3.9 Architecture Representation

in Self-Management Code . 28
3.10 Initial Deployment of Applications 30
3.11 Resource Management and Niche 31
3.12 Groups and Group Sensing 32
3.13 Controlling Location of Management Elements 34
3.14 Reliable Self-* Behaviours By Replication 35
3.15 The Implementation Model of Niche 36

1

4 DCMS API 43
4.1 Interfaces . 43

4.1.1 Interface NicheActuatorInterface 43
4.1.2 Interface NicheComponentSupportInterface . 49

4.2 Interfaces . 55
4.2.1 Interface EventHandlerInterface 55
4.2.2 Interface InitInterface 55
4.2.3 Interface MovableInterface 57
4.2.4 Interface TriggerInterface 57

4.3 Classes . 59
4.3.1 Class ManagementDeployParameters 59

5 DCMS Use Case: YASS 64
5.1 Architecture . 64

5.1.1 Application functional design 64
5.1.2 Application non-functional design 65
5.1.3 Test-cases and initial evaluation 66

5.2 Implementation . 68
5.2.1 The Component Load Sensor 68
5.2.2 The Component Load Watcher 68
5.2.3 The Storage Aggregator 69
5.2.4 The Configuration Manager 69
5.2.5 The File Replica Aggregator 69
5.2.6 The File Replica Manager 70
5.2.7 The Create Group Manager 70
5.2.8 The Start Manager . 70

5.3 Installation . 70
5.4 Running YASS . 72

6 Features and Limitations 73
6.1 Initial deployment . 73
6.2 Demands on stability . 73
6.3 Scope of registry . 73
6.4 Resource management . 74
6.5 Id configuration . 74

6.5.1 Id configuration example 74
6.6 Limitations of two-way bindings 75
6.7 Caching . 75
6.8 Lack of garbage collection . 76
6.9 YASS limitations . 76

2

7 Future Extensions 77
7.1 Initial deployment . 77
7.2 Resource Management . 77
7.3 Increased Tolerance to Churn: Joins, Leaves and Failures . . 77
7.4 Caching . 78
7.5 Improved Garbage Collection 78
7.6 Replication of Architecture Element Handles 78

8 Conclusions 80

3

List of Figures

2.1 HelloWorld Fractal application. 9
2.2 Application using group communication 15

3.1 Application Architecture with Niche. 18
3.2 Functional Code in a Niche-based Application. 19
3.3 Management Control Loops. 20
3.4 Self-Management in a Niche-based Application. 21
3.5 Orchestration of Multiple Control Loops. 23
3.6 MEs in Niche. 25
3.7 Composition of MEs. 25
3.8 Structure of Application-Specific Sensors. 27
3.9 Composition of Application-Specific Sensors. 27
3.10 Application Architecture Representation in Self-* Code. . . . 28
3.11 Sharing Niche Id:s between distributed MEs. 29
3.12 Example of Self-Management Code with Niche. 30
3.13 Resource Management with Niche. 32
3.14 Watching Groups in Niche-based Applications. 33
3.15 Co-location of MEs. 34
3.16 Niche infrastructure. 36
3.17 Id:s and References in self-* Architecture. 38
3.18 Caching of DCMS entities. 39
3.19 Threads of Control in Niche. 39
3.20 Replication of Synchronized MEs in Niche. 41
3.21 Bindings in Niche. 42

5.1 YASS Functional Part . 64

5.2 YASS Non-Functional Part 65
5.3 Parts of the YASS application deployed on the management

infrastructure. 66

7.1 Replicated Handles. 78

4

Chapter 1

Introduction

Niche is a distributed component management system (DCMS), which used
to develop, deploy and execute a self-managing distributed application or
service on a dynamic overlay network of the Democratic Grid.

Niche includes a component-based programming model with a set of
APIs for development of self-managing applications and services, and a run-
time execution environment for deployment and execution of the services.
The run-time environment provides a set of overlay services, which mostly
deal with connectivity of Niche resources and elements, e.g. nodes, compo-
nents, component groups.

Niche programming model and API separate functional and non-functional
(management) parts of the application. The management part includes self-*
code that monitors and manages the functional part. Application compo-
nents, component groups and bindings, are first-class entities in Niche that
can be monitored and manipulated by the self-* code using an extensible
actuation API provided by Niche. The actuation API defines a number of
operations that can be performed to change architecture, configuration and
operation of an application, e.g. deploy and (re)bind components, start/stop
threads, move and replicate components, change component attributes.

The Niche programming model is partly based on the Fractal component
model [7], in which components are bound and interact with each other us-
ing two kinds of interfaces: (1) server interfaces offered by the components;
(2) and client interfaces used by the components. Components are intercon-
nected by bindings: a client interface of one component is bound to a server
interface of another component. Fractal allows nesting of components in
composite components and sharing of components. Components have con-
trol membranes, introspection and intercession capabilities. This enables
developing of manageable components. Niche supports location-transparent
bindings and extends the original Fractal model with component groups that
support one-to-any and one-to-many bindings.

Both, functional and management parts of an application can be pro-

5

grammed using the Niche component-based programming model and the
corresponding API. However, elements of the management part (watchers,
aggregators, managers) normally interact with each other using the event
mechanism rather than the bindings used to interconnect functional compo-
nents.

The management part of an application is constructed as a set of control
loops each of which monitors some part of the application and reacts on
predefined events (e.g. node failures, leaves or joins) and application-specific
events (e.g. high load, low available storage capacity). The predefined events
are fired by the run-time environment. When a control loop finds a symptom
that requires some changes in the application, it plans and actuates necessary
management actions using the Niche actuation API.

The control loops of the management part are built of distributed Man-
agement Elements, MEs, interacting through events delivered by the pub/-
sub overlay service. MEs can be of three types: Watchers (Wi on Figure X),
Aggregators (Aggr) and Managers (Mgr). A watcher monitors a part of the
application, and can fire events when it finds some symptoms of the man-
agement concern. Aggregates are used to collect, filter and analyse events
from watchers. An aggregator can be programmed to analyse symptoms and
to issue change requests to managers. Managers do planning and execution
of change requests. Niche programming environment provides basic MEs,
publish/subscribe and actuation APIs. The Niche run-time environment
includes a set of component containers that reside on a structured over-
lay network of VO computers; and a set of the overlay services (resource
discovery, deployment, publish/subscribe, DHT).

The Niche run-time system allows initial deployment of a service or an
application on the Democratic Grid. Niche relies on the underlying overlay
services to discover and to allocate resources needed for deployment, and to
deploy the application. The initial deployment code can be either manually
written by the developer, or generated by Niche from the ADL description
of the application architecture.

After/upon deployment, the management part of the application can
monitor and react on changes in availability of resources by subscribing to
resource events fired by Niche containers. In order to achieve robustness of
the management part, MEs are transparently replicated in different Niche
containers.

All elements of a Niche application - components, bindings, groups, man-
agement elements - are identified by unique identifiers (names) that enable
location transparency. Niche uses the DHT functionality of the underlying
structured overlay network for its lookup service. Furthermore, each con-
tainer maintains a cache of name-to-location mappings. Once a name of an
element is resolve to its location, the element (its hosting container) is ac-
cessed directly rather than by routing messages though the overlay network.
If the element moves to a new location, the element name is transparently

6

resolved to the new location.

Self-Managing Services Using Niche

In order to demonstrate Niche, we have developed two self-managing ser-
vices:

YASS : Yet Another Storage Service;

YACS : Yet Another Computing Service.

The services can be deployed and provided on computers donated by
users of the service or by a service provider. The services can operate even
if computers join, leave or fail at any time. Each of the services has self-
healing and self-configuration capabilities and can execute on a dynamic
overlay network. Self-managing capabilities of services allows the users to
minimize the human resources required for the service management. Each
of services implements relatively simple self-management algorithms, which
can be changed to be more sophisticated, while reusing existing monitoring
and actuation code of the services.

YASS (Yet Another Storage Service) is a robust storage service that
allows a client to store, read and delete files on a set of computers. The
service transparently replicates files in order to achieve high availability of
files and to improve access time. The current version of YASS maintains the
specified number of file replicas despite of nodes leaving or failing, and it
can scale (i.e. increase available storage space) when the total free storage
is below a specified threshold.

YACS (Yet Another Computing Service) is a robust distributed comput-
ing service that allows a client to submit and execute jobs, which are bags
of independent tasks, on a network of nodes (computers). YACS guarantees
execution of jobs despite of nodes leaving or failing. Furthermore, YACS
scales, i.e. changes the number of execution components, when the number
of jobs/tasks changes. YACS supports checkpointing that allows restarting
execution from the last checkpoint when a worker component fails or leaves.

7

Chapter 2

Component Programming

Primer

This chapter aims to introduce the Fractal component model, to provide a
basic primer on component programming, and to outline the main elements
of the architecture description language (ADL).

2.1 The Fractal Component Model

Fractal is a modular and extensible component model that can be used with
various programming languages to design, implement, deploy and reconfig-
ure various systems and applications from operating systems and middleware
to graphical user interfaces. The Fractal component model has the following
main features:

• hierarchical containment: components can be nested at arbitrary
levels (hence the ”Fractal” name).

• reflection: components can be endowed with introspection and in-
tercession capabilities.

• sharing: a given component instance can be included (or shared) by
more than one component.

• openness: Fractal does not impose predefined semantics for reflective
behaviour, component containment, and component binding.

Fractal components are runtime entities that communicate exclusively
through well-defined access points, called interfaces. Interfaces can be di-
vided into two kinds: client interfaces that emit operation invocations and
server interfaces that receive them. Interfaces are connected through com-
munication paths, called bindings. Fractal distinguishes primitive compo-
nents from composite components, formed by hierarchically assembling other

8

components. Each Fractal component is made of two parts: the membrane,
which embodies control behaviour, and the content, which consists of a finite
set of sub-components. The membrane is composed of several controllers,
which can take arbitrary (including user-defined) forms. Nevertheless, Frac-
tal does define a useful set of four basic controllers. The attribute con-
troller supports configuring component properties. The binding controller
supports binding and unbinding client interfaces to server interfaces. The
content controller supports listing, adding, and removing sub-components.
The life-cycle controller supports starting and stopping the execution of a
component. Finally, Fractal provides an architecture description language
(ADL) for specifying configurations comprising components, their composi-
tion relationships, and their bindings.

Fractal is an ObjectWeb project, and further details are available at:
http://fractal.objectweb.org

2.2 Implementing Fractal Components in Java

This section explains how to program Fractal components in Java. The
example used is the HelloWorld example, found (more or less adapted) in
all Fractal distributions. This example is a very simple application made
of two primitive components inside a composite component (see the figure
below).

Figure 2.1: HelloWorld Fractal application.

The first primitive component is a ”server” component that provides an
interface to print messages on the console. It can be parameterized with
two attributes: a ”header” attribute to configure the header printed in front
of each message, and a ”count” attribute to configure the number of times
each message should be printed. The other primitive component is a ”client”
component that uses the previous component to print some messages.

9

The server component provides a server interface named ”s” of type
Service, which contains a print method. It also has an AttributeController
interface of type ServiceAttributes, which contains four methods to get and
set the two attributes of the server component.

The client component provides a server interface named ”m” of type
Main, which contains a main method, called when the application is launched.
It also has a client interface named ”s” of type Service.

The composite component provides a server interface ”m” that exports
the corresponding interface of the client component.

The application can be programmed in two steps, by creating the com-
ponent interfaces first, and then implementing these interfaces in the com-
ponent classes.

2.2.1 Creating the component interfaces

Three interfaces must be implemented: the two ”functional” interfaces Ser-
vice and Main, and the attribute controller interface ServiceAttributes.

The functional interfaces are programmed ”normally”, i.e., the Fractal
model does not impose any constraints on the Fractal functional component
interfaces, except the fact that they must be public. The Service and Main
interfaces are therefore very simple to implement:

public interface Service {

void print (String msg);

}

public interface Main {

void main (String[] args);

}

On the other hand, the attribute controller interfaces must extend the
AttributeController interface, and must only have getter and setter method
pairs (and they must be public too). The ServiceAttributes interface is
therefore the following:

public interface ServiceAttributes extends AttributeController {

String getHeader ();

void setHeader (String header);

int getCount ();

void setCount (int count);

}

10

2.2.2 Implementing the component classes

The component classes must implement the previous interfaces, as well as
some Fractal control interfaces.

The server component class, called ServerImpl, must implement the Ser-
vice and ServiceAttributes interfaces. It may also implement the LifeCycle-
Controller interface, in order to be notified when it is started and stopped,
but this is not mandatory. Since the server component does not have client
interfaces, the ServerImpl class does not need to implement the Binding-
Controller interface, whose role is to manage the bindings involving the
client interfaces of a given component. The ServerImpl class is therefore the
following:

public class ServerImpl implements Service, ServiceAttributes {

private String header = "";

private int count = 0;

public void print (final String msg) {

for (int i = 0; i < count; ++i) {

System.err.println(header + msg);

}

}

public String getHeader () {

return header;

}

public void setHeader (final String header) {

this.header = header;

}

public int getCount () {

return count;

}

public void setCount (final int count) {

this.count = count;

}

}

The client component class, called ClientImpl, must implement the Main
interface. Since the client component has client interfaces, the class must
also implement the BindingController interface, a basic Fractal control in-
terface, presented next:

public interface BindingController {

// Returns the names of the client interfaces of the component

11

String[] listFc ();

// Returns the interface to which the given client interface is bound

Object lookupFc (String clientItfName) throws NoSuchInterfaceException;

// Binds the client interface to the server interface

void bindFc (String clientItfName, Object serverItf)

// Unbinds the client interface

void unbindFc (String clientItfName);

}

The ClientImpl class is therefore the following:

public class ClientImpl implements Main, BindingController {

private Service service;

public void main (final String[] args) {

service.print("hello world");

}

public String[] listFc () {

return new String[] { "s" };

}

public Object lookupFc (final String cItf) {

if (cItf.equals("s")) {

return service;

}

return null;

}

public void bindFc (final String cItf, final Object sItf) {

if (cItf.equals("s")) {

service = (Service)sItf;

}

}

public void unbindFc (final String cItf) {

if (cItf.equals("s")) {

service = null;

}

}

}

12

2.3 Deploying Fractal applications

The simplest method to deploy an application is to describe the architecture
of the application in the Architecture Description Language (ADL), and to
pass this description to the deployment service. The HelloWorld application
can be described as follows:

<definition name="helloworld.HelloWorld">

<!-- Interface of the composite component-->

<!-- NB. myhelloworld.* are the fully-qualified names of interfaces/classes

<interface name="m" role="server" signature="myhelloworld.Main"/>

<!-- The client sub-component -->

<component name="client">

<interface name="m" role="server" signature="myhelloworld.Main"/>

<interface name="s" role="client" signature="myhelloworld.Service"/>

<!-- Implementation of the client component -->

<content class="myhelloworld.ClientImpl"/>

</component>

<!-- The server sub-component -->

<component name="server">

<interface name="s" role="server" signature="myhelloworld.Service"/>

<!-- Implementation of the server component -->

<content class="myhelloworld.ServerImpl"/>

<!-- Attributes of the server component -->

<attributes signature="myhelloworld.ServiceAttributes">

<attribute name="header" value="-> "/>

<attribute name="count" value="1"/>

</attributes>

</component>

<!-- The binding between the composite and client -->

<binding client="this.m" server="client.m" />

<!-- The binding between client and server -->

<binding client="client.s" server="server.s" />

</definition>

The HelloWorld example demonstrates the main concepts of the stan-
dard Fractal ADL; namely, component definitions, components, interfaces,

13

bindings, and attributes. Full details on the language can be found at
http://fractal.objectweb.org/fractaladl/.

2.4 Extensions of standard Fractal ADL

Fractal ADL (Architecture Description Language) is an open and extensible
language to define component architectures. More precisely, the language
is made of a set of modules, each module defining an abstract syntax for
a given architectural concern (e.g., component containment). The Fractal
implementation includes a standard set of modules that allow describing
component types, component implementations, component hierarchies and
component bindings. The implementation then allows adding new modules
for new architectural concerns and provides a modular toolset for processing
the language extensions.

In the context of DCMS, we have extended the standard ADL in the
following three areas: deployment, binding, and self-management.

2.4.1 Deployment extensions

The following ADL extract demonstrates the deployment extensions. It re-
fines the client description in the HellWorld example with two new elements:
packages and virtual nodes.

...

<component name="client">

<interface name="m" role="server" signature="myhelloworld.Main"/>

<interface name="s" role="client" signature="myhelloworld.Service"/>

<content class="myhelloworld.ClientImpl"/>

<packages>

<package name="ClientPackage v1.3" >

<property name="local.dir" value="/tmp/j2ee"/>

</package>

</packages>

<virtual-node name="node1" resourceReqs="(&(memory>=1)(CPUSpeed>=1))"/>

</component>

...

The packages element provides information about the software packages
necessary for creating run-time components. Packaging currently relies on
the OSGI standard, and packages are identified with a unique name in the
OSGI bundle respository. The previous ADL extract states that the imple-
mentation of the client component (i.e., the class ClientImpl) is part of the
OSGI bundle named “ClientPackage v1.3”.

The virtual node element provides information about the placement of a
component. Virtual nodes are logical component containers, automatically
mapped to concrete nodes at deployment time. The mapping is based on the

14

associated resource requirements (ResourceReqs attribute) and the actual
deployment environment. For example, the previous ADL extract states
that the client should be deployed on a node with memory larger than 1 GB
and CPU speed larger than 1Ghz. Resource requirements are expressed in
the LDAP filter syntax.

2.4.2 Binding extensions

These extensions enable the ADL to represent one-to-any and one-to-all
bindings. In the following example, a client component is connected to a
group of two server components (server1, server2) using one-to-any invoca-
tion semantics (see figure).

Figure 2.2: Application using group communication

This example can be described in ADL as follows:

<definition name="MyHelloGroup">

<interface name="r" role="server" signature="myhelloworld.Main"/>

<component name="client">

<interface name="r" role="server" signature="myhelloworld.Main"/>

<interface name="s" role="client" signature="myhelloworld.Service"/>

<content class="myhelloworld.ClientImpl"/>

</component>

<component name="group">

<interface name="s" role="server" signature="myhelloworld.Service"/>

<interface name="clients" role="client" signature="myhelloworld.Service"

cardinality="collection"/>

<content class="GROUP"/>

</component>

15

<component name="server1">

<interface name="s" role="server" signature="myhelloworld.Service"/>

<content class="myhelloworld.ServerImpl"/>

</component>

<component name="server2">

<interface name="s" role="server" signature="myhelloworld.Service"/>

<content class="myhelloworld.ServerImpl"/>

</component>

<binding client="this.r" server="client.r" />

<binding client="client.s" server="group1.s" bindingType="groupAny"/>

<binding client="group1.clients1" server="server1.s"/>

<binding client="group1.clients2" server="server2.s"/>

</definition>

As seen in this description, representing one-to-any bindings involves using
a special component with content ”GROUP”. Group membership is then
represented as binding the server interfaces of members to the client inter-
faces of the group (the ”collection” value indicates that the group has an
arbitrary number of client interfaces). Invoking the group involves creating
a binding to its server interface. One-to-any and one-to-all invocation se-
mantics are represented by setting the bindingType attribute to ”groupAny”
or ”groupAll”.

2.4.3 Self-management extensions

The ADL extract below demonstrates the current self-management exten-
sions. It refines the previous group communication example to add a man-
agement component.

<definition name="MyHelloGroup">

<interface name="r" role="server" signature="myhelloworld.Main"/>

<component name="mgr" definition="org.objectweb.jasmine.jade.ManagementType">

<content class="org.objectweb.jasmine.jade.examples.managerimpl.ManagerImpl"/>

</component>

<!-- As above ... -->

...

</definition>

Management components have a predefined definition ”Management-
Type”. This definition contains a set of client interfaces that correspond

16

to the DCMS API (see Chapter 4) that management components require
for their operation. These interfaces are implicitly bound by the system af-
ter management components are instantiated. In the current prototype, the
management components capture only the initial deployment and configu-
ration of the self-management behaviour. In other words, the component
implementation (e.g., the ManagerImpl class) contains the code for creating,
configuring, and activating the set of DCMS management elements (MEs).
More specifically, this code is located in the implementation of the LifeCycle-
Controller interface (start operation) of the manager. A future version will
enable describing in ADL the deployment and configuration of individual
MEs.

17

Chapter 3

Self-Managing Applications

with Niche

The purpose of this chapter is to gradually introduce Niche – the Distributed
Component Management System (DCMS) and its concepts without the bur-
den of full details of its API and current limitations of the prototype. In-
formation presented in this chapter should suffice to understand the formal
API description in Chapter 4, the YASS example in Chapter 5, and the
discussion of features, limitations and future extensions of the current pro-
totype in Chapters 6 and 7. The presentation in this Chapter is informal,
and particular syntax of examples can stray from the existing Niche and
YASS code for the sake of presentation clarity.

3.1 Functional Code and Self-Management

Figure 3.1: Application Architecture with Niche.

18

Niche is designed to support the development of self-managing behaviors
of distributed applications. An application in the Niche framework contains
a component-based implementation of the application’s functional specifica-
tion (the lower part of figure 3.1, with components A, B1 and B2). During
the development of this part of the application – we refer to it as the func-
tional code thereafter – designers focus on algorithms, data structures and
architectural patterns that fit the application’s functional specification. The
functional code can fulfill its purpose under a certain range of conditions in
the environment such as availability of resources, user load and stability of
computers hosting application components.

When the environment changes beyond the assumptions of the func-
tional code, for instance when the user load becomes too high or an im-
portant application component fails, the application should either self-heal,
self-configure, self-optimize or self-protect. These behaviors are commonly
known as self-* behaviors, or self-management. The component-based im-
plementation of application’s self-* behaviors senses changes in the environ-
ment and adjusts the application architecture accordingly (the upper part
of figure 3.1, with components M1 and M2).

Niche provides APIs that allow the application developer to program de-
ployment and management of application components, their interconnection,
and also sensing state changes in environment and application components.
The APIs provide network-transparent services, which means that the effects
of an API method invocation are the same regardless where on the network
the invocation took place. Niche implements a run-time infrastructure that
aggregates computing resources on the network used to host and execute
application components, which we discuss in more detail in Section 3.15.

3.2 Component-Based Functional Code

Figure 3.2: Functional Code in a Niche-based Application.

The functional part of application architectures is composed using com-
ponents and bindings, see Figure 3.2, which are introduced in the Fractal
component model and discussed in detail in Section 2.1. A Fractal com-

19

ponent contains code or sub-components, and its functionality is accessed
through server interfaces which separate the component’s implementation
from other components using the component’s functionality. A component’s
client interface manifests external services the component rely upon. A
binding interconnects a client interfaces of one component with a server in-
terface of another component. The Niche programming model introduces
also groups. A Niche group represents a set of similar components and allows
the designer to use them as it were one singe component. Niche groups can
be exploited to improve application scalability and robustness, as discussed
in detail in Section 3.12.

3.3 Application Self-Management by Control Loops

Figure 3.3: Management Control Loops.

Self-* behaviours in Niche-based applications are implemented by man-
agement control loops we call just control loops when it is clear from the con-
text. Control loops go through the sensing, analysis and decision making,
and finally the actuation stages (see figure 3.3). The sensing stage obtains
information about changes in the environment and components’ state. The
analysis and decision-making stage processes this information and decides
on necessary actions, if any needed, to adjust the application architecture to
the new conditions. During the actuation stage the application architecture
is updated according to the decisions of the analysis and decision-making
stage.

In a particular application there can be multiple control loops each con-
trolling different kinds of application’s self-* behaviors. These loops need in
general to coordinate with each other in order to maintain the application’s
architecture consistently, which we address in Section 3.5.

20

Figure 3.4: Self-Management in a Niche-based Application.

The sensing stages of Niche-based application’s control loops are impl-
mented by sensors. There are two types of sensors – application-specific
sensors that provide information about status of individual components in
the application, and sensors provided by the Niche run-time system that
deliver information about the environment, such as notifications about com-
ponent failures. Application-specific sensors are specific to individual com-
ponent types, and implemented together with those components. At run-
time, instances of application-specific sensor types can be dynamically de-
ployed and attached to individual components. On Figure 3.4, SensorA is
an application-specific sensor that provides necessary status information of
component A.

The implementation of the analysis and decision-making stages of Niche-
based application’s control loops consists of management elements (MEs).
MEs are stateful entities that process input management events, or just
events thereafter (Section 3.8), according to their internal state, and can
emit output events and/or manipulate the architecture using the Niche man-
agement actuation API implemented by Niche and introduced in this docu-
ment. In general, in a Niche-based application there are multiple MEs that
can be organized in different architectural patterns that are discussed in
Section 3.5. On Figure 3.4, Manager is a management element.

Management events serve for communication between individual MEs
and sensors that form application’s management control loops. Management
events are delivered asynchronously between MEs. MEs are subscribed to
and receive input events from sensors and other MEs. Subscriptions can be
thought of as bindings for unidirectional asynchronous communication for
specific event types. Subscriptions are first-class entities that are explicitly
manipulated using the Niche API, that is, the programmer designing the
architecture of application’s self-management explicitly creates subscriptions

21

between management elements to their sources of input events.
The Niche API provides functions for the actuation stage of application’s

management control loops. In particular, it provides for deployment of
components of functional and self-management parts, and to interconnect
those components.

3.4 Watchers, Aggregators and Managers

In a Niche-based application there can be multiple management loops imple-
menting different kinds of self-* behaviors. Different loops should coordinate
in order to ensure the coherency of architecture management, for which the
coordination schemes discussed in Section 3.5 can be exploited. Individual
management elements can participate in several control loops.

We distinguish the following roles of management elements that consti-
tute the body of the analysis and decision-making stages of management
control loops: watchers, aggregators and managers. In the simplest case,
as on Figure 3.4, all roles can be performed by one single management ele-
ment, but in a typical Niche application different roles are implemented by
different MEs.

Watchers monitor the status of individual components and groups. Watch-
ers are connected to and receive events from sensors that are either imple-
mented by the programmer or provided by the management framework it-
self. Watchers provide also certain functionality that simplify programming
of watching component groups, as discussed in Section 3.12. Watchers are
intended to watch components of the same type, or components that are
similar in some respect.

An aggregator is subscribed to several watchers and maintains partial
information about the application status at a more coarse-grained level.
There can be several different aggregators dealing with different types of
information within the same control loop. Within an application as a whole
there can be different aggregators acting in different management control
loops.

Managers use the information received from different watchers and ag-
gregators to decide on and actuate (execute) the changes in the architecture.
Managers are meant to possess enough information about the status of the
application’s architecture as a whole in order to be able to maintain it. In
this sense managers are different from watchers and aggregators where the
information is though more detailed but limited to some parts, properties
and/or aspects of the architecture. For example, in a data storage applica-
tion a manager needs to know the current capacity, the design capacity and
the number of online users in order to meet a decision whether additional
storage elements should be allocated, while a storage capacity aggregator
knows only the current capacity of the service, and different storage capac-

22

ity watchers monitor status and capacity of corresponding groups of storage
elements.

3.5 Orchestration of Multiple Control Loops

In the Niche framework, application self-management can contain multiple
management loops. The decisions made by different loops to change the
architecture according to new conditions should be coordinated in order to
maintain consistency of the architecture and to avoid its oscillation over
time.

Figure 3.5: Orchestration of Multiple Control Loops.

The following four methods can be used to coordinate the operation of
several management control loops:

Stigmergy is a way of indirect communication and coordination between
agents. Agents make changes in their environment, and these changes
are sensed by other agents and cause them to do more actions. Stig-
mergy was first observed in social insects like ants. In our case agents

23

are control loops and the environment is the managed application. See
Fig. 1 on Figure 3.5.

Hierarchical Management imply that some control loops can monitor
and control other autonomic control loops (Fig. 2). The lower level
control loops are considered as a managed resource for the higher level
control loops. Higher level control loops can sense and affect the lower
level ones.

Direct Interaction can technically be achieved by subscribing or binding
appropriate management elements (typically managers) from different
control loops to one another (Fig. 3). Cross control loop bindings can
be used to coordinate them and avoid undesired behaviors such as race
conditions and oscillations.

Shared Management Elements is another way of communication and
coordination of different control loops (Fig. 4). Shared MEs can be
used to share state (knowledge) and to synchronize actions by different
control loops.

3.6 Scalability and Fault-Tolerance of Control Loops

Management elements can form hierarchical structures that improve scala-
bility of self-management. Hierarchical structures can also facilitate hiding
unnecessary details from higher-level management elements, thus simpli-
fying design and maintainability of self-management code. In particular,
lower-level watchers and aggregators can hide fine-grained details about in-
dividual components present in the system from higher-level management
elements, in particular managers.

Application designers can also improve scalability and fault-tolerance of
application self-management by distributing the responsibility of managing
the application architecture over a group of sibling managers. The vir-
tual synchrony approach for building scalable and fault-tolerant distributed
systems [3, 4] can be used to achieve this: managers in the group can be
programmed to receive all input events from all aggregators and watchers
and thus be aware of the state of all other sibling managers, but each in-
dividual manager would maintain only the part of the architecture that is
assigned to it.

It might be possible to improve fault-tolerance of self-management by
deploying identical control loops, with some necessary coordination using
e.g. the models outlined in Section 3.5. Fault-tolerance of self-management
can be also improved by replicating individual management elements, as
discussed in Section 3.14.

24

3.7 Management Elements and Sensors with Niche

Figure 3.6: MEs in Niche. Figure 3.7: Composition of MEs.

Management Elements are programmed by the application developer as
regular (centralized) Fractal components (Figure 3.6). MEs need to possess
certain client and server interfaces, as explained below. Niche infrastructure
provides for ME deployment and inter-ME communication; application de-
velopers do not need to explicitly program either of it. Note that MEs can be
watched by watchers exactly as components implementing the application’s
functional specification.

The Niche run-time system hosts each ME in an ME container (Fig-
ure 3.6). ME containers are elements of the Niche infrastructure that en-
able operation of application-specific MEs. Specifically, an ME container
provides an instance of the application-independent component called ME
Generic Proxy with interfaces matching the interfaces of the ME.

The concepts of ME container and generic proxies is a part of the Niche
implementation model; we present it here solely in order to provide some
intuition behind Niche operation concerning MEs. ME containers are in
particular important for reliable self-* behaviors achieved by means of repli-
cation of management elements, as discussed in Section 3.14.

In our Java-based Niche prototype, MEs are Fractal components imple-
mented as Java classes according to the Java implementation of the Frac-
tal framework. MEs can manipulate the application architecture using the
Niche Java-based API provided through server interfaces of ME generic prox-
ies. Niche infrastructure and application-specific ME components interact
using certain data structures that identify elements of the application ar-
chitecture, as discussed in Section 3.9. ME generic proxies provide for com-
munication between MEs, see Figure 3.7. When a ME is deployed, Niche
finds a suitable computer among those interconnected by Niche, creates the
ME generic proxy and connects application-specific ME component to the
proxy. Hosting and executing MEs is accounted to Niche processes exe-
cuted on individual physical nodes. For example, in a Grid environment
the members of a Virtual Organization (VO) would execute Niche processes
on their computers. Note that components implementing the application’s
functional specification are hosted on first-class resources managed by ded-
icated resource management services, as discussed in Section 3.11. Niche

25

attempts to evenly balance the load of ME hosting.
Application-specific ME components can have the following client inter-

faces (see also figure 3.6):

• TriggerInterface interface with the trigger method used to emit
events generated by the management element

• DCMService interface that provides Niche API for controlling func-
tional and non-functional application components

Application-specific ME components need to provide the following server
interfaces:

• EventHandler interface with the eventHandler method used when a
management event arrives to the ME

• InitInterface interface used to (re)configure the management ele-
ments

The ME components can have further client and server interfaces which
can be bound to functional and management components in the application,
under certain restrictions discussed in Niche documentation.

Watchers receive information about status of components by means of
component-specific sensors. Sensors are Fractal components. Individual
types of sensors are designed to be bound to and receive status information
from specific types of components in the application. Application developer
designs sensors together with components they can sense. Sensor function-
ality is not integrated directly into the components because different sensors
can be attached to the same component in different situations and at differ-
ent points in time. Instead, components that need to be sensed implement a
minimal interface that can provide enough information to sensors whenever
needed. This facility in a component should not draw computing resources
when not in use. When an application-specific sensor is deployed, it resides
on the same node and interacts with the component through primitive Frac-
tal bindings. In figure 3.8, sensor Sensor A is deployed for component A,
and two instances of Sensor B are deployed for each of the components B1
and B2 from a group.

Sensors are deployed as a two-part structure similar to MEs, see fig-
ure 3.9. Sensors and Sensor Generic Proxy components provided by Niche
interact through the following two interfaces. Application-specific sensor
components can use the following client interface:

• TriggerInterface interface with the trigger method used to emit
new events

and need to provide the following server interfaces :

26

Figure 3.8: Structure of Application-
Specific Sensors.

Figure 3.9: Composition of
Application-Specific Sensors.

• SensorInterface interface used to control sensors

When a sensor is deployed, Niche locates the component for which the
sensor is to be deployed, deploys both parts of the sensor appropriately and
interconnects them (see figure 3.9). Using the facilities of the Fractal com-
ponent model [7], application developer also specifies two lists of interfaces –
for information “pull” and “push” between the sensor and the component
being sensed (see figure 3.8), and Niche uses this information to connect the
named application-specific sensor component interfaces to matching inter-
faces of the component being sensed.

3.8 Management Events

Sensors and management elements communicate asynchronously by means
of management events, or just events thereafter. Events are objects of cor-
responding management event classes that are defined either by Niche itself,
or are application-specific. When a subscription between a pair of sensors or
MEs is being created, the subscription’s management event type is identified
by the event’s class name.

Niche-specific events are generated by sensors implemented by Niche.
These include in particular the ComponentFailEvent that identifies a failed
component.

Applications define their own management event classes and generate
corresponsing management events. In our current Java-based Niche proto-
type, events classes must be serializable. The Niche run-time system delivers
events according to the established subscriptions.

27

3.9 Architecture Representation

in Self-Management Code

Elements of the application architecture – components, bindings, groups
and MEs – are identified by unique identifiers we call Niche Id:s, or just
Id:s when it is clear from the context. Identifiers are unique in the scope
of a Niche run-time infrastructure. For example, in a Grid environment the
members of a Virtual Organization (VO) will usually run together a single
instance of the Niche infrastructure, and different VOs will have separate
infrastructures. MEs receive information about status of application archi-
tecture elements and manipulates them using the Id:s. Id:s of architecture
elements are network-transparent, which allows application developers to
design application architecture and its self-* behaviours independently of
particular application deployment configurations. In our Java-based proto-
type of Niche, Id:s are represented in self-* code as Java objects of certain
type. We discuss the implementation and performance characteristics of our
Niche prototype in Section 3.15.

Figure 3.10: Application Architecture Representation in Self-* Code.

In figure 3.9 a snippet of self-* code from a ME called StartManager

is presented. The code deploys two components and a “failure watcher”
that oversees them. Note that this type of code fragments can be generated
automatically by high-level tools, in particular by the Grid4All Application
Deployment service. There are two components named A and B represented
in self-* code by compA and compB, respectively. Id:s are introduced in self-*
code by Niche API calls that deploy functional components and MEs. In
figure 3.9, compA and compB are results of the deploy API calls that deploy
components A and B implemented by Java classes ImplA and ImplB on re-
sources ResourceA and ResourceB, respectively. Resource management is
discussed in Section 3.11. Id:s are passed to Niche API invocations when

28

operations are to be performed on corresponding architecture elements, like
deallocating a component. In the example, compA and compB are passed to
the deploy Niche API call that deploys a watcher implemented by the Java
class FailureWatcherComponent. FailureWatcherComponent watchers ex-
pects to receive Id:s of components to watch upon initialization.

Note that Id:s are network-transparent: multiple MEs on different nodes
can access and manipulate the same architecture element by means of the
element’s Id. Niche API operations on Id:s have the same effect regardless of
the location of the nodes with MEs issuing the operations, and the location
of architecture elements identified by Id:s. In the example In figure 3.9,
the failureWatcher ME will in general be deployed on a different physical
node from the one where the StartManager is deployed itself, yet both
MEs posses references to Niche Id Java objects representing A and B. Niche
Id:s can also be included in application-specific management events passed
between MEs, and thus used by the recipient MEs. Different physical nodes
necessarily have different Java objects representing the same Niche Id, as
discussed in Section 3.15.

Figure 3.11: Sharing Niche Id:s between distributed MEs.

A possible sequence of actions and events is illustrated on Figure3.9.
First, designated by (1), components A and B are deployed by the StartManager.
Next (2), StartManager issues a request to deploy the Watcher ME that
upon initialization obtains Id:s of A and B. Eventually (3), the watcher senses
the failure of A (using Niche sensing - not illustrated on the Figure), and
generates a RedeployComponent event that identifies A and is delivered to
the Manager ME (the subscription is established beforehand by e.g. the
same StartManager). At this point, Manager can update its architecture
representation and/or perform management actions, like redeploying A.

We continue illustrating the manipulation of the application architecture
in Section 3.10 using the code for initial deployment as an example.

29

3.10 Initial Deployment of Applications

DCMService myDCMS;

ComponentId compA = myDCMS.deploy(ResourceA, ImplA, "A");

ComponentId compB = myDCMS.deploy(ResourceB, ImplB, "B");

myDCMS.bind(compA, "clientInterfaceA",

compB, "serverInterfaceB");

ManagementElementId manager =

myDCMS.deploy(ManagerComponent, {compA, compB});

ManagementElementId aggregator =

myDCMS.deploy(AggregatorComponent, {compA, compB});

(void) myDCMS.subscribe(aggregator, manager, "status");

(void) myDCMS.subscribe(compA, aggregator, "componentFailure");

(void) myDCMS.subscribe(compB, aggregator, "componentFailure");

Figure 3.12: Example of Self-Management Code with Niche.

Initial deployment of applications is performed using the Niche API. In
the case when the initial architecture of the application’s functional part is
specified using an Architecture Description Language (ADL) specification
as discussed in Section 2.3, the application deployment service interprets
the ADL specification and invokes corresponding Niche API functions. An
example sequence of commands executed by Niche is shown in figure 3.12,
In this example, myDCMS is an object that provides the Niche API. The first
deploy method deploys a component A implemented by ImplA on a resource
ResourceA. We discuss the resource management in Section 3.11. deploy

invocations contain also symbolic names of components in the application
architecture, A and B in our example – this information is necessary in order
to connect the ADL specification of application’s initial architecture with
the application’s self-* architecture, as discussed later in this Section.

Next, the client interface on component A named clientInterfaceA is
bound to the server interface serverInterfaceB on component B:

myDCMS.bind(compA, "clientInterfaceA",

compB, "serverInterfaceB");

Next, the management element manager is deployed using the following
method:

ManagementElementId manager =

myDCMS.deploy(ManagerComponent, {compA, compB});

Here, the new manager manager will receive the list {compA, compB} as
the argument for initialization. This argument is not interpreted by Niche
itself. After initialization, the manager will possess the Id:s of compA and
compB and therefore will be able to control these two components.

30

Finally, both MEs – manager and aggregator – are interconnected.
The manager is subscribed to the aggregator for application-specific status

events:

myDCMS.subscribe(aggregator, manager, "status");

The aggregator is subscribed for the predefined by Niche componentFailure
environment sensing events that are generated by Niche when compA or
compB fail:

myDCMS.subscribe(compA, aggregator, "componentFailure");

myDCMS.subscribe(compB, aggregator, "componentFailure");

The self-* architecture manipulates application components using their
Id:s. If the initial deployment of the application is performed by the applica-
tion deployment based on an ADL specification, the Id:s of the components
are known to the deployment service and are not known initially to the self-*
architecture. This problem is solved by means of a component registry that
maps symbolic component names to their Id:s.

When the application is deployed by the deployment service, the sym-
bolic names of components are taken from the ADL specification, and used
as arguments to deploy methods as discussed in Section 3.10. As the side-
effect of the deployment, Niche records the mapping, such that later on
the management elements can obtain the component Id:s by the component
symbolic names:

ComponentId compA = myDCMS.lookup("A");

3.11 Resource Management and Niche

Resource discovery and management for components implementing the ap-
plication’s functional specification is out of the scope of Niche. Niche is
designed to be used together with one or several external resource manage-
ment services. Deployment and management of resources for MEs is trans-
parent to the application developer and is performed by Niche, as discussed
in Section 3.7.

Applications, Niche and resource management services share the NodeRef
and ResourceRef abstract data types. Objects of these types represent
physical resources such as memory and CPU cycles.

Applications use the “discovery” request served by resource management
services to discover free resources in the Niche infrastructure, see figure 3.13.
Resource management services respond with NodeRef objects representing
free resource(s) on a computing node available to the particular applica-
tion. Resources discovered this way are not allocated to any application,
in particular, a free resource discovered by an application can concurrently

31

Figure 3.13: Resource Management with Niche.

be discovered and become used by another application. Applications can
reserve a part or whole NodeRef resource for own usage by means of the
“allocate” request to resource management services. If allocation fails due
to activity of other applications, the application can try to allocate another
previously discovered resource, or restart the discovery from scratch. The
result of the “allocate” request is a ResourceRef object that represents a
resource that is reserved for use by the calling application.

One of the arguments of the “deploy” Niche API function that pro-
vides for component deployment (see Section 3.10) is a ResourceRef object
representing a resource to be used for deploying a particular component.
Resources are “consumed” when applications deploy components, i.e. the
same resource cannot be used for more than one “deploy” invocation, and for
every component Niche verifies its resource usage with respect to properties
of ResourceRef”s used for deployment of that component.

3.12 Groups and Group Sensing

Niche allows the programmer to group components together forming first-
class entities called Niche groups, or just groups thereafter. Components can
be bound to groups through one-to-any and one-to-all bindings, which is an
extension of the Fractal model [7]. For functional code, a group of compo-
nents acts as a single entity. Group membership management is provided
by the self-* architecture and is transparent to the functional code. With a
one-to-any binding, a component can communicate with a component ran-
domly chosen at run-time from the given group. With a one-to-all binding,
it will communicate with all elements of the group. Irrespective of type of
bindings, the content of the group can be changed dynamically affecting

32

neither the component with binding’s client interface (binding source), nor
components in the group providing the binding server interfaces.

Niche are created by means of the createGroup Niche API call:

GroupId groupBId =

myDCMS.createGroup({compB1, compB2}, {"groupServerInterface"});

The first argument is the initial list of components in the group, and
the second argument is the list of server interfaces the group will provide.
Server interfaces provided by a group can be used when making a binding
to the group.

Once a group is created, the GroupId object can be used as a destination
in binding construction call.

myDCMS.bind(compA, "clientInterfaceA",

groupBId, "groupServerInterface",

ONE_TO_ANY);

Here, the client interface clientInterfaceA of the component compA

is bound to the groupServerInterface service interface provided by the
group groupBId, using the one-to-any communication pattern.

Figure 3.14: Watching Groups in Niche-based Applications.

Groups can be watched by a single watcher. When a watcher for a
group is being deployed, application programmer specifies the application-
specific part of sensors to be used to generate sensing events for the watcher.
Niche automatically deploys and removes sensors as the group membership
changes. Subscriptions between watchers and dynamically deployed sensors
are implicit and managed automatically by the Niche run-time system. In
this sense group watchers are different from other management elements
where the subscriptions for input management events are first-class and
explicitly maintained by the application. The automatic management of
sensors for group members is implemented using the SNR abstraction as
described in Section 3.15. In figure 3.14, if the component B2 is removed from
the group B, then the corresponding sensor will be automatically removed
from B2. Conversely, if a new component B3 is added to B, then the sensor
specified by the programmer for the watcher W2 will be deployed on B3. Note
that watchers can also watch other management elements, thus the self-*
architecture can be designed to be self-* on its own.

To deploy a watcher and associate it with a group one needs to specify
ManagementDeployParameters as follows:

params = new ManagementDeployParameters();

params.describeWatcher(watcherImpl, "watcherW",

33

initialArguments, groupId)

ManagementElementId watcher =

myDCMS.deploy(ManagementDeployParameters params);

Here, the first line constructs a “parameter container” that is filled
by the second line, specifying the Java class implementing the watcher
(watcherImpl), the symbolic name of the ME for the component registry
("watcherW"), watcher’s initial arguments, and the Id of the group to be
watched (groupId). Finally, the watcher is deployed with the deploy Niche
method.

The watcher, when initialized, must specify the sensor type that Niche
will automatically deploy on components in the group:

myDeploySensorsInterface.deploySensor(sensorImpl,

"sensorEvent", sensorParameters,

clientInterfaces, serverInterfaces);

Here, sensorImpl is the Java class implementing the sensor, "sensorEvent"
is the event generated by sensors and processed by the watcher, sensorParameters
are parameters needed for sensor initialization, and the last two arguments
are the lists of client and server interfaces used to by Niche to connect sen-
sors to their components using “push” and/or “pull” sensing methods, as
discussed in Section 3.7.

3.13 Controlling Location of Management Elements

Figure 3.15: Co-location of MEs.

By default, for the sake of load balancing the Niche run-time system
attempts to evenly distribute MEs on available computers. In order to re-
duce communication latency, application developers can control co-location

34

of MEs, see figure 3.15. ME deployment API calls allow the programmer
to specify another architecture element so that the new element will al-
ways reside on the same node with the specified one (see also API section
for “deploy”). Co-location of MEs can improve the performance of self-
management and simplify handling of failures of nodes hosting management
elements. However, this facility should be used only when necessary as ex-
cessive co-location of MEs can reduce fault-tolerance of application’s self-*
architecture.

3.14 Reliable Self-* Behaviours By Replication

The developer of a self-* architecture can request Niche to host some MEs
such that to a certain degree the failures of nodes forming the Niche in-
frastructure is transparent to the execution of the selected MEs. This is
achieved by means of replication of MEs: Niche creates several ME contain-
ers (introduced in Section 3.7) each hosting a replica of the ME, as discussed
in more detail in Section 3.15.

In the simplest form, the programmer indicates that an ME should be
replicated:

ManagementElementId manager =

myDCMS.deploy(ManagerComponent, {compA}, REPLICATED);

After the deployment, the programmer can manage the set of replicas
as one single ME. In particular, it can remove the whole set at once, and
subscribe and unsubscribe it to sources and sinks of input and output events.
Niche restores failed replicas automatically and transparently using the state
of one of the alive ones.

In this simplest form, every replica receives input from all alive sources
of events it is subscribed to. Individual replicas can learn their index in
the replica set, and e.g. trigger output events only if the index is zero.
Individial replicas in the set can fail, and it takes some time to restore them.
Input events can be delivered in different order to different replicas, so the
programmer must not assume that all replicas have the same internal state
and produce the same output events in the same order. Instead, replicas
should be programmed such that their internal states “self-converge” after
a while in a fault-free run, by means of e.g. redundancy in input events
and/or auxiliary (replicated) MEs acting as shared storage.

The programmer can also request replication of MEs with consistency
guarantees using the SYNCHRONIZED flag of ME deployment method:

ManagementElementId manager =

myDCMS.deploy(ManagerComponent, {compA}, SYNCHRONIZED);

35

In this case, Niche guarantees the same order of delivery of input events
to such synchronized replicas, and exactly one output event is delivered
from the set. This property is guaranteed also when a synchronized ME is
restored after a node failure.

If the synchronized ME is programmed to be deterministic, i.e. its be-
haviour is completely determined by the ME’s initial state and the sequence
of input events, then individual elements in the ME set will pass the same
sequence of internal state and produce the same sequence of output events.
This approach of providing fault-tolerant services is known as state machine
replication [14, 17].

The mechanism of synchronized MEs is a conceptually simple model for
programming robust self-management architectures: it gives the program-
mer the illusion of hosting MEs on failure-free computers.

3.15 The Implementation Model of Niche

Niche implementation relies on structured overlay networking (SON), over-
lay thereafter. The overlay provides to Niche scalable and self-* address
lookup and message delivery services. The overlay is used by Niche to im-
plement bindings between components and message-passing between MEs,
storage of architecture representation and also failure sensing.

Figure 3.16: Niche infrastructure.

At runtime, Niche infrastructure integrates Niche container processes
on several physical nodes using an overlay middleware, DKS [6, 8] in our
current prototype. On each physical node there is a local Niche process that
provides the Niche API to applications, see figure 3.16. The overlay allows
to locate entities stored on nodes of the overlay. On the overlay, entities are

36

assigned unique overlay identifiers, and for each overlay identifier there is a
physical node hosting the identified element. Such a node is usually called a
“responsible” node for the identifier. Note that responsible nodes for overlay
entities change upon churn. Every physical node on the overlay and thus in
Niche also has an overlay identifier, and can be located and contacted using
that identifier.

Niche maintains several types of entities we refer to as Niche or DCMS
entities, in particular components of the application architecture and in-
ternal DCMS entities maintaining representation of the application’s ar-
chitecture. Niche entities are distributed on the overlay. For example, in
figure 3.16 “DCMS entity #0” represents the management component #0.
DCMS entities can have references between each other, direct or indirect.
For example, in the figure the “DCMS entity #1” can refer to “DCMS en-
tity #2” representing component #2, which is necessary to implement the
binding between components #1 and #2. Functional components are sit-
uated on specified physical nodes, while MEs and entities representing the
architecture might be moved upon churn between physical nodes.

DCMS entities are identified by DCMS Id:s. A DCMS Id contains an
overlay identifier, “Overlay Id” in the figure 3.16, and a further local iden-
tifier. The local identifier allows Niche to distinguish multiple entities as-
signed to the same overlay identifier. Note that DCMS Id:s act as both
unique identifiers and addresses of entities in Niche. In particular, DCMS
entities representing components contain the overlay Id of the physical node
that the component has been deployed on, and an identifier local to the
node. The latter one is mapped by the Niche process to the physical ad-
dress of the component (in our prototype, a Java object implementing the
component). If no co-location constraints are specified for MEs and other
DCMS entities, Niche tries to place them on different computers from the
Niche infrastructure for the sake of load balancing, by means of assigning
random overlay Id:s.

Figure 3.17 illustrates the important types of DCMS entities. There is
a management element that deploys another management element with the
identifier Id:3 that we refer to as ME/Id:3 thereafter. Using the identifier
Id:3, the Niche process that deployed ME/Id:3 on a remote node can access
it for subsequent operations. ME/Id:3 deals with a binding Binding/Id:1.
The Binding/Id:1 connects the component Component/Id:6 to a group
Group/Id:5 that contains, among other, component Component/Id:4. Com-
ponents are accessed in general through references (ComponentRef/Id:2 and
ComponentRef/Id:8 in figure), which allows Niche to change the location
of the component without affecting other elements of the application self-
management.

If, say, ME/Id:3wants to perform an operation on the binding Binding/Id:1,
it can either delegate the execution of the operation to the node where
Binding/Id:1 resides, or obtain and maybe also cache a replica of the bind-

37

Figure 3.17: Id:s and References in self-* Architecture.

ing entity and execute the operation locally on the replica. For the same
entity, some operations on it can be executed using a locally cached replica,
while other operations can always require remote execution on the entity
itself. Depending on the subset of entity operations that can be executed on
a replica, Niche processes cache remote entities partially or entirely. Thus,
by “replica” we mean an entity that represents a remote DCMS entity and
contains enough information to support local execution of some operations
on the entity. Specifically, a replica is not necessarily an verbatim copy of
the entity. For instance, in our current Niche prototype a node invoking a
binding can attempt to use the cached replica of the binding entity, while
binding update is always executed on the binding entity itself. Niche detects
invalid identifiers in cached DCMS entities and refreshes the cache contents
automatically. Caching policy is determined by the Niche implementation
and affects its performance.

Figure 3.18 depicts ME/Id:3 caching the binding Binding/Id:1, the
component reference ComponentRef/Id:2 identifying the component with
the binding’s client interface, and the component reference ComponentRef/Id:8
that identifies a member of the group Group/Id:5.
Dashed arrows depict the operation of the Niche caching mechanism: when
Niche discovers that it possess a cached replica of an entity, then it will use
it instead of accessing the remote entity itself.

If MEs or groups are co-located with other DCMS entities, their DCMS
Id:s are assigned as follows: the overlay Id is taken from the DCMS Id of
the entity to be co-located with, and a fresh local identifier is chosen.

Groups are implemented using Set of Network References (SNR) [6, 1]
which is a primitive data abstraction that is used to associate a name with
a set of references. SNRs can be thought of as DCMS component reference
entities containing multiple references. A “one-to-any” or “one-to-all” bind-

38

Figure 3.18: Caching of DCMS entities.

Figure 3.19: Threads of Control in Niche.

ing to a group means that when a message is sent through the binding, the
group SNR’s location is encapsulated in the group Id, and one or more of
the group references from the SNR are used to send the message depending
on the type of the binding. A group can grow or shrink transparently from
group user’s point of view. Finally SNRs support group sensing. Adding
a watcher to a group causes deployment of sensors for each element of the
group according to the group’s SNR. Changing group membership trans-
parently causes deployment/unemployment of sensors for the corresponding
elements.

Niche API operations that involve DCMS entities located on remote
nodes are implemented using Niche messages, which, in turn, use the un-
derlying overlay network. Operations on a single remote entity without a

39

return value and without synchronization on completion requires a single
Niche message which is delivered asynchronously with respect to the thread
initiating the operation. Other types of operations involving a single re-
mote entity require two consequent “request-response” Niche messages. If
an operation on an entity involves sub-operations on some further entities,
the total number of Niche messages for the operation increases correspond-
ingly. Every Niche message requires an overlay address lookup operation
that returns the address of an overlay node with the given overlay Id which
is taken from the DCMS Id, and an overlay network message send operation
to that address. Overlay address lookup operations usually require the time
logarithmic to the size of the overlay, and results of lookup operations are
cached by the overlay services layer in Niche processes.

Figure 3.19 illustrates operation of Niche processes. Thread (position 1
in figure) in an application component invokes a Niche operation (2) through
the synchronous Niche interface. Niche handles the request (3) which can in-
volve sending messages to remote Niche nodes (4) which, in turn, is handled
by the overlay services. If a response message(s) is expected from a remote
Niche node in order to complete the request, the thread (1,3) eventually
blocks inside Niche (5). Response(s) from remote nodes (6) are handled by
threads managed by the Niche thread pool (7). Response handler wakes
up (8) the client thread (1,3) blocked inside Niche. Eventually the Niche
operation finishes (9) and the thread in the application component (1) re-
sumes the execution. Note that threads from the Niche pool never wait for
incoming messages from remote nodes, and thus are never blocked except
while waiting in the thread pool for a new request to handle.

The overlay services layer detects failures of other nodes in the Niche
infrastructure when it fails to deliver to them pending messages. In this
case, messages are handed back to the Niche layer that analyzes and handles
the condition. For instance, when a one-to-any binding invocation fails
because the destination component picked from the group has failed, Niche
will attempt to pick another destination component from the group and
repeat the operation. On the other hand, if a node with a resource to be
used by a deployment operation has failed, Niche deployment operations
fails and this condition is reported to the ME that invoked the operation.

The implementation model for synchronized MEs is presented in fig-
ure 3.20. ME generic proxies implement the inter-replica consensus algo-
rithm that totally orders ME input events. One of the better-known algo-
rithms solving this kind of consensus in unreliable environments – the Paxos
protocol [13, 16] – has the latency of 3 messages, as opposed to 1 message
latency for delivery of input events to non-synchronized and non-replicated
MEs. Solutions that allow Paxos to deal with replicas that are restored
after node failures [15] do not change the message complexity of Paxos in
normal operation. A total-order broadcast algorithm achieving the latency
of 2 messages is known [18], but it is unclear whether it can be adopted to

40

Source 2 Source 3Source 1

Consensus Consensus Consensus

e1 e2 e3

e1

e1

e1 e1e2e2

e2

e2 e3e3

e3

e3 e4 e4 e4

e4 e1 e2 e3e4 e1 e2 e3e4

m1

m2m1

Pending: m2Pending: m1, m2Pending: m2

Management

Element

Replica 1

Management

Element

Replica 2

Management

Element

Replica 3

m2 m1 m2 m1 m2

Figure 3.20: Replication of Synchronized MEs in Niche.

deal with replicas that are restored after node failures.
ME generic proxies contain also a queue of pending outgoing events and

commands issued by MEs but not yet acknowledged by the recipients. Only
the primary replica really sends out the events and commands. Acknowl-
edgments are received by all replicas so that a secondary replica can resume
exactly where the failure occurred.

In our prototype, the overlay services layer also maintains a pool of
threads for managing incoming overlay messages. Threads in Niche API
services and overlay services compete for common system resources.

Figure 3.21 illustrates Niche operation with the behaviour of a binding
invocation. In figure, component 1 on node 0 is bound to component 2 on
node 1. On node 0, Niche with the assistance of the component container
created a binding stub – a special type of component with a matching server
interface, so that component 1 is actually bound to the stub (position 1 in
figure). When component 1 invokes its client interface, the implementation
of the server interface in the binding stub calls Niche (2) to deliver the bind-
ing invocation to node 1. Niche retrieves the binding destination from the
binding entity (3) or uses the cached binding replica, and sends the message
to binding destination node (4). At the point, node 1 can associate the in-
coming request with the binding destination – server interface of component
2, and invokes it (5).

41

Figure 3.21: Bindings in Niche.

42

Chapter 4

DCMS API

4.1 Interfaces

4.1.1 Interface NicheActuatorInterface

The NicheActuatorInterface class

This class fills three purposes: - It acts as the interface class for Niche operations

which are available only for management elements, while including the operations

available to all components through extending NicheComponentSupportInterface

- It acts as the interface class for proxies created by Jade - It gives access to

primitive resource management services for systems and applications that do not

provide those services themselves

Declaration

public interface NicheActuatorInterface

implements NicheComponentSupportInterface

Methods

• allocate
public ArrayList allocate(Serializable destinations, Object

descriptions)

– Usage

∗ Allocates a (part of a) discovered node, which is needed be-
fore deploying components

– Parameters

43

∗ destinations - Either a single ResourceId or an ArrayList<ResourceId>for
bulk operation

∗ descriptions - Either a single description or an ArrayList
of descriptions for bulk operation. The format of allocate
description will depend on the resource management being
implemented

– Returns - A list of the allocated resource identifiers, null if the
operation could not be completed for the resource

• cancelTimer
public void cancelTimer(long timerId)

– Usage

∗ Cancels a timer previously registered with registerTimer

– Parameters

∗ timerId -

• deallocate
public void deallocate(ResourceId resourceId)

– Usage

∗ Frees a previously allocated resource

– Parameters

∗ resourceId - The reference to the resource which should be
deallocated

• deploy
public ArrayList deploy(Serializable destinations, Serializable

descriptions)

– Usage

∗ Deploys one or more fractal components as specified by one
or more component descriptions.
As of now the code of the component to be deployed has to
exist on the receiving computer.

– Parameters

∗ destinations - Either a single (allocated) ResourceId of an
ArrayList<ResourceId>for bulk operation

∗ descriptions - Either a single description or an ArrayList
of descriptions for bulk operation. *Insert text from Nikos*

– Returns - A list containing one or more global component ids

• deployManagementElement
public NicheId deployManagementElement(ManagementDeployParameters

description, IdentifierInterface destination)

44

– Usage

∗ Deploys a management element as specified by a management
element component description.
As of now the code of the component to be deployed has to
exist on the receiving computer.

– Parameters

∗ description - A management element description *Insert
text from Nikos*

∗ destination - The reference to another management ele-
ment, with which the new element should be collocated

– Returns - A management element id

• discover
public ArrayList discover(Serializable requirements)

– Usage

∗ Method to ask the resource manager for currently free nodes
matching the requirements

– Parameters

∗ requirements - The format of requirement description will
depend on the resource management being implemented

– Returns - A list of all nodes which can provide resources match-
ing the requirements, null if none could be found

• getComponentType
public ComponentType getComponentType(String adlName
)

– Usage

∗ Returns the Jade component type corresponding to a given
adl name. If the component type was not previously gen-
erated on the node where the method call is done, it will
be generated on the first invocation. This therefore requires
that the given adl name corresponds to an existing adl file.

– Parameters

∗ adlName -

– Returns - A Jade component type object

• getGroupTemplate
public GroupId getGroupTemplate()

– Usage

45

∗ Returns an ’empty’ GroupId to be used as template when
specifying which interfaces that should be automatically bound
by the system when a component becomes member in a spe-
cific group.

– Returns - An empty GroupId

• getId
public NicheId getId()

• getLogger
public LoggerInterface getLogger()

– Usage

∗ Allows the applications/system developer to reuse the log-
ging functionality already present in Niche

– Returns - A reference to the Niche log4j-logger

• oneShotDiscoverResource
public NodeRef oneShotDiscoverResource(Serializable re-
quirements)

– Usage

∗ A shorthand to grab just one node matching the requirements

– Parameters

∗ requirements - The format of requirement description will
depend on the resource management being implemented

– Returns - The first found resource that matched the require-
ments, null if none could be found

• redeployManagementElement
public void redeployManagementElement(ManagementDeployParameters

description, IdentifierInterface oldId)

– Usage

∗ Redeploys a management element which has failed due to no,
or insufficient replication

– Parameters

∗ description - A management element description
∗ destination - The id of the failed ME to be recreated

– Returns - A management element id

• registerTimer
public long registerTimer(EventHandlerInterface manage-
mentElement, Class eventClassName, int timerDelay)

46

– Usage

∗ Allows a management element to register a one-off timer.
When the time delay has expired the eventHandler method
of the management element will be called with a event of
class eventClassName

– Parameters

∗ managementElement - The management element which will
be called when the timer goes off

∗ eventClassName - The event which will be generated
∗ timerDelay - The timer delay in milliseconds

– Returns - A timer id which is needed for cancellation

• sendOnBinding
public Object sendOnBinding(Object localBindId, Invocation

invocation, ComponentId shortcut)

– Usage

∗ Used by Jade-created interface proxies for one-way bind-
ings. Semi-synchronous - propagates a method invocation
and waits until the message is on the network.

– Parameters

∗ localBindId - The id of the proxy
∗ invocation - The wrapped method invocation
∗ shortcut - Gives the possibility to specify a specific receiver

out of a group

– Returns - Any object as specified by the interface description

• sendWithReply
public Object sendWithReply(Object localBindId, Serializable

invocation)

– Usage

∗ Used by Jade-created interface proxies for two-way bindings.
Synchronous - propagates a method invocation and waits for
a reply.

– Parameters

∗ localBindId - The id of the proxy
∗ invocation - The wrapped method invocation

– Returns - Any object as specified by the interface description

• subscribe
public Subscription subscribe(IdentifierInterface source,
IdentifierInterface sink, String eventName)

– Usage

47

∗ Adds a new sink to the event generating management element
source

– Parameters

∗ source - The id of the management element generating the
events of intrest, or the id of the group defining the scope of
interest in case of a subscription to an infrastructure event

∗ sink - The id of the management element interested in the
event

∗ eventName - The full classname of the event

– Returns - A subscription which can be used to later change or
stop the subscription

• subscribe
public Subscription subscribe(IdentifierInterface source,
IdentifierInterface sink, String eventName, Serializable

tag)

– Usage

∗ Adds a new sink to the event generating management element
source

– Parameters

∗ source - The id of the management element generating the
events of intrest, or the id of the group defining the scope of
interest in case of a subscription to an infrastructure event

∗ sink - The id of the management element interested in the
event

∗ eventName - The full classname of the event
∗ tag - Can be used to filter events based on the tag

– Returns - A subscription which can be used to later change or
stop the subscription

• subscribe
public Subscription subscribe(IdentifierInterface source,
String sink, String eventName, IdentifierInterface sin-
kLocation)

– Usage

∗ Adds a new sink to the event generating management element
source, given that the sink is present

– Parameters

∗ source - The id of the management element generating the
events of intrest

∗ sink - The ADL name of the management element interested
in the event

48

∗ eventName - The full classname of the event
∗ sinkLocation - The id of any element known to be collocated

with the sink

– Returns - A subscription which can be used to later change or
stop the subscription, or null if the sink did not exist

• testingOnly
public NicheAsynchronousInterface testingOnly()

• unsubscribe
public boolean unsubscribe(Subscription subscription)

– Usage

∗ Cancels a subscription

– Parameters

∗ subscription - The subscription specifying source, sink and
event to stop listening to

• update
public void update(Object objectToBeUpdated, Object ar-
gument, int type)

– Usage

∗ Generic method to update groups or management elements

– Parameters

∗ objectToBeUpdated - The id of the management element
which should be updated

∗ argument - The update message, or the item to add/remove,
depending on the type

∗ type - The type specifying the update operation, as given by
the constants in *NicheComponentSupportInterface*

4.1.2 Interface NicheComponentSupportInterface

The NicheComponentSupportInterface class. Gives access to group manage-

ment, (Niche wide) bind operations and primitive query support the query sytem

state.

Declaration

public interface NicheComponentSupportInterface

49

Fields

• public static final int ADD TO GROUP

• public static final int ADD TO GROUP AND START

• public static final int REMOVE FROM GROUP

• public static final int REMOVE GROUP

• public static final int GET CURRENT MEMBERS

Methods

• addToGroup
public void addToGroup(Object newItem, Object groupId
)

– Usage

∗ Add a new component to an existing group

– Parameters

∗ newItem - A ComponentId representing the component to
be added to the group. The component has to share the
same interfaces as the previous group members, as it will be
automatically become part of the existing bindings related
to the group.

∗ groupId - The id of the existing group

• bind
public BindId bind(Object sender, String senderInterface,
Object receiver, String receiverInterface, int type)

– Usage

∗ Binds the fractal client interface of ’client’ to server interface
of ’server’

– Parameters

∗ client - Normally a ComponentId. Can also be a GroupId,
in which case bindings are created between all members of
’client’ to the server

∗ clientInterface - The ADL name of the client interface
∗ server - Either a single ComponentId or a GroupId where

all group members expose ’serverInterface’
∗ serverInterface - The ADL name of the server interface

50

∗ type - The type of the bindId: one-to-one, one-to-any, one-
to-many, defined by constants in *currently* JadeBindInter-
face

– Returns - A bindId id

• bind
public void bind(String senderInterface, Object receiver,
String receiverInterface, int type)

– Usage

∗ Binds the fractal client interface of the component calling the
method to the server interface of ’server’

– Parameters

∗ clientInterface - The ADL name of the client interface
∗ server - Either a single ComponentId or a GroupId where

all group members expose ’serverInterface’
∗ serverInterface - The ADL name of the server interface
∗ type - The type of the bindId: one-to-one, one-to-any, one-

to-many, defined by constants in *currently* JadeBindInter-
face

– Returns - A bindId id

• createGroup
public GroupId createGroup(SNR template, ArrayList items
)

– Usage

∗ Creates a new group based on the given template and the
components in the array list.

– Parameters

∗ template - A template which defines the interfaces which the
group should manage upon membership changes

∗ items - An array list of all components which should be
part of the group. The components must have at least one
interface in common.

– Returns - A group id representing the new group

• createGroup
public GroupId createGroup(String templateName, ArrayList

items)

– Usage

∗ Creates a new group based on the template name and the
components in the array list. This requires that the template
has been previously created and registered with the template
name

51

– Parameters

∗ templateName - A template name which refers to a template
which defines the interfaces which the group should manage
upon membership changes

∗ items - An array list of all components which should be
part of the group. The components must have at least one
interface in common.

– Returns - A group id representing the new group

• getResourceManager
public SimpleResourceManager getResourceManager()

– Usage

∗ Gives components access to the local resource manager, which
can be used to get the component id based on the ADL name

– Returns - The local resource manager

• query
public Object query(IdentifierInterface queryObject, int

queryType)

– Usage

∗ Generic query method to ask queries about elements in the
system. The available query-types are as of now given as
constants by this class

– Parameters

∗ queryObject - The id of the element which the query is con-
cerning

∗ queryType - The type specifying the query operation, as
given by the constants in NicheComponentSupportInterface

– Returns - The return type is dependent on the query - it can be a
single object/identifierinterface or an arraylist of objects/identifierinterfaces

• registerGroupTemplate
public boolean registerGroupTemplate(String templateName,
SNR template)

– Usage

∗ Registers a group template to be used for subsequent group
creation, where the user has specified which interfaces that
the group should make available to any component bound to
that group. Please note the created template name is only
valid locally, for one node in the system

– Parameters

52

∗ templateName - A String representing the name of the tem-
plate.

∗ template - The group template with the interfaces of interest
specified

– Returns - True if the template was successfully registered, false
if there already existed a template with that name

• removeFromGroup
public void removeFromGroup(Object item, Object groupId
)

– Usage

∗ Removes a component from an existing group

– Parameters

∗ item - A ComponentId representing the component to be
removed from the group.

∗ groupId - The id of the existing group

• removeGroup
public void removeGroup(GroupId gid)

– Usage

∗ Removes an existing group. All watchers subscribed through
that group will no longer be notified of changes to the pre-
vious group members, although the components themselves
will remain unaltered

– Parameters

∗ gid - The id of the group to remove

• unbind
public void unbind(IdentifierInterface binding)

– Usage

∗ Removes a previously established binding

– Parameters

∗ binding - The id of the binding to remove.

• update
public void update(Object objectToBeUpdated, Object ar-
gument, int type)

– Usage

∗ Generic method to update groups or management elements.
The available update-types are as of now given as constants
by this class, but they might later be moved to the DCMSInterface

53

– Parameters

∗ objectToBeUpdated - The id of the management element
which should be updated

∗ argument - The update message, or the item to add/remove,
depending on the type

∗ type - The type specifying the update operation, as given by
the constants in NicheComponentSupportInterface

54

4.2 Interfaces

4.2.1 Interface EventHandlerInterface

The EventHandlerInterface class This interface must be implemented by all

management elements that want to be able to subscribe to events, and have them

delivered

Declaration

public interface EventHandlerInterface

Methods

• eventHandler
public void eventHandler(Serializable event, int flag)

– Usage

∗ This method is invoked by the system when an event match-
ing a previously done subscription is delivered.

– Parameters

∗ event - The event coming from one of the sources to which
the ME is subscribed

∗ flag - A flag which indicates whether the event has arrived
normally (value zero) or during a period of churn, so that the
ME has been moved or restored in between event creation
and event delivery

4.2.2 Interface InitInterface

The InitInterface class

This interface must be implemented by all management elements to be prop-

erly initialized by the Niche framework. Please observe that the system gives no

guarantees about the order which these methods are called upon ME creation

Declaration

public interface InitInterface

55

Methods

• init
public void init(dks.niche.interfaces.NicheActuatorInterface

actuator)

– Usage

∗ The system will invoke this method on a management ele-
ment during its creation.

– Parameters

∗ parameters - An instance of the NicheActuatorInterface to
be used by the ME

• init
public void init(Serializable [] parameters)

– Usage

∗ The system will invoke this method on a management ele-
ment during its creation, if it is being created for the first
time as a result of managment deployment

– Parameters

∗ parameters - The initialArguments parameter of the Man-
agementDeployParameters instance used to deploy the ME

– See Also

∗ ManagementDeployParameters

• initId
public void initId(NicheId id)

– Usage

∗ The system will invoke this method on a management ele-
ment during its creation

– Parameters

∗ parameters - The NicheId of the ME being initialized

• reinit
public void reinit(Serializable [] parameters)

– Usage

∗ The system will invoke this method on a management ele-
ment during its creation, if it is being recreated after a churn
event

– Parameters

56

∗ parameters - The ME-parameters as given by the getAt-
tributes method of the MovableInterface

– See Also

∗ MovableInterface (in 4.2.3, page 57)

4.2.3 Interface MovableInterface

The MovableInterface class Any management interface which wants support

from the system to be automatically moved and redeployed upon churn needs to

implement this interface.

Declaration

public interface MovableInterface

Methods

• getAttributes
public Serializable getAttributes()

– Usage

∗ The system will call this method on a management element
which is about to be moved or copied.

– Returns - An array of any parameters the management element
is dependent on to be properly re-initialized. It is the responsi-
bility of the ME designer to record the state in the way expected
by the re-init method of the same ME class.

– See Also

∗ InitInterface (in 4.2.2, page 55)

4.2.4 Interface TriggerInterface

The TriggerInterface class This interface is used by management elements

that want to be able to trigger events

Declaration

public interface TriggerInterface

57

Methods

• removeSink
public void removeSink(String sinkId)

• trigger
public void trigger(Serializable event)

– Usage

∗ Triggers an event

– Parameters

∗ event - The event, which will be matched against current
subscriptions. All management elements which has subscribed
to the triggering element for that type of event will get noti-
fied

• trigger
public void trigger(Serializable event, Serializable tag
)

– Usage

∗ Triggers an event with a special tag for filtering

– Parameters

∗ event - The event, which will be matched against current
subscriptions. If there are subscriptions matching the event
type, they will also be checked against the tag.

∗ tag -

• triggerAny
public void triggerAny(Serializable event)

– Usage

∗ Triggers an event

– Parameters

∗ event - The event, which will be matched against current
subscriptions. Out of the matching subscriptions, one ran-
dom subscriber will get notified

58

4.3 Classes

4.3.1 Class ManagementDeployParameters

The ManagementDeployParameters class. An instance of the class is needed as
parameter for the call to deploy provided by DCMS.

To deploy management elements, the element specific methods describe...

should be used.

Declaration

public class ManagementDeployParameters

extends Object
implements Serializable

Constructors

• ManagementDeployParameters
public ManagementDeployParameters()

– Usage

∗ Standard empty constructor

Methods

• bind
public void bind(String clientComponentName, String cli-
entInterfaceName, String serverComponentName, String server-
InterfaceName)

– Usage

∗ Allows the user to specify local bindings which should be
initiated at component deploy time

– Parameters

∗ clientComponentName - Local component ADL name
∗ clientInterfaceName - Local component client interface name
∗ serverComponentName - Local component ADL name
∗ serverInterfaceName - Local component server interface

name

59

• deployComponent
public void deployComponent(String ADL, String com-
ponentName, ComponentType componentType, .Map context
)

– Parameters

∗ ADL - The ADL file name containing the component descrip-
tion

∗ componentName - The new component name. If null then the
name in the ADL will be used

∗ context - used for example to set attribute=value

• deployComponent
public void deployComponent(String ADL, String man-
agementElementName, ComponentType componentType, .Map

context, int type, Serializable [] initialArguments, boolean

reliable, boolean movable, boolean start, NicheId managed-
ComponentId)

– Parameters

∗ ADL - The ADL file name containing the component descrip-
tion

∗ componentName - The new component name. If null then the
name in the ADL will be used

∗ context - used for example to set attribute=value
∗ type - used for the framework to automatically bind the man-

agement element depending on type

• describeAggregator
public void describeAggregator(String className, String

componentName, ComponentType componentType, Serializable

[] initialArguments)

– Usage

∗ Describes an aggregator to be deployed

– Parameters

∗ className - The class name of the java class file implement-
ing the management element

∗ componentName - The new component name. If null then the
name from the ADL will be used

∗ initialArguments - An array of initial arguments to be
passed to the management element init method

60

• describeExecutor
public void describeExecutor(String className, String com-
ponentName, ComponentType componentType, Serializable

[] initialArguments, NicheId actuatedComponentId)

• describeManager
public void describeManager(String className, String com-
ponentName, ComponentType componentType, Serializable

[] initialArguments)

– Usage

∗ Describes a manager to be deployed

– Parameters

∗ className - The class name of the java class file implement-
ing the management element

∗ componentName - The new component name. If null then the
name from the ADL will be used

∗ initialArguments - An array of initial arguments to be
passed to the management element init method

• describeSensor
public void describeSensor(String className, String com-
ponentName, Serializable [] initialArguments)

– Usage

∗ Describes a sensor to be deployed. This deployment can only
be done by the responsible watcher

– Parameters

∗ className - The class name of the java class file implement-
ing the sensor

∗ componentName - The new component name.
∗ initialArguments - An array of initial arguments to be

passed to the sensor init method

• describeWatcher
public void describeWatcher(String className, String com-
ponentName, ComponentType componentType, Serializable

[] initialArguments, NicheId watchedComponentId)

– Usage

∗ Describes a watcher to be deployed

– Parameters

∗ className - The class name of the java class file implement-
ing the management element

61

∗ componentName - The new component name. If null then the
name from the ADL will be used

∗ initialArguments - An array of initial arguments to be
passed to the management element init method

∗ watchedComponentId - The new id of the component, or
group, with which the watcher is associated

• getReInitParameters
public Serializable getReInitParameters()

• getType
public int getType()

• keepAlive
public boolean isReliable()

– Returns - Tells whether the new component is declared to be
reliable

• lifeCycle
public void lifeCycle(String componentName, boolean start
)

– Usage

∗ The method can be used together with the ’deploy’ settings
to specify whether the component should be started directly
after deployment. It can also be used on its own to remotly
start an already deployed component

– Parameters

∗ componentName - The component name you want to start or
stop

∗ start - true to start it & false to stop it

• setAttributes
public void setAttributes(ArrayList attributes)

• setAttributes
public void setAttributes(String componentName, String

controllerName, .Map attributes)

– Usage

∗ Method used to specify initial attribute values of compo-
nent attributes. Requires the component to implement cor-
responding attribute controller.

– Parameters

∗ componentName - Component ADL name

62

∗ controllerName - Classname of component attribute con-
troller

∗ attributes - A map specifying pairs

• setReInitParameters
public void setReInitParameters(Serializable [] param)

• setReliable
public void setReliable(boolean reliable)

– Usage

∗ Specifies whether the new component should be reliable, that
is if the runtime system should keep the element replicated
despite churn

63

VO

W
rit

e R
eq

uest

one-t
o-an

y binding

to th
e s

torag
e g

roup

Read Requestone-to-any bindingto a file group

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Front-end

Component

Ax,Bx,Cx = file groups, x is

replica number in the group.

Ovals = resources.

Rectangles = Components.

Dashed line = YASS storage

components group.

Figure 5.1: YASS Functional Part

Chapter 5

DCMS Use Case: YASS

5.1 Architecture

We have designed and developed YASS – “yet another storage service” – as
a way to refine the requirements of the management framework, to evaluate
itand to illustrate its functionality. YASS stores, reads and deletes files on
a set of distributed resources. The service replicates files for the sake of
robustness and scalability. We target the service for dynamic Grid environ-
ments, where resources can join, gracefully leave or fail at any time. YASS
automatically maintains the file replication factor upon resource churn, and
scales itself based on the load on the service.

5.1.1 Application functional design

A YASS instance consists out of front-end components which are deployed
on user machines and storage components Figure 5.1. Storage components

64

Component

Load Change

Watcher

Storage

Aggregator

Configuration

Manager
File

Replica

Aggregator

File

Replica

Manager

Actuation APIL L L L F FF F F C CC C C

Application wide MEs.

One of each per YASS instance

File related MEs.

One of each per file group

LActuation API
Leave Sensors Failure Sensors Load Change Sensors

M
an

ag
em

en
t E

le
m

en
ts

S
en

si
ng

 a
nd

A
ct

ua
tio

n

Create

Group

Manager

G G G GG
Group Sensors

Figure 5.2: YASS Non-Functional Part

are composed of file components representing files. The ovals in Figure 5.1
represent resources contributed to a Virtual Organization (VO). Some of
the resources are used to deploy storage components, shown as rectangles.

The service contain two types of groups, storage group and file group.
The Storage group containing all storage components and file group con-
taining all replicas of a specific file. Each instance of YASS have only one
storage group and several file groups depending on the number of stored
files (one file group per stored file).

A user store request is sent (using one-to-any binding between the front-
end and the storage group) to an arbitrary storage component that will try
to find some r different storage components, where r is the file’s replica-
tion degree, with enough free space to store a file replica. These replicas
together will form a file group containing the r dynamically created new file
components. The user will then use a one-to-all binding to the file group to
send the file in parallel to the r replicas in the file group. Read requests can
be sent to any of the r file components in the group using the one-to-any
binding between the front-end and the file group. Similarly, a delete request
is sent to all file components using one-to-all binding between the front-end
and the file group.

5.1.2 Application non-functional design

Configuration of application self-management. The Figure 5.2 shows
the architecture of the watchers, aggregators and managers used by the
application.

Associated with the group of storage components is a system-wide Storage-
aggregator created at service deployment time, which is registered to leave-
and failure-events which involve any of the storage components. It is also
registered to a Load-watcher which triggers events in case of high system
load. The Storage-aggregator can trigger StorageAvailabilityChange-events,
which the Configuration-manager is subscribed to.

When new file-groups are formed by the functional part of the appli-

65

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

SComp1

SComp2

SComp3

SComp4

SComp5

L C

L C

L C

L C

L C

F

F

F

F

F

A3

A1 A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Configuration

Manager

Storage

Aggregator

Component

Load Change

Watcher

SComp1
SComp2
SComp3
SComp4
SComp5

Component

Load Change

Watcher

YASS SNR

Figure 5.3: Parts of the YASS application deployed on the management
infrastructure.
cation, the management infrastructure propagates group-creation events to
the CreateGroup-manager which initiates a FileReplica-aggregator and a
FileReplica-manager for the new group. The new FileReplica-aggregator is
subscribed to resource leave- and resource fail-events of the resources asso-
ciated with the new file group.

Before explaining these management elements in more details we’ll present
an example that will help in better understanding.

5.1.3 Test-cases and initial evaluation

The infrastructure has been initially tested by deploying a YASS instance
on a set of nodes. Using one front-end a number of files are stored and
replicated. Thereafter a node is stopped, generating one fail-event which is
propagated to the Storage-aggregator and to the FileReplica-aggregators of
all files present on the stopped node. Below is explained in detail how the
self-management acts on these events to restore desired system state.

Figure 5.3 shows the management elements associated with the group of
storage components. The black circles represent physical nodes in the P2P
overlay Id space. Architectural entities (e.g. SNR and MEs) are mapped
to ids. Each physical node is responsible for Ids between its predecessor
and itself including itself. As there is always a physical node responsible
for an id, each entity will be mapped to one of the nodes in the system.
For instance the Configuration Manager is mapped to id 13, which is the
responsibility of the node with id 14 which means it will be executed there.

Application Self-healing. Self-healing is concerned with maintaining the
desired replica degree for each stored item. This is achieved as follows for
resource leaves and failures:

Resource leave. An infrastructure sensor signals that a resource is about
to leave. For each file stored at the leaving resource, the associated FileReplica-
aggregator is notified and issues a replicaChange-event which is forwarded

66

to the FileReplica-manager. The FileReplica-manager uses the one-to-any
binding of the file-group to issue a FindNewReplica-event to any of the
components in the group.

Resource failure. On a resource failure, the FileGroup-aggregator will
check if the failed resource previously signaled a ResourceLeave (but did not
wait long enough to let the restore replica operation finish). In that case
the aggregator will do nothing, since it has already issued a replicaChange
event. Otherwise a failure is handled the same way as a leave.

Application Self-configuration. With self-configuration we mean the
ability to adapt the system in the face of dynamism, thereby maintaining its
capability to meet functional requirements. This is achieved by monitoring
the total amount of allocated storage. The Storage-aggregator is initialized
with the amount of available resources at deployment time and updates the
state in case of resource leaves or failures. If the total amount of allocated
resources drops below given requirements, the Storage-aggregator issues a
storageAvailabilityChange-event which is processed by the Configuration-
manager. The Configuration-manager will try to find an unused resource
(via the external resource management service) to deploy a new storage com-
ponent, which is added to the group of components. Parts of the Storage-
aggregator and Configuration-manager pseudocode is shown in Listing 5.1,
demonstrating how the stateful information is kept by the aggregator and
updated through sensing events, while the actuation commands are initiated
by the manager.

Application Self-optimization. In addition to the two above described
test-cases we have also designed but not fully tested application self-optimization.
With self-optimization we mean the ability to adapt the system so that it, be-
sides meeting functional requirements, also meets additional non-functional
requirements such as efficiency. This is achieved by using the ComponentLoad-
watcher to gather information on the total system load, in terms of used
storage. The storage components report their load changes, using appli-
cation specific load sensors. These load-change events are delivered to the
Storage-aggregator. The aggregator will be able to determine when the total
utilization is critically high, in which case a StorageAvailabilityChange-event
is generated and processed by the Configuration-manager in the same way as
described in the self-configuration section. If utilization drops below a given
threshold, and the amount of allocated resources is above initial require-
ments, a storageAvailabilityChange-event is generated. In this case the event
indicates that the availability is higher than needed, which will cause the
Configuration-manager to query the ComponentLoad-watcher for the least
loaded storage component, and instruct it to deallocate itself, thereby free-
ing the resource. Parts of the Configuration-manager pseudocode is shown
in Listing 5.2, demonstrating how the number of storage components can be
adjusted upon need.

67

Listing 5.1: Pseudocode for parts of the Storage-aggregator

upon event ResourceFa i lu re (r e s o u r c e i d) do
amount to subtract = a l l o c a t e d r e s o u r c e s (r e s o u r c e i d)
t o t a l s t o r a g e = tota l amount − amount to subtract
cu r r en t l o ad = update (cur rent load , t o t a l s t o r a g e)
i f tota l amount < i n i t i a l r e q u i r e me n t or cu r r en t l o ad > h i g h l im i t then

t r i g g e r (ava i l ab i l i tyChangeEvent (t o t a l s t o r a g e , cu r r en t l o ad))
end

Listing 5.2: Pseudocode for parts of the Configuration-manager

upon event ava i l ab i l i tyChangeEvent (t o t a l s t o r a g e , new load) do
i f t o t a l s t o r a g e < i n i t i a l r e q u i r em en t or new load > h i g h l im i t then

new resource = r e s o u r c e d i s c o v e r (component requirements , c ompa r e c r i t e r i a)
new resource = a l l o c a t e (new resource , p r e f e r e n c e s)
new component = deploy (s to rage component desc r ip t i on , new resource)
add to group (new component , component group)

e l s e i f t o t a l s t o r a g e > i n i t i a l r e q u i r e me n t and new load < l ow l im i t then
l eas t l oaded component = component load watcher . g e t l e a s t l o a d e d ()
l e a s t l o a d e d r e s o u r c e = leas t l oaded component . g e t r e s o u r c e ()
t r i g g e r (resourceLeaveEvent (l e a s t l o a d e d r e s o u r c e))

end

5.2 Implementation

5.2.1 The Component Load Sensor

The component load sensor is implemented in yass.sensors.LoadSensor.
It is responsible for monitoring the load of a storage component. Sensors
can be push and/or pull style. The load sensor is a push sensor. When
a file is added to or removed from a storage component, the new load is
pushed by the storage component to the associated load sensor. This is done
using yass.sensors.LoadChangeInterface. The LoadSensor triggers a
ComponentStateChangeEvent when the storage component load changes
with a predefined delta.

5.2.2 The Component Load Watcher

The component load watcher is implemented in yass.watchers.LoadWat-

cher. It is subscribed to all yass.sensors.LoadSensor sensors. Currently
the load watcher only forwards the ComponentStateChangeEvent triggered
by the load sensors.

The watcher must specify the sensor that it requires to be able to watch
component(s). For example the component load watcher requires the com-
ponent load sensor to be deployed to be able to watch storage components.
It is the responsibility of the infrastructure to deploy the sensor and bind it
with the watched component and do the subscriptions for the events gener-
ated by the sensor.

68

The sensor specification is done when initializing the watcher in init().
It includes the following:

• Sensor class name.

• Event class name that is generated by the sensor.

• Any parameters needed to initialise the sensor (delta for load sensor).

• Name of fractal client interface(s) used by pull sensors. A server in-
terface with the same name must exist on the watched component.

• Name of fractal server interface(s) used by push sensors. A client
interface with the same name must exist on the watched component.

Here is how the load watcher specifies the load sensor:

deploySensor.deploySensor("yass.sensors.LoadSensor",

"yass.sensors.LoadSensorEvent", sensorParameters,

null, new String[] { "pushLoadChange" });

5.2.3 The Storage Aggregator

The storage aggregator is implemented in yass.aggregators.StorageAggregator.
It is responsible for keeping the state of the system. When a resource fail
or leave it remove the amount of storage that was allocated on the leaving
resource and if the remaining storage is less than a predefined threshold it in-
forms the ConfigurationManager through a StorageAvailabilityChangeEvent.
When a new storage component joins the storage group the storage aggrega-
tor adds its storage capacity to the total storage. Currently the Component
State Change event is not handled.

5.2.4 The Configuration Manager

The configuration manager is implemented in yass.managers.ConfigurationManager.
It is registered to StorageAvailabilityChangeEvent from the storage ag-
gregator. Upon receiving the event it checks if the load is higher than a
threshold or the total capacity is less than the minimum threshold and if so
it tries to find new resource to deploy a storage component on it.

5.2.5 The File Replica Aggregator

The file replica aggregator is implemented in yass.aggregators.FileReplicaAggregator.
It monitors the members of the associated file group for resource leave and
failure by subscribing to corresponding resource fail and leave sensors.

When a watched resource fails/leaves, it triggers a ReplicaChangeEvent

indicating that action must be taken to restore the replication degree.

69

5.2.6 The File Replica Manager

The file replica manager is implemented in yass.managers.FileReplicaManager.
When it receive a ReplicaChangeEvent it starts to find a new replica by
sending a ReplicaRestoreRequest to any of the remaining members of the
file group.

5.2.7 The Create Group Manager

The create group manager is implemented in yass.managers.CreateFileGroupManager.
It is subscribed to the CreateGroupEvent which is an infrastructure event.
The purpose of this manager is to detect when the functional part (storage
components) creates a new file group. When a new file group is detected, the
create group manager will create a new file replica aggregator and manager
for the new file group.

5.2.8 The Start Manager

The start manager is implemented in yass.managers.StartManager. This
is called at the deployment time. The purpose of this manager is to handle
operations that are not yet implemented in the ADL.

5.3 Installation

YASS requires Jade and Niche to be installed and configured properly. In
this section we will guide you, step by step, to prepair your environment to
run and/or develop applications based on the DCMS.

Download

You will need Jade, Niche, and YASS:

• If you are interested only in running YASS then it is enough for you to
get Jade because we already added the JAR files for Niche and YASS
in Jade. You can get Jade from the SVN repository at

https://gforge.inria.fr/projects/grid4all/ you will find it un-
der wp1/Jade.

• You can also checkout the source code of YASS from the same repos-
itory under wp1/YASS.

• The Niche source code can be found at

svn://korsakov.sics.se/dks/

70

The Web Cache

The DCMS uses the Niche/DKS [6, 8], an overlay middleware built on the
DKS structured overlay network. Any new resource/node that wants to join
an existing overlay must first contact a node already inside the overlay to be
able to join. The only exception is the first node which created the overlay.

The problem now is how will a new node learn about the reference (ip/-
port) of an existing node? The solution used is a simple web page that
contains the references to the most recent nodes in the overlay. We assume
that the URL of this page is known by the nodes that wants to join the
overlay repsented by the page. We call this web page the web cache.

For each overlay you need one web cache. Two different overlays must
use different web caches. This web cache is used to cache references to some
nodes that are part of the overlay. We assume that all nodes know the URL
of the web cache. This is configurable through the Jade/etc/dks/dksParam-
.prop file as described in the next section. The first node that creates the
overlay resets the content of the web cache and puts a reference to itself.
Other nodes that join this overlay will use the web cache to get a reference
to a node already in the overlay. The new joining node will then use this
reference to join the overlay and will also add a reference to itself in the web
cache.

To setup the web cache you will need a web server that can run PHP.
You can use Apache web server for example. Apache comes with most Linux
distributions. For Windows you can use for example www.easyphp.org. Af-
ter installing your web server copy the Jade/webcache/ folder to your www

root folder.

Configuration

The configuration files can be found in the etc/ folder under the Jade source
tree. The Jade/etc/dks/dksParam.prop file is used to set the “Arity” K
and the number of “Levels” L for DKS routing. The ID space is N = KL.
The values for K and L must be the same for all nodes in the same overlay.
This file is also used to specify the default IP and port number of each node
in the overlay but can be changed in the code. The address of the web cache
is also specified in this file. All nodes in a single overlay must share the same
web cache. You might need to edit this file and set these values.

Search for <Path to Jade> at Jade/etc (including sub folders) and re-
place it with the correct path.

Go to Jade/etc/oscar/ and edit bundle-jadeboot.properties and
bundle-jadenode.properties to set appropriate values for jadeboot.registry.host
and jadeboot.discovery.host. The JadeBoot is the node that starts Jade
and the overlay and currently this node can not fail!

71

If you are Disconnected from the Internet

In this case you’ll have to copy Jade/etc/www/repo.jasmine/ folder to
your www root. Then search the Jade/etc/oscar/ folder and the Jade/etc/
execute.properties file for the text repo.jasmine and replace the remote
url with your local one.

For Developers Only

If you want to modify Niche/DKS you must place the new dks.jar file in the
Jade/external folder. If you modify YASS you must place the new yass.jar
file in the Jade/external folder and if you modified the fractal architecture
then you must place the new yass.fractal file in the jade/examples folder.

If you want to run a new application you must add the JARs to Jade/external
and the .fractal file to Jade/examples. Then search the Jade source tree for
the text “yass.jar” and add similar lines for your application. Finally to run
it (described in next section) the simple way is to add ant targets for your
application similar to “testG4A-Yass-Deploy” and “testG4A-Yass-Start”.

5.4 Running YASS

Compile Jade using the ant file Jade/build-src.xml default target. Then
to start the Niche/Jade system you will need a boot node and several nodes
(depending on the number of nodes you need). You’ll need at least one
boot and four nodes to run the demo. You can use the Jade/build.xml ant
file. Use the jadeboot target to start a boot node then use the jadenode

target several times to create as much nodes as you need. Alternatively
you can use the testG4A-init2N target to start a boot and a node or the
testG4A-init4N target to start a boot and three nodes.

For testing it is easier to first try to run the nodes on the same machine
just to make sure that everything is working.

After starting the Niche/Jade system you can now deploy the YASS
application to the overlay using the testG4A-Yass-Deploy target in the
Jade/build.xml at the JadeBoot node. After deployment start the appli-
cation using the testG4A-Yass-Start target.

You can now test the YASS application by storing/retrieving some files,
killing some nodes, and joining some other nodes.

72

Chapter 6

Features and Limitations

6.1 Initial deployment

In the current prototype, only deployment of functional components is done
through ADL. The rest, forming the group, establishing bindnings, and cre-
ating the self-management architecture is done in the YASS StartManager.
The start manager is defined in ADL by adding a “definition=
”org.objectweb.jasmine.jade.ManagementType”” tag after the component
name.

Currently:
- The start-manager must be the first component to be declared in the

ADL file.
- All bindings not established through ADL must declared with “contin-

gency=”optional””.

6.2 Demands on stability

In the first version of the prototype, the stable nodes must be present when
the application is deployed, and remain present for the duration of the ap-
plication lifetime.

6.3 Scope of registry

The component registry needed to locate deployed component based on their
ADLName is currently only accessible from the boot-node from where the
components where initially deployed.

73

6.4 Resource management

Currently there is no real resource management, parts of corresponding func-
tionality is hardwired in Niche to suit the YASS demo. The following section
will demonstrate how to set up the system in a valid way concerning the
node id:s.

6.5 Id configuration

To make the prototype work, some settings files should be present and tuned
for the specific scenario at hand to achieve desired behaviour, the lines file
and the stableNodes file, two plain-text files in the main Jade folder which
list desired node id:s.

In general, a joining node is assigned a random id from the ring id space,
ranging from 0 to N. Especially for the prototype, it is desirable to be able
to control the assignment of the id:s.

By specifying a lines file for each physical computer used, the nodes
started on the computer will pick the id:s read form the lines file, in top
down order. Since no two nodes should share the same id, the lines files
should be non-intersecting. If more nodes are started on a computer than
there are id:s in the lines file, the exceeding nodes will be assigned random
id:s.

To achieve a very primitive “resource management” functionality, the
same lines file is used to specify the amount of available storage each logical
node offers the system, simply by typing “Id=AmountOfOfferedSpace”.

The stableNodes file lists the id:s of the nodes which are assumed to be
always present in the system for the duration of the test.

By setting these two files with care, nodes can join and leave the system
without disrupting the management. The present requirement is that the
id:s of any node joining or leaving has to closely follow an id of a stable
node. See below for an example.

6.5.1 Id configuration example

The following shows a valid setup to run the YASS demo.
lines-file on:
computer 1: 5000=1, 420000=11
computer 2: 190050=950000
computer 3: 190000=1200000
computer 4: 830000=9500000
computer 5: 830050=9500000
stableNodes-file, on all computers: 190000, 420000, 830000

74

Listing 6.1: Code to show request-reply behaviour

p r i v a t e void f i l eWr i t e (St r ing uniqueFileName ,
ComponentId i n i t i a t o r , . . .) {

// Local book−keeping
. . .
f i l eWr i t eAck . f i l eWr i t eSucceeded (uniqueFileName , i n i t i a t o r) ;

}

With the above setup, two nodes should be started on the first computer
and one on 2, 3 and 4. Thereafter the YASS application can be deployed. To
ensure that management is not disrupted, it is the node present at computer
2 that should be stopped to demonstrate the self-* mechanisms. After the
node is stopped, a new node can join with id 830050, which will be detected
and put to use to replace the lost node.

6.6 Limitations of two-way bindings

Two-way bindings are now implemented for one-to-one and one-to-any bind-
ings. Currently the system cannot aggregate multiple replies on a one-to-
many binding. To receive multiple acknowledgements from a set of com-
ponents, the following work-around can be used: Special attention is given
interface method signatures; if the last argument of a method corresponds
to a valid ComponentId, this will short-cut the ordinary binding, and be
used to send directly to that designated component.

An example from YASS is given in 6.1. In the example the component
which should reply is given access to the id of the requestor through the
request invocation. The same id is then used to reply through the find-
ReplicasAck interface.

6.7 Caching

In the current prototype functional components are assumed to be static in
the sense of non-movable. Therefore the physical address of the components
participating in a group or in a binding are cached by the group or the bind-
object respectively. On the other hand there is no caching of group content
by group users, which means each name based address is resolved on each
use.

75

6.8 Lack of garbage collection

Currently if a group or a management element is removed, not all related
bindings and sensors are removed.

6.9 YASS limitations

The current prototype does only store “virtual” files: space is reserved inside
the storage component, and file metadata is stored, but the files are not
actually transfered over the network.

76

Chapter 7

Future Extensions

7.1 Initial deployment

Eventually management elements that should be present from initial appli-
cation deployment time will be deployed through ordinary ADL the same
way as functional components. If needed, resource constraints for man-
agement elements could then be specified the same way as for functional
components.

7.2 Resource Management

Useful improvements include the ability to reallocate resources.
<TODO> Nikos should contribute here. </TODO>
DCMS currently does not verify resource usage by application compo-

nents. Moreover, DCMS does not yet define the way to specify required
resources for use by specific application management elements, and there-
fore DCMS cannot verify resource usage by individual MEs even if there
were a mechanism to do so. However, if resources that are consumed by
MEs are reasonable and distributed fairly between different applications ex-
ecuted by DCMS, accounting of resource usage by individual MEs can be
unnecessary.

7.3 Increased Tolerance to Churn: Joins, Leaves

and Failures

The next released version of DCM will allow nodes with arbitrary id:s to
join without disrupting existing management.

The following version will include ability to gracefully leave any node,
which then might cause temporary delays in management response times,
but no permanent disruption.

77

Before the end of the project we hope to implement transparent repli-
cation of management elements for increased robustness, which then will
allow also nodes hosting management elements to fail. Replication of man-
agement elements will involve refining the meaning of bindings between MEs
and functional components as such bindings will connect multiple replicas
of the same ME to functional components. The set of ME replicas will act
as a group, except that MEs and thus ME groups can provide also client
interface(s) which will imply “many-to-one” or “many-to-many” commu-
nication patterns. We may find it necessary also to restrict the possible
interaction types between MEs and functional components in order to make
both the programming model and DMCS implementation reasonably simple
and efficient.

7.4 Caching

We will implement and test different forms of caching, although the work
towards increased efficiency will have lower priority than the work towards
increased robustness.

7.5 Improved Garbage Collection

We will improve garbage collection when removing management elements
from the system, although the work towards better garbage collection will
have lower priority than the work towards increased robustness.

7.6 Replication of Architecture Element Handles

Figure 7.1: Replicated Handles.

78

The framework will support a network-transparent view of system ar-
chitecture, which simplifies reasoning about and designing application self-*
code. This will be facilitated by replication of internal DCMS entities rep-
resenting architecture elements, such as references as shown on Figure 3.9.
Different MEs access different entity replicas for read accesses. The SNR
replication provides eventual consistency of SNR replicas, but transient in-
consistencies are allowed. Similarly to handling of SNR caching, the frame-
work recognizes out-of-date SNR references and repeats SNR access when-
ever necessary.

79

Chapter 8

Conclusions

In this document we introduce a programming model and API impleme-
mented by DCMS – distributed component management service. DCMS
facilitates developing self-* applications for community-based Grids, as en-
visioned by Grid4All use cases. Our framework separates application func-
tional and self-* code, and allows to design robust application self-* be-
haviours as a network of management elements. DCMS exploits a struc-
tured overlay network for naming and lookup, communication, and DHT
overlay services. DCMS intends to reduce the cost of deployment and
run-time management of applications by allowing to program application
self-* behaviours that do not require intervention by a human operator,
thus enabling many small and simple applications that in environments like
Grid4All’s community-based Grids are economically infeasible without self-
management.

80

Glossary

API – Application Programming Interface.

Niche is a Distributed Component Management Service (DCMS), a ser-
vice supporting developing component-based self-* services. The Niche
framework includes the programming model and the API specification.

Niche groups is an abstraction in the Niche programming model that al-
lows the programmer to group together components. One-to-any and
one-to-all bindings can be made to a group, and group membership
management is independent of bindings to the group.

DKS – Distributed k-ary system [8], a structured overlay network.

Fractal component model [7] is a model for component-based applications.
Components have interfaces that are connected by bindings. Frac-
tal provides for nested components and hierarchical composition, and
allows component sharing. The novel feature of Fractal is the provi-
sioning for dynamic introspection, reconfiguration and life-cycle man-
agement of components.

Groups , see Niche groups.

Management Events are objects that are passed between sensors and
MEs. There are event classes pre-defined by Niche, and application-
specific event classes defined by the application developer.

ME – Management Elements. A distributed network of MEs constitute
the implementation of self-* behaviours in an application. MEs com-
municate by means of events, and use the Niche API to manage the
application architecture.

ME containers encapsulate application-specifc MEs and application-independent
ME generic proxies.

ME generic proxies are components provided by Niche that are bound to
MEs and implement inter-ME communication and management func-
tions. ME generic proxies allow devlopers of Niche-based application
to program MEs as regular Fractal components.

81

Sensor is a Niche entity that provides information to application self-*
code, implemented as a network of MEs, about status of individual
components and the environment. The former type of sensors is de-
veloped by application programmer together with application compo-
nents, and the latter one is provided by Niche.

Id,Identifier is a concept in Niche. Id:s uniquely identify implementations
and representations of elements of the application’s architecture, like
components, groups and bindings. Internally in Niche, Id:s are used to
address all kinds of entities that are shared by multiple nodes and MEs,
in particular – Niche nodes themselves and Niche reference entities.

SNR – Set of Network References, an abstraction provided by Niche that
allows to maintain and monitor a set of references to entities on the
overlay.

Subscription is an asynchronous communication channel between a pair
of sensors or MEs for a specific type of management events.

GCM – Grid Component Model, a refinement of the Fractal component
model. Provides for group communication through “collective inter-
faces”, and facilates construction of autonomous component through
“behavioural skeletons”.

P2P – peer-to-peer networks and systems.

Synchronized MEs – replicated MEs that are maintained in a consistent
(synchronized) state, such that such MEs can be seen as hosted on
reliable (failure-free) computers.

82

Index

DCMS, 4–6, 12, 14, 16–28, 33, 38, 49,
50, 56, 59, 60

Fractal, 4–9, 12, 17, 19, 22, 60

GCM, 6, 61

ME, 5, 6, 15–21, 23–25, 27, 45, 56–
58, 60

Niche/DKS, 24, 50, 51, 60

Sensor, 5, 6, 16–19, 23, 27, 30, 40,
45–48, 55, 60

83

Bibliography

[1] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov,
and P. Brand. Enabling self-management of component based dis-
tributed applications. In Proceedings of CoreGRID Symposium, Las
Palmas de Gran Canaria, Canary Island, Spain, August 25-26 2008.
Springer. To appear.

[2] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick,
P. Dazzi, D. Laforenza, and N. Tonellotto. Behavioural skeletons in
GCM: Autonomic management of grid components. In PDP ’08: Pro-
ceedings of the 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2008), pages 54–63. IEEE Computer
Society, 2008.

[3] Kenneth P. Birman. Building Secure and Reliable Network Applications.
Manning Publications Co., Greenwich, CT, USA, 1997.

[4] Kenneth P. Birman. Reliable Distributed Systems: Technologies, Web
Services, and Applications. Springer, 2005.

[5] S. Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. Mos, J.-B.
Stefani, N. de Palma, and V. Quema. Architecture-based autonomous
repair management: An application to J2EE clusters. In SRDS ’05:
Proceedings of the 24th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’05), pages 13–24, Orlando, Florida, October 2005. IEEE.

[6] P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer, N. Parla-
vantzas, V. Vlassov, and A. Al-Shishtawy. The role of overlay services
in a self-managing framework for dynamic virtual organizations. In
CoreGRID Workshop, Crete, Greece, June 2007.

[7] E. Bruneton, T. Coupaye, and J.-B. Stefani. The fractal component
model. Technical report, France Telecom R&D and INRIA, February
5 2004.

[8] Distributed k-ary system (dks). http://dks.sics.se/.

84

[9] Basic features of the Grid component model. CoreGRID Deliverable
D.PM.04, CoreGRID, EU NoE project FP6-004265, March 2007.

[10] J. Hanson, I. Whalley, D. Chess, and J. Kephart. An architectural
approach to autonomic computing. In ICAC ’04: Proceedings of the
First International Conference on Autonomic Computing (ICAC’04),
pages 2–9, Washington, DC, USA, 2004. IEEE Computer Society.

[11] P. Horn. Autonomic computing: IBM’s perspective on the state of
information technology, October 15 2001.

[12] J. Kephart and D. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, 2003.

[13] L. Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems (TOCS), 16(2):133–169, 1998.

[14] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[15] J. Lorch, A. Adya, W. Bolosky, R. Chaiken, J. Douceur, and J. Howell.
The SMART way to migrate replicated stateful services. ACM SIGOPS
Operating Systems Review, 40(4):103–115, 2006.

[16] D. Malkhi, F. Oprea, and L. Zhou. Omega meets Paxos: Leader elec-
tion and stability without eventual timely links. In Pierre Fraigniaud,
editor, Distributed Computing, 19th International Conference (DISC’
05, volume 3724 of LNCS, pages 199–213, Cracow, Poland, September
26–29 2005. Springer.

[17] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Computing Surveys (CSUR),
22(4):299–319, 1990.

[18] P. Zielinski. Low-latency atomic broadcast in the presence of con-
tention. Distributed Computing, 20(6):435–450, 2008.

85

This page is intentionally left blank

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 1 of 15

Annex 2. Security Infrastructure

Grid4All Security User's Manual, Release 0.6

by Leif Lindbäck and Vladimir Vlassov
Royal Institute of Technology (KTH), Stockholm, Sweden

Email {leifl, vladv}@kth.se

FP6 Project Grid4All (IST-2006-034567)

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 2 of 15

Contents

Abstract ..3

1 Grid4All Security Architecture ...3

1.1 Policy Enforcement Point (PEP) ..4

1.2 Policy Decision Point (PDP) ...4

1.3 Policy Information Point (PIP) ..4

1.4 Policy Administration Point (PAP) ..4

1.5 Policy Repository (PR) ..5

2 Installation ..5

3 Running Security Components ..5

3.1 Running PDP ..5

3.2 Running the PEP Demo (a PDP Client) ...6

3.3 Running PAP ..6

3.4 Running the PAP client ...8

3.5 Running VOMS ..8

4 Programming Security Components ..8

4.1 Programming Policy Decision Points (PDP) ..8

4.1.1 Interaction with PDP over a TCP Connection ..9

4.1.2 Interaction with PDP through Standard Input and Output9

4.1.3 Interaction with PDP Using RMI ...9

4.1.4 Interaction with PDP by Local Method Invocation .. 10

4.2 Programming Policy Enforcement Points (PEP) .. 11

4.2.1 The class CachingPEP ... 11

4.2.1.1 Cache Invalidation ... 11

4.2.1.2 Communication with PDP ... 11

4.2.2 Interaction with PEP .. 12

4.2.2.1 Interaction with PEP by Local Method Invocation 12

4.2.2.2 Interaction with PEP using Streams ... 13

4.3 Programming Policy Administration Points (PAP) .. 14

4.3.1 Interaction with PAP over a TCP Connection .. 14

4.3.2 Interaction with PAP Using RMI ... 14

4.3.3 Interaction with PAP by Local Method Invocation .. 15

5 Limitations ... 15

6 Known Bugs ... 15

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 3 of 15

Abstract
This User’s Manual is for developers who intend to use Grid4All security API for

authentication and authorization in their distributed applications and systems.

The Grid4All security API allows building a policy-based security infrastructure where

policies are expressed in XACML (eXtensible Access Control Markup Language). The

Grid4All security API (classes and interfaces) has been developed using Sun’s XACML

implementation (http://sunxacml.sourceforge.net/).

The Grid4All security distribution (including source and documentation) is available at

http://www.isk.kth.se/~leifl/vofs/

This User’s Manual is structured as following. First, it describes the Grid4All security

architecture; next it gives installation instructions; followed by start-up instructions and user

commands; and finally, it presents a programmer’s guide that explains how to use Grid4All

security API for programming a policy-based security infrastructure in distributed

applications and systems.

1 Grid4All Security Architecture
The Grid4All security includes the following security components (Figure 1).

− Policy Enforcement Point (PEP) enforces VO policies;

− Policy Decision Point (PDP) makes authorization decisions based on VO policies;

− Policy Information Point (PIP) collects user security-related data;

− Policy Administration Point (PAP) is used to administrate (create, update, delete) policies;

− Policy Repository is a persistent store for policies;

− VO Membership Service (VOMS) maintains VO membership.

PEP is the only component that resides on the client side and may need to be customized or

re-implemented by the developer. Other components remain unchanged across different

application domains and use-cases. The components are explained in more detail below.

Figure 1. Security architecture

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 4 of 15

1.1 Policy Enforcement Point (PEP)
PEP protects a resource. It is called whenever access rights shall be checked. An authorization

request to PEP includes the following three parameters.

− Subject which is the single sign-on identifier of the user accessing the resource. This

identifier was returned by the VOMS when the user signed on.

− Action, which specifies a name of an action to be performed on the resource.

− Resource which is the target resource identifier in the form of a path starting with @

(e.g. @/se/kth/ict).

PEP sends the authorization request to PDP and upon receiving an authorization response

from PDP, it enforces the authorization decision. Note that the PEP classes provided in the

Grid4All API, do not enforce the authorization decisions but only cache the decisions

communicate them to a component requesting the access check. The Grid4All Security API

includes a sample PEP class that only caches authorization decisions (see 4.2). This class can

be used as a template to develop a PEP enforcing authorization decisions. Caching of PDP

responses at PEPs reduces security overhead. The developer can use PEP either with or

without cache for PDP responses. The PEP class provided in Grid4All security API supports

caching of PDP responses

Note that any object sending authorization requests to PDP and receiving an authorization

response could be considered as PEP.

1.2 Policy Decision Point (PDP)
The PDP evaluates requests in the context of a security policy. When the PDP receives an

authorization request from PEP, it retrieves the appropriate policy from the Policy Repository

or from its policy cache maintained in memory, evaluates the request, makes the authorization

decision, and returns it to the requesting PEP as an authorization response. The response

includes one of the following possible results:

− Permit, this means that access is granted.

− Deny, this means that access is rejected.

− NotApplicable, this means that there was no matching policy.

− Indeterminate, this means that no decision could be taken. For example there might be

several contradicting policies.

− Error, which means that policies could not be checked because of some exception, for

example the communication link might be broken

The PDP maintains a cache of policies which are loaded from the Policy Repository.

1.3 Policy Information Point (PIP)
PIP is responsible for authenticating users and for retrieving their roles from the VOMS. PIP

caches VOMS answers.

1.4 Policy Administration Point (PAP)
PAP is used to administer (list or change) policies stored in the Policy Repository (PR).

Before accessing the repository, PAP calls its own PEP to check if the policies in PR grant the

caller the right to do the requested operation. The provided implementation of PDP assumes

that XACML policies are stored as XML files.

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 5 of 15

1.5 Policy Repository (PR)
The policy repository is a persistent store for policies in the eXtensible Access Control

Markup Language (XACML)
1
.

2 Installation
1. Download the Grid4All security distribution from

http://www.isk.kth.se/~leifl/vofs/

2. Unpack the content of the archive

3. Check and edit entries (e.g. host names, port numbers, paths, etc.) in two configuration

files, etc/config/grid4all.secserv.config and

etc/config/grid4all.pep.config for PDP/PAP and PEP, respectively. The

entries are documented in the files. When running a program, e.g. PDP, PAP or PEP,

the paths to configuration files should be either on the class path or specified with the

-fs option for the PDP/PAP configuration file (grid4all.secserv.config)

and -fp for the PEP configuration file (grid4all.pep.config).

4. Make sure that the policyPath entry in the grid4all.secserv.config

configuration file points to a directory that contains the file

etc/policy/default-admin.xml, otherwise no user will have the right to

execute any commands on security components. The default-admin.xml file

grants the role admin all rights to all resources protected by Grid4All security.

3 Running Security Components
PDP (Policy Decision Point), PAP (Policy Administration Point) and VOMS (VO

Membership Service) are servers. This section explains how to start PDP, PAP and VOMS,

and user commands to control them. It also explains how to run the PEP demo and the PAP

client. The PEP demo illustrates interaction of PEP with PDP: it allows the user to send

commands to PDP over a TCP connection. The PAP client allows the user to send commands

to PAP over a TCP connection.

3.1 Running PDP

Start PDP with the start-pdp command in the bin directory. Communication with PDP

can be done through TCP connection, RMI, local method invocation and standard

input/output. The RMI and local methods are described in 4.1.34.1.4 respectively. The TCP-

based and standard input/output interfaces accept the following commands.

− REQUEST <subject> <action> <resource>

Queries the policy repository. The response is one of Permit, Deny,

NotApplicable or Indeterminate according to the XACML specification. If

the request does not have the correct format or some other exception occurs, then the

response is ERROR. Note that subject should be the single sign-on identifier

returned by VOMS when the user signed on. PDP will call VOMS to check that the

user is signed on and to get the roles of the user. All roles will be evaluated and the

result will be Permit if any of the roles has the right to perform the specified action.

PDP will answer not only to the specified request, but also to other requests with the

same subject and resource but with all existing actions. The response format is

1
 http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 6 of 15

<answer to specified request> <nextAction> <answer to a

request with the originally specified subject and

resource, but with action replaced by nextAction>

The last two items are repeated for each action that exists in the policy repository.

− REGISTER <port>

Registers the given port number and the IP address from which this command is sent,

at this PDP to send cache invalidation requests. <port> defines the port number to

which the PDP will send cache invalidation requests. This command can only be used

from the TCP interface. On success, the command returns REGISTER_OK. When

the cache shall be invalidated PDP sends INVALIDATE to the specified port on the IP

address from which the REGISTER command was sent. On receiving this command

PEP should discard its entire cache. It should not send any answer to PDP. PEP only

gets one chance to discard its cache; if this message is lost it will not be retransmitted.

− UNREGISTER <port>

PEP at the address from which the command was sent will stop receiving information

about cache invalidations. <port> should be the same as in the REGISTER

command. This command can only be used from the TCP interface. On success, the

command returns UNREGISTER_OK.

− RELOAD

Causes PDP to discard its policy cache and reload it from the policy repository. The

INVALIDATE command (see above) is sent to all registered PEPs. On success, the

command returns RELOAD_OK.

− STOP

Terminates PDP. Note that the entire PDP terminates, not only the command

interpreter. PDP is shutdown gracefully. All ongoing work will be finished before

shutting down. This command can only be used from the standard input interface.

3.2 Running the PEP Demo (a PDP Client)
The PEP demo illustrates interaction of PEP with PDP: it allows the user to send commands

to PDP over a TCP connection. To run the PEP demo use the pep-demo command in the

bin directory. The demo uses TCP to communicate with PDP that must be started with the

start-pdp command described in 3.1. The PEP demo reads the PDP host name and port

number from the client configuration file, etc/config/grid4all.pep.config.

3.3 Running PAP

Start PAP with the start-pap command in the bin directory. Note that PAP will call

PDP, so you must start that one also. Communication with PAP can be done through TCP

connection, RMI and local method invocation. The RMI and local methods are described in

4.3.2 and 4.3.3 respectively. The TCP interface accepts the following commands.

− <issuer> setacl -dir <directory> -acl <role> <rwilkad> [-

clear] [-time <startTime> <endTime>] [-date <startDate>

<endDate>]

[-dayofweek <startDayOfWeek> <endDayOfWeek>][-negative]

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 7 of 15

The setacl command sets the access control list (ACL) entries specified with the

-acl argument to the ACL of the directory named by the -dir argument for role

<role>. On success, the command returns OK otherwise an error message.

The –clear flag is used to remove the ACLs of the <role> on the directory

<directory>. In this case, there is no need to specify the permissions

(<rwilkad>) since all the permissions will be erased. The –negative flag is used

to impose negative ACLs (i.e. “deny” decision) for the specified actions in

<rwilkad> for role <role> on the directory <directory>. Note that issuer

should be the single sign-on identifier returned by the VOMS when the user signed on.

All roles of the user will be evaluated.

The -time, -date and -dayofweek flags makes the policies, whether positive or

negative, valid only the specified periods. Periods can not be open; they must always

have both start and end. Time format is hh:mm:ss[TZ]. Time zone is specified as

+/- offset from UTC, e.g. 00:00:00+02:00. Time periods are allowed to

wrap around midnight. Date format is yyyy-mm-dd. Dates must be valid, i.e.

November 31 or February 29 of non leap years are not accepted. All years from 0000-

9999 are accepted. Day of week format is strings containing day names in English

without abbreviations. Day names are not case sensitive. Day of week periods are

allowed to wrap, which means that it is not important which day is considered the first

of the week. Time zone is not considered when date and day of week rules are

evaluated; this means that midnight always occurs when it occurs on the computer

evaluating the time period. The -time, -date and -dayofweek flags can be

combined in any way and the rule only applies if all of them match.

Example:

123456 setacl –dir @/se/kth/ict –acl teacher rwid -time

01:00:00 13:00:00

The specified role, teacher, is given the specified permissions, rwid which is short

for read, write, insert and delete, on the specified resource,

@/se/kth/ict. The permissions are valid from 1 AM to 1 PM.

Privilege Required:

The issuer must have the a (admin) permission.

Answer:

The answer is OK.

− <issuer> listacl -dir <dir/file path>

The listacl command displays the access control list (ACL) of the <role>

associated with the specified file or directory. Note that issuer should be the single

sign-on identifier returned by VOMS when the user signed on. All roles of the user

will be evaluated.

Example:

The response of command: 123456 listacl –dir @ might be:

ACL for <@ admin>

 Positive Entry: r valid: 01:00:00-02:00:00

 Positive Entry: w valid: always

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 8 of 15

 Negative Entry: a valid: Monday-Tuesday

Privilege Required:

The issuer must have the r (read) permission on its ACL and the ACL for every

directory that precedes it in the pathname. Otherwise PAP returns an error message.

Also, it means that you can not see your own ACL on the directory if you don’t have r

(read) permission on the ancestor directories.

Answer:

See Example above.

3.4 Running the PAP client
The PAP client allows the user to send commands to PAP over a TCP connection. To run the

the PAP client, use the pap-client command in the bin directory. The PAP client uses

TCP to communicate with PAP that must be started with the start-pap command

described in 3.3. The client reads the PAP host name and port number from the client

configuration file, etc/config/grid4all.pep.config.

3.5 Running VOMS

1. Initialize VOMS database with the command bin/init-voms.

2. Start VOMS with the command bin/start-voms. VOMS can now be accessed

with a browser at the url http://<voms host>:8080/voms.

3. To create users and roles, log in as the default admin user:
Username: admin

Password: g4all

It is not necessary to enter anything in the fields VOFS Host and VOFS Port to be

able to create users and roles.

4. The following actions exist in VOMS:

o login.jsp (default) authenticates the user and creates a single sign-on token

which is sent to the specified host and port.

o GetAllPeerAction.do returns a list with the host and port of all signed-

on users.

o CheckIdAction.do?id=<single sign on token> returns all roles

of the user with the specified token. Shows an empty page if there is no such

user.

4 Programming Security Components
This section explains how to access Grid4All Security components (PDP, PEP and PAP)

programmatically.

4.1 Programming Policy Decision Points (PDP)
PDP is provided as a server application (service) that can be accessed by clients in different

ways as explained below. The provided PDP is complete and does not need to be extended in

any way. It is defined in the primary class se.kth.grid4all.security.pdp.PDP

and it is started with the start-pdp command in the bin directory. When PDP is running,

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 9 of 15

a client (e.g. PEP) interacts with it by submitting an authorization request and getting in return

an authorization response (see Figure 1). The client can communicate with PDP in four

different ways: over a TCP socket connection; through the standard input and output streams;

using RMI; and by local method invocation on PDP. In the last case, the requesting client

must be in the same JVM as the PDP object.

4.1.1 Interaction with
PDP over a TCP Connection

The PDP object listens for TCP connections on the port specified in the configuration file,

grid4all.secserv.config. The accepted commands are specified in 3.2.

4.1.2 Interaction with
PDP through Standard Input and Output

Commands can be given through standard input; whereas response can be read from standard

output. The accepted commands are specified in 3.1. Note that the command interpreter that

reads standard input runs in the same JVM as the PDP itself.

4.1.3 Interaction with
PDP Using RMI

The PDP is bound in the RMI registry under the name specified in the configuration file

grid4all.secserv.config. The remote interface for interaction with PDP is

se.kth.grid4all.security.communication.SecurityServer. The interface

defines the following remote methods.

EvaluationResult evaluateRecursively(String subject,

 String resource,

 String action)

 throws PolicyException,

 RemoteException

Evaluates an authorization request, which includes subject, resource, and action,

in the context of security policies, i.e. evaluates whether the given subject has

rights to take the given action on the given resource. First checks for a policy for

the resource specified by the resource parameter. If there is no matching

policy, drops the part after the last path delimiter, /, and tries again. This is

repeated until a matching policy is found or there is no more path delimiter in

resource. The request is evaluated in the context of the found policies.

The method takes the following three parameters. subject is the single sign-

on identifier of the user wanting to access the resource. The PDP first asks the

PIP to call the VOMS to check that this identifier belongs to a signed on user

and, if so, gets the roles that this user belongs to. Resolved mapping of

identifiers to roles are stored in cache at PIP, where cache entries are valid for

the time specified by the value of the key SSOTimeout in the configuration

file grid4all.secserv.config. The parameter resource specifies the

resource the subject tries to access. The parameter action specifies the action

the subject wants to take on the resource.

The method returns the PDP's authorization response, which is one of Permit,

Deny, NotApplicable or Indeterminate (see 1.2). All of the subject's roles are

evaluated and the result is Permit if any of these roles are permitted to perform

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 10 of 15

the specified action. The returned EvaluationResult object contains the

PDP's response for the specified subject, action and resource. It also

contains the PDP's response to requests for the same subject and

resource, but with all existing actions. The javadoc for the

EvaluationResult class describes how to retrieve these responses.

String reload() throws PolicyException, RemoteException

Causes the PDP and all registered PEPs to discard their caches. Note that the

PDP can only invalidate caches of registered PEPs. PEPs inheriting the

CachingPEP class are automatically registered at the PDP.

4.1.4 Interaction with
PDP by Local Method Invocation

This can be done from an object in the same JVM as the PDP. The following methods exist:

public String evaluateSSOIdRecursively(String SSOId,

 String resource,

 String action)

 throws PolicyException

Behaves the same way as the remote method evaluateRecursively (see

4.1.3) except that only the answer to the specified subject, resource and action is

returned. There is no prefetching of responses to authorization requests with

other actions. The method is defined in the class

se.kth.grid4all.security.pdp.PDP.

public void reload() throws PolicyException

Discards all policy information cached by the PDP, and then loads all policies

described in the XACML files stored in the policy directory. The policy

directory path is specified in the grid4all.secserv.config

configuration file. Files in subdirectories of that policy directory will not be

read. Calling this method will not affect PEP caches. This method is defined in

the class se.kth.grid4all.security.pdp.PDP.

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 11 of 15

4.2 Programming Policy Enforcement Points (PEP)
All requests accessing resources protected by the Grid4All security infrastructure should pass

through PEP. PEP should run in the same process (JVM) as the resource it protects. This way,

it is impossible to access the resource without being allowed by PEP. For example, a PEP can

be placed as Servlet filter when protecting a Web-application. A distributed application may

have several PEPs that could interact with the same or different PDPs. One of the issues to be

considered when using the security components is an efficient and effective placement of

PEPs (and other components) in order to achieve necessary protection of resources while

reducing the security overhead. A resource owner can place its own PEP and PDP in addition

to those placed by VO administrator.

The PEP implementation provided in the Grid4All security API performs communication

with PDP (sending authorization requests and receiving authorization decisions) and caching

of decisions. It does not enforce authorization responses received from PDP; it only caches

the responses and passes them to clients. The PEP classes (see below) are provided as

examples and as utilities for handling response caching and communication with the PDP.

The caching functionality is explained in 4.2.1.

The enforcement of security policies, as expressed in authorization responses, must be

implemented in the code calling the PDP (or provided PEP).

4.2.1 The class
CachingPEP

The se.kth.grid4all.security.pep.CachingPEP class is a base class

implementing a stateful PEP which caches requests (those already sent to the PDP) and the

respective responses (received from PDP). Cache entries are valid for the time specified by

the value of the key SSOTimeout in the grid4all.pep.config file. To ease of use,

most of the PEP related functionalities are implemented and put in the CachingPEP class.

Your application-specific PEP would be a subclass of CachingPEP implementing the

doEvaluate abstract method that should return an authorization response (decision) for the

given authorization request. In this method, the programmer has the choice between three

possible alternatives to get the authorization decision: (1) using cached decision; (2) asking

for new decision from PDP; and (3) do some custom evaluation.

When an authorization request is sent to the PDP, it evaluates and returns decisions not only

for the specified request, but also for requests with the same subject and resource but with all

existing actions. CachingPEP will save all these authorization decisions in the cache.

The source code of the se.kth.grid4all.security.pep.PEP class, a subclass of

CachingPEP, is an example that illustrates use of CachingPEP functionality.

4.2.1.1 Cache Invalidation

When a CachingPEP object is constructed, it registers itself to the PDP specified in the

configuration file grid4all.pep.config, in order to subscribe for cache invalidation

notifications. The syntax of cache registration and unregistration commands can be found in

3.1. The registration is persistent and remains even if the PDP is restarted.

4.2.1.2 Communication with PDP

CachingPEP uses TCP for communication with PDP. The end-point (host and port) of the

PDP is specified in the grid4all.pep.config file. PEP opens a TCP connection to PDP

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 12 of 15

for each request, receives the response and then closes the connection (see the callPDP

method in the source code of the CachingPEP class).

4.2.2 Interaction with
PEP

A client can interact with PEP in two different ways, by local method invocation or through

streams.

4.2.2.1 Interaction with PEP by Local Method Invocation

In order to communicate with PEP by local method calls, the calling thread should reside in

the same JVM as the PEP. PEP can be created by instantiating either a concrete subclass of

CachingPEP, or the se.kth.grid4all.security.pep.PEP class which contains

the minimum functionality needed by such a subclass. The methods that can be invoked on

PEP are as follows.

public String evaluate(String subject,

 String action,

 String resource)

 throws java.io.IOException

Handles the cache and evaluates a given authorization request. The actual

evaluation is delegated to the doEvaluate method. The evaluate method

is the method that should be called on the concrete PEP subclass when a request

is to be evaluated. String match is used for cache lookups. If subject,

action or resource differs in any way, then cache entries will not be found.

This method is not thread safe. Note that subject is the single sign-on

identifier returned by VOMS when the user signed on. It is converted to the

user's roles as described in 4.1.3

public void register(String pdpHost, int pdpPort)

 throws java.io.IOException

Makes PEP listen for cache invalidations from the specified PDP. PEP is

allowed to register with multiple PDPs. Invalidation from any PDP will cause

the entire cache to be discarded.

public void unregister(String pdpHost, int pdpPort

 throws java.io.IOException

Makes the PEP stop listen for cache invalidations from the specified PDP.

Unregistering with a PDP with which we have not registered will not have any

effect at all. Note that calling this method is the only way to unregister since

PEP registrations are not discarded by PDP restarts.

public void reload() throws java.io.IOException

Makes PDP discard all policies in its cache and reload them again. Also, all

PEPs registered with that PDP will be notified to discard their caches.

In addition, there is a helper method callPDP that subclasses of CachingPEP can use to

call PDP.

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 13 of 15

4.2.2.2 Interaction with PEP using Streams

The class se.kth.grid4all.security.pep.StreamReaderPEP is a concrete

subclass of CachingPEP that reads PEP commands from an input stream and sends answers

to an output stream. The input and output streams are specified in the constructor when an

instance is created. The object starts handling requests when the method readFromStream

is invoked. There is a command, PDP_HOME/bin/start-stream-reader-pep, that

starts a StreamReaderPEP object (by calling readFromStream) which reads

commands from the standard input stream and sends answers to the standard output stream. It

can handle all commands that the TCP interface of PDP can handle (see 3.1). It can also

handle the commands that are accepted by PAP (see 3.2). The host and port of PDP and PAP

are specified in the grid4all.pep.config file.

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 14 of 15

4.3 Programming Policy Administration Points (PAP)
PAP is provided as a server application that can be access by clients in different ways as

explained below. The provided PAP is complete and does not need to be extended in any way.

It is defined in the class se.kth.grid4all.security.pap.PAP and is started with

the start-pap command in the bin directory.

A client (e.g. a policy editor or the provided PAP client described in 3.4) interacts with PAP

by submitting requests to list or update policies stored in Policy Repository (see Figure 1).

The client must have enough rights to issue the policy administration commands (see 3.2).

The client can communicate with PAP in three different ways: over a TCP connection; using

RMI; or by local method invocation on PAP. In the last case, the client must be in the same

JVM as PAP.

4.3.1 Interaction with
PAP over a TCP Connection

PAP listens on the TCP port specified in the config file, grid4all.secserv.config.

The accepted commands are specified in 3.2.

4.3.2 Interaction with
PAP Using RMI

The name that PAP is bound under in the RMI registry is specified in the configuration file

grid4all.secserv.config. The remote interface is

se.kth.grid4all.security.communication.SecurityServer. The interface

includes the following methods.

public void clearACL(String issuer, String resource,

 String role)

 throws PolicyException, RemoteException

Removes an ACL entry from the Policy Repository. There is a one to one

mapping between ACL and XACML policy file. So, successful result of this

action will be deleting the corresponding file from the repository directory.

public void setACL(String issuer, String resource,

 String role, String permission,

 boolean positive)

 throws PolicyException, RemoteException

Handles the setacl (ACL creation) requests. If there exists already a policy

for the given subject, resource pair, then it will be updated; otherwise, a

new policy will be generated.

public void setACL(String issuer, String resource,

 String role, String permission,

 Duration duration, boolean positive)

 throws PolicyException, RemoteException

Works exactly as the method above, but also takes a Duration object that

specifies when the ACL is valid. For a detailed description of durations, see 3.2.

public String listACL(String issuer, String resource)

 throws PolicyException, RemoteException

June 23, 2009

Grid4All User’s Manual, Release 0.6 Page 15 of 15

Returns the access rights of the given parameters as a string. The required

permission is “read” for the specified resource path and all parent paths.

4.3.3 Interaction with
PAP by Local Method Invocation

In order to communicate with PAP by local calls, the calling thread must reside in the same

JVM as the PAP object. The methods signatures (excluding RemoteException) and

semantics are exactly the same as the remote methods described above in 4.3.2. The methods

are located in the class se.kth.grid4all.security.pap.PAP.

5 Limitations
As the current implementation of the Grid4All security infrastructure is a proof-of-concept

prototype rather than of production quality, it has the following limitations that could be fixed

in more matured releases.

− There is no encrypted communication; all communication is done in plain text.

− PDP can only call one VOMS, which means it can handle only one VO.

− The provided PAP client does not read the single sign-on identifier from the file

system but from the command line.

6 Known Bugs
Even though PDP supports timing intervals in policies, it ignores time zones. This seams to be

a problem in Sun's XACML implementation.

This page is intentionally left blank

Annex 3. Market Information System

User Manual

Table of Contents
1Introduction..3
2Deployment Scenario...3
3Architecture and Use Cases..4

Layers..5
Query Process..6
Subscription process..7

4Software...8
License...8
GUI..8
Pre­requisites ..8
Provided functionalities...9

5Getting started..9
Download..9
Project structure...9
Configuration..9
Test Usage..12

1 Introduction
The main objective of this result is to solve the information provision problem arising from a
distributed market environment. The DMIS framework, which has to deal with several requirements,
both from distributed environments such as scalability and robustness constraints, and from economic
information systems like privacy, time­sensitivity, and historical data availability.

Information about specification and behaviour of participants in electronic markets is essential for
sophisticated and efficient negotiation strategies. However, there is currently no completely researched
system to provide and consult an overall knowledge of economic information in distributed markets.
These markets are implemented for example by Grid applications and gained importance over the last
few years. This paper presents the economic information requirements and a high­level architecture
overview for a Decentralized Market Information System (DMIS). The proposed system acquires
economic data in a distributed environment for providing it to individual traders or other participants in
a decentralized manner. First, we outline the economic information requirements which the system
needs to achieve. Therefore their properties and a privacy model has to be considered. Then we propose
an architecture for the system which combines technologies of distributed information aggregation
system and distributed publish­subscribe models, based on a structured overlay network. The
architecture has been designed to meet both the economic information requirements and that of
scalability and robustness of a large­scale distributed environment. Initial measurements confirm the
proof­of­concept implementation in a large­scale of the existing prototype.

2 Deployment Scenario
The DMIS is designed for being deployed in auction­based and bargaining­based distributed
marketplaces. This enables resource providers and service providers to sell their products on a market.
Obtaining information about the market allows the buyers and sellers to optimize their trading strategy.

Figure 1 shows a scenario for a possible deployment of a DMIS. Coordinated by auctioneers, sellers
and buyers are trading on different marketplaces. An auctioneer uses for example an English Auction or
a CDA. Among both auctions with different types exist no implicit information exchange. More reasons
for such a separation of markets result from different currencies, geographical locations, privacy and
trust constrains or political aspects.

Figure 1: Markets without global information.

Figure 2: Enhanced with DMIS information provision.

Introducing the DMIS to the introduced scenario of electronic markets (see Figure 2) enables explicitly
an information exchange among all participants. Traders can obtain information from other traders or
direct from an auctioneer. Alternatively, an auctioneer can be distributed on several nodes, depending
on its type and implementation. Interested participants can execute SQL­like queries or can subscribe
for new events.

3 Architecture and Use Cases

The technical challenge for a decentralized market information system is to meet the economical

requirements in combination with the technical requirements of distributed systems. The economical
side needs the disclosure of aggregated and individual data. Moreover some information has to be
accomplished in a high time­sensitivity. But on the other side the technical realization has to cope with
a high churn in distributed systems and to scale in regard to traders and products.

Layers
The proposed DMIS architecture consists of the four layers Market Information System (MIS), DMIS,
Routing and DHT, which is described in the Figure 3. Each layer of the architecture has to cope with
different technical or economical requirements. The MIS layer can provide a communication among a
virtual organization (VO) which can allow a separation in other overlays. The Routing layer provides
the routing functionalities which used by the DMIS to provide its API. The DHT layer is the main
component to cope with the scalability and robustness of the system.

 Figure 3: Architecture Layers Building the DMIS.

The DHT layer operates as the communication layer and thereby it builds the basis for the DMIS
system. A Kademlia­based DHT [18] is implemented in the actual prototype. But it will be designed to
be flexible to switch between different types of DHTs. Some DHT solutions are already implementing
publish­subscribe or multicast functionalities. Therefore a trade­off between reusing the existing
models and developing new algorithms has to be made. To provide a higher flexibility and the need of
unique structures force the DMIS routing structures to base on send, receive, put and get.

The core functionalities of the system are processed in the Routing layer. The current prototype

provides the main components of the following functionalities:

 Multicast: sending messages to only a subgroup of nodes. The general multicast is easier to
handle when each client knows all members of the same topic, but it is less scalable. Therefore
the multicast will be changed to an algorithm where a new node takes a certain place in the tree
and knows only the direct parent(s) and children.

 Query: This function enables to execute a query for a read­dominated value within the
marketplace. Therefore it follows either an epidemic structure, binary­tree structure or multi­tree
structure [3]. The current prototype implements a query in a binary­tree in an ordered subset of
clients. An objective is to implement multiple­trees, which have a higher robustness but also
increase the amount of messages.

 Subscription: This is the process to join a certain topic or content, and accordingly to obtain
interested information. Actually the prototype follows a subscription to a certain topic, but we
are looking to change to a content based subscription to complete fully the requirements of the
DMIS.

 Aggregation: The gathering of information need an aggregation to decrease the amount of
messages and to provide scalability. As some aggregations are simple (maximum, minimum),
exists more sophisticated aggregations like the calculation of an average price. Other queries are
even more complex, when a combination of more parameters is requested (select price where
storage > 100 GB and memory > 3 GHz). This concerns especially the filtering algorithms.

The DMIS layer provides and coordinates the core functionalities for the trader or the client. Therefore
it provides several handlers like the SubscriptionHandler, QueryHandler or RequestHandler for
messages returning or entering the trader. The trader can invoke methods provided by the API like
subscribe, query or publish. But also non­functional methods are provided like bootstrap net to be
called.

Additional functionalities are provided by the MIS layer. This can be necessary for the integration into
different projects. It will provide one or more gateway nodes connected to the DMIS. For example
interconnecting via Web Services to traders in the same VO can fulfil this service. The MIS layer is not
concerning the functional behaviours of the DMIS it represents an adapter to the environment. For
example it could bes the Web Service adapter for the DMIS.

Query Process
A query is executed by a trader to obtain certain information about the market and other traders. This
process is illustrated in Figure 4. First, the trader needs to create a filter which narrows the search for
information. Then it has to create a handler for the query which will be informed of the result. In this
handler it will be defined how the trader processes with the result. Afterwards these two classes are
passed to the DMIS, which executes a query to its routing layer. Within the routing process, nodes in
the overlay will be asked for the information which will be aggregated and selected.

Figure 4: DMIS query process
When the routing layer has a result, it returns it to the DMIS. This will notify the handler assigned by
the trader. The DMIS will delete the handler, after a successful query.

Subscription process

Figure 5 shows an example of a trader, subscribing to a topic/content and another trader publishing an
event, which will notify the subscriber. First the subscriber has to create a filter, defining the interested
events. Then the created Subscriber will be notified when a new event correspond to a set filter.
Afterwards the subscriber passes the created classes to the DMIS which will install the subscription
with its filter in its routing layer.

Figure 5: DMIS subscription process
When a publisher has new information, for example an agreement of a seller and buyer, then it creates
the corresponding event. This event will be passed to the DMIS, which forwards it to the routing layer.
There the event will be send via the overlay to the subscribers, which have set a matching filter. The
routing layer of the subscribers will inform their DMIS that a new event is incoming. Afterwards, the
DMIS will look for the registered SubscritionHandler and notifies them.

4 Software

License
The DMIS project is under the LPGL license.

GUI
For informations about the GUI for the DMIS follow this link DMIS GUI.

Pre­requisites
• Java 1.6
• Apache ant 1.6 and up to use the component launching scripts.

http://www.gnu.org/licenses/lgpl.html
https://code.ac.upc.edu/projects/dmis/wiki/DMIS GUI

Provided functionalities
• RDV based subscription mechanism
• multicast for a join/leave group
• topic­based subscription
• delivering the published events to the subscribers of a topic
• binary tree routing
• multi tree routing
• send a query to a subgroup of nodes (subscribed by topic) these return the requested value by

aggregating (MIN or MAX) it.
• Sum and Count
• the DMIS prototype is tested with 100 nodes
• the DMIS based on the network simulator is tested with 30000 nodes

5 Getting started

Download
The latest stable version can be found at the subversion repository. The public stable code can be
downloaded via svn like the following:

svn co https://code.ac.upc.edu/projects/dmis/svn/tags/stable-1.0 dmis_dir

Project structure
• src/ source files for the dmis application
• lib/ required libraries
• bin/ compiled classes
• doc/ javadoc documentation for the dmis API
• dist/ ant build directory
• conf/ folder for configuration files
• .project Eclipse project configuration
• .classpath Eclipse project's classpath
• build.num counter file for ant
• README short description guide
• LICENSE license description
• build.xml ant build file

Configuration
The following table describes the configuration parameters for the MIS (see mis.properties file within
the configuration package of the download section), depending if the MIS is using a database or an
overlay. Using the database allows to connect via HTTP to firewall protected machines and allows and
easier setup of the system.

https://code.ac.upc.edu/projects/dmis/svn/

Property Default value Description Comments

overlay

Configuration
parameters when
using an overlay as
communication
protocol

overlay.port 20000
is the port on which
the instance of the
MIS communicates

the port must be open (not
behind a firewall or NAT)

overlay.bootport 20000
is the bootport to
join the P2P
network

If it is the first MIS
instance to be created then
the own port will be the
bootport

overlay.IP 147.83.34.222 this is the IP of the
bootstrap node

Please consider that if the
bootstrap node is on the
local machine "localhost"
or "127.0.0.1" does not
work if the instances
should be accessible
outside the local machine

overlay.type Scribe
Defines the type of
the used overlay

possible types are 'Kad',
'Scribe' and
'ScribeSimulator'

overlay.simulator euclidean

Defines the
simulation data for
the Round Trip
Time (RTT) of the
peers

possible types are 'generic'
or 'euclidean'

overlay.generic_file conf/GNPINPUT
the absolute path to
the the generic
simulation input file

This is only important
when the overlay.simulator
is generic

overlay.simulator.speed full
regulates the speed
for the simulation
process

possible types are 'slow'
and 'full'

forecast

Configuration
parameters to
specify the
forecasting

forecast.type NONE defines the type of
forecasting
mechanism.

The following mechanisms
are implemented: SMA
(Simple Moving Average),
WMA (Weighted Moving

Average), EMA
(Exponential Moving
Average)

forecast.periods 10

defines the number
of periods where
the forecasting is
based on

approximation
Configuration of
uncertainty
management

approx.uncertainty_manag
ement

false enables or disables
the approximations

approx.max_depth 12

defines the size of
the approximation
sample through the
maximum number
of hops

test

Configuration
parameters to test
and evaluate the
MIS

test.max_instances 10
defines the number
of created MIS
instances (nodes)

test.node 8

defines the instance
(node), which
executes the testing
actions like a query

test.query true
Defines if the test
node executes a
query to all nodes

test.publish false
Defines if the test
node does a
publishing

log Defines properties
for the logging

log.properties log4j.properties
Defines the path to
the file with the
logging properties

Test Usage
The ant build.xml file allows an easy compilation and running of the DMIS code. Therefore, the
following command lines can be used to execute a compilation and creation of a .jar file for the
distribution, which is created in the dist folder:

ant build

To run the example you have to execute the following command line. The ­Darg1=10 defines the
number of DMIS instances which are created and used within the example.

ant run -Darg1=10

This page is intentionally left blank

Annex 4. Semantic Information Service

Semantic Information System for Grid4All

Web Service Guide

1. Introduction ... 4

1.1. Overall description of the Grid4All project... 4

1.2. Description of the SIS .. 4

1.3. Main Features .. 5

1.3.1. Market advertisement ... 6

1.3.2. Application Service advertisement.. 7

1.3.3. Querying .. 7

2. The SIS Web Service ... 9

2.1. Agent Management operations ... 9

2.1.1. registerProvider .. 9

2.1.2. registerConsumer.. 9

2.1.3. updateAgent ... 10

2.1.4. deleteAgent .. 10

2.2. Advertisement operations ... 10

2.2.1. advertiseOffer... 10

2.2.2. advertiseRequest... 11

2.2.3. advertiseAbstractOrder ... 11

2.2.4. advertiseService ... 12

2.2.5. updateAdvertisement .. 12

2.2.6. deleteAdvertisement ... 13

2.3. Querying operations ... 13

2.3.1. queryProviderInitiatedMarkets ... 13

2.3.2. queryConsumerInitiatedMarkets... 14

2.3.3. queryProviders ... 14

2.3.4. queryConsumers... 15

2.3.5. queryServices ... 15

2.3.6. repeatQuery.. 16

2.3.7. removeQuery.. 16

2.4. Selection operations ... 16

2.4.1. selectMarkets.. 17

2.4.2. selectConsumers... 17

2.4.3. selectProviders ... 17

2.4.4. setPreferencesForProviders... 18

2.4.5. setPreferencesForConsumers .. 18

2.4.6. setPreferencesForQueryTypes .. 18

2.4.7. getQueryTypes ... 19

2.5. Domain ontology operations... 19

2.5.1. getDomainNames ... 19

2.5.2. getOntologyURLFor... 20

2.5.3. getOntologyNamespaceURIFor .. 20

3. Overview of the SIS Core API ... 21

3.1. The SIS registry ... 21

3.1.1. Resource Registry... 22

3.1.2. Managing the Resource Registry with the SIS Core API........... 23

3.1.3. Querying the Resource Registry ... 26

3.1.4. Service Registry ... 29

3.1.5. Querying the Service Registry .. 33

3.2. Utility classes of the Core API ... 36

4. Notes on the SIS External API implementation 38

4.1. SIS state information.. 38

4.1.1. SISSnapshot ... 38

4.1.2. Selection Service module.. 39

4.1.3. Deletion Queue... 39

4.2. SIS implementation class (SISImpl) ... 39

5. Usage of the SIS Web Service.. 45

5.1.1. Client generation using Apache Axis .. 45

6. Installation of the SIS Web Service .. 46

7. Local usage of the SIS Web Service functionality 47

8. Useful URLs .. 50

9. Further reading... 51

1. Introduction
This document is a brief guide to the implementation of the Semantic

Information System (SIS) of the Grid4All project. This chapter introduces the reader

to the Grid4All project and the purpose of the SIS. The available operations of the SIS

as a Web Service are presented in chapter 2, while chapters 3 and 4 describe the key

parts of the underlying implementation. Chapters 5, 6 and 7 address some issues

related to the use of the SIS Web Service: The creation of remote peers, the

installation of the Web service, and local programmatic use.

1.1. Overall description of the Grid4All project

Grid4All embraces the vision of a democratic Grid as a ubiquitous utility whereby

domestic users, small organizations and enterprises may draw on resources on the

Internet without having to individually invest and manage computing and IT

resources.

Internet and its services are central to European life - at work and at home, indoors

and outdoors. The next logical step is to provide the possibility to plug-and-upgrade

personal computing capacity and to secure collaborative edutainment space on the fly

through managed sharing of IT resources over the Internet. Grid4All will enable Grid

services to evolve from high performance computing niche markets to a multipurpose

service for anybody.

Grid4All - by leveraging the large base of broadband users - is aiming to advance

the pervasiveness of Grid computing across society.

The objectives of Grid4All for the Grid community include the following:

• Alleviate administration and management of large scale distributed IT

infrastructure - by pioneering the application of component based management

architectures to self-organising peer-to-peer overlay services.

• Provide self-management capabilities - improve scalability, resilience to failures

and volatility, thus paving the way to mature solutions enabling deployment of

Grids on the wide Internet.

• Widen the scope of Grid technologies by enabling on-demand creation and

maintenance of dynamically evolving scalable virtual organisations, even short

lived.

• Apply advanced application frameworks for collaborative data sharing

applications executing in dynamic environments.

• Capitalise on Grids as revenue generating sources to implement utility models of

computing.

For further information concerning Grid4All project please visit http://grid4all.eu

1.2. Description of the SIS

The Semantic Information System (SIS) provides a matching and selection service

concerning offers and requests (place any of the two kinds of orders i.e. either offers

or requests) of resources and services, placed by peers (humans or software agents)

within grid environments . This service is used by the Grid4All market place. In the

market place, resource/service consumers and providers negotiate traded entities in

auction-based markets, where these markets are spontaneously initiated (instantiated)

by different actors, such as resource/services providers, consumers, or 3rd party ones.

Markets and their traded resources are accessed as services that are themselves

advertised at the Semantic Information System.

The SIS acts as a registry for Market Services and Application Services. The

registry may be queried by software agents as well as by human users to select

advertised services and resources: Matchmaking is performed by processing various

criteria concerning resources and other application specific traded domain entities, as

well as services’ profiles. The returned query results are ranked according to

resources/services matching characteristics and providers’/consumers’ features.

The matchmaking process is executed in the following cases:

• A user (consumer) makes a request in provider-initiated markets offering

services/resources, and the matched offers are returned,

• A user (provider) makes an offer in consumer-initiated markets, and the matched

requests are returned.

Service matchmaking is performed by inspecting the I/O parameter types of

registered services, discovering their semantic relationship (similarity) with the query.

To identify whether an advertised service matches a service query, it must first be

identified whether the I/O types match. Reasoning services are used to identify, in

addition to exact, partially matched types (via a subsumption relation).

After the matchmaking is completed, and a set of results is obtained, there is an

additional step prior to their presentation: the ranking/selection process. Matchmaking

performs a coarse-grained distinction of results, according to the type of matching.

The ranking process provides an ordering of results which reflects the preferences of

the user (e.g. preference on specific peers). It should be noted that the ranking process

is implemented as a component of SIS, namely the Selection component. Finally, the

list of results is returned to the user. According to what specifications have been given

as input to the system, a list of market or applications service endpoints may be

returned.

SIS is provided for public use as a Web Service itself. The SIS Web Service has

been implemented as an Enterpise Java application. The Apache Axis SOAP engine

(version 1.4) is used to expose the functionality of the service, convert service I/O

information to SOAP messages (and vice versa), and exchange such messages with

service clients. To support the required functionality, the service provides a set of

operations and a set of complex type definitions that abstract ontology data. The

exposed operations and the complex types are described in the WSDL description of

the service, and form the “external API” of the SIS.

1.3. Main Features

The Semantic Information System of the Grid4All project uses semantic web

technologies to facilitate the discovery, matching and selection of services and

resources. Semantic descriptions of entities to be discovered are stored into the SIS

registry. These descriptions are instances of an ontology that has been developed

especially for the needs of the SIS. Furthermore, semantic technologies are used for

querying and retrieving information from the system.

The SIS, as a service discovery mechanism within the Grid4All, provides a

registry for performing queries in the purpose of discovering available

services/resources that fulfill certain criteria imposed by peers within the Grid4All

environment.

The functionality of the SIS is described as a set of features provided by the

system. The major features are:

• Advertising of market-related request or offer information related with traded

resources and services, and

• Querying in order to obtain a list of relevant services: application services or

services that expose market characteristics and information about resources

ordered (as a consumer request or as a seller offer) within these markets.

1.3.1. Market advertisement

A Market advertisement is the process of inserting a new offer or request

description (by a provider or consumer respectively) into the SIS registry. Such

descriptions contain information about the entities that are traded by the associated

markets, that is, resources and services, as well as information about the related

markets, the participants i.e. providers and prospective consumers of resources and

services. Information related to markets is represented as instances of an ontology

schema that has been developed in the context of the SIS. A description has the form

of object-property-value RDF triples.

Advertisement is supported by the SIS Web Service API. No authoring of formal

descriptions of the input information is required from the users in order to create and

submit an ontology instance. Advertisement is supported in different ways for

different kinds of agents, which are the actors of market advertisement: Consumers

and providers of Grid resources. Both these actors have to subscribe into the SIS in

order to make advertisements. Only initiated and running services are advertised in

the SIS.

Providers advertise registry descriptions of markets that sell resources/services, or

the offered resources/services themselves. Concerning markets, these are descriptions

of forward markets in which providers sell resources/services to potential consumers.

The Provider advertised information is called “Offer”. Providers are able to advertise

simple or complex offers, i.e. a list of AND/(X)OR service/resource configurations at

different prices, availability times etc (also called a bundle offer). Descriptions of

available tradeable resources as well as of markets trading these resources are referred

to as Offers. Consumers advertise descriptions of reverse markets in which they look

for resources/services of intended characteristics, thus forming requests. Descriptions

of specific resource characteristics and of reverse markets initiated by consumers who

act as provisional buyers of these resources are referred as Requests. Both Offers and

Requests are specific kinds of Market Orders.

A market is to be advertised directly by its initiator, either provider or consumer,

or through the Market factory which instantiates this market. Market orders, that is,

offers or requests contain the following information:

• Market related information: The description of a market where the

resource/service is going to be traded: This includes the location of a market,

and its starting and closing time.

• Traded resource/service related information: The description of the technical

characteristics of the traded services or resources (i.e. the configuration) in terms

of capacity, quality of service, time of availability, etc.

• Offer/request related information: The description of pricing policy (type of

related market auction), initial price auction price (minimum price for a forward

auction and maximum for a reverse auction).

• Contact information: Information about the provider or consumer.

As a result of advertisement, offer and request descriptions are stored in the SIS

registry.

1.3.2. Application Service advertisement

The registration of services involves the submission of services (application or

services exposing resources) to be discovered by service providers. A provider

submits a service description in WSDL and a respective annotation document (in xml

predefined structure). The annotation document provides a mapping between

advertised service I/O types and concepts in OWL ontologies (semantic annotations)

that are stored in the SIS registry. As a result, an OWL-S profile document is

automatically generated and inserted in the SIS registry. During service

advertisement, the annotation document can be created by inspecting the WSDL

structure and it can be filled by the service provider using OWL ontology elements

such as resource descriptions, which must already be registered in the SIS and be

publicly available. An important part of the registration process is validation. Before

actually performing a registration, the provided information needs to be inspected so

that it is ensured that no type mismatch in the names of semantic annotations is

encountered, and also that consistency of the registered descriptions in the knowledge

base is maintained. Similarly, for the definition of queries for registered

resources/services, the user can use such dynamic forms to create descriptions of

resources and make specifications related to market (or market order) properties.

1.3.3. Querying

In the context of Grid4All, service/resource providers try to find the appropriate

(matched) consumers and, respectively, consumers try to find appropriate (matched)

providers. The purpose of the query feature of the SIS is to provide to prospective

providers/consumers an ordered list of available markets already published into the

system, that match certain criteria concerning their own characteristics, as well as the

characteristics of the traded goods: performance and QoS characteristics of a service,

or the configuration of resources, pricing, market and location of markets, resources

and services criteria. Querying answering is based on matching and selection

processes.

Matching is the identification of a set of semantic descriptions of markets that

satisfy the requirements posed in the query. Selection refers to the ranking of the

advertised matched markets according to certain characteristics including the capacity

of resources, preferences and intentions of providers and consumers.

A provider or a consumer (human or software) agent submits query data through

the SIS API (described in following paragraphs of this document). A particular query

contains semantic information, such as references to ontology entries, which are used

during semantic matchmaking in order to discover services, resources or markets

which are already advertised in the SIS repository. Users are not expected to be

familiar with any ontology specific query language. The result of a query is an

ordered list of matched market descriptions that the searcher (provider or consumer)

can exploit in order to acquire the corresponding resource/service. The result of a

query can also be a list of matched providers or consumers. Finally, queries in SIS are

authenticated. Only registered agents who have successfully logged into the system

can use the query functionality.

2. The SIS Web Service

The SIS utilizes two main components: The matchmaking component and the

selection component. These two components, interacting through an internal API, are

accessible though a uniform external API presented in this section.

The API provided by the SIS is available as a set of web service operations. The

purpose for a web service implementation is:

• To provide access to the system features by agents acting in the context of the

Market-based Resource Management System, i.e. consumers and providers,

• To facilitate interoperation with other Grid4All components

• To facilitate the automation of system testing and benchmarking

The external API of the SIS comprises a set of methods (operations) which

implement service advertisement and querying within Grid4All, as described in the

next section.

2.1. Agent Management operations

Agents interacting with the SIS may take either the role of a provider or a

consumer. Providers offer traded resources, while consumers submit requests for

offered traded resources. Both the providers and the consumers can initiate markets

and advertise them. The SIS Web Service API provides the following methods for the

agent management (Package: gr.aegean.icsd.ailab.sis - Interface: IAgentManagement):

2.1.1. registerProvider

This method is used in order to subscribe a new provider in the SIS. Providers

need to be subscribed in order to register provider initiated markets or application

services. The method’s signature is given below:

String registerProvider(

 String Username,

 String Password,

 String Location)

 throws AgentAlreadyExistsException,

 InvalidAgentDescriptionException

Username is a unique identifier of the agent, by which it is known to other agents.

Location is a string describing the area where this agent originates from.

AgentAlreadyExistsException is thrown if an agent with the given username has

already been registered in the SIS.

InvalidAgentDescriptionException is thrown if some arguments are null or

empty.

The method returns a unique identifier that the agent has to provide in other methods.

2.1.2. registerConsumer

This method is used in order to subscribe a new consumer in the SIS. Consumers

need to be subscribed in order to register consumer initiated markets. The method

signature is given below:

String registerConsumer(

 String Username,

 String Password,

 String Location)

 throws AgentAlreadyExistsException,

 InvalidAgentDescriptionException

For the description of parameters see 2.1.1 registerProvider.

The method returns a unique identifier that the agent has to provide in other methods.

2.1.3. updateAgent

This method updates registration information of an agent (provider or consumer). Its

signature is the following:

void updateAgent(

 String AgentId,

 String Username,

 String Password,

 Location)

 throws NoSuchAgentException,

 InvalidAgentDescriptionException

NoSuchAgentException is thrown if an unknown agent id is provided.

2.1.4. deleteAgent

This method removes an agent from the SIS registry. As a side effect, all

advertisements and queries that the specific agent has performed depending on its

type (consumer or provider) are also removed.

void deleteAgent(

 String agentId)

 throws NoSuchAgentException

2.2. Advertisement operations

Markets are advertised by both providers and consumers. Providers advertise

provider-initiated markets, as well as application services, and consumers advertise

consumer-initiated markets. The SIS Web Service API defines the following

operations for advertisements (Package: gr.aegean.icsd.ailab.sis - Interface:

IAdvertisement):

2.2.1. advertiseOffer

This method creates advertisements for resources’ offers. An offer is specified in a

provider initiated market. In order to insert an advertisement, an agent must have

registered to the SIS. The method signature is:

String advertiseOffer(

 String providerId,

 Offer offerDescription,

 String marketURL)

 throws InvalidURLException,

 InvalidAgentRoleException,

 InvalidDescriptionException,

 NoSuchAgentException

ProviderId is a unique identifier for a 'provider' agent (obtained after registration,

see agent management).

OfferDescription is a description of an Offer (The offer must be an instance of

either ClusterOffer or ComputeNodeOffer). Offer class is an object-oriented wrapper

for data describing an offer that is stored in the SIS. The detailed form of Offer

objects is described in the Javadoc description of the SIS API (Package:

gr.aegean.icsd.ailab.sis.metadata). All Offer objects contain information about the offered

resources and about markets offering these resources, as described in the SIS

ontology.

MarketURL is the URL of the market service in which the specific offer is negotiated.

The method returns an identifier of the advertised offer. It throws the following

exceptions:

InvalidDescriptionException is thrown when the semantic information is

malformed.

InvalidURLException is thrown when the market URL is null or malformed.

NoSuchAgentException is thrown when an invalid agent Id is provided

InvalidAgentRoleException is thrown when a consumer Id is provided (instead of

a provider Id)

2.2.2. advertiseRequest

This method advertises consumer initiated markets. Consumers advertise these

markets providing information about the kinds of resources they want to utilize. They

also provide information about the markets. Both kinds of information are stored in

the SIS ontology after request advertisement. The form of the advertiseRequest

method is the following:

String advertiseRequest(

 String ConsumerId,

 Request RequestDescription,

 String MarketURL)

 throws InvalidURLException,

 InvalidAgentRoleException,

 InvalidDescriptionException,

 NoSuchAgentException

ConsumerId is a unique Id for a 'consumer' agent.

RequestDescription is a description of a request (Must be an instance of either

ClusterRequest or ComputeNodeRequest). Class Request is an object-oriented

wrapper for information about the intended characteristics of tradeable resources

which a customer would like to purchase in a reverse auction.

MarketURL is the endpoint reference of the market service.

2.2.3. advertiseAbstractOrder

This method is called by an agent, either a provider or a consumer, in order to

advertise a third-party initiated market, that is, a market that does not negotiate any

tradeable resources at the time of its creation and advertisement. Markets of these

types are discoverable through queries by both providers and consumers whose query

criteria match the description of a particular order. The form of the method is the

following:

String advertiseAbstractOrder (

 String AgentId,

 AbstractMarketOrder orderDescription,

 String MarketURL)

 throws InvalidURLException,

 InvalidAgentRoleException,

 InvalidDescriptionException,

 NoSuchAgentException

AgentId is a unique identifier of the agent.

OrderDescription is a description of an abstract order request as an instance of class

AbstractMarketOrder, which serves a similar purpose to class Request as an

object-oriented wrapper for abstract resource descriptions.

MarketURL - The URL of the market service.

2.2.4. advertiseService

Method advertiseService makes an advertisement for an application service.

The specified service is translated to an OWL-S profile, which is registered in the SIS.

To produce the OWL-S profile, this method makes use of an external annotations file,

the contents of which are specified in the Annotations String.

String advertiseService(

 String ProviderId,

 String WsdlFileContent,

 String Annotations)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidDescriptionException,

 InvalidDomainException

ProviderId is a unique identifier of the agent making the advertisement

WsdlFileContent is the content of the WSDL document which describes the

advertised service

Annotations is an XML String with the contents of the annotation file (EAF) for the

particular service.

InvalidDomainException is thrown if the EAF contains ontology concept URIs that

are not identified by SIS (they do not exist in the SIS registry or they are

mismatched).

The method returns the service namespace identifier.

2.2.5. updateAdvertisement

This method replaces an existent advertisement description with a new one. The

unique id given after the initial advertisement stays the same.

void updateAdvertisement(

 String AgentId,

 String DescriptionId,

 MarketOrder MarketOrderDescription,

 String MarketURL)

 throws NoSuchDescriptionException,

 invalidURLException,

 NoSuchAgentException,

 InvalidDescriptionException,

 InvalidAgentRoleException,

 InvalidURLException

The public class MarketOrder extends java.lang.Object and implements

SISEntity, SPARQLFragment.The market order is the initial

specification of what (and by whom) is being traded within a given

market. In a provider-initiated market an order becomes "Offer" for a

min price or reservation price that a seller is willing to sell. In a

consumer initiated market an Order becomes "Request" for the max

price that the consumer is willing to pay.

2.2.6. deleteAdvertisement

This method removes an advertisement with the given Id from the SIS.

void deleteAdvertisement(

 String AgentId,

 String DescriptionId)

 throws NoSuchDescriptionException

DescriptionId - The unique Id of the advertised order

AgentId - The Id of the agent ordering the deletion

NoSuchDescriptionException - If there is no description with given Id advertised

2.3. Querying operations

The SIS supports the following types of queries:

• Queries placed by consumers against provider-initiated markets

• Queries placed by providers against consumer-initiated markets (reverse

markets).

• Queries placed by providers and consumers for third-party initiated markets.

• Queries issued by consumers for available application services.

The Querying Interface in SIS API supports operations as described in the following

paragraphs (Package: gr.aegean.icsd.ailab.sis - Interface: IQuerying):

2.3.1. queryProviderInitiatedMarkets

This method forms queries in a provider-initiated market in the SIS registry,

executes them and returns the results in a QueryResults object. The method signature

is given below:

QueryResults queryProviderInitiatedMarkets(

 String AgentId,

 Request RequestDescription,

 MarketQuery MarketRelatedConstraints,

 int NumOfResults)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidDescriptionException

AgentId is the unique Id for the agent (consumer)

RequestDescription is a description of a request (an instance of class Request).

Note: The request that is passed in this method must not be specified in a consumer-

initiated market, so the respective field in the RequestDescription object should

be null. Otherwise, the SIS will throw an InvalidDescriptionException.

MarketRelatedConstraints contains restrictions i.e. special characteristics

concerning the markets which are being queried. It may also contain restrictions

related to the market auctions (auction restrictions are encoded in an AuctionQuery

object, which is referenced by the MarketRelatedConstraints object).

NumOfResults is the maximum number of desired results.

QueryResults objects are composed of two parts: The actual list of results (A String

array), as well as a query identifier, which can be used to re-run the query (see

repeatQuery method).

2.3.2. queryConsumerInitiatedMarkets

This method places queries for consumer-initiated markets in the SIS registry,

executes them and returns the results in a QueryResults object. The method signature

is given below:

QueryResults queryConsumerInitiatedMarkets(

 String AgentId,

 Offer OfferDescription,

 MarketQuery MarketRelatedConstraints,

 int NumOfResults)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidDescriptionException

AgentId is the unique Id for the agent (provider)

OfferDescription is a description of an offer as an instance of class Offer. Note:

The offer that is passed in this method must not be specified in a provider-initiated

market, so the respective field in the OfferDescription object should be null.

Otherwise, the SIS will throw an InvalidDescriptionException.

MarketRelatedConstraints contains restrictions concerning the markets which are

being queried. It may also contain restrictions related to the market auctions (auction

restrictions are encoded in an AuctionQuery object, which is referenced by the

MarketRelatedConstraints object).

2.3.3. queryProviders

This method places queries for providers in the SIS (issued by agents that have

advertised a consumer initiated market), executes them and returns the results in a

QueryResults object. Its purpose is to help a consumer find potential providers to

participate in the former’s market. The method signature is given below:

QueryResults queryProviders(

 String AgentId,

 String requestId

 int NumOfResults)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidDescriptionException

AgentId is the unique Id for the agent (consumer)

requestId is the Id of a request that has been previously advertised in the SIS.

NumOfResults - is the number of expected results.

2.3.4. queryConsumers

This method registers queries for consumers in the SIS (issued by agents that have

advertised a provider initiated market), executes them and returns the results in a

QueryResults object. Its purpose is to help a provider find potential consumers to

participate in the former’s market. The method signature is given below:

QueryResults queryConsumers(

 String AgentId,

 String offerId

 int NumOfResults)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidDescriptionException

AgentId is the unique id for the agent (consumer)

offerId is the id of a resource offer, which has been previously advertised in the

SIS..

NumOfResults - is the number of expected of results. It is used in top-N queries.

2.3.5. queryServices

This method places a query for application services, specifying a Service Profile

Input list and a Service Profile Output list. These two lists contain ontology concepts’

URIs from known ontologies (‘known’ means that their information is available to the

SIS and available to all agents). Also, a domain name needs to be specified, in order

to determine the ontology (or set of ontologies) from which the concepts’ URIs are

drawn. The method signature is given below:

QueryResults queryServices(

 String AgentId,

 String domainName,

 String[] inputTypes,

 String[] outputTypes)

 throws InvalidDescriptionException,

 InvalidDomainException,

 InvalidAgentRoleException,

 InvalidAgentDescriptionException

AgentId is the unique Id for the agent making the query (a consumer)

DomainName is a human readable name which is used to determine the ontology(ies)

from which the URIs in the inputTypes and outputTypes lists are drawn to form the

query.

inputTypes contains a list of ontology concepts’ URIs, describing the requirements

w.r.t. the Service Profile Inputs of the services being queried.

outputTypes contains a list of ontology concepts’ URIs, describing the requirements

w.r.t. the Service Profile Outputs of the services being queried.

InvalidDomainException is thrown if an unknown domain name is specified.

2.3.6. repeatQuery

This method executes a previously registered query. This eliminates the need to

produce additional ontology elements in order to perform repetitive executions of the

same query. However, it should be noted that queries are automatically removed from

the SIS after a specific period of time (this time period can be defined in the SIS

service configuration files), so repeatQuery must be called within this period. The

method signature is given below:

QueryResults repeatQuery(

 String AgentId,

 String QueryId,

 int NumOfResults)

 throws InvalidQueryIDException,

 NoSuchAgentException,

 InvalidAgentRoleException,

 NoSuchDescriptionException,

 InvalidDomainException

AgentId is the unique Id for the agent who has issued the specific query (an agent can

only repeat its own queries)

QueryId is the Id which is obtained after a successful execution of one of the query

methods described above. This id can be retrieved from the QueryResults object

which is returned.

InvalidQueryIDException is thrown if a non-existent query Id is specified. It is also

thrown if an agent places a query that has been removed from the SIS.

2.3.7. removeQuery

This method removes a query from SIS, so any ontology elements created during

the initial query processing are removed. After a query is removed, repeatQuery

cannot be executed and a new query needs to be created.

void removeQuery(

 String AgentId,

 String QueryId)

 throws InvalidQueryIDException,

 NoSuchAgentException

AgentId is the unique id for the agent who has issued the specific query (an agent can

only remove its own queries)

QueryId is the Id which is obtained after a successful execution of one of the query

methods described above. This Id can be retrieved from the QueryResults object

which is returned.

2.4. Selection operations

The SIS Web Service provides several operations through which agents can

interact with the Selection Service module. The Selection Service module is used to

rank query results based on agent preferences and query load balancing techniques

(Package: gr.aegean.icsd.ailab.sis – Interface: ISelection).

2.4.1. selectMarkets

This method informs the Selection Service about a selected ranked subset of the

set of Martket results obtained from a query for markets. The method signature is

provided below:

void selectMarkets(

 String AgentId,

 String QueryId,

 String[] SelectedMarkets)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidQueryIDException,

 InvalidMarketException

AgentId is the Id of the agent performing the selection

QueryId is the Id of the query this selection is a response to

SelectedMarkets is a list containing a selected ranked subset of the set of results

obtained from a query for markets. This list is taken into consideration in future

market queries performed by this agent.

InvalidMarketException is thrown if a non existent market identifier is provided.

2.4.2. selectConsumers

This method informs the Selection Service about a selected ranked subset of the

set of Consumer information results obtained from a query for consumers. The

method signature is provided below:

void selectConsumers(

 String AgentId,

 String QueryId,

 String[] SelectedConsumersUsernames)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidQueryIDException

AgentId is the Id of the provider performing the selection

QueryId is the Id of the query this selection is a response to

SelectedConsumersUsernames is a list containing a selected ranked subset of the

consumer usernames obtained from a set of query results obtained for consumers.

This list is taken into consideration in future queries performed by this agent.

InvalidAgentRoleMarketException is thrown if a consumer tries to call this

method

2.4.3. selectProviders

This method informs the Selection Service about a selected ranked subset of the

set of Provider results obtained from a query for providers. The method signature is

provided below:

void selectProviders(

 String AgentId,

 String QueryId,

 String[] SelectedProvidersUsernames)

 throws NoSuchAgentException,

 InvalidAgentRoleException,

 InvalidQueryIDException

AgentId is the Id of the consumer performing the selection

QueryId is the Id of the query this selection is a response to

SelectedProvidersUsernames is a list containing a selected ranked subset of the

providers usernames obtained from a query for providers. This list is taken into

consideration in future queries performed by this agent.

InvalidAgentRoleMarketException is thrown if a provider tries to call this method

2.4.4. setPreferencesForProviders

Consumer agents may call this method to express their preference towards specific

provider agents. These preferences are encoded as real numbers in the [0..1] space.

void setPreferencesForProviders(

 String AgentId,

 String[] PreferredAgentsUsernames,

 double[] Preferences)

 throws InvalidAgentDescriptionException,

 InvalidDescriptionException,

 InvalidAgentRoleException

AgentId is the Id of the agent expressing its preferences

PreferredAgentsUsernames is a list of agent usernames corresponding to the agents

which the calling agent expresses its preferences for.

Preferences is a list of preference values. This list is the same size as

PreferredAgentsUsernames. The value at Preferences[i] refers to the agent at
PreferredAgentsUsernames[i].

2.4.5. setPreferencesForConsumers

Provider agents may call this method to express their preference towards specific

consumer agents. These preferences are encoded as preference values (real numbers

in the [0..1] space).

void setPreferencesForConsumers(

 String AgentId,

 String[] PreferredAgentsUsernames,

 double[] Preferences)

 throws InvalidAgentDescriptionException,

 InvalidDescriptionException,

 InvalidAgentRoleException

AgentId is the Id of the agent expressing its preferences

PreferredAgentsUsernames is a list of agent usernames corresponding to the agents

which the calling agent expresses its preferences for.

Preferences is a list of preference values. This list is the same size as

PreferredAgentsUsernames. The value at Preferences[i] refers to the agent at
PreferredAgentsUsernames[i].

2.4.6. setPreferencesForQueryTypes

This method informs the Selection Service about the preferences of a provider

over a list of query types. There are several types of advertisements (queries) that a

provider (consumer) can make, distinguished by the traded entity (tradeable resources

or application services). In some situations, it may be the case that a provider is

interested in helping consumers searching for a specific type of advertised entities

more than it is interested in helping consumers searching for the other types. These

preferences can be added to the Selection Service using this method, and used during

ranking in query processing. To express the preferences, two arrays are used

(PreferredQueryTypes and Preferences). A preference for the query type in

PreferredQueryTypes[i] is expressed with a double value in Preferences[i]. The

list of available query types can be obtained by calling getQueryTypes()(see next

method). The preferences are expected to be computed by the agent that calls this

method.

public void setPreferencesForQueryTypes(

 String AgentId,

 String[] PreferredQueryTypes,

 double[] Preferences)

 throws InvalidAgentDescriptionException,

 InvalidDescriptionException,

 InvalidAgentRoleException

2.4.7. getQueryTypes

This method returns a list of query types, i.e., a list of identifiers for the major

types of traded entities (compute nodes, clusters, application services). A provider can

express its preferences over some of these types by using

setPreferencesForQueryTypes().

String[] getQueryTypes()

2.5. Domain ontology operations

Domain ontologies used in the SIS are associated with unique domain names,

which are human readable descriptions of domains. It is expected that agents

advertising or querying for application services are familiar with ontologies in

general, since such knowledge is required for semantically annotating services (i.e.

mapping service operation I/O types to domain ontology concepts) and when making

queries (i.e. defining the required service I/O types by submitting lists of domain

ontology concept URIs). The supported domain ontologies are stored in a specific

directory of the SIS service (under WEB-INF) which is accessible by HTTP to all

agents interacting with SIS. The SIS API provides several methods to assist agents in

retrieving these ontologies by domain name (Package: gr.aegean.icsd.ailab.sis – Interface:

IDomainRegistry).

2.5.1. getDomainNames

This method returns the domain names of all the domain ontologies which are

maintained by the SIS.

String[] getDomainNames()

2.5.2. getOntologyURLFor

This method returns the URL of the ontology which is associated with the

provided domain name. This URL is a real resolvable address and it can be used to

access the ontology through HTTP.

String getOntologyURLFor(String name)

2.5.3. getOntologyNamespaceURIFor

This method returns the namespace URI of the ontology which is associated with

the provided domain name. A namespace URI may or may not be resolvable, and it

used almost exclusively as an identifier.

String getOntologyNamespaceURIFor(String name)

3. Overview of the SIS Core API

This chapter describes the main characteristics and functionalities of the Semantic

Information System for the Grid4All project. It is intended to be used as a guide, not

as a detailed reference to the code. Readers are expected to have a basic grasp of the

key Grid4All project notions and the functionality offered by the Semantic

Information System. Some familiarity with Semantic Web technologies is also

expected.

The focus of the chapter is on the description of the matchmaking component of

the SIS. The main issues the SIS Core API deals with are:

• The interaction with the Grid4All resource ontology (insertion and deletion of

ontology elements)

• Service advertisement (conversion of WSDL descriptions to OWL-S profiles)

• Querying of resources and services using SPARQL

• Ranking of services in service queries

The SIS Core API makes extensive use of the Jena framework and the Pellet

reasoner API for the manipulation of ontologies. Potential future developers are

required to have at least some basic knowledge of these frameworks. Other libraries

that are used include Log4J, Commons Collections, Commons Logging, all of which

are projects of the Apache Foundation, and the Semantic Matching Framework

(SemMF, obtainable from http://semmf.ag-nbi.de).

3.1. The SIS registry

The Semantic Information System maintains descriptions of resources and

services using Semantic Web technologies. However, the representation of resources

(as well as markets and market orders) differs from the representation of application

services. Grid resources are represented as elements of an ontology which has been

designed specifically to support semantic representation, querying and retrieval of

resources, markets, orders and peers. The representation concerns a) types and

characteristics of the resources, b) properties/constraints related to the specific offers

and requests, c) properties of the markets to which the specific orders are placed.

On the other hand, application services which are advertised to the SIS are

represented as OWL-S documents. OWL-S is an OWL-based upper level ontology of

service concepts for describing the properties and capabilities of web services in a

machine interpretable form. It consists of three main parts/classes: the Service Profile,

the Process Model, and the Service Grounding. The Service Profile is used for

advertising and discovering services, so this is the part of the semantic descriptions

that the SIS uses in querying.

Concluding from the above, there are actually two distinct registries maintained by

the SIS, both of which make use of Semantic Web technologies: The Resource

Registry, which essentially comprises the Grid4All ontology, and the Service Registry

which is a directory (in the file-system where the SIS resides) where service

descriptions encoded in OWL-S documents are stored.

3.1.1. Resource Registry

The main entities that are described in the Grid4All ontology are the following:

• Resources

• Market orders (offers and requests)

• Markets

• Agents (consumers and providers)

Resources are entities that are offered by resource providers or requested by

resource consumers, and are traded in e-markets initiated by consumers, providers and

third-parties. Resources are described at the logical level, i.e., their descriptions focus

on certain properties, such as performance characteristics, leaving out details

concerning, for example, the underlying implementation. This choice is driven by the

fact that ordinary Internet users are less concerned about the specific hardware

properties of a resource and more about the service rendered by the resource. There

are several different categorizations of Resources, such as Atomic, Aggregated,

Composite, according to whether they are composed of other resources or not.

Information can also be provided regarding their capabilities (Capacity, QoS),

location, and the market order where they are described, if they are tradeable. Only

Compute Nodes and Clusters are considered as tradeable resources.

Agents can either act as providers or consumers. A provider can advertise an offer

of a tradeable resource by creating a provider-initiated market, and make a query for

consumers that may be interested in the specific offer, or wait for them to discover it.

In order for consumer agents to discover provider-initiated markets, they need to form

requests, in which more abstract resource descriptions are provided, and make queries

that specify these requests. Once the consumers discover one or more markets that fit

their queries’ descriptions, they may decide to join them. Like providers, a consumer

may also create a market (consumer-initiated markets), in which a request is specified,

and either search for providers that may be able to satisfy the consumer’s

requirements, or wait for providers to discover their market. In this case, the queries

of the providers specify descriptions of offered resources that are not part of an

advertisement.

 Offer specified in

Provider Initiated

Market

Offer not

specified in

Provider Initiated

Market

Request specified

in Consumer

Initiated Market

Request not specified

in Consumer Initiated

Market

Offer specified in

Provider Initiated

Market

xxxx xxxx xxxx vvvv

Offer not

specified in
Provider Initiated

Market

xxxx xxxx vvvv xxxx

Request specified
in Consumer

Initiated Market

xxxx vvvv xxxx xxxx

Request not

specified in
Consumer

Initiated Market

vvvv xxxx xxxx xxxx

Table 1. Possible matches between offers and requests

 It is important to highlight that a market order may be part of either an

advertisement or a query for other advertisements; it cannot be used for both. That is,

a provider that has created a marketplace using an offer description, cannot use this

description to form a query for consumer initiated markets, but just for consumers

which have issued queries for provider initiated markets. The same principle applies

to consumers. Table 1 shows the possible matches between markets and market

orders. The rows represent the types market order descriptions that may be part of a

query, and the columns represent the type of market orders that are returned as query

results.

Another thing to note is that the SIS, functioning solely as a registry, goes as far as

just providing the endpoints to the market services. It does not take part in, or support

in any other way, the process of negotiating that takes place in the markets.

3.1.2. Managing the Resource Registry with the SIS Core API

Interaction with the Resource Registry is performed by using the JENA

framework and the Pellet reasoner API. However, these APIs operate at the level of

generic RDF/OWL triples. The SIS Core API provides classes and interfaces that are

drawn from the need to represent the entities of the Grid4All ontology in particular.

The Java package gr.aegean.icsd.ailab.sis.metadata of the Core API contains

most of the classes that are visible and accessible to client peers in order to form

descriptions of SIS entities of any degree of complexity; these classes will be referred

to as “client description classes”. Given that the reader is familiar with the Grid4Al

ontology, it is easy to correspond a Java class (either abstract or concrete) to each of

the concepts of the ontology, while the properties have been “translated” to Java class

fields (for datatype properties) and references to other Java objects (for object

properties). Of course, certain compromises had to be made in class design, because

some aspects of the ontology, such as the multiple inheritance of concepts, could not

be directly translated to Java. There are also some additional classes that can be used

to construct request descriptions. These classes are located in the package

gr.aegean.icsd.ailab.sis.metadata.query.

The SIS clients provide their offer/request descriptions using objects of the Java

classes in the packages mentioned above. In order for those descriptions to be stored

in the Grid4All ontology, they need to be converted to RDF triples. The Java package

gr.aegean.icsd.ailab.sis.metadata.ontology provides classes for this purpose.

The class that is responsible for this conversion is OntologyTranslator, which

contains a static method (translateDescription()) for converting client

descriptions to ontology elements and storing them in the Grid4All ontology. The

ontology is accessible through the ModelHandle class as a Jena Model (method

getModel()), or OntModel (with or without an attached reasoning engine, method

getOntModel() and getPlainOntModel() respectively).

ModelHandle also makes use of some Pellet API classes (like KnowledgeBase,

Taxonomy) to manipulate the ontology in cases where the Jena implementation either

fails or is very slow. Inferred statements are also maintained in ModelHandle and can

be obtained by calling getRDFTypesModel(). The RDF Model containing the inferred

statements is not updated automatically after each insertion or deletion of ontology

elements, so a call to updateRDFTypes() must be made first. Another method which

is usually called prior to a query execution is getRDFTypeEnhancedModel(), which

returns a Model containing both the asserted and inferred statements of the Grid4All

ontology.

As mentioned above, the translateDescription() method is responsible for the

conversion of client descriptions to ontology statements. However, this method does

not accept client description class objects as arguments; rather, it accepts objects of

the Java class ObjectDescription, which are wrapped inside an object of class

ObjectDescriptionHandler. An ObjectDescription object contains a description

of a specific ontology element: Its identifier (URI), its RDF type, whether or not it is

part of a request description (in which case, the definedClass field is true), as well

as a list of datatype property values and a list of object property values. Each datatype

property value is represented by a DatatypeProp object, which contains the following

information:

• The URI of the property

• The RDF datatype of the property

• The property value, and/or a valid value range (“From-to” values)

Similarly, each object property value is represented by an ObjectProp object, in

which the following information is provided:

• The URI of the property

• The range class URI(s) of the property

• The value(s) of the property (Identifiers of other ObjectDescription objects)

• The minimum cardinality of the property, if such a restriction exists

• The maximum cardinality of the property, if such a restriction exists

The ObjectDescription class can be considered as an intermediate state of client

descriptions prior to serialization to the Grid4All ontology.

Figure 1. Class diagram for Resource Registry manipulation classes

The main reason that the ObjectDescription, ObjectDescriptionHandler,

DatatypeProp and ObjectProp classes were originally created was because of the

initial design of the SIS, in which the client descriptions were directly sent by HTML

forms, and so there was a need to a) hold potentially large numbers of strings, many

of which were referencing one another, and b) provide a uniform way of representing

client descriptions and then passing them to a Java Servlet to be translated to ontology

descriptions (the OntologyTranslator implementation emerged from this servlet). In

addition, it was not considered practical to incorporate JENA objects and method calls

directly in the client description classes mentioned in the beginning of this section,

because this would possibly entail refactoring of these classes whenever a new JENA

version was used in the SIS (The SPARQL engine API used in JENA, ARQ, is

particularly known to present differences across successive JENA versions). Instead,

client description classes contain a method to generate ObjectDescriptionHandler

objects (createObjectDescriptionHandler() method) and then translate them

through OntologyTranslator. The latter is performed within method serialize(),

which is a method that all client description classes have to implement. This

requirement is encoded in the SISEntity Java interface, which all client description

classes implement. Apart from the serialize() and

createObjectDescriptionHandler() methods, SISEntity also has two methods

dealing with the unique identifiers of ontology elements (extractUniqueID() and

forceUniqueID()).

The classes used for the representation of the Grid4All ontology elements, as well

as their relationships, are shown in figure 1. These classes are also used in query

processing, since queries involve providing a request or offer description, as described

previously. Therefore, queries usually entail additional insertions to the Grid4All

ontology.

3.1.3. Querying the Resource Registry

The query process involves insertion of new elements to the Grid4All ontology,

reasoning with the ontology and performing SPARQL queries. The ontology has been

engineered in such a way that the matchmaking process is performed via the

reasoning engine. To take advantage of the automatic classification of the reasoning

engine and according to the requirements for offers and requests, market orders are

represented in the following way: Resources’ offers are represented as individuals of

class Offer and resources’ requests are represented as defined classes (classes

described with some necessary and sufficient conditions). Generally, information

related to offered resources is represented using individuals and/or primitive classes,

while information related to requested resource descriptions is represented using

defined classes. The inference engine is used to compute the inferred types of the

individuals, or to automatically classify concepts. Potential query results can be

obtained this way, but since defined classes cannot represent all the constraints posed

by agents, additional SPARQL queries need to be created, in which these constraints

can be expressed, and executed on the inferred ontology model.

The following algorithm describes the general steps that take place when a

consumer submits a request for resources during a query for resource offers. Similar

steps are followed during queries for resource requests, although in this case there is

no search for instances of specific defined classes, but rather a search for classes

under which specific individuals can be classified.

1. For every Request,

a. Get the restrictions on object properties.

b. Create a defined class using the restrictions.

c. Add the created defined class to the registry.

2. For every Request/,

a. Get the datatype property restrictions.

b. Create a SPARQL query to retrieve markets, orders, or agents.

c. If defined classes have been created in step 1, reference them in

the SPARQL query: Only individuals that are recognized as instances

of these defined classes will be retuned as valid query results. If

no defined class is created (i.e., there are no object property

restrictions), reference the default primitive classes of the

Grid4All ontology (Request, Resource, Tradeable_Resource, etc) in

the SPARQL query.

3. For every datatype property restriction,

a. Add a corresponding constraint to the SPARQL query.

i. If the restriction is a single specific value, then add

an equality constraint.

ii. If the restriction is a range of values, then add a

"greater than" and/or a "less than" constraint.

4. Ensure that all inferred statements are extracted from the Grid4All

ontology, by using the inference engine on the ontology model.

5. Execute the SPARQL query, using both the asserted and the deduced

knowledge to retrieve results.

6. Present results

The insertion of elements in the Grid4All ontology (step 1) has been covered in

the previous section. The ModelHandle class is used to get the asserted and deduced

knowledge from the ontology (step 4). To create the SPARQL queries that are needed

to filter the classification results, it is necessary to be able to encode the descriptions

given by SIS clients to SPARQL constraints. Client description classes that may be

used to represent constraints are Request, Capacity, QoS and several others that reside

in the Java package gr.aegean.icsd.ailab.sis.metadata Java package, as well as

those that are in gr.aegean.icsd.ailab.sis.metadata.query. These classes

implement the SPARQLFragment interface, in which the following methods are

declared: extractSPARQLVar(), which is used to obtain an identifier of the

constrained element, and extractSPARQLBody(), which returns the constraints in the

form of SPARQL triples.

SIS entities implementing SPARQLFragment can be used to create SPARQL

query bodies. Every entity (request, requested resource description, QoS

requirements, etc.) that contains some constraints on its properties should be able to

provide a SPARQL expression of these constraints. For example, suppose there is an

object of a client description class implementing this interface, and in this object the

following restrictions are represented:

• “Resource X1 is an instance of class Y”

• “Resource X1 has an integer value for property P, which is less than 5”

These restrictions will be translated to the following SPARQL restrictions:

?X1 rdf:type Y.

?X1 P ?valueOfP

FILTER (?valueOfP < "5"^^http://www.w3.org/2001/XMLSchema#int).

 The extractSPARQLBody() method will return the triples in which the

restrictions are encoded, and extractSPARQLVar() will return the variable name for

the resource which is being queried (In the example, the variable name is “X1”). Note

that if multiple SPARQLFragment objects are connected to each other,

extractSPARQLBody will be called recursively, thus assembling a large SPARQL

body containing restrictions for all these objects.. This happens e.g. when a

SPARQLFragment contains other SPARQFragments, as is the case with a

ClusterQuery object containing a ComputeNodeQuery object, which in turn contains

a HardDisk, etc - all of which are SPARQLFragments. When the

clusterQueryObject.extractSPARQLBody() method is called, the string that is

returned contains restrictions about the Cluster description, the Compute node

description, Hard disks, CPUs and so on.

Note that there is no dependency between SISEntity and SPARQLFragment.

SISEntity objects contain information that ends up being encoded as ontology

elements, while SPARQLFragment objects contain information that can only be

expressed as a batch of SPARQL query constraints. The instances of most of the

client description classes implement both interfaces because they contain both of

these types of information, but there are also classes the instances of which have only

one type of information. For example, AuctionQuery and MarketQuery do not

contain any information that is inserted in the Grid4All ontology, therefore they only

implement SPARQLFragment).

As the name implies, extractSPARQLBody() does not create a full SPARQL

query. SPARQL queries contain the following parts:

• The query header, or prologue

• The query body

The query body contains restrictions expressed as triples with variables, filters etc.

The query header contains prefix-URI mappings for the namespaces that are used in

the query body, and it also contains the query variables, i.e. the variables to which

query results are bound. For example, in the following example, the line between

brackets is the query body, while the lines with starting with “PREFIX” and

“SELECT <vars> WHERE” constitute the header/prologue of the query.

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX myURI: <http://www.mywebsite.com/myNamespaceURI#>

 SELECT ?x WHERE {

 ?x rdf:type myURI:SomeClass.

 }

In order to create complete SPARQL query strings, the SPARQLUtil class from the

gr.aegean.icsd.ailab.sis.util package is used. SPARQLUtil is heavily used in

the SIS implementation, as it contains static methods for the creation of all the

different types of SPARQL queries that are needed, like queries for offers, requests,

markets, services, etc. Most of these methods accept SPARQL fragments as

arguments and construct full SPARQL strings, which can then be used by the SIS.

SPARQLUtil also provides several methods to assist the creation of SPARQL

constraints within the implementations of the extractSPARQLBody(), to avoid having

repeated code bits that deal with string manipulation (there are two methods for that

purpose, both called createSPARQLTriple() but with different argument lists).

Finally, SPARQLUtil provides two methods for query execution. Both of these

methods are called executeSPARQLQuery() but differ in their argument lists, as one

accepts any RDF model and can be used for querying any ontology (this is used in

service queries), while the second accepts ModelHandle instances, and therefore can

only query the RDF model provided by the Grid4All ontology (actually a shorthand

for the first method, where the Model instance that is passed is obtained from

modelHandle.getModel().

Regarding the results returned from queries, these are stored in HashMap objects,

i.e. hashtables implementing the Java Collections Map interface. The keys of the

hashtable are the query variables, and each value which is paired with a key is a list of

query results for the specific variable.

Figure 2. Class diagram for Resource Registry querying classes

Figure 2 shows the main classes involved in SPARQL query creation and

execution. Client description classes that implement the SPARQLFragment interface

are omitted from the diagram.

3.1.4. Service Registry

The SIS stores semantic descriptions of advertised Web Services in the form of

OWL-S documents. Generally, we expect that agents advertising services are not

familiar with the specifics of OWL-S, and can only provide description of services

through WSDL documents. On the other hand, we expect that service creators are at

least familiar with ontologies, and are aware of a set of well-known domain

ontologies, which they can consult prior to advertising and, in general, they are able to

logically associate service I/O types to some of the concepts of these domain

ontologies and decide which concept best fits a WSDL I/O type description.

The issue here is to find a way to create semantic service descriptions (OWL-S

profiles in particular), taking the following into consideration:

• No intervention should be made to the WSDL service descriptions. Such

descriptions, in most cases, are automatically generated from web service

frameworks using the source code of the services, so service creators may not

deal with them at all.

• Ontology concepts should be available to web service creators.

We deal with this issue by using additional annotation documents, which are

related to service descriptions in WSDL documents. Annotation documents are XML

documents containing simple annotation blocks, one for every I/O parameter defined

in the WSDL description. Information concerning an annotation block can be:

• Comments, written in natural language

• References to domain ontology concepts

Figure 3 shows an example of an annotation document which is created to

annotate a WSDL description.

Figure 3. Annotation document.

Note that there are ontology elements specified in the annotation document, which

are directly related to the I/O's of the WSDL description, while the latter is not by any

way modified. Each annotation block (starting with <annotate> tag) is related to a

message part in the WSDL through an XPath expression.

Agents advertising applications services are expected to provide a WSDL

description and a complete annotation document for the former. The SIS itself does

not provide a facility to help agents with annotation. However, a separate tool has

been developed for this purpose (WSDL-AT annotation tool). This tool parses a

WSDL file and automatically creates a correspondent annotation file with empty

fields, where service providers should add the content. Service providers (or any other

agent making the annotations) must fill the empty fields (concerning the WSDL I/O

parameters) by consulting the appropriate domain ontology. Information about the

domain ontologies supported by the SIS can be obtained using some related external

API calls.

After a WSDL and the corresponding annotation document have been submitted to

the SIS, they are translated to an OWL-S description. The code implementing the

translation is located in the WSDLToOWLS class, and more specifically in method

loadWSDL(). WSDLToOWLS makes use of the Mindswap OWL-S API, and some code

from a software that was provided with the OWL-S API implementation to illustrate

the conversion of WSDL to OWL-S. However, support for WSDL manipulation is

very limited in the OWL-S API, so it is necessary to have the WSDL document saved

on disk in order to read it (its contents cannot be passed as a string value, which is

how they are submitted by clients to the SIS). For this reason, WSDL descriptions and

annotation documents are saved temporarily in a location defined in the SIS

initialization files. The SIS is then responsible to remove these temporary files from

the file-system.

Method loadWSDL() combines the WSDL description and the annotations to form

an OWL-S document for each of the operations of the service. The annotations are

used to add the correct I/O types to the OWL-S profiles. After the OWL-S documents

are created, they are stored in a directory in the file system, which is also defined in

the SIS configuration files. Figure 4 presents a view of an OWL-S document which is

produced by processing the WSDL and annotation documents illustrated in the

previous figure.

Figure 4. Generated OWL-S document sample

An example implementation of registering a service using the WSDL and the EAF

files for NsSimulation service is given below:

import gr.aegean.icsd.ailab.sis.SISImpl;

import gr.aegean.icsd.ailab.sis.SISImplService;

import gr.aegean.icsd.ailab.sis.SISImplServiceLocator;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.Constants;

import javax.xml.namespace.QName;

import javax.xml.rpc.ParameterMode;

import gr.aegean.icsd.ailab.sis.metadata.*;

/**

 * An example of a service advertisement. A WSDL

document and an External Annotations File

 * are read and their contents are submitted to the SIS

so that a semantic description of

 * the service is stored.

 */

public class ServiceAdvertisement1 {

 // Utility method for the parsing of text files

 public static String parseTextFile(String fileName) {

 String str = new String();

 try {

 java.io.BufferedReader in = new java.io.BufferedReader(new

java.io.FileReader(fileName));

 String line = new String();

 while(true) {

 line = in.readLine();

 if(line == null)

 break;

 str += line + "\n";

 }

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 return str;

 }

 public static void main(String[] args) {

 try {

 SISImplService sisImplService = new

SISImplServiceLocator();

 SISImpl sis = sisImplService.getSIS();

//

// PROVIDER REGISTRATION

//

 // Invoke 'registerProvider'

 System.out.println("Invoking 'registerProvider'");

 String agentId = sis.registerProvider("Agent" +

System.currentTimeMillis(), "", "Athens");

 System.out.println("Agent is registered as provider, ID: " +

agentId);

//

// SERVICE REGISTRATION

//

 // Specify the local path of WSDL and EAF

 String wsdlLocalURI = "d:\\tmp\\NsSimulation.wsdl";

 String annotLocalURI ="d:\\tmp\\NsSimulation.xml";

 // Get content of WSDL and EAF

 String wsdlContent = parseTextFile(wsdlLocalURI);

 String eafContent = parseTextFile(annotLocalURI);

 System.out.println("Invoking 'advertiseService'...");

 String serviceId = sis.advertiseService(agentId, wsdlContent,

eafContent);

System.out.println("Advertised service, got service ID: " +

serviceId);

 } catch (RemoteException ex) {

 log.warn(ex.getMessage());

 } catch (ServiceException ex) {

 log.warn(ex.getMessage());

 }

 }

}

3.1.5. Querying the Service Registry

Querying for services involves specifying requirements concerning the service

inputs and outputs, by providing lists of domain ontology concepts. Matchmaking is

then performed to find advertised services with I/O types that either match the given

I/O types, or subsume them.

Three basic types of matching are defined in the context of Grid4All services:

Exact match, “Subsumes” match, and Fail. Let T be the terminology (T-Box) of the

domain ontology where the service I/O types are specified; CTT the concept

subsumption hierarchy of T. The types of service matching in the context of Grid4All

are the following:

• Exact match. Service S exactly matches service query R ⇔ ∀ INS ∃ INR: INS

INR ∧ ∀ OUTR ∃ OUTS: OUTR OUTS. For every input type of the advertised

service one equivalent input type of the required service description is found.

Also, for each output type of the required service description one equivalent

output type of the advertised service is found. The service I/O signature perfectly

matches with the request with respect to logic-based equivalence of their formal

semantics.

• “Subsumes” match. Service query R subsumes service S ⇔ ∀ INS ∃ INR: INR

INS ∧ ∀ OUTR ∃ OUTS: OUTS OUTR. For each input type of the advertised

service exactly one input type of the required service has been found, which is at

least subsumed by the input type of the advertised service. This means that the

advertised service might be invoked with a more specific input than expected.

The output types of the required service subsume the output types of the

advertised service or are equivalent to them. This means that the required service

might receive a more specific output type than expected.

• Fail. Service S fails to match with service query R in any of the ways described

above. This means that one of the following holds: a) at least one input type of

the advertised service has not been successfully matched with one input type of

the advertised service, and so the service cannot be executed properly, or b) at

least one output of the required service has not successfully been matched with

an input of the advertised service.

Figure 5. SPARQL query for service matching (Exact match)

Figures 5 and 6 present the SPARQL queries which are created, according to a

given list of required I/O types, in order to perform the matchmaking at the service

profile level. Granted that the agent making the query has given n input parameters of

types I1, I2, …, In, and m output parameters of types, O1, O2, …, Om, exact matching is

performed by finding all services which have input (output) parameters whose types

match exactly with a parameter type defined in the service query.

For the second type of service matching, “subsumes” match, the corresponding

SPARQL query (figure 6) is created so that a matching service will be recognized if

a) each one of its input parameters subsumes an input type which is defined in the

service query b) each one of its output parameters is subsumed by an output type

which is defined in the service query. To process such a query, which uses the

subclassOf property of the RDF Schema, it is necessary to use an inference engine,

so that inferred subclass/superclass relations may be detected among the parameter

types specified in service queries or advertisements.

Figure 6. SPARQL query for service matching ("Subsumes" match)

The SPARQL queries described above are executed against a model which is

composed of:

• The domain ontology from which the query I/O types are drawn

• The OWL-S descriptions maintained by SIS

The domain ontologies used in the SIS are managed by class DomainHandle,

found in package gr.aegean.icsd.ailab.sis.metadata.ontology. Objects of this

class maintain references to multiple RDF models, each of which is uniquely

associated with a domain. Also, for each supported domain there is a unique human

readable name. Agents that issue queries have to specify the domain to which their

query I/O types belong by providing the corresponding domain name. The contents of

DomainHandle are populated during the SIS service startup, with the help of a

configuration file.

Once the two SPARQL queries are executed, and given that results have been

retrieved, these results are ranked before being returned to the querying agent. Each

query result is given a rank, i.e. a real value in the [0..1] space. This functionality is

provided by class ServiceRanker. The rank of an advertised service, S, with respect

to a service query, R, is equal to mm bOaI + , where a + b = 1. Im is the semantic

similarity between the set of inputs for S (IS = {IS1, IS2… ISn}), and the set of inputs

for R (IR = {IR1, IR2… IRn}). Im is equal to ∑ ∑= =

n

i

n

j RjSin
IInosm

1 1

1),(2 , where nosm() is

a function computing the semantic similarity between atomic concepts. Om is

computed in the same way using the output types of the advertised service and the

service query. The semantic similarity of atomic concepts is computed by measuring

the distance between them in the domain ontology graph, and is then adjusted

according to the type of matching (Exact, “subsumes”), so that services that exactly

match a query always rank higher than the others. To compute the semantic similarity

of atomic concepts, the Semantic Matching Framework (SemMF) is used.

Figure 7 shows the classes involved in service query processing.

Figure 7. Class diagram of Service Registry query classes

3.2. Utility classes of the Core API

The package gr.aegean.icsd.ailab.sis.util contains several classes, all of

which provide static methods that are used to support the SIS Core API

implementation, as well as the implementation of the external API (Web service).

This section provides a brief description of these utility classes, with the exception of

SPARQLUtil, which has been described earlier.

CollectionUtil

CollectionUtil provides methods for the conversion of arrays to ArrayList

objects. ArrayList is a type of object collection which is widely used within the

implementation of the SIS. The conversion of arrays to ArrayList object is

performed in the arrayToArrayList() method, which has been overloaded to

support arrays of Java objects, as well as arrays of primitive values (arrays of integers,

booleans, etc). CollectionUtil also provides a method to convert ArrayLists to

arrays of Java objects (arrayListToObjectArray()), a method that performs a

search for a specified object inside an array (arrayContains()), and methods to

convert arrays of String objects to ArrayLists and vice versa

(stringArrayToArrayList(), arrayListToStringArray()).

DateUtil

This class provides methods that are related to the representation of dates inside

RDF descriptions. Method createRDFDateString(), when called with no

arguments, returns the current time, encoded as an RDF date/time string. When

createRDFDateString() is called with a Calendar argument (Calendar is a well

known Java class used for date representation), it returns the given date/time as an

RDF date/time string. Finally, DateUtil provides a null-safe method that tests

equality between two given Calendar objects (dateEquals()).

ObjectUtil, StringUtil

ObjectUtil provides two methods that are related to the equality of Java objects.

The method objectEquals() tests two Java Objects for equality, while allEqual()

tests an entire array of objects. Similarly, StringUtil provides the method

stringEquals(), which tests two String objects for equality.

QNameUtil

Several methods across the SIS implementation make use of objects holding

mappings from URIs to short prefixes. These objects are instances of the class

QNameProvider, provided by the Pellet API. QNameUtil provides the method

createPrefix() that creates a unique prefix for a given URI and inserts it in a

passed QNameProvider object. The method ensures that the prefix which is created is

unique for the specified QNameProvider.

UniqueIDGen

UniqueIDGen provides a method (createUniqueID()) for the creation of random

strings that can be used to create unique ontology resource URIs and query variable

names.

Randomizer

This class contains a java.util.Random object, rnd, which can be accessed from

everywhere in the SIS implementation and can be used to generate random numbers.

4. Notes on the SIS External API implementation

The implementation of the SIS Web Service and all of the exposed operations is

located in the SISImpl class of Java package gr.aegean.icsd.ailab.sis.impl.

SISImpl makes use of the facilities offered in the SIS Core API in order to interact

with the Resource Registry and the Service Registry. Detailed information about the

exposed methods and the specifics of their implementation is provided in the related

Javadocs and the code comments. Apart from the objects that interact with the SIS

registry, the SIS Web Service has several Java objects the purpose of which is to

maintain the state information of the service. The state information is periodically

saved in files located in the file-system using Java object serialization, so that it can

be retrieved after an unexpected termination of the Web Service. The following

section describes the objects that are used to maintain service state information.

4.1. SIS state information

4.1.1. SISSnapshot

The SISSnapshot class contains information organized in hashtables. This

information includes:

• Mappings of agent usernames to agent IDs. Each agent is identified by a unique

string which is computed during registration and returned to the agent. This ID is

required by the operations that are related to advertising, querying and selection.

• Mappings of agent IDs to trader (provider/consumer) IDs. Every agent can act

both as a consumer and as a provider using the unique ID return by the

operations registerProvider and registerConsumer. If the agent calls both

operations, the same ID will be returned. However, in this case the SIS creates

two records in the Grid4All ontology, one representing the Provider role of the

agent, and one representing its Consumer role. These records must be discrete,

therefore an additional internal identification scheme is required in order to

handle the multiple roles of an agent.

• Mappings of trader IDs to order IDs. These mappings are used to hold references

to the offers, requests, or application service endpoints that are issued by the

agents, thereby eliminating the overhead that would be produced by constructing

and executing very short SPARQL queries. Mappings of market order IDs to

market service endpoints are created for the same purpose.

• Mappings of query IDs to SPARQL query strings. Due to the existence of the

repeatQuery operation, the SPARQL query strings that are created during the

initial processing of a query are maintained for future use. When a query is

removed from the SIS, these mappings are also removed.

• Mappings of service namespace URIs to service profiles. An advertised service

may include multiple operations, each of which is translated to a separate OWL-

S profile document. SISSnapshot maintains associations of services to their

operations and the respective file locations.

The mappings listed above are the primary information pieces stored in

SISSnapshot. The SIS maintains an object of this class, and serializes it frequently.

To perform this serialization, a daemon thread is created during service initialization

that takes on the specific task. This thread is an instance of the class

SISSnapshotUpdateThread in package gr.aegean.icsd.ailab.sis.impl. This

thread also serializes all the other objects that constitute the SIS service state.

4.1.2. Selection Service module

The selection module maintains agent related information. Most importantly, this

is the object that contains agent preferences to other agents or to certain query types

and is used in ranking of query results. Since this information is not encoded in some

way in the SIS registry, it is serialized along with the SISSnapshot object and the

deletion queue.

4.1.3. Deletion Queue

The deletion queue is used by the SIS for cleanup purposes. It is mentioned earlier

in this document that queries are automatically removed by the SIS after a specific

time period. In order to perform this cleanup, the SIS maintains a list of

DeletionQueueElement instances. An instance of DeletionQueueElement holds a

reference to an advertisement or query ID, a string specifying whether the element to

be removed is a query or an advertisement, a timestamp showing the time at which

(or, after which) this element should be removed, and the ID of the agent that issued

the advertisement or query. Whenever an advertisement or a query is submitted to the

SIS, a DeletionQueueElement object is added to the deletion queue. In addition,

upon startup of the SIS service a thread is created that frequently checks this queue

for elements that need to be removed, and when it finds such elements, it calls the

appropriate methods for advertisement or query removal. This thread is implemented

in DeletionQueueMonitoringThread class. The deletion queue is also a part of the

state of the SIS, therefore its contents are frequently serialized, as well as the contents

of SISSnapshot and the selection module.

4.2. SIS implementation class (SISImpl)

This section is a brief guide to the implementation of the exposed SIS Web

Service operations, which is contained in class SISImpl. What is presented here is the

logic underlying the operation implementations; future developers should consult the

Javadocs and the code comments for a more detailed description of the

implementation.

registerConsumer

The method starts by checking the arguments. If any of the arguments is null, an

InvalidAgentDescriptionException is thrown. Next, it checks whether an agent

with the specified username exists, in which case an AgentAlreadyExistsException

is thrown. If the agent has not also registered as a provider, a unique agent ID is

generated. A Consumer object is created, populated with the provided information,

and serialized in the Grid4All ontology, and the agent is also subscribed in the

Selection Service. Finally, the agent ID is returned.

registerProvider

If any of the arguments is null, an InvalidAgentDescriptionException is

thrown. Next, the method checks whether an agent with the specified username exists,

in which case an AgentAlreadyExistsException is thrown. If the agent has not also

registered as a consumer, a unique agent ID is generated. A Provider object is

created, populated with the provided information, and serialized in the Grid4All

ontology, and the agent is also subscribed in the Selection Service. Finally, the agent

ID is returned.

updateAgent

After checking for null arguments, the method checks the SISSnapshot object to

determine whether the specified agent ID exists. Then, new RDF triples are created

containing the new information and replace the old ones in the Grid4All ontology.

deleteAgent

If the specified agent ID does not exist, a NoSuchAgentException is thrown. The

agent is unsubscribed from the Selection Service, and the SISSnapshot object is used

to obtain references to all the market orders that have been advertised by the specific

agent. The deleteAdvertisement method is used to remove these advertisements.

advertiseOffer, advertiseRequest, advertiseAbstractOrder

The steps that are followed in the implementation of these three methods are

similar. First, the provided arguments are validated. The method throws an

InvalidDescriptionException if:

• The object holding the market order description (Offer, Request,

AbstractMarketOrder) is null

• No market related information is provided (the Market object inside the

Offer/Request/AbstractMarketOrder object is null)

• No information about the traded or requested resource is provided (The

TradeableResource object inside the Offer/Request/AbstractMarketOrder

object is null)

• (Only in advertiseOffer) A complex offer is provided, but the operator (or

"connective") is not one of "AND", "OR", "XOR", or it is null.

Also, if the market service endpoint is null, an InvalidURLException is thrown.

Next, the agent ID is validated, the object holding the market order information is

serialized in the Grid4All ontology, and the market order is recorded in the

SISSnapshot object. Finally, the unique ID which is extracted from the

Offer/Request/AbstractMarketOrder object is then returned.

advertiseService

The method validates the arguments and checks whether the provided agent ID

exists. Two text files are temporarily created and the contents of the provided WSDL

description and the annotations are written in these files. A WSDLToOWLS object is

created and its loadWSDL() method is called to produce the semantic service

descriptions. For each service operation, an OWL-S document is produced. The new

advertisement is recorded in the SISSnapshot object, the temporary text files are

deleted, and the namespace URI of the service is returned.

deleteAdvertisement

The method checks whether the provided market order ID exists by looking it up

in the SISSnapshot object. If it does not exist, an InvalidDescriptionException

is thrown. The method removes all the individuals and classes that are related to this

particular advertisement: Classes and instances describing the market order, the

traded/requested resource description, the market description etc. The ModelHandle

class provides two (recursive) methods that are used for mass deletion of ontology

elements, removeClassChain() and removeIndividualChain(). Both of these

methods begin with a given ontology element, and then they find and remove related

elements using values (for individuals) or restrictions (for classes) of their object

properties.

updateAdvertisement

After validating the arguments, this method removes the old advertisement from

the SIS registry and creates a new advertisement from the MarketOrder object that is

provided. However, it maintains the ID of the old advertisement.

queryProviderInitiatedMarkets

After the validation of the arguments, the given Request object is serialized in the

Grid4All ontology and classification is performed to obtain new inferred statements.

Two SPARQL queries are created and executed, one for Atomic Offers matching the

request and one for Complex Offers. The SPARQLUtil class provides methods which

create the appropriate SPARQL strings based on the request description and the given

market constraints. These strings are saved in the SISSnapshot object for possible

repetitions of the query. The query for matching complex offers returns any complex

offer that has at least one atomic offer matching the request. These results are then

filtered according to the complex offer operator:

• An “XOR” offer is accepted if only one of its atomic offers matches the request.

• An “AND” offer is accepted if all of its atomic offers match the request.

• In cases of “OR” offers there is no additional filtering.

When the list of matching offers is created, the corresponding providers are ranked

in the Selection Service Module. The list of offers is reordered according to this

ranking. Then, a search for matching abstract market orders is performed. If any

matching abstract orders are found, they are appended to the end of the results list.

The list is added in a QueryResults object. Apart from the list of results, this object

contains a unique query ID that can be used to repeat the query. Finally, the query is

added to the deletion queue and the QueryResults object is returned.

Note: To support repeated execution of queries for provider initiated markets

through repeatQuery(), without duplicating code, a large portion of the initial

method body (everything after the serialization of ontology elements and

classification) is located to method prQueryProviderInitiatedMarkets(). This

private method is called by both queryProviderInitiatedMarkets() and

repeatQuery().

queryProviders

The method validates the arguments, i.e. the ID of the agent making the query and

the ID of a market that this agent has advertised. Classification is performed, and then

two SPARQL queries are created and executed: One for atomic offers and one for

complex offers. The offers that are returned are not specified in consumer initiated

markets. Next, the providers that have issued these offers are retrieved using the

SISSnapshot object and they are ranked using the Selection Service module. The

query is then added to the deletion queue, and the reordered list of agent usernames is

added to a QueryResult object and returned.

queryConsumerInitiatedMarkets

After the arguments (agent ID, offer description, market related constraints) are

validated, the given Offer object is serialized in the Grid4All ontology, classification

is performed, and the new query is recorded in the SISSnapshot object. If the offer is

atomic, then a SPARQL query for matching requests is created, otherwise the number

of SPARQL queries that are created is equal to the number of atomic offers that are

contained in the complex offer description. In the case of a “XOR” complex offer

containing N atomic offers, a request is accepted if it matches with only one of the

atomic offers. Conversely, for “AND” complex offers, a request is accepted if it

matches with all of the N atomic offers. “OR” complex offers and atomic offers are

immediately accepted and no further filtering is performed. The Selection Service

module ranks the consumers that have advertised the matching requests and reorders

the list of requests accordingly. Next, the matching abstract market orders are found

by creating and executing an appropriate SPARQL query, and they are appended to

the list of results. Finally, the query is added to the deletion queue, and the results are

added to a QueryResults object and returned.

Note: To support repeated execution of queries for consumer initiated markets

through repeatQuery(), without duplicating code, a large portion of the initial

method body (everything after the serialization of ontology elements and

classification) is located to method prQueryConsumerInitiatedMarkets(). This

private method is called by both queryConsumerInitiatedMarkets() and

repeatQuery().

queryConsumers

The method validates the arguments, i.e. the ID of the agent making the query and

the ID of a market that this agent has advertised. Classification of the Grid4All

ontology is performed, and a SPARQL query for requests (not specified in provider

initiated markets) matching the offer which is specified in the given market is created

and executed. Next, the consumers that have issued these request are retrieved using

the SISSnapshot object and they are ranked using the Selection Service module. The

query is then added to the deletion queue, and the reordered list of agent usernames is

added to a QueryResult object and returned.

queryServices

The arguments of the method, i.e. the agent ID, the domain name, and the lists of

input and output types are validated. After the validation, two SPARQL queries are

created, one for the exact matches and one for the partial (“subsumes”) matches.

These queries are executed on an RDF model containing the related domain ontology,

the OWL-S Service Profile ontology, and the OWL-S descriptions of the advertised

services. For each matching service, its rank is computed by using a ServiceRanker

object that is initialized with the I/O types of the query and the related domain

ontology. The matching services are then sorted according to their ranks, and they are

returned as part of a QueryResults object.

repeatQuery

After the validation of the arguments, the SISSnapshot object is used to

determine the type of the query (Query for Provider Initiated Markets, Consumer

Initiated Markets, Consumers, Providers, or Services). According to the type of the

query, the appropriate method is called, with the exception of service queries.

(prQueryProviderInitiatedMarkets(), prQueryConsumerInitiatedMarkets(),

queryConsumers(), or queryProviders()). In case that a query for services is

repeated, no other method is called. Instead, the SPARQL queries (for exact and

“subsumes” matches) that were created when the query was initially submitted are

retrieved from the SISSnapshot object and are immediately executed.

removeQuery

The method initially validates the agent ID and query ID, and checks whether the

specific agent is the one that has issued the query. Then, the query type is determined

using the SISSnapshot object. In the case of a query for consumer initiated markets

or for consumers, the offer description that was serialized in the SIS registry during

the initial query execution is removed. Similarly, in the case of a query for provider

initiated markets or for providers, the related request is removed from the SIS

registry. Finally, the method removes all information related to the query from the

SISSnapshot object.

selectProviders, selectConsumers

After the methods validate the arguments, they update the Selection Service

module with the selected agent usernames by calling the informFinalSelection()

method of the module.

selectMarkets

This method works similarly with the methods selectProviders() and

selectConsumers(). Since the Selection Service module works with ranking of

agents, the method retrieves the usernames of the agents that have advertised the

selected markets and calls informFinalSelection() using a list of these usernames.

setPreferencesForProviders, setPreferencesForConsumers

The methods check the validity of the arguments, i.e., the agent ID, the list of

agent usernames and the list of preference values. The sizes of the two lists are also

checked, and if they are not equal, an InvalidDescriptionException is thrown.

The contents of the lists are then added to a hashtable, which is then passed to the

Selection Service module to set the new preferences of the calling agent.

setPreferencesForQueryTypes

This method works in a similar way as do methods

setPreferencesForProviders() and setPreferencesForConsumers(), but

instead of agent usernames, query types are passed. Valid query types are the ones

returned by the getQueryTypes() operation.

getQueryTypes

This method is used to support setPreferencesForQueryTypes(). It returns an

array containing the query types used in the Selection Service module:

“Compute_Node”, “Cluster”, and “Service”.

getDomainNames, getOntologyURLFor, getOntologyNamespaceURIFor

These methods return information that is stored in the DomainHandle object and is

related to domain ontologies used for annotation of advertised servives, and for

service queries. getDomainNames() returns a list containing the human-readable

names of all the supported domains, which is retrieved by calling listDomains().

getOntologyURLFor() and getOntologyNamespaceURIFor()redirect to

DomainHandle methods getDomainOntologyURL() and getDomainOntologyNs(),

respectively.

5. Usage of the SIS Web Service

In order to access the SIS Web Service remotely and use the provided operations,

a software client has to be created. The WSDL description of the service, can be used

to construct a fully functional SIS client, as it provides all the necessary operation and

complex type descriptions in order to successfully call every operation. The following

section provides a description of how a client can be generated using the Apache Axis

SOAP engine.

5.1.1. Client generation using Apache Axis

The Axis SOAP engine provides the WSDL2Java tool, which can create a set of

Java classes by inspecting a given WSDL document. In order to execute the

WSDL2Java tool, the Axis libraries must be accessible:

java –cp .;%AXIS_CLASSPATH% org.apache.axis.wsdl.WSDL2Java sis.wsdl

After the WSDL2Java tool has completed its execution, a source tree will be

created in the local file-system, in the path from where WSDL2Java is called. The

following packages will be available in the source tree:

gr.aegean.icsd.ailab.sis

gr.aegean.icsd.ailab.sis.metadata

gr.aegean.icsd.ailab.sis.metadata.query

These packages contain Java representations of all the schema types described in

the WSDL description of the SIS service. Also, in the gr.aegean.icsd.ailab.sis

package, there are several classes which can be used to access the SIS service as a

remote object, and use the exposed operations by invoking the methods provided by

the remote object. An example of such a Remote Procedure Call is presented below:

import gr.aegean.icsd.ailab.sis.SISImpl;

import gr.aegean.icsd.ailab.sis.SISImplService;

import gr.aegean.icsd.ailab.sis.SISImplServiceLocator;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

public class SISClientExample1 {

 public static void main(String[] args) {

 SISImplService sisImplService = new SISImplServiceLocator();

 try {

 // Get reference to SIS service

 SISImpl sis = sisImplService.getSIS();

 // Invoke 'registerProvider' (agent username = ”Agent1”,

// password = ”pass”, location = ”Location”)

 String id = sis.registerProvider("Agent1", "pass", "Location");

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (ServiceException ex) {

 ex.printStackTrace();

 }

 }

}

To make use of the generated code and create SIS service client

applications, the Axis libraries must be included in these

applications.

6. Installation of the SIS Web Service

This section describes how to install the Grid4All SIS web Service in your own

server. A J2EE application server is required, such as Apache Tomcat, Glassfish, or

any other that implements version 2.2 or greater of the Servlet API. Also, a JDK of at

least version 1.5 is required.

The Web Archive (.war) file where the Web Service implementation is contained

also includes all the necessary libraries required in order for it to function. Among

those libraries are the Jena framework (version 2.5.7), the Pellet reasoner (version

2.0.0 RC4), the Axis SOAP engine (version 1.4), the OWL-S API implementation of

Mindswap, and others.

To install the service on Tomcat server, place the Web Archive file to the webapps

folder and start the server. The contents of the .war file will be extracted and a new

directory, grid4all_sis, will appear under the webapps folder. The grid4all_sis

contains the following folders:

• META-INF, which contains Java package related information

• resources, where various ontologies are maintained and can be publicly

accessed

• WEB-INF, in which the actual implementation of the SIS Web Service resides

(under WEB-INF\classes). Also, in this folder are the libraries used by the

service (WEB-INF\lib), as well as some files which can be used to either change

some parameters concerning the information stored during the lifetime of the

service (WEB-INF\conf), or undeploy/redeploy the service (WEB-INF\ws).

In order for the service to be successfully executed, it has to be able to store

information persistently in some hard disk files. To accomplish this, several

configuration parameters related to the paths of the required files need to be defined.

These parameters are described in the following paragraphs. The requirements with

respect to the persistent storage are the following:

The configuration parameters reside in the WEB-INF/conf/sis_conf.properties file.

Concerning advertised application services, their OWL-S profiles must be stored in a

path, which can be defined in this .properties file. Also, during advertisements,

information concerning the submitted WSDL documents and annotation information

must be temporarily stored to disk, so temporary storage paths must also be defined.

In addition to service-related information, the SIS must be able to persistently store

information relevant to the Selection Service, as well as other information obtained

during SIS service execution, that constitute the state of the SIS service. This

information is maintained in Java objects, and it is persistently stored using object

serialization. Finally, a copy of the Grid4All ontology is periodically serialized, along

with state information, as an OWL/XML file. The paths where these Java objects and

the Grid4All ontology will be stored (and then retrieved, in case the SIS service is

stopped and restarted) must also be defined in the sis_conf.properties file. The

required paths will be automatically created during service initialization, unless there

are not sufficient write permissions in the specified paths. An example of the required

path definitions is presented below:

sis.repository_path=C:\\apps\\Grid4All\\upload

Path to the service repository (relative to sis.repository_path)

sis.owl_s_repository_path=\\services

WSDL repository path (relative to sis.repository_path)

sis.wsdl_temp_repository_path=\\wsdl

Annotation repository path (relative to sis.repository_path)

sis.eaf_temp_repository_path=\\annot

Path to the SIS Snapshot serialization target

sis.snapshot_serialization_file=C:\\apps\\Grid4All\\sis_snapshot\\SIS

Snapshot

Path to the Selection Service Module serialization target

sis.ss_serialization_file=C:\\apps\\Grid4All\\sis_snapshot\\Selection

Service

Path to the Deletion Queue serialization target

sis.deletion_queue_serialization_file=C:\\apps\\Grid4All\\sis_snapsho

t\\DeletionQueue

sis.db.ontology_cache_file=C:\\apps\\Grid4All\\ontology_cache\\G4AOnt

o_cache.owl

After the database connection parameters and the local paths have been defined,

the SIS Web Service is ready to be deployed. The WEB-INF\ws folder contains a Web

Service Deployment Descriptor document, sis_deploy.wsdd, which can be used to

inform the Axis Engine about the service and its characteristics (e.g. name, exposed

operations, etc). The service is deployed with the following command:

java –cp .;%AXIS_CLASSPATH% org.apache.axis.client.AdminClient

-lhttp://localhost:8080/grid4all_sis/AxisServlet sis_deploy.wsdd

If the Axis libraries are not available in the local file-system, the AXIS_CLASSPATH

variable may also contain the Axis .jar files maintained in WEB-INF\lib. These files

are the following: axis.jar, axis-ant.jar, saaj.jar, wsdl4j.jar, jaxrpc.jar, xml-apis.jar,

commons-logging.jar, commons-discovery.jar, log4j.jar. Similarly, for the

undeployment of the service, the sis_undeploy.wsdd file is used in the same way as

above:

java –cp .;%AXIS_CLASSPATH% org.apache.axis.client.AdminClient

-lhttp://localhost:8080/grid4all_sis/AxisServlet sis_undeploy.wsdd

After the deployment process takes place, the SIS Web Service installation is

complete and the service is available to clients in the following address (Service

endpoint): http://<hostname>:8080/grid4all_sis/ws/SIS, where <hostname> is

the domain name of the machine where the service is hosted. A description of the SIS

service as a WSDL document can be obtained by requesting the following address:

http://<hostname>:8080/grid4all_sis/ws/SIS?wsdl. By using this description,

SIS clients can be constructed, as described in section 5.1.1.

7. Local usage of the SIS Web Service functionality

The SIS Web Service has been implemented as a set of Java classes not dependent

on (i.e., not making use or extending classes of) a specific web service framework

(these are usually referred to as POJOs, Plain Old Java Objects), on top of which the

Apache Axis SOAP engine is used to create, send and receive SOAP messages. It is

possible, however, to also use this functionality locally, as part of another Java

project, by creating a local instance of the SISImpl class. SISImpl offers two

constructor methods: one with no arguments and one that accepts two arguments, both

of which are objects of the Properties class, provided by the Java Development Kit

(package java.util). The Properties class represents a persistent set of properties

which can be saved to a stream or loaded from a stream. Typically, such streams are

linked to simple text files, which by convention have the extension “.properties”.

The SIS needs two sets of properties in order to be initialized and function properly:

• Configuration information: Such information includes database connection

parameters, the location of the advertised service descriptions and the temporary

files that are created during service advertisement, how frequently the deletion

queue should be checked, etc.

• Information about the supported domain ontologies: All the supported domain

ontologies must be recorded in this set of properties. Information about the

domain ontologies includes their human-readable domain names, their

namespace URIs, and the URL from where they can be accessed. This

information is used to initialize the DomainHandle object used in SISImpl.

The SIS Web Service uses such properties sets, and the respective .properties

files reside in directory WEB-INF\conf. The no-argument constructor, which is used

by the Axis engine when the Web Service is initialized, actually redirects to the two-

argument constructor, using the Properties objects obtained from the conf directory.

Any other usage of the no-argument constructor is discouraged. The following Java

program shows how a SISImpl object can be created and used locally:

import gr.aegean.icsd.ailab.sis.impl.SISImpl;

import java.io.File;

import java.io.FileInputStream;

import java.util.Properties;

public class LocalSISImplObjectExample {

 public static void main(String[] args) {

 Properties sisConf = new Properties();

 Properties domains = new Properties();

 try {

 sisConf.load(new FileInputStream(new File(

 "c:\\tmp\\sis_conf.properties")));

 domains.load(new FileInputStream(new File(

 "c:\\tmp\\domains.properties")));

 SISImpl sis = new SISImpl(sisConf, domains);

 sis.registerProvider("AgentXYZ", "password", "location");

 String[] queryTypes = sis.getQueryTypes();

 ...

 } catch(Exception e) {

 System.exit(1);

 }

 }

}

Note that, in order to make use of the SIS functionality locally, virtually all of the

Java libraries that are used by the service (in the WEB-INF/lib folder) must be

included. The only library that is not needed for local use of the SIS is the Axis

library.

The configuration properties, as well as the way they are encoded in the respective

properties file, are shown in chapter 6. To form a valid .properties files for the

DomainHandle initialization, several information pieces need to be provided for every

supported domain ontology. These information pieces are:

• A valid QName prefix (used mainly during queries); it must not contain spaces

• A human-readable name for the domain (it may contain spaces)

• The ontology namespace

• A resolvable URL of the ontology

Supposing that there have been 14 entries already in the .properties file, the

following information is provided for the 15th ontology:

• QName prefix: “ex1”

• Namespace: http://www.example.org/example

• Resolvable URL: http://www.somewhere.com/here

• Human readable name: “Example”

In this case, the following lines must be added in the .properties file:

domain15=ex1

ex1.name=Example

ex1.ns=http://www.example.org/example

ex1.url=http://www.somewhere.com/here

8. Useful URLs
Name URL Description Comments

Apache Tomcat http://tomcat.apache.org A Java Servlet container

that also acts as a web

server.

Version 6 is

recommended

MySQL http://www.mysql.com Open source RDBMS

JDK http://www.java.sun.com JDK Version 6 is

recommended

Grid4All http://www.grid4all.eu The Grid4All project

home page

JENA http://jena.sourceforge.net An RDF framework for

Java

Version 2.5.7 is

used by SIS

Pellet http://www.clarkparsia.com/pellet Reasoning engine for Java Version

2.0.0RC4 is used

by SIS

OWL-S API http://www.mindswap.org/2004/owl-

s/api/

OWL-S document

manipulation library

SemMF http://semmf.ag-nbi.de Library for computing

similarity of ontology

concepts

Apache Axis http://ws.apache.org/axis Used to expose user

created code as Web

Service operations and to

create, parse and

exchange SOAP messages

from and to these

operations

Version 1.4 is

used by the SIS

Web Service

SIS Web

Service home

page

http://icsd-ai-lab:8080/grid4all_sis/ Contains some general

information about the

Grid4All and SIS, and

descriptions of the

exposed Web Service

operations

SIS endpoint http://icsd-ai-

lab.aegean.gr:8080/grid4all_sis/ws/SIS

Endpoint address of the

SIS Web Service

SIS WSDL http://icsd-ai-

lab.aegean.gr:8080/grid4all_sis/ws/SIS

?wsdl

The WSDL description of

the exposed SIS

operations

SIS Web

Service copy

http://ai-lab-server.aegean.gr/svn/ai-

lab/sis/Service/dist/grid4all_sis.war

A copy of the .war file

containing the SIS Web

Service implementation,

along with the required

libraries

SIS Web

Service client

copy

http://ai-lab-server.aegean.gr/svn/ai-

lab/sis/Service/client

This file contains client

code generated by the

WSDL2Java tool of

Apache Axis. The code

can be used to create SIS

clients.

JKD 1.4 is

required to use

this code

SIS Web

Service libraries

http://ai-lab-server.aegean.gr/svn/ai-

lab/sis/Service/lib

The folder contains all the

required libraries for the

SIS client and for local

SIS usage (without calling

a web service)

SIS JavaDocs http://ai-lab-server.aegean.gr/svn/ai-

lab/sis/Service/Doc/javadoc

Guide document

(this document)

http://ai-lab-server.aegean.gr/svn/ai-

lab/sis/Service/Doc/SIS_Web_Service_

Guide_final.doc

WSDL-AT http://ai-lab-server.aegean.gr/svn/ai-

lab/sis/WSDL-AT

WSDL annotation tool

Grid4All

ontology

http://icsd-ai-

lab.aegean.gr:8080/grid4all_sis/resourc

es/ontologies/G4Aonto_v8_TBox.owl

The T-Box of the

Grid4All resource

ontology

9. Further reading

This chapter provides some pointers for further reading on Semantic Web

technologies in general, as well as some more specific aspects of the Semantic

Information System, such as the Grid4All ontology, service matching and ranking,

and the frameworks that were used in the implementation of the SIS.

Grid4All Ontology

• George A. Vouros, Andreas Papasalouros, Konstantinos Kotis, Alexandros Valarakos,

Konstantinos Tzonas, Xavier Vilajosana, Ruby Krishnaswamy, Nejla Amara-Hachmi,

“The Grid4All ontology for the retrieval of traded resources in a market-oriented Grid”,

IJWGS special issue on “Web/Grid Information and Services Discovery and

Management”, International Journal of Web and Grid Services 2008 - Vol. 4, No.4 pp.

418 – 439.

• G. A. Vouros, A. Papasalouros, K. Kotis, A. Valarakos, K. Tzonas, S. Retalis, and R.

Krishnaswamy. Semantic discovery of resources and services in democratized grids.

Handbook of Research on Social Dimensions of Semantic Technologies and Web

Services, M. Manuela Cunha, Eva Oliveira, Antonio Tavares & Luis Ferreira (Eds),

Information Science Reference, ISBN: 978-1-60566-650-1

Semantic Web technologies

• O. Lassila and R. Swick, “Resource Description Framework (RDF) Model and Syntax

Specification”, W3C Recommendation. February 1999. http://www.w3.org/RDF/

• D. Brickley and R.V. Guha, “RDF Vocabulary Description Language 1.0: RDF

Schema”, W3C Recommendation, February 2004. http://www.w3.org/TR/rdf-schema/

• E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for RDF”, W3C

Working Draft, October 2006. http://www.w3.org/TR/rdf-sparql-query/

• D. L. McGuinness and F. van Harmelen, “OWL Web Ontology Language Overview”,

W3C Recommendation, February 2004. www.w3.org/2004/OWL/

• D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S.

Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan and K. Sycara,

“OWL-S: Semantic Markup for Web Services”, W3C Member Submission, Nov. 2004.

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

Web Services

• Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, Web

Services Description Language (WSDL) 1.1, W3C submission, March 2001.

http://www.w3.org/TR/wsdl

• Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk

Nielsen, Anish Karmarkar, Yves Lafon, SOAP Messaging Framework, W3C

Recommendation, April 2007. http://www.w3.org/TR/soap12/

Service matching

• M. C. Jaeger, G. Rojec-Goldmann, G. Muhl, C. Liebetruth, and K. Geihs,“Ranked

Matching for Service Descriptions using OWL-S”, Proceedings of KiVS, p. 91-102

2005

• Alberto Fernandez, Axel Polleres, Sascha Ossowski, Towards Fine-grained Service

Matchmaking by Using Concept Similarity, First International Joint Workshop on

Service Matchmaking and Resource Retrieval in the Semantic Web (SMR2) at ISWC

2007, p.31--45 (2007)

• M. Klusch, B. Fries, M. Khalid and K. Sycara, “OWLS-MX: Hybrid Semantic Web

Service Retrieval”, Proceedings of the 1st International AAAI Fall Symposium on

Agents and the Semantic Web, Arlington VA, USA, AAAI Press, Technical Report FS-

05-01.

Semantic Web libraries/frameworks

• B. McBride, “Jena: Implementing the RDF Model and Syntax Specification”,

Proceedings of the Second International Workshop on the Semantic Web -

SemWeb'2001, pp. 74-83, 2001

• E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz, “Pellet: A Practical OWL-DL

Reasoner”, Web Semantics: Science, Services and Agents on the World Wide Web

archive, volume 5 , issue 2 (June 2007) pp. 51-53, 2007

This page is intentionally left blank

Annex 5. Telex, a Principled System Support
for Write­Sharing in Collaborative Applications

­/­

Application Programming Guide

1 / 16 July 2009

Table of contents

1- PREAMBLE..3

2- OVERVIEW..4
2.1- Application design..4
2.2- Application components...4
2.3- SimpleApplication class...4
2.4- SimpleAction class...5
2.5- SimpleState class..6

3- INITIALIZATION...7

4- MAIN PROCESSING LOOP ..8

5- DISPLAYING DOCUMENT STATES..9

2 / 16 July 2009

1­ PREAMBLE

This guide describes how to use Telex's API. It complements the javadoc of the API1.

Before using this guide, the reader should be familiar with Telex's functionality and the design of collaborative
applications atop Telex. These topics are covered by the following papers2: “Telex: a Platform for Decentralized
Sharing” and “Distributed Collaborative Applications Using the Telex Sharing and Reconciliation Platform”.

This guide uses code examples drawn from the telex.application.sample package3. This package
contains a simple Telex application that sketches a collaborative text editor. It includes the application's main
class, SimpleApplication.java, and two auxiliary classes, SimpleAction.java and
SimpleState.java.

1 see [telex]/docs/javadoc/API/index.html
2 located in [telex]/docs/papers
3 located in [telex]/src/fr/inria/gforge

3 / 16 July 2009

2­ OVERVIEW

A collaborative application involves several users located at different sites. Through the application, users update
a shared document, either at the same time or at different times. When connectivity permits, updates are
propagated to other sites so that all users can see them. If updates conflict, the shared document have different
states, each representing a solution to the conflict. A background reconciliation protocol ensures that all users
eventually see the same document state.

2.1­ Application design

The design of a Telex application follows the Model­View­Controller (MVC) pattern. At each site, the application
waits for user updates and translates them into actions and constraints that it passes to Telex. In return, Telex up­
calls the application to display the current state of the document whenever the document is updated, either locally
or remotely.

These control flows are handled by separate threads. The main thread is created by the JVM when launching the
application. It initializes the Telex middleware, listens to user input and calls Telex. Telex creates two additional
threads upon initialization. The first thread listens for updates sent by remote sites whereas the second process
reconciliation proposals. These threads up­call the application whenever the document is updated.

2.2­ Application components

A typical Telex application includes three java files. In our example, SimpleApplication.java contains
the main code of the application, which interfaces (calls and up­calls) with Telex; SimpleAction.java
describes the application's actions; SimpleState.java represents the state of the application's shared
documents.

SimpleAction and SimpleState classes are opaque to Telex. Telex does not know about the semantics of
actions and the internal structure of shared documents: it cannot execute actions and update the state of the
document. Rather, Telex computes sound schedules, i.e. sequences of actions that comply with constraints, and
passes them to the application for execution. In our example, the actual execution of actions takes place in the
SimpleState class.

2.3­ SimpleApplication class

The SimpleApplication class is the main class of the application. It contains the main method of the
application:

public static void main(String[] args) {

new SimpleApplication(args).run();

}

The main method initializes the application by calling the constructor of the class. It then calls the run()
method which implements the application's main processing loop. These topics are covered is sections 3 and 4
respectively.

The SimpleApplication class must also implements the methods that Telex up­calls to interact with the
application. These methods are part of the telex.application.TelexApplication and
telex.application.ConstraintChecker interfaces:

public class SimpleApplication implements TelexApplication, ConstraintChecker {

}

4 / 16 July 2009

2.4­ SimpleAction class

The telex.application.Action class defines attributes common to actions of all applications. These
attributes include the action's unique id, the user who issued the action, the site where it was issued, etc. Each
application must sub­class the Action class in order to define application­specific attributes such as the
operation that the action represents, its parameters, etc. For the sake of simplicity, these attributes are represented
as Strings in our example:

public class SimpleAction extends Action {

//
// CONSTANTS
//
private static final long serialVersionUID = 1L;

//
// INSTANCE FIELDS
//
private String operation;
private String[] parameters;

// …

}

Note that in the Telex execution model, an action is immutable. This the application's responsibility to ensure this.
Currently, the final modifier cannot be used to protect the operation and parameters fields.

Actions are logged to persistent storage. For performance reasons, Telex uses an had­hoc mechanism rather than
Java's serialization. This mechanism requires that SimpleAction class (i) provides a public nullary
constructor, which Telex calls whenever it reads a new action from the log, (ii) implements ad­hoc methods to
read() and write() application­specific fields to/from the log, as follows:

// Mandatory public nullary constructor
public SimpleAction() {

}

// Ad­hoc read and write methods for application's specific fields
public void write(DataOutput out) throws IOException {

// mandatory: write Action's fields first
super.write(out);

// then write this instance's fields
FileUtils.writeUTF("operation", operation, out);
FileUtils.writeObject("parameters", parameters, out);

}

public void read(DataInput in) throws IOException {

// mandatory: read Action's fields first
super.read(in);

// then read this instance fields in same order as write
operation = FileUtils.readUTF("operation", in);
parameters = (String[]) FileUtils.readObject("parameters", in);

}

Note that read() and write() must first call their counterpart in the telex.application.Action
class. The telex.util.FileUtils class provides methods to read and write primitive types, arrays and
Object instances.

5 / 16 July 2009

Actions are also sent to remote sites as part of the reconciliation protocol. For the sake of simplicity, Telex uses
Java's serialization in this case. Application­specific actions must therefore be serializable. The
telex.application.Action class implements the Serializable interface. The application must make
sure that all non­transient fields of the SimpleAction class are also serializable.

Telex will retain a single mechanism for both logging and reconciliation in a future release.

2.5­ SimpleState class

The class representing the state of a document must implement the telex.application.DocumentState
interface. It must be serializable so that Telex can store it on persistent storage.

In our example, a shared document is a text file. Its state consists of the contents of the file, represented as a list of
lines of type String, as follows:

public class SimpleState implements DocumentState {

//
// CONSTANTS
//
private static final long serialVersionUID = 1L;

//
// INSTANCE FIELDS
//
private List<String> contents;

//
// CONSTRUCTORS AND ACCESSORS
//
/**
 * Allocates a new document state.
 */
public SimpleState() {

contents = new ArrayList<String>();
}

// …

}

The class also implements the static method display(Schedule), which is called by the
SimpleApplication class to display the schedules returned by Telex (see section 5). The code of the method
is as follows:

static void display(Schedule schedule) {

// execute schedule on base state
SimpleState state = (SimpleState) schedule.getState();
for (Action action : schedule.getActions()) {

state.execute((SimpleAction) action);
}

// display state
state.display();

}

This method computes the state represented by the specified schedule and displays it to the user by calling the
display() method.

6 / 16 July 2009

3­ INITIALIZATION

The code of the application's constructor is as follows:

public SimpleApplication(String[] args) {

// 1­ define documents' processing parameters
ProcessingParameters parameters;
try {

parameters =
new ProcessingParameters(new SimpleState(),

SimpleAction.class, Constraint.class, this);
} catch (Exception e) {

System.err.println("cannot define parameters: " + e);
System.exit(1);
return;

}

// 2­ create a Telex instance for this application
Telex telex = Telex.getInstance(this, parameters);

// 3­ open the specified document, or "default.doc" if none is specified
String pathname = args.length > 0 ? args[0] : "textfile.txt";
try {

document = telex.openDocument(pathname);
} catch (Exception e) {

System.err.println("cannot open " + pathname + ": " + e);
System.exit(1);

}

}

The application first defines the parameters that Telex will use for processing the application's documents. These
parameters consist in (i) the initial (empty) state of the documents, (ii) the classes of actions and constraints used
to update them.

The application then creates a specific Telex instance with these parameters. Telex will associate the specified
parameters with every document opened through this particular instance.

Finally, the application opens the shared document to process. In our example, the pathname of the document is
specified through the command­line. (If not, a default pathname is used.)

7 / 16 July 2009

4­ MAIN PROCESSING LOOP

The code of the application's main processing loop is as follows:

private void run() {

// main processing loop
while (true) {

 // wait for next user command
 UserCommand command = waitCommand();

 // update document accordingly
 updateDocument(command);

}

}

The application waits for input by calling the waitCommand(). The code of this method is application­specific:
the application can interact with a user through a Graphical User Interface, or it can read input from a shell script,
etc.

The application then calls the updateDocument(command) to translates each command into actions and
constraint and pass them to Telex to update the document. In our example, the sketch of this method is as follows:

private void updateDocument(UserCommand input) {

// ...

// translate input into actions and constraints (this is an example)
Action action1 = new SimpleAction("delete", "l13,o25", "7");
Action action2 = new SimpleAction("insert", "input text", "l13,o25");
Constraint constraint1 = new Constraint(action1, ENABLES, action2);
Constraint constraint2 = new Constraint(action2, ENABLES, action1);

// group actions and constraints in a fragment
Fragment fragment = new Fragment();
fragment.add(action1);
fragment.add(action2);
fragment.add(constraint1);
fragment.add(constraint2);

// add fragment to document
try {
 document.addFragment(fragment);
} catch (Exception e) {
 System.err.println("cannot update document: " + e);
}

}

Actions and constraints that make up a command are grouped into a fragment, which is Telex's update unit. The
fragment is then added to the document through the Document.addFragment() method.

8 / 16 July 2009

5­ DISPLAYING DOCUMENT STATES

The TelexApplication interface defines three up­calls: execute(Document,
ScheduleGenerator), bindDocument(Document, Document) and execute(Document,
Schedule).

Telex uses the first call to notify the application that the specified document has been updated, either locally or
remotely. Telex passes as the second argument a schedule generator, which the application call to dynamically
compute the list of sound schedules until satisfied.

public void execute(Document document, ScheduleGenerator generator) {

// in our case, generator is of type IterableScheduleGenerator
IterableScheduleGenerator iterable =

(IterableScheduleGenerator) generator;

// display possible states to user
for (Schedule schedule : iterable) {
 SimpleState.display(schedule);
}

}

Telex uses the last two up­calls only when processing bound documents, i.e. documents linked by one or more
cross­document constraints. The bindDocument() call notifies the application that the specified documents
are now bound. The execute(Document, Schedule) call requests the application to execute the specified
schedule because its counterpart on a bound document has been executed.

public void bindDocument(Document opened, Document bound) {

// warn user that specified documents are now bound
System.out.println(opened + " is now bound to " + bound);

}

public void execute(Document document, Schedule schedule) {

// display the state corresponding to the specified schedule
SimpleState.display(schedule);

}

9 / 16 July 2009

ANNEX 1. Simple application code

SimpleApplication.java file

package fr.inria.gforge.telex.application.sample;

import fr.inria.gforge.telex.*;
import fr.inria.gforge.telex.application.*;
import fr.inria.gforge.telex.extensions.*;

import static fr.inria.gforge.telex.application.Constraint.Type.*;

/**
 * The skeleton of a simple Telex application. It sketches a basic collaborative
 * text editor. In this example, a <i>document</i> is a shared text file; an
 * <i>action</i> is an edition operation (insert, delete, etc.).
 * <p>
 * For more information, see Telex's Application Programmer Guide:
 * [telex]/docs/guides/applicationPragrammerGuide.pdf.
 *
 * @author J­M. Busca INRIA/Regal
 */
public class SimpleApplication implements TelexApplication, ConstraintChecker {

//
// INSTANCE FIELDS
//
private final Document document;

//
// CONSTRUCTOR
//
/**
 * Creates a new instance of the application with the specified parameters.
 *
 * @param args
 * the command­line parameters.
 */
public SimpleApplication(String[] args) {

// define documents' processing parameters
ProcessingParameters parameters;
try {

parameters =
new ProcessingParameters(new SimpleState(),

SimpleAction.class, Constraint.class, this);
} catch (Exception e) {

System.err.println("cannot define parameters: " + e);
System.exit(1);
return;

}

// create a Telex instance for this application
Telex telex = Telex.getInstance(this, parameters);

// open the specified document, or "default.doc" if none is specified
String pathname = args.length > 0 ? args[0] : "textfile.txt";
try {

document = telex.openDocument(pathname);
} catch (Exception e) {

System.err.println("cannot open " + pathname + ": " + e);
System.exit(1);

}

}

10 / 16 July 2009

//
// MAIN PROGRAM
//
/**
 * Main method of the application.
 *
 * @param args
 * command­line parameters.
 */
public static void main(String[] args) {

new SimpleApplication(args).run();
}

//
// UPDATING DOCUMENT
//
/**
 * Main program of the application.
 */
private void run() {

// main processing loop
while (true) {

// wait for next user command
UserCommand command = waitCommand();

// update document accordingly
updateDocument(command);

}

}

/**
 * Waits for next user's command.
 *
 * @return the current user's command.
 */
private UserCommand waitCommand() {

// to be defined: GUI, shell script, etc.
return new UserCommand();

}

private void updateDocument(UserCommand input) {

// translate input into actions and constraints (this is an example)
Action action1 = new SimpleAction("delete", "l13,o25", "7");
Action action2 = new SimpleAction("insert", "input text", "l13,o25");
Constraint constraint1 = new Constraint(action1, ENABLES, action2);
Constraint constraint2 = new Constraint(action2, ENABLES, action1);

// group actions and constraints in a fragment
Fragment fragment = new Fragment();
fragment.add(action1);
fragment.add(action2);
fragment.add(constraint1);
fragment.add(constraint2);

// add fragment to document
try {

document.addFragment(fragment);
} catch (Exception e) {

System.err.println("cannot update document: " + e);
}

}

11 / 16 July 2009

//
// COMPUTING CONSTRAINTS
//
/**
 * @inheritDoc ConstraintChecker interface.
 */
public Fragment getConstraints(Action added, Action existing) {

Fragment fragment = new Fragment();

// to be defined

return fragment;

}

//
// DISPLAYING DOCUMENT STATES
//
/**
 * @inheritDoc TelexApplication interface.
 */
public void bindDocument(Document opened, Document bound) {

// warn user that specified documents are now bound
System.out.println(opened + " is now bound to " + bound);

}

/**
 * @inheritDoc TelexApplication interface.
 */
public void execute(Document document, ScheduleGenerator generator) {

// in our case, generator is of type IterableScheduleGenerator
IterableScheduleGenerator iterable =

(IterableScheduleGenerator) generator;

// display possible states to user
for (Schedule schedule : iterable) {

SimpleState.display(schedule);
}

}

/**
 * @inheritDoc TelexApplication interface.
 */
public void execute(Document document, Schedule schedule) {

// display the state corresponding to the specified schedule
SimpleState.display(schedule);

}

}

12 / 16 July 2009

SimpleAction.java file

package fr.inria.gforge.telex.application.sample;

import java.io.*;
import java.util.*;

import fr.inria.gforge.telex.application.*;
import fr.inria.gforge.telex.util.*;

/**
 * The representation of a {@link SimpleApplication}'s action, i.e. an edition
 * operation. For convenience, the operation and its parameters are of type
 * {@code String}.
 *
 * @author J­M. Busca INRIA/Regal
 */
public class SimpleAction extends Action {

//
// CONSTANTS
//
private static final long serialVersionUID = 1L;

//
// INSTANCE FIELDS
//
private String operation;
private String[] parameters;

//
// CONSTRUCTORS AND ACCESSORS
//
/**
 * Allocates a new action. This public nullary constructor is
 * mandatory.
 */
public SimpleAction() {

}

/**
 * Allocates a new action representing the specified operation with the
 * specified parameters.
 */
SimpleAction(String operation, String... parameters) {

this.operation = operation;
this.parameters = parameters;

}

/**
 * Returns the operation this action represents.
 *
 * @return the operation this action represents.
 */
public String getOperation() {

return operation;
}

/**
 * Returns the parameters of this action.
 *
 * @return the parameters of this action.
 */
public String[] getParameters() {

return parameters;
}

13 / 16 July 2009

/**
 * @inheritDoc
 */
public String toString() {

return operation + Arrays.asList(parameters);
}

//
// LOGGING
//
/**
 * @inheritDoc
 */
public void write(DataOutput out) throws IOException {

// mandatory: write Action's fields first
super.write(out);

// then write this instance's fields
FileUtils.writeUTF("operation", operation, out);
FileUtils.writeObject("parameters", parameters, out);

}

/**
 * @inheritDoc
 */
public void read(DataInput in) throws IOException {

// mandatory: read Action's fields first
super.read(in);

// then read this instance fields in same order as write
operation = FileUtils.readUTF("operation", in);
parameters = (String[]) FileUtils.readObject("parameters", in);

}

}

14 / 16 July 2009

SimpleState.java file

package fr.inria.gforge.telex.application.sample;

import java.io.*;

/**
 * The state of a {@link SimpleApplication}'s document, i.e. a text file. For
 * convenience, the state is represented as a set of lines of type {@code
 * String}.
 *
 * @author J­M. Busca INRIA/Regal
 */
public class SimpleState implements DocumentState {

//
// CONSTANTS
//
private static final long serialVersionUID = 1L;

//
// INSTANCE FIELDS
//
private List<String> contents;

//
// CONSTRUCTORS AND ACCESSORS
//
/**
 * Allocates a new document state.
 */
public SimpleState() {

contents = new ArrayList<String>();
}

/**
 * @inheritDoc
 */
public String toString() {

String result = "";
for (String line : contents) {

result += line + "\n";
}
return result;

}

//
// DISPLAYING STATE
//
/**
 * Displays the document state corresponding to the specified schedule.
 *
 * @param schedule
 * the schedule to display.
 */
static void display(Schedule schedule) {

// execute schedule on base state
SimpleState state = (SimpleState) schedule.getState();
for (Action action : schedule.getActions()) {

state.execute((SimpleAction) action);
}

// display state
state.display();

}

15 / 16 July 2009

/**
 * Executes the specified action on this state.
 *
 * @param action
 * the action to execute.
 */
private void execute(SimpleAction action) {

// to be defined

}

/**
 * Displays this state to user.
 *
 */
void display() {

// to be defined

}

//
// DocumentState INTERFACE
//
/**
 * {@inheritDoc}
 * <p>
 * For the sake of simplicity, this implementation splits the text in lines.
 * This maximizes fragment re­use between successive snapshots, but this
 * creates numerous files on persistent storage. Splitting the text in
 * paragraphs would probably be a better trade­off.
 */
public Serializable[] split() {

return contents.toArray(new String[0]);
}

/**
 * @inheritDoc
 */
public void assemble(Serializable[] fragments) {

contents = new ArrayList<String>();
for (Serializable line : fragments) {

contents.add((String) line);
}

}

}

16 / 16 July 2009

This page is intentionally left blank

Annex 6. Virtual Organization File System

VOFS Manual

Georgios Tsoukalas, ICCS
gtsouk@cslab.ece.ntua.gr

June 28, 2009

1 Requirements

• Python 2.5

• Fuse-2.7 and development files

• SQLite 3

• Libc development files

2 Installation & Launch

• Unpack the archive.

• Run setup.sh

setup.sh will ask for a name and an IP address for your peer, a member
list and a provider list with which to initialize your workspace, a location for
the VOFS-launching script and a location for the mountpoint. The script will
write a configuration file (src/scripts/config) and create a launching script
that will read this configuration file.

2.1 Launch a typical VOFS instance

The launching script is named launch-vofs and its location is configured by
the setup.sh script.

To launch the configured (by setup.sh) VOFS workspace, run this script.
launch-vofs will read the configuration file and then launch a VOFS server

and a VOFS client. The client will mount the VOFS server onto the mountpoint
configured. The files served by the VOFS server will be available under the
mountpoint.

The script then will initialize the VOFS filesystem with a members directory
with symbolic links to the configured members of the workspace, and initialize
the storage pool of workspace (the top-level directory of the filesystem) with
the providers configured during set-up.

By default, the VOFS server will be configured to also be the storage provider.
The launcher will create 2 log files in the current directory: one for the client

peer and one for the service (filenames start with a ’.’). The log files contain
debugging output.

1

The service and client can be individually started with ./runservice.sh in
src/, provided PYTHONPATH is set-up correctly. See the output of setup.sh
for PYTHONPATH settings.

2.2 Launching file servers and providers independently

It is possible to launch VOFS servers and clients manually.
./launch-vofs runpyfuse will launch a VOFS client:

runpyfuse <mountpoint> <client_addr> <server_addr>
options:

mountpoint: where to mount server
client_addr: local client address to bind to
server_addr: remote server address to mount

./launch-vofs runservice <name:service> will launch a VOFS server. name
must be a valid hostname or a virtual hostname configured in tractal/lib/hostnames.py.
service must be a port number, a service configured in the file mentioned above.
If the service character string cannot be resolved to a port number, it will be
converted to a port number by in a random but consistent way (by hashing it).
Therefore, one can use any string as a service, with a minimal risk of collision
due to hashing (which maps to 8192 different ports).

VOFS servers act as both file servers and storage providers at the same time.

3 Introduction

VOFS is fundamentally a network of peers which are identified by a unique
cryptographic identity that can be used in authentication and authorisation of
transactions among them. A peer’s name can be either its identity or a name
through which the identity can be retrieved. Each peer may assume one of three
roles all supported by a unified protocol: file server, storage provider and client.

The file server is the authority to serve a user’s files to the network. File
servers keep the file hierarchy and metadata for each file. Each file is identified
by the peer’s identity followed by a path unique to each file server. Clients may
explore a file server’s hierarchy. There are symbolic links that can be followed
accross the network, effectively linking the filesystems together in a WWW-like
fashion.

File data are not normally kept in the file server. Instead, a list of storage
chunks is kept with the file metadata. These storage chunks are kept and served
by storage providers, in similarly to file metadata. VOFS can be extended
through storage plug-ins to handle other protocols for storage than its own
(FTP, for example).

Clients create files by first allocating data chunks with their data and then
writing creating or updating the file in the file server with the new storage
chunk list. Clients are responsible for the allocation of data chunks on their
own. However, the file server may refuse to accept a file if there has been
implemented a policy that refuses the file’s storage chunk list.

A set of of key-value pairs, the attributes is associated with each file. At-
tributes are inherited from parent directories so that large hierarchies can be
conveniently managed. POSIX attributes (like access times) are encapsulated

2

in those attributes. These attributes may be used privately by clients or they
may be given special semantics by extensions to VOFS.

An example of a standardized attribute is the “pool” attribute. This at-
tribute holds a list of storage providers available so that clients know where to
allocate storage chunks for file data for this filesystem (or a subset of it, since
“pool” as an attribute can be independently be set for any file).

Clients keep a local cache with copies of files and storage chunks. User
requests are served from this cache to reduce latency and overcome connectivity
problems. Clients may cache the attributes of files and keep an additional local
set of attributes. The local attributes can be used by users or applications to
configure the behaviour of the client.

For example, the contents of the forward local attribute for each file is au-
tomatically attached by the client to every request that is made to the file’s
server. Client- and server-side extensions may use this mechanism to exchange
credentials without any client modifications.

Traditionally, the file system interface is used by both users and applications.
This has been preserved in VOFS. In addition to all that is available to users,
applications may subscribe to file servers for events happening to files. Applica-
tions may also trigger a message-passing PUBLISH event that can be subscribed
to and used for group communication based on a file as a publishing point. The
list of subscribers to this publishing point file is a special attribute and is cached
by clients, limiting the disruption from the disconnection of its file server.

Disconnection is expected by VOFS and users can actually force it. Discon-
nectedness is implied by communications timing out and the state is maintained
per host. Users and applications may force files in and out of the state of dis-
connectedness.

Local changes to a client are immediately stored in the local cache. The
local cache is synchronised periodically or when required by the user or a system
operation. VOFS does not guarrantee any consistency as the last request to be
served by the file server will supersede all previous ones.

Access control in VOFS is based on filtering access requests. Each request
has an origin and a recipient peer, a target resource and a specific access that is
requested. Based on this design, access control may be implemented as simple
as setting a password for files (or whole hierarchies), or as complex as filtering
the requests through a sophisticated external security infrastructure. Whatever
the access control method employed, users just have to place their credentials
in their forward virtual files, as described earlier.

To make VOFS features available over POSIX calls, VOFS implements vir-
tual files. Each path in VOFS may have an additional path component separated
by a @ character:

/normal/path@virtual

The virtual path refers to a virtual file that is specific the normal path. For ex-
ample, file@data displays what storage provider hosts the data for the specific
file.

The most important virtual file (actually a directory) is directory/@/,
which represents the whole VOFS network as a directory. This is a global
virtual file and can be accessed from any directory. Users can chdir in a peer
address there to browse that peer’s files:

ls -l @/peer:fs/

3

or link documents across filesystems:

ln -s @/ICCS:fs/docs/profile.pdf profiles/ICCS.pdf

4 Configuration

4.1 Timeouts

In the file src/tractal/client/config/base.py there are two timeout assign-
ments:

network timeout = 3
stale timeout = 5

If communication is expected from a peer for more than network timeout
seconds, then that peer is considered disconnected.

When a file is accessed, it is checked how much time has passed since it
was last retrieved from the network. If more than stale timeout seconds have
passed, then the file is re-requested to discover if there is a new version available.

Both timeouts deliberately default to small values, to aid the demonstration
of VOFS features despite creating heavier load.

5 Usage

5.1 The Mountpoint

The mounted filesystem is a FUSE volume that is served in userspace with the
credentials of the user launching VOFS. Other users won’t normally have access
to the mount point.

Beware that the mountpoint must be empty before launching and that there
are no applications with their current working directories under the mountpoint
or it will not be able to unmount it.

5.2 Virtual Files

Virtual files are special files that do not represent a VOFS file, but their contents
and metadata are dynamically computed. They are artifacts that have been
introduced to support VOFS filesystems in a POSIX-compliant way.

In order to preserve compatibility, virtual files are normally invisible to direc-
tory listings. Nevertheless, they remain accessible, as if someone creates them
the moment before the access and deletes them the moment afterwards (this is
valid behaviour in conventional filesystem).

Paths to virtual files contain the reserved character ‘@’. This character can-
not be used in normal filenames. The character ‘@’ splits the path into two
distinct paths:

<real path>@<virtual path>.

This way, every virtual path is associated with a real one.
Due to the way FUSE works, it is not possible to write input and read output

from the same virtual file. Therefore, pairs of virtual files are introduced, one
for writing and one for reading. For example, one such pair is @setconfig and
@config.

4

5.2.1 List of Virtual Files

@/ Effectively this is the virtual file with an empty virtual path component.
It is a global virtual file, accessible in every directory, but canonically accessed
in the root of the mountpoint. It is a directory that represents the whole VOFS
network. Entering paths in the form host:service/ in that directory will cause
the client to contact the VOFS peer with that address and retrieve its files.

This is the mechanism to create symbolic links across two different peers
and thus, filesystems, in the network.

@config contains a list with the attributes of a file. Attributes are key-value
pairs that are inherited from parents and can be set through @setconfig.

@setconfig is used to create and delete attributes for a file. There are two
types of attributes, plain key-value pairs and dictionaries. Plain attributes
have a string value, while dictionaries contain their own list of plain attributes.
Dictionaries can be used as sets of if they contain only keys with empty values.

To assign a plain attribute:

echo -n "key = value" > file@setconfig

To delete a plain attribute:

echo -n "-key" > file@setconfig

To assign a plain attribute to a new dictionary attribute:

echo -n "dict = key=value" > file@setconfig

To add a plain attribute to an existing dictionary attribute:

echo -n "dict += key=value" > file@setconfig

To delete a plain attribute from an existing dictionary attribute:

echo -n "dict -= key=value" > file@setconfig

To delete a dictionary attribute:

echo -n "-dict" > file@setconfig

@offline provides access to the connectivity status of a file. Attempting to
read a connected file will result in an error:

EISCONN (Transport endpoint is already connected)

Attempting to read an offline file will result in an error:

ENOTCONN (Transport endpoint is not connected)

Attempting to write will force the file to be offline and return an error:

ENOTCONN (Transport endpoint is not connected)

Attempting to remove (unlink) it will discard the offline status of the file:

EISCONN (Transport endpoint is already connected)

5

@forward contains the credentials stored for forwarding to the server for the
specific file.

@setforward is where the credentials to be stored for forwarding are written.

@pool contains a list of the pool dictionary attribute, for convenience.

@status reports the cache and connectivity status of a file. According to local
modifications a file can be CLEAN or DIRTY. According to last network access a
file can be FRESH or STALE. If a file is offline OFFLINE is also returned.

@node dumps the internal VOFS structure for the metadata of the specific file.

@data displays where the specific file’s data are stored.

5.3 Browsing and Symbolic Linking Across the Network

Accessing other peers (and their filesystems) can be done directly:

cd @/name:service/

or a permanent link to the peer can be created as a symbolic link:

ln -s @/name:service Georgios; cd Georgios/docs

name must be a valid hostname or a virtual hostname configured in tractal/lib/hostnames.py.
service must be a port number, a service configured in the file mentioned above.
If the service character string cannot be resolved to a port number, it will be
converted to a port number by in a random but consistent way (by hashing it).
Therefore, one can use any string as a service, with a minimal risk of collision
due to hashing (which maps to 8192 different ports).

5.4 Storage Pooling

5.5 Disconnected Operation

When a file is available in cache, it is immediately served. If the file is stale,
then an attempt to fetch a new version will be made. This ensures that if a file
is in cache, then being connected or offline makes no difference.

If a file is not in cache and the attempt to retrieve it times out, the file is
placed in offline status and any subsequent attempt to retrieve it will imme-
diately fail. After some time, the offline status expires and communication is
attempted anew. The offline status can be manipulated by the user.

5.5.1 Check a file’s connectedness status

see @forward or @status virtual file.

5.5.2 Force a file’s connectedness status

see @forward virtual file.

6

5.6 Access Control

VOFS uses the forward mechanism to forward credentials from clients to servers,
so access control is entirely an external module to be plugged in VOFS. By
default, the authorisation mode (attribute authmode) is PRIVATE. In this simple
mode, every file has a password attribute. Clients are required to provide this
password in order to access the file. By default, both password in the server
and forward in the client is the empty string, so access is actually public.

Setting authmode to other values triggers other authorisation modes (such
as filtering through a PEP), provided that the appropriate plugins are available
at the serverside.

5.7 Tips

• Search logfiles for exceptions (string ”Traceback”) to see if something is
going wrong

• The mountpoint must be empty, and chdir out of it when stopping the
client so that it can be unmount

• pkill -f python will probably kill everything when needed

• if you run runpyfuse.sh or runservice.sh, stop them with Ctrl-

7

This page is intentionally left blank

WebDAV VOFS User Manual

1(3)

Annex 7. WebDAV VOFS (Virtual Organization File System) User Manual

by Leif Lindbäck and Vladimir Vlassov
Royal Institute of Technology (KTH), Stockholm, Sweden

Email {leifl, vladv}@kth.se

FP6 Project Grid4All (IST-2006-034567)

1. Installation

1. Download and install the security infrastructure,

http://www.isk.kth.se/~leifl/vofs/grid4all-sec-0.6.zip. For

instructions, see the Security Infrastructure, User's Guide. The security infrastructure will only

run on one host.

2. Download and unpack the vofs core, http://www.isk.kth.se/~leifl/vofs/vofs-

core-0.2.2.zip.

3. In the config file
vofs-core-0.2.2/apache-tomcat-6.0.14/webapps/webdav/WEB-

INF/grid4all.pep.config

change the entry PDPHost to the address of the host where the PDP will run.

2. Start up

1. Initialize and start the voms according to the documentation in the security infrastructure.

2. Start the PDP according to the documentation in the security infrastructure.

3. Set the environment variable VOFS_HOME to the absolute path of the installation directory of

the vofs core, i.e. vofs-core-0.2.2.

4. Start the VOFS with the command bin/vofs.

5. Log in to the VO by opening the URL below in a web browser.
http://<host where voms is running>:8080/voms/

In the fields VOFS Host and VOFS Port, enter the ip address and port of your local VOFS

peer. The ip address should be accessible from other vofs peers, i.e. it should not be

localhost. The default port number is 8082. Note that the VOFS peer must be started

before this is done.

6. Mount the VOFS with a mount utility supporting WebDAV, for example davfs2 in Linux or

NetDrive in Windows. The address of the mounted peer should be
http://localhost:8082/webdav

WebDAV VOFS User Manual

2(3)

3. Usage

The vofs has both a GUI and a command line interpreter. Both are displayed when the vofs is started.

3.1 Command line interpreter

The following commands exist.

• expose LocalResource VOFSPath

Exposes the file or directory specified by LocalResource to the directory specified by

VOFSPath. Note that an exposed file retains its local name, VOFSPath only specifies the

directory in which it is placed. Exposed directories on the other hand, are renamed to the

specified VOFSPath. Directories specified in VOFSPath need not exist, they are created if

needed.

Example: If LocalResource is the file c.txt and VOFSPath is /a/b, the file will be

accessible in vofs as /a/b/c.txt. If LocalResource is the directory c and VOFSPath

is /a/b, the directory will be accessible in vofs as /a/b.

• unexpose VOFSPath

The resource at the specified VOFSPath is removed from the vofs name space. However,

cached copies are not removed.

• list

Lists all exposed resources

• add PeerName

Adds PeerName as a neighbor. PeerName should have the format host:port.

• rm PeerName

Removes PeerName from the neighbor set. PeerName should have the format host:port.

• peers

Lists all neighbors.

• help

Lists all commands.

• exit

The console, but not the vofs itself, is terminated.

WebDAV VOFS User Manual

3(3)

3.2 GUI

When VOFS is started the control panel, see figure 1, is showed.

Figure

1.

VOFS

control

panel

• The Expose button is used to expose files. The expose semantics are explained in section 3.1

above.

• The Unexpose button is used to unexpose files. The unexpose semantics are explained in

section 3.1 above.

• The Peers Management button displays the Peers Management window, see figure 2.

This window shows a list containing all neighbor peers, and allows to remove one or all

neighbors and to add new neighbors.

Figure 2.

Peers

Manage

ment

window.

• The Settings button in the control panel (see figure 1) displays the Advanced Settings

window, see figure 3. This window allows to change cache size and debug level. Debug level

zero means no log messages, higher levels mean more messages. Debug level three is the

highest, this means all available messages are printed. Debug messages are printed to standard

out, in future VOFS versions this will be changed to log files. More settings will be

configurable from the Advanced Settings window in future versions of VOFS.

Figure 3. Advanced Settings

window

• The Exit button in the control panel (see figure 1) stops the entire VOFS peer, not just the GUI.

This page is intentionally left blank

YASS (Yet Another Storage Service)
User’s Guide

Leif Lindbäck and Vladimir Vlassov

Royal Institute of Technology (KTH), Stockholm, Sweden
{leifl,vladv}@kth.se

Annex 8. Yet Another Storage Service

Table of Contents

1 Introduction . 1
2 Download . 1
3 Installation and startup . 1
4 Configuration . 1
5 Deploying and Starting YASS . 2
6 Usage . 2

6.1 User Interface . 2
6.2 Store File . 3
6.3 Retrieve File . 3
6.4 Remove File . 3

YASS (Yet Another Storage Service) User’s Guide 1

1 Introduction

YASS, Yet Another Storage Service, is a storage service that allows users to
store, read and delete files on a set of computers. The service transparently
replicates files in order to achieve high availability of files and to improve access
time. YASS can be deployed and provided on computers donated by users of the
service or on computers of a service provider. YASS operates even if computers
join, leave or fail at any time.

The current version of YASS transparently maintains the specified number
of file replicas despite of nodes leaving or failing, and it can scale (i.e. increase
available storage space) when the total free storage is below a specified threshold.

YASS can be used by any users who need a reliable and scalable storage
to store and retrieve files, e.g. for backup or file sharing. Users can access the
service by executing and interacting with the YASS client (front-end) on their
computers. Executing YASS storage components on their computers, users can
share their storage with each other.

2 Download

YASS is included in the Niche distribution. See Niche Quick Start Guide for
Niche download instructions. Niche and YASS are available at http://niche.

sics.se/

3 Installation and startup

In order to be deployed and to operate, YASS requires Niche and the Apache
Ant build tool to be installed. For Niche installation and startup, see Niche Quick

Start Guide. For Ant download and installation, see
http://ant.apache.org/index.html. As YASS is a part of the Niche distribu-
tion, it is installed when Niche is installed.

4 Configuration

YASS is configured by editing values of the following Java runtime properties in
the file niche-0.2/Jade/etc/execute.properties. Be sure that the properties
listed below have the same values in the two sections,
jvm.parameters.oscar.jadenode and jvm.parameters.oscar.jadeboot, of
the file.

yass.storage.fileTransferPort The port used for file transfer. If this port is
occupied, YASS increases the port number by one until a free port is found.

yass.storage.root The directory in the file system used by YASS for storing
files. This is only used on computers running storage components.

yass.storage.bufsize The size of the buffer used for file transfer in YASS.
yass.test.defaultReplicationDegree The number of replicas of each file.

2 Leif Lindbäck and Vladimir Vlassov

5 Deploying and Starting YASS

1. Deploy by running Ant with the target testG4A-Yass-Deploy specified in
the build file niche-0.2/Jade/build.xml, as follows

cd niche-0.2/Jade/

ant testG4A-Yass-Deploy

2. Start by running Ant with the target testG4A-Yass-Start specified in the
build file niche-0.2/Jade/build.xml, as follows

cd niche-0.2/Jade/

ant testG4A-Yass-Start

6 Usage

6.1 User Interface

The user interface of the YASS frontend is shown in Figure 1 and Figure 2.
The frontend allows the user to store/retrieve files to/from YASS as explained
below. Figure 1 shows how the local directory tree is displayed. When a directory
is chosen its contents are shown in the local file view, which is marked in Figure
2.

Fig. 1. The local directory tree.

YASS (Yet Another Storage Service) User’s Guide 3

Fig. 2. The files in the chosen local directory.

6.2 Store File

1. Select the local directory containing the file that shall be stored.
2. Double click the file to store.
3. Click the Store button.
4. When successfully stored, the file will appear in the list of stored files, as

shown in Figure 3.

6.3 Retrieve File

1. Select the file to retrieve in the list of stored files. This list is marked in
Figure 3.

2. Click the Retrieve File button.
3. The file is copied from the remote storage to the local file system path from

which it was read when stored.

6.4 Remove File

1. Select the file to remove in the list of stored files. This list is marked in
Figure 3.

2. Click the Remove File button.
3. The file is removed from the remote storage.

4 Leif Lindbäck and Vladimir Vlassov

Fig. 3. The list of stored files.

This page is intentionally left blank

ANNEX 9. YACS: YET ANOTHER COMPUTING SERVICE

PROGRAMMER’S AND USER’S MANUAL

by Atli Thor Hannesson and Vladimir Vlassov

Royal Institute of Technology (KTH), Stockholm, Sweden

Email {athan, vladv}@kth.se

FP6 PROJECT GRID4ALL (IST-2006-034567)

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 2 / 10

Contents

1 Introduction ..3

2 Programming Tasks ..4

2.1 Important Fields of the TaskContainer Class ..4

2.2 Task Lifecycle ..5

2.3 Important Methods of the Task Class...6

2.4 Task Execution Context and Checkpoint Service...7

2.5 The TaskContainer Class ...7

3 Programming and Submitting Jobs ..8

3.1 Creating Jobs Using the Yacs.Job.Job Class ...8

3.2 Submitting Jobs and Getting Results ...8

4 Emulators ...9

5 Use Case: The gMovie Demonstrator Application ..9

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 3 / 10

1 Introduction
YACS (Yet Another Computing Service) is a robust distributed computing service that allows a user to submit

and execute jobs, which are bags of independent tasks, on a network of computers (nodes). The service can be

used to perform different kinds of batch jobs or bag-of-task applications such as parameter-sweep simulation,

video transcoding, ray-tracing or other applications that follow the master-worker paradigm. YACS can be

deployed and provided on computers donated by users of the service or on computers of a service provider.

YACS executes jobs, which are collections of tasks, where a task represents a particular type and instance of

work that needs to be done. For example, in order to transcode a movie, the movie file can be split on several

parts (tasks) to be transcoded independently and in parallel.

Tasks are programmed by the user and can be programmed to do just about anything. Tasks can be programmed

in any programming language using any programming environment, and placed in a YACS jobs (bag of tasks)

using the YACS API.

YACS uses distributed masters and workers to execute jobs (see Figure 1). A user submits jobs through the

YACS frontend, which assigns jobs to masters (one job per master). A master finds workers to execute tasks in

the job. YACS monitors execution and restarts failed jobs and tasks. When all tasks complete, results of

execution are returned to the user.

YACS guarantees execution of jobs despite of nodes leaving or failing. YACS supports check-pointing that

allows restarting execution from the last checkpoint. Furthermore, YACS scales, i.e. changes the number of

masters and workers, when the number of jobs/tasks changes. In order to achieve high availability, the service

always maintains a number of free masters and workers so that new jobs can be accepted without delay.

Figure 1. Architecture of the functional part of YACS: frontend, masters and workers.

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 4 / 10

Next sections describe how to program tasks to be executed by YACS, encapsulate the tasks in a job, submit the

job and receive results of execution. Assume the following three roles for YACS stakeholders:

− Task Programmer who is responsible for programming tasks;

− Client Developer who is responsible for developing a YACS client application used to create and

submit jobs to YACS and to get results of execution;

− End-User of the service, who submits jobs via the YACS client application.

2 Programming Tasks
This section is for the Task Programmer who is responsible for programming tasks. YACS is implemented in

Java, and therefore tasks to be executed by YACS are programmed in Java by extending the abstract class

yacs.job.tasks.Task. The Task Programmer should at least implement the abstract method execute

and optionally override the methods initFromState, reinitFromState and

prepareMetacheckpoint.

The execute method should define the code of tasks represented by this Task subclass. The Task

Programmer should program the appropriate task logic in this method. The method can be programmed to

perform any arbitrary tasks, including calling external programs or scripts. The execute method is invoked on

the Task object by a Worker component in order to perform the task. When the execute method returns, the

Worker assuming that the task is finished sends to its Master an object of the yacs.job.TaskContainer

class that holds results and status of execution. The Task Programmer should not access fields of the

TaskContainer object directly but rather using corresponding setters and getters of the Task class.

The initFromState and reinitFromState methods are optional and they can be overridden by the Task

Programmer to include initialization code to be executed by the worker before the execute method is invoked.

The expected semantics of initFromState and reinitFromState methods is to get and interpret

initialization parameters (in the initParams array of TaskContainer) in order to initialize the task to its

initial state, or to the state of its last checkpoint, respectively. The initFromState or reinitFromState

method is called by the Worker responsible for the given task before it calls the execute method on the Task.

The prepareMetacheckpoint method should contain the code to prepare checkpoint of the Task to be

stored by the checkpoint service described below.

In order to productively use the YACS task API, it is strongly recommended for Task Programmer to study

fields of the TaskContainer class, lifecycle of a task execution, and methods of the Task class.

2.1 Important Fields of the TaskContainer Class

For each task, YACS creates a serializable object of the yacs.job.TaskContainer class that is used to

hold a current lifetime status, id, and some other information for the associated Task. This information can be

used by Task Programmer when programming tasks. The Programmer should not directly use the

TaskContainer object, but rather access its fields by corresponding getters and setters of the

yacs.job.tasks.Task class. Some important fields of TaskContainer are described in the table below.

int resultCode The result code of execution that can be set to some value to be interpreted by

the client application.

int tid A unique identifier of the associated Task in a particular instance of Job.

int status Indicates current lifecycle status of the associated Task that can be in one of the

following four statuses

− TASK_NOT_INITIALIZED – the Task has been assigned and deployed

but has not be initialized and has not been started yet, i.e. the execute

method has not been invoked yet;

− TASK_IS_PROCESSING – the Worker thread executes the execute

method of the Task;

− TASK_FAILED – execution of the Task has failed;

− TASK_COMPLETED – the execute method of the task has returned

The value of status is set by YACS and can be interpreted by both, YACS

and a client application.

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 5 / 10

boolean

redeployable
Indicates whether the associated Task can be restarted (redeployed) at another

Worker if the current Worker fails for some reason. This field should be set to

false if the Task defines work which is non-repeatable.

Serializable[]

initParams1
An array of values that used to initialize this Task to its initial state or to the

state of its last checkpoint. In order to initialize the Task, the worker invokes

initFromState or reinitFromState method on this Task,

respectively, before calling the execute method of this Task.

The array should be used for the following three purposes:

1. To provide initialization parameters for the very first initialization of the

associated Task to its initial state;

2. To provide initialization parameters for initialization of Task from its last

checkpoint (for example, an URL of a file with the latest checkpoint)

3. To hold results of execution.

2.2 Task Lifecycle
Figure 2 depicts lifecycle of a task. Remind that the task is represented by the Task object containing the code

of the task, and by TaskContainer object containing state of the task. When the Task object is instantiated,

the task is in the TASK_NOT_INITIALIZED state. The task passes to the TASK_IS_PROCESSING state,

when the worker invokes the initFromState (or reinitFromState) method and then calls execute on

the Task object. The task is initialized either to its initial state by the initFromState method, or to its last

checkpoint by the reinitFromState method. The initialization state is stored in the initParams array of

TaskContainer. Which of the initialization methods is invoked depends on whether the task is executed first

time, or it is restarted on a new worker as the previous worker has failed to execute the task. In the former case

(initial execution), the worker calls initFromState; in the latter case (restart) it calls reinitFromState.

If execution or (re-)deployment (i.e. starting on a new worker) of the task fails, it passes to the TASK_FAILED

state. When the execute method returns, the task passes to the TASK_COMPLETED state.

Figure 2. Task lifecycle

1
 Note that the initParams field might be subject to change in future version of YACS in order to distinguish

initialization parameters, results of execution, and checkpoints, stored in this field of TaskContainer.

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 6 / 10

2.3 Important Methods of the Task Class

The following table describes some methods of the yacs.job.tasks.Task class used to program tasks.

Remind that the Task Programmer should at least implement the execute method and, optionally, override

the initFromState, reinitFromState and prepareMetacheckpoint methods. The execute

method should contain the code of the tasks to be performed by YACS workers. The initFromState and

reinitFromState methods should contain initialization code to initialize the task to its initial state or to the

state of its last checkpoint, respectively. One of these methods is executed before the task is started, i.e. before

the execute method is invoked. The prepareMetacheckpoint method should contain the code to

prepare checkpoint of the Task to be stored by the checkpoint service described below.

execute() Start execution of this Task. The Task Programmer should program the

appropriate task logic in this method. When a worker instantiates the

Task object, it invokes the execute method on that object. Once the

method returns, the Worker assumes that the task is finished, and it sends

a TaskContainer object (that contains results) to its Master.

initFromState() Initialize this Task to its initial state using initParams of

TaskContainer. This method is invoked by the worker before it calls

the execute method on this Task. This method should be overridden

by the Task Programmer to include a code that initializes Task to its

initial state represented by initParams of the TaskContainer. If

not overridden, this method does nothing.
2

reinitFromState() This method is similar to initFromState except that it initializes this

Task to the state of its last checkpoint. Invocation of this method

indicates that a prior worker responsible for this Task has failed, and the

task (together with its checkpoint) has been handed over to another

worker. This method should be overridden by the Task Programmer to

include a code that initializes the Task object to its last checkpoint

represented by initParams of TaskContainer. If not overridden,

this method does nothing.

TaskExecutionContext

getExecutionContext()
Get the Task Execution Context of this Task. This method returns a

handle to an interface which provides access to the checkpoint service

provided by YACS. The service is used for storing and retrieving

checkpoints during task execution. The checkpoint service provides

ability to restart a task from its last checkpoint in the case of worker

failure.

prepareMetacheckpoint() Prepare a (meta-)checkpoint
3
 of this Task. This method should be

overridden by the Task Programmer to include code that creates a

checkpoint to be stored in the checkpoint service. The checkpoint data

are to be prepared in the initParams array of TaskContainer. It

can be an array of values, or an URL of a checkpoint file. It is up to the

Task Programmer to define date, the format, and the amount of state to

be saved in a checkpoint. When using checkpointing, the Programmer

should also implement the reinitFromState method to provide

code that initializes the task to the state of its last checkpoint.

log(String msg) This method will write the log-message to the same logfile which the

Worker component uses.

initTaskInfo() This method can be overridden by the Task Programmer to set a member

variable called logName. This logName will be used along with the

log function to make those log entries more easily identifiable in the

logfile. For example for error analysis or debugging.

2
 Note that the method signature is a subject to change that a Serializable[] array that represents the initial

state is given as an input parameter to the method instead of using initParams of TaskContainer.
3
 We call a checkpoint metachackpoint to indicate that it may contain information on location of the checkpoint

rather than the checkpoint itself.

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 7 / 10

2.4 Task Execution Context and Checkpoint Service
Apart from distributed execution, the Task Programmer can use some additional services provided by YACS

through the task execution context (TaskExecutionContext). The current YACS prototype supports only

one additional service – the checkpoint service that allows Task Programmer to perform task checkpointing

whenever needed. YACS can be extended to provide more services, for example, a uniform storage interface.

metacheckpoint()4 Request the checkpoint service to store a checkpoint of this Task. This method

can be called by the worker. The Task Programmer can program to call this

method whenever appropriate during task execution. The checkpoint service

allows restarting the Task from its last checkpoint in the case of worker failure.

This method invokes the prepareMetacheckpoint method (to be

overridden by the Task Programmer, see 2.3) on the Task object before the

checkpoint service stores a copy of initParams as task checkpoint.

2.5 The TaskContainer Class
The Task themselves are not instantiated at the client side but only at the Worker component that the task is

assigned to. For this reason a special yacs.job.TaskContainer class is used to contain the Task subclass

definition and associated data, such as the resultCode, the status, the redeployable flag and the

initParams Serializable[] array (see 2.1). This class is used by the Job class for storing task

information and state in the service, and for communication of tasks between the client and the service. The

TaskContainer contains the static method contain for convenient containment of tasks.

TaskContainer

contain(

 int tid,

 boolean redeployable,

 String className,

 String classfileLocation,

 Serializable[] initParams)

Creates a TaskContainer which contains all data

which are necessary to instantiate and initialize an

instance of the Task subclass with the given class name

at the worker, which is assigned this task to execute.

tid, redeployable and initParams parameters

were explained earlier (see 2.1); className is the fully

qualified name of the Task subclass;

classfileLocation is the path to the class file.

The following fragment of Java code illustrates usage of the contain method to create a TaskContainer

object that represents the “sleep” task of the DirectedSleepTask class.

Serializable[] initParams = new Serializable[]{

"/taskfiles/commands.txt",

 new Long(10000)

};

TaskContainer tc = TaskContainer.contain(1, true,

 "yacs.job.tasks.DirectedSleepTask",

 "/yacs/job/tasks/DirectedSleepTask.class",

 initParams));

The TaskContainer class includes setters and getters to access task data such as task id, status, and any data

(init parameters, execution results, or checkpoints) stored in the initParams array. See 2.1 for

TaskContainer fields used to store the task data. The TaskContainer also includes some setup and

initialization code to be performed at the Worker, such as loading the task class so that the Worker can

instantiate and execute the assigned task whose class is not known at compile time. Note that in the current

implementation, TaskContainer supports only one class file for the corresponding task. As a consequence,

the entire task implementation must be contained within one class file.

The yacs.job.tasks package contains a number of sample task classes, e.g. which are can serve as

examples that illustrate how a task can be programmed.

4
 Note that this method is subject to change so that it takes a checkpoint (a Serializable[] array) as an

input parameter rather than relying on the prepareMetacheckpoint call and the initParams field.

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 8 / 10

3 Programming and Submitting Jobs
This section is for the Client Programmer who is responsible for developing a YACS client application used to

submit jobs to YACS and to get results of execution.

3.1 Creating Jobs Using the Yacs.Job.Job Class
The class yacs.job.Job represents a job, which is a task container (“bag of tasks”) where each task is

represented by a object of the yacs.job.TaskContainer class containing task data, e.g. task id, class

name, status, results, initialization parameters or checkpoint data, etc, as described in 2.1 and 2.5.

In order to create a job as a bag of tasks, a YACS client (developed by the Client Programmer) should instantiate

a Job object, create TaskContainer objects using the static method contain of the TaskContainer

class, and add those tasks to the job. The following example illustrates creation of a job containing 5 tasks

DirectedSleepTask numbered 1, 2, … 5:

 Job job = new Job("EJ"); // creates a Job instance

 job.setCreator(myGlobalId);

Serializable[] initParams = new Serializable[]{

"/taskfiles/commands.txt", new Long(10000)

}; // init parameters for tasks

for (int i = 1; i < 6; i++) {

 TaskContainer tc = TaskContainer.contain(i, true,

 "yacs.job.tasks.DirectedSleepTask",

 "/yacs/job/tasks/DirectedSleepTask.class",

 initParams)); // Create a task container for each “sleep” task

 job.getRemaining().add(tc);

 }

 …

 SubmissionReply jr = jobManagement.performJob(job, false);

The Yacs.Job.Job class defines the following fields that hold different list of tasks. These variables can be

accessed using corresponding setter and getters.

String name A name of this Job, defined by user.

Vector<TaskContainer> remaining A vector of tasks (TaskContainer objects) to be

executed. A YACS client (developed by the Client

Programmer) should fill this list before submitting the job.

Vector<TaskContainer> pending List used internally by the service while the Job is in

progress. This should always be empty at the client site.

Vector<TaskContainer> done List of Tasks which the service was able to execute.

Vector<TaskContainer> failed List of Tasks which the service has failed to execute. For

example, this list may include those tasks which were on

failed workers and are non-repeatable.

3.2 Submitting Jobs and Getting Results
YACS API, namely the yacs.frontend package, includes some basic support for developing YACS client

applications that can be used to create and submit jobs and to present results of execution to the End User. The

Client Programmer can develop a GUI-controlled YACS client, and use the generic frontend class

yacs.frontend.FrontendImpl for submitting jobs to YACS. The FrontendImpl class implements

the yacs.frontend.FrontendInterface interface that includes two methods submit and

deleteJob. See the YACS API specification at http://niche.sics.se for more details. Implementation of the

submit method in is the FrontendImpl class is briefly described below.

String submit(Job job) Submit a given Job to a YACS master. As implemented in the

FrontendImpl class, the method finds a Master available to take

on the job, binds to it, and hands the job over to the Master.

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 9 / 10

For the YACS service, the generic frontend FrontendImpl will appear as a client, and, during Job lifetime, it

will be sent notifications on task changes, and (when all tasks complete) a Job result. If Client Programmer

develops its own frontend rather than (re)using the FrontendImpl class, the external frontend wanting to be

notified on Job and Task related events, can choose to implement the interface

yacs.frontend.FrontentClientInterface which includes the following two methods:

taskChange(

 TaskContainer task

)

This method is invoked on a Task change event. The

TaskContainer object passed as a parameter to this method,

contains task data in its fields, resultCode, status,

initParams and so on (see 2.1)

jobResult(Job result) This method is invoked when the service has finished with the Job

and returned results of the Job execution. The Job object passed as a

parameter to this method contains TaskContainer objects

representing completed tasks with results stored in the fields

resultCode (resulting code) and initParams (resulting state).

These results can be examined by the client to determine how the job

went, and can be presented to End User.

If Client Programmer prefers to launch a developed external frontend, then the startFc method of the

FrontendImpl class is the recommended method to place the code for creation and launch of an external

frontend, as well as set the FrontendClientInterface handle which will be called when the Frontend

learns of taskChange or jobResult.

4 Emulators
In order to test and debug tasks (by Task Programmer) and YACS clients (by Client Programmer) without large-

scale deployment of YACS, the YACS distribution includes an emulation package, yacs.zemulation, that

allows the developer to submit and execute jobs locally without having to submit jobs into a deployed service.

The most notable class is WorkerEmulator, which emulates the behavior of a worker, i.e. it accepts a task,

instantiates, deploys (initializes), and executes it. In particular, the WorkerEmulator class includes the

following method to give the worker a task (represented by a TaskContainer object) to perform.

performTask(

 TaskContainer task,

 boolean redeploy

)

Perform the given task. This method accepts a TaskContainer

object representing the task and executes the given task.

Another notable class is FrontendEmulator, which emulates a frontend component. In the current

implementation, this class contains code to launch the gMovie GUI, and an implementation of the

FrontendInterface. This was used during development of the gMovie demonstrator application. The code

can be used as an example of a frontend. The Emulate class has been used during YACS development as an

entry point to other emulation classes and also contains some useful examples.

5 Use Case: The gMovie Demonstrator Application
The gMovie demonstrator application is an application on top of YACS that has been used to demonstrate the

functionality of YACS, i.e. execution of bag of tasks written in an arbitrary language. The gMovie application

performs transcoding of a given movie from one format to another. Transcoding is a CPU intensive and time

consuming job, therefore YACS was use to perform this job in parallel by several distributed workers

transcoding different parts of the movie in order to improve the total transcoding time.

The gMovie application is included the YACS distribution, and it consists of two parts:

1. The GUI, yacs.frontend.gmovie.GMGui, shown in Figure 3. The GUI allows the user to select

a movie to be transcoded, define transcoding options, and submit the movie to the gMovie frontend.

2. The Task subclass yacs.job.tasks.MovieTranscodingDirectedTask which invokes the

VLC program to perform the actual transcoding.

YACS: Yet Another Computing Service PROGRAMMER’S AND USER’S MANUAL

 10 / 10

Figure 3. The GUI of the gMovie application

When the application starts, the client selects a file using the file chooser in the gMovie GUI (see Figure 3)

which lists pre-split movie parts, chooses transcoding options, and submits the movie to the YACS frontend by

clicking on the Submit button. On submit, the frontend creates a Job that contains a number of tasks (one for

each movie part) of the MovieTranscodingDirectedTask class, the initParam array, which holds

locations of movie parts (the application assumes a global file system accessible to all workers), transcoding

options and the path where the transcoded result should be placed. This job is submitted to the YACS frontend,

which, in its turn, submits it to a Master component. During the lifetime of the Job, taskChange notifications are

sent to the Frontend which forwards them to the gMovie GUI. The same applies for the end result except than

the gMovie GUI combines all the transcoded parts into one file and shows it to the user.

This page is intentionally left blank

Annex 10. Collaborative
Network Simulation Environment

1. - Main Screen

The CNSE client includes a Graphical User Interface to interact with the services and
provide the functionality. Once loaded, the client shows the main screen (Figure 1) with
the following items:

Menu:

- File. It manages the input files that can be loaded in the CNSE. The input file
must be a .zip file with an XML manifest indicating the structure of single and
parameter-sweep simulations as well as the expected output filenames, the .tcl
file for the ns-2 and some additional files as an option. There are some examples
of input packages and XML manifests in the CNSE installation package. The
menu items are: “Open simulation package”, “Save simulation package” and
“Exit”.

- Edit. It manages the simulations allowing their creation and elimination. The
CNSE supports two kinds of simulations: single simulations and parameter-
sweep simulations. So, the menu items are: “Add single simulation”, “Add
parameter-sweep simulation”, and “remove simulation”

- Tools. It contains different tools that can be useful for the users. There is
currently just one tool, the visualization manager that manages the visualization
that has been already launched. So, there is one menu item: “Visualization
manager”.

Text areas:

- Simulation Package Information. Once a package is loaded, its main information
appears in this text area (Figure 2), such as a description of the package, the .tcl
and additional filenames, a description of the input parameters, and the expected
output files. The output files can be multi-line (with the evolution of the output
parameters through time) or single-line (with the average output values).

- Single simulations. It shows a list with the single simulations that has been
created for this package.

- Parameter-sweep simulations. It shows a list with the parameter-sweep
simulations that has been created for this package.

- Simulation information. It shows a description of the selected simulation,
including its title, identifier, status (completed or not) and input parameters.

Buttons

- Launch simulations. It launches a single or parameter-sweep simulation. This
button is available if the selected simulation has not been launched before.

- Show output values. It shows the output values for a set of input values. This
button is available if the selected simulation has been launched and completed.

- Perform statistical analysis. It shows a statistical analysis with the influence of
the input parameters on the output results. This button is available only for
completed parameter-sweep simulations whose input parameters are described
as sets of two values (2krfactorial).

- Launch nam visualization. It launches a nam visualization. This button is
available only for single simulations that generate an output nam file.

- Launch x-y visualization. It launches an xgraph visualization. This button is
available for every completed simulation (single or parameter-sweep). For a
single simulation it represents the evolution of an output parameter through time
(a multi-line output file). For a parameter-sweep simulation it represents the
values of an output parameter while an input parameter is swept (a set of single-
line files is needed).

2. - Single Simulations

A single simulation can be created with the menu item “add a single simulation”. The
following information must be provided (Figure 3):

- Identifier. It represents the single simulation in the main screen.
- Title. It can be used to describe the single simulation
- Trace file expected. A nam output file is expected when ticked.
- Tabbed file expected. An output file with information for the x-y visualization is

expected when ticked.
- Parameter values. Input parameter values for the single simulation.

Once created, the single simulation identifier is shown in the main screen. Additionally,
when this simulation is selected, its information appears in the simulation information
text area and the launch button is available (Figure 4). The identifier changes the way it
looks with the status of the simulation: normal (not launched), italics (launched but not
completed) and bold (completed).

After launching and completing the single simulation some buttons become available
while the launch simulation button appears unavailable. They are the show output
values button, the launch nam visualization button and the launch x-y visualization
button.

- Show output values. It is available when the option tabbed file expected was
ticked and only for single-line files. So, the single-line file must be selected first
(Figure 5), and then the output values obtained from the simulation results are
shown in a pop-up text area (Figure 6).

- Launch nam visualization. It is available when the option trace file expected was
ticked. The user must select a trace file (Figure 7), and then a VNC containing
the nam visualization is popped-up (Figure 8).

- Launch x-y visualization. It is available when the option trace file expected was
ticked and only for multi-line files in a single simulation. The user can select the
output parameter that wants to represent in the x-graph visualization. Once again
a VNC containing the x-graph is popped-up (Figure 9).

3. - Parameter-Sweep Simulations

A parameter-sweep simulation can be created with the menu item “add a parameter-
sweep simulation”. The following information must be provided (Figure 10):

- Identifier. It represents the parameter-sweep simulation in the main screen.
- Title. It can be used to describe the parameter-sweep simulation
- Repetitions. It defines how many times the parameter-sweep simulation must be

done. This field is useful to detect variation in the output results, and is
supported for the statistical analysis.

- Design type. A “2krfactorial” design type must include a set of two values for
every input parameter and allows the statistical analysis. An “other” design type
can include any number of values for each input parameter.

- Parameter values. Input parameter values for a parameter-sweep simulation.
These values can be added as a set of values ([value 1 value 2 value n]) or as a
range of values ([init_value:step:end_value]).

Once created, the parameter-sweep simulation identifier is shown in the main screen.
When this simulation is selected its information appears in the simulation information
text area and the launch button becomes available. After launching a parameter-sweep
simulation there is some awareness information to report the user about the completion
status (Figure 11).

After completing the parameter-sweep simulation the launch simulation button becomes
unavailable, while the show output values button, the launch x-y visualization button
and the perform statistical analysis button may appear available.

- Show output values. It is always available for completed parameter-sweep
simulations but only for single-line files. So, a single-line file must be selected
first, and then the user must fix the values of the input parameters (Figure 12) to
get the output values in a pop-up text area (Figure 13).

- Launch x-y visualization. It is always available for completed parameter-sweep
simulations but only for single-line files. The user must select the single-line file
as well as the input parameter and the output parameter. Then, a VNC
containing the x-graph visualization is popped-up (Figure 14).

- Perform statistical analysis. It is available for 2krfactorial parameter-sweep
simulations (Figure 15), but only for single-line files. The user must select the
single-line file and the output parameter for the statistical analysis, and a
popped-up text area will show the results (Figure 16).

4. - Visualization Manager

The visualization manager can be used to manage the launched visualizations. It
shows all the single and parameter-sweep visualizations (Figure 17). The name of
the visualizations is a combination of the simulation identifier, the output file that
was selected and additionally the output parameters. The user can join to a
visualization that has been launched, or stop it. These visualizations are stopped
automatically when a new package is loaded.

Figure 1 Main Screen. There is no package loaded yet.

Figure 2 Package loaded. Package description. There are no simulations created yet.

Figure 3 Add single simulation. Input values

Figure 4 Single simulation. Description

Figure 5 Single simulation completed. Show output values

Figure 6 Single simulation completed. Output values

Figure 7 Single simulation completed. Show Nam visualization

Figure 8 Single simulation completed. Nam visualization

Figure 9 Single simulation completed. x-y visualization

Figure 10 Add parameter-sweep simulation. Input values

Figure 11 Parameter-sweep simulation launched

Figure 12 Parameter-sweep simulation completed. Show output values

Figure 13 Parameter-sweep simulation completed. Output values

Figure 14 Parameter-sweep simulation completed. x-y visualization

Figure 15 Parameter-sweep simulation completed (2krfactorial) .

Figure 16 Parameter-sweep simulation completed (2krfactorial). Statistical analysis

Figure 17 Visualization Manager

This page is intentionally left blank

Annex 11: Collaborative File Sharing

USER MANUAL: CFS
CFS allows a group of users share files and forums organized in folders, following the
workspaces metaphor. Figure 0 shows a typical view of a CFS workspace. Left frame
presents the structure of workspaces. Right frame presents the content of current folder,
file or forum (in this example, the content of root folder).

Figure 0. Example of a CFS group

1. Creation of Items: Folders, files and forums
Choose File -- New Item … option in application menu to create an item. Items may
be: Folder, Forum or File.

New Items are created in current window and with Full access for all workspace
members. Users can select a more restrictive access in Predefined Level selectable list
(figure 1).

Figure 1. Creating an item. Example of creation of a workspace.

2. Forums

Figure 2.1 shows the content of forum frm. It contains two threads. Each thread has
several threads.

New Thread button creates a new thread.

Figure 2.1. Forum frm.

When reading a forum entry, the message is highlighted in yellow in the threads frame
(figure 2.2). Reply allows replying the message. New Thread creates a new thread.

Messages cannot be deleted.

Figure 2.2. th2 message.

When creating a new thread or replying a message, one or more files can be attached
(figures 2.3 and 2.4).

Figure 2.3. Add one file option when writing a message.

Figure 2.4. Adding files when writing a message.

3. Files
Figure 3.1 present the example of a file in CFS. File name is cfs.bat. Download button
allows the download of the file.

Figure 3.1. File cfs.bat

Each upload creates a new file. Previous versions can be viewed activating Show Old
Versions checkbox (figure 3.2). The number of previous versions is indicated between

brackets. Contextual menu allows the download of desired version as well as rating it up
or down.

Figure 3.2. Old versions of a file.

4. Delete
Item -- Delete option in application menu or delete option in contextual menu allows
deleting folders, files or forums. Deleted items go to “trash bin”.

Figure 4.1 shows trash bin content after deleting workspace f2ooo.

Contextual menu allows the recovery of deleted items (and its children items) from
trash bin (figures 4.1 and 4.2). When recovering a deleted item, old location and old
name are proposed (figure 4.2) by default. In case that the item has to be recovered in a
different location or with a different name, user may change them in the recovery box
(figure 4.2).

Figure 4.1. Item to recover from trash bin

Figure 4.2. By default, deleted items are recovered at deleting location and with its
initial name. If desired, both recovery location and name may be changed when

recovering.

5. Awareness information
File -- Events on this Item option in application menu shows all events related to a
selected item (including reading events on the item). Figure 5 shows all events on item
jm1.

Figure 5. Events on item jm1.

6. Renaming and cut&paste
Items may be renamed or moved.

Rename option in the contextual menu allows the change of name of any item (i.e.
folder, file or forum).

Contextual menu also allows the cut and paste of any item in any existing folder.

7. Miscellaneous
Operations are propagated using an optimistic approach (using telex middleware).
Consequently, when a user does an action, it takes some time to appear in all CFS
instances connected to group. This may result on different views of the workspace. CFS
and telex guarantees that views will converge.

In addition, when a CFS instance receives an action from another user, the action is not
automatically included in the view. CFS has a refresh function that every two minutes
refreshes the view that the user has from shared information. This means that, in mean,
actions done by other users are presented to other members in a delay of around one
minute.

Refresh button forces the refresh of local view of information. It may be done at any
moment.

This page is intentionally left blank

Project no. 034567

Grid4All

Annex 12. eMeeting, an online Multimedia
Collaborative Environment

This page is intentionally left blank

