

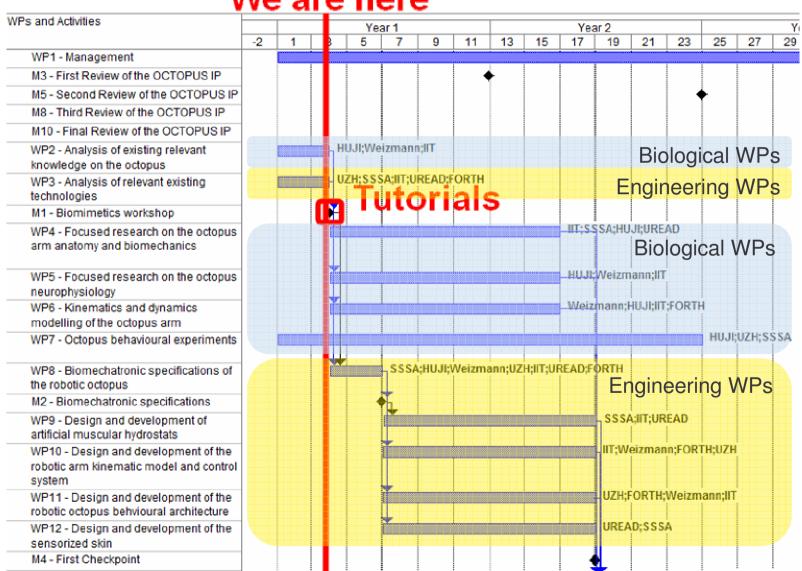
OCTOPUS Meeting Heraklion, Greece, April 27, 2009

Overview and objectives of the meeting

Cecilia Laschi Scuola Superiore Sant'Anna, Pisa, Italy

Collaboration and Exploitation

OCTOPUS workplan and current status


We are here WPs and Activities 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 SSSA;HUJI;Weizmann;UZH;IIT;UREAD;FORTH WP1 - Management M3 - First Review of the OCTOPUS IP \Diamond M5 - Second Review of the OCTOPUS IF \Diamond M8 - Third Review of the OCTOPUS IP M10 - Final Review of the OCTOPUS IP HUI:Weizmann;IIT WP2 - Analysis of existing relevant knowledge on the octopus UZ H;SSSA;IIT;UREAD;FORTH WP3 - Analysis of relevant existing technologies M1 - Biomimetics workshop IIT;SSSA;H WP4 - Focused research on the octopus arm anatomy and biomechanics HUJI Weizr WP5 - Focused research on the octopus neurophysiology WP6 - Kinematics and dynamics Weizmann: modelling of the octopus arm WP7 - Octopus behavioural experiments Biomechatronic specifications WP8 - Biomechatronic specifications of the robotic octopus M2 - Biomechatronic specifications WP9 - Design and development of artificial muscular hydrostats WP10 - Design and development of the robotic arm kinematic model and control system WP11 - Design and development of the robotic octopus behvioural architecture WP12 - Design and development of the sensorized skin Components M4 - First Checkpoint WP13 - Integration and test of one robotic arm Arm prototype M6 - Octopus-like arm SSSA:IIT:UREAD WP14 - Development of the robotic octopus full body with 8 arms UZH;HUJI;Weizmann;IIT;FORTH WP15 - Development of the control and behavioural schemes M7 - Second Checkpoint SSSA:HUJI:Weizmann:UZH:IIT:UREAD:FORTH WP16 - Integration of the robotic octopus OCTOPUS prototype
HUJI;SSSA;Weizmann;UZH;IIT;UREAD;FORTH final prototype M9 - Octopus-like artefact WP17 - Experimental validation of the robotic octopus SSSA;HUJI;Weizmann;UZH;IIT;UREAD;FORTH WP18 - Dissemination, Training,

OCTOPUS workplan and current status

We are here

Objectives of this meeting: 1. Tutorials (deliverables D2.2 & D3.2)

Biological side

Due by April 30, 2009

WP2 – Analysis of existing relevant knowledge on the octopus

- Objectives: survey and systematization of existing knowledge on the octopus, as relevant to the development of the octopus-like robot
- Deliverable **D2.2** "Tutorial on fundamentals of octopus biology" Engineering side

WP3 – Analysis of relevant existing technologies

- Objectives: survey and systematization of existing knowledge on the technologies needed for the development of the octopus-like robot (sensors, actuators, control, robot architectures, materials)
- Deliverable D3.2 "Tutorial on technologies for biomimetic ICT and robotics"

Objectives of this meeting: 2. Brainstorming

Start-up of:

Biological side

- WP4 Focused research on the octopus arm anatomy and biomechanics
- WP5 Focused research on the octopus neurophysiology
- WP6 Kinematic and dynamic modelling of the octopus arm
- WP7 Octopus behavioural experiments

Engineering side

- WP8 Biomechatronic specifications of the robotic octopus
- WP9 Design and development of the artificial muscular hydrostat
- WP10 Design and development of the robotic arm kinematic model and control system
- WP11 Design and development of the robotic octopus behavioural architectures
- WP12 Design and development of the sensorized skin

Science beyond

The European Future Technologies Conference

Fiction fet 09 | 21-23 April 2009 | Prague

Future and Emerging

Wednesday, 22 🗛 📔

14.00 - 15.30

Embodied intelligence

Room: Leo

The principle of "embodiment" has shifted robotic research away from the traditional view which reduces adaptive behaviour to control and computation. It is based on the observation in nature that adaptive behaviour emerges from the complex and dynamic interaction between the body morphology, sensory-motor control, and environment. The session aims at discussing the scientific and technological stateof-the-art as well as future challenges in this field.

Speakers

Rolf Pfeifer, University of Zurich, Switzerland, Paolo Dario, Scuola Superiore Sant'Anna, Pisa, Italy, Kenji Suzuki, University of Tsukuba, Japan, Eugenio Guglielmelli, University Campus Bio-Medico, Rome, Italy, Chiara Bartolozzi, Italian Institute of Technology, Lijin Aryananda, University of Zurich, Switzerland, Alin Albu-Schaeffer, DLR, Germany, Frédéric Boyer, Ecole des Mines de Nantes, France.

Organized by Cecilia Laschi, Scuola Superiore Sant'Anna, Pisa, Italy

Science beyond

The European Future Technologies Conference

Fiction fet 09 | 21-23 April 2009 | Prague

Future and Emerging Technologies

Session on "Embodied Intelligence"

14.00 – 14.10: Introduction to the session

Cecilia Laschi, Scuola Superiore Sant'Anna, Pisa, Italy

14.10 – 14.30: "Exploiting morphology, materials, and interaction for intelligent behavior"

Rolf Pfeifer, University of Zurich, Switzerland

14.30 — 14.50: "Biorobotics Science and Engineering: from bio-inspiration to bio-application

Paolo Dario, Scuola Superiore Sant'Anna, Pisa, Italy

14.50 – **15.10**: "Cybernoid technology for walking, grasping and smiling"

Kenji Suzuki, University of Tsukuba, Japan

15.10 – 15.30: Poster Session – Presentation of EMBODYⁱ projects:

OCTOPUS, Cecilia Laschi, Scuola Superiore Sant'Anna, Pisa, Italy

EVRYON, Eugenio Guglielmelli, University Campus Bio-Medico, Rome, Italy

EMORPH, Chiara Bartolozzi, Italian Institute of Technology, Italy

LOCOMORPH, Lijin Aryananda, University of Zurich, Switzerland

VIACTORS, Alin Albu-Schaeffer, DLR, Germany

ANGELS, Frederic Boyer, Ecole del Mines de Nantes, France

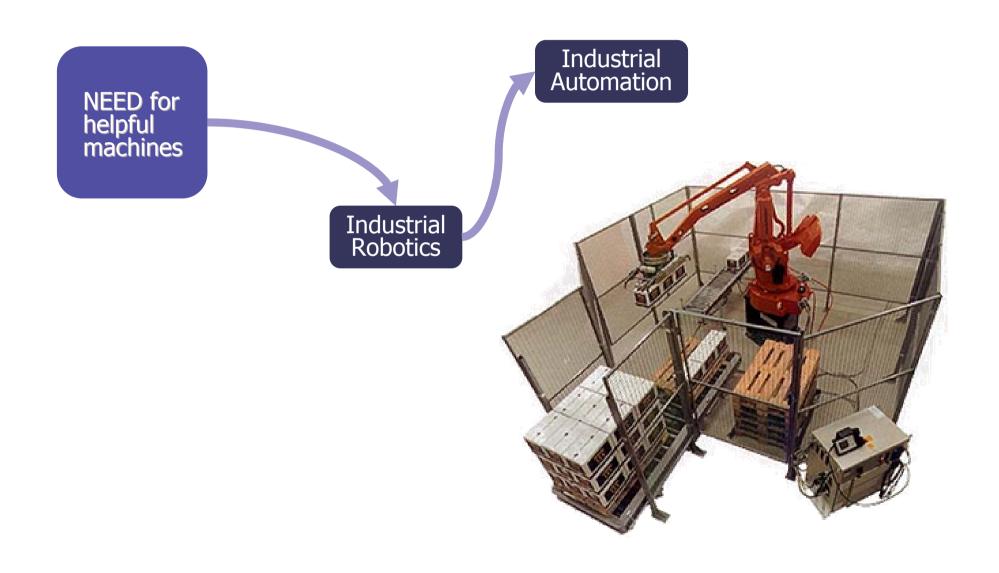
Over 80 participants!

OCTOPUS Meeting Heraklion, Greece, April 27, 2009

Tutorial Robotic Technologies for Sensing and Actuation

Cecilia Laschi, Matteo Cianchetti, Laura Margheri, Barbara Mazzolai, Paolo Dario

Scuola Superiore Sant'Anna, Pisa, Italy



Evolution of Robotics

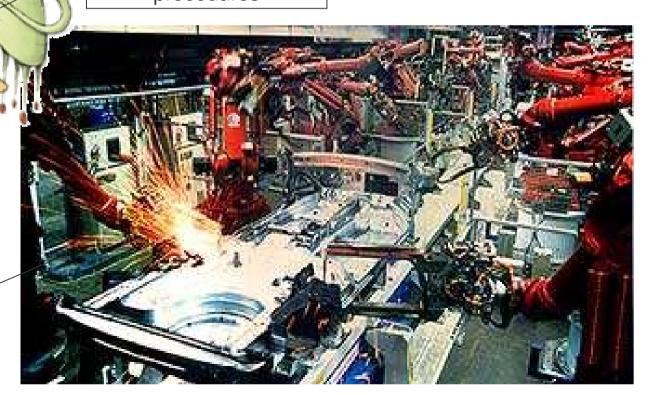
Definitions of Robotics

 A robot is a re-programmable, multi-functional manipulator designed to move material, parts, or specialized devices through variable programmed motions for the performance of a variety of tasks

Robotics Industry Association (~1980)

Jablonsky J., Posey J. 1985. "Robotics Terminology", in *Handbook of Industrial Robotics*, ed. S. Nof, J. Wiley, New York, pp.1271-1303

Typical industrial robotics scenario

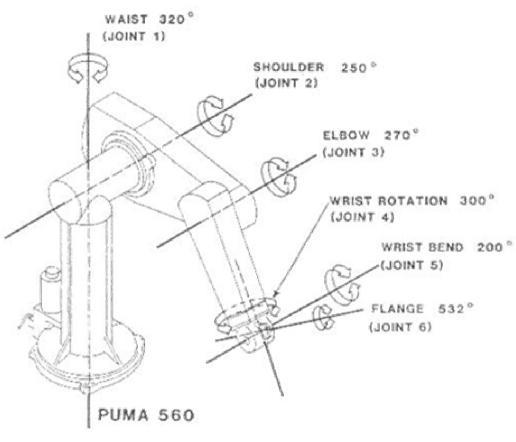

Robot manipulators with high perfomance in terms of accuracy, repeatability, speed, and robustness

Well-defined repetitive procedures

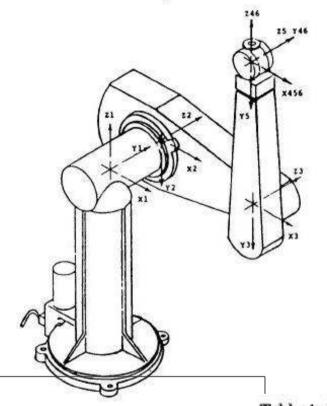
Expert users (trained to the use of the robot)

Objects to manipulate in predefined positions

Restricted human presence in the robot workspace



PUMA 560


- Industrial Robot manipulator with 6 d.o.f
- The six degrees of freedom are controlled by six brushed DC servo motors

	Repeatabili ty	Operating velocity	Weight	
PUMA 560	± 0.1 mm	1.0 m/s	120 lb	

- Each motor is provided with a 500-1000 count3 channel encoder and a potentiometer
- P.I. Corke and B. Armstrong-Helouvry. *A search for consensus among model parameters reported for the Puma 560 Robot.* Proc. IEEE Conf. Robotics and Automation, 1994 pp. 1608-1613

Puma kinematics and dynamics

i	α_i	A_i	D_i
1	90	0	0
2	0	431.8	0
3	-90	19.1	125.4
4	90	0	431.8
5	-90	0	0
6	0	0	0

Denavit-Hartenberg parameters

Table 4. Link Masses (kilograms; ±0.01 + 1%)

Link	Мазз
Link 2	17.40
Link 3	4.80
Link 4*	0.82
Link 5*	0.34
Link 6*	0.09
Link 3 with Complete Wrist	6.04
Detached Wrist	2.24

Table 5. Centers of Gravity. (meters ±0.003)

Link	r,	r,	r _z
Link 2	0.068	0.006	-0.016
Link 3	0	-0.070	0.014
Link 3 With Wrist	0	-0.143	0.014
Link 4*	0	0	-0.019
Link 5*	0	0	0
Link 6*	0	0	0.032
Wrist	0	0	-0.064

The Dexter robot arm

Link 7. Axis 0

Link 2, Axis 2

Link 6, Axis 0

Link 2, Axis 0

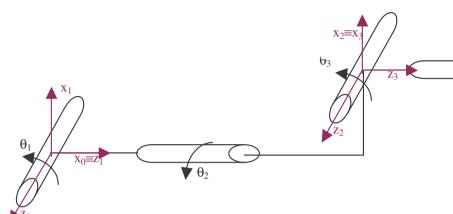
Link 2, Axis 0

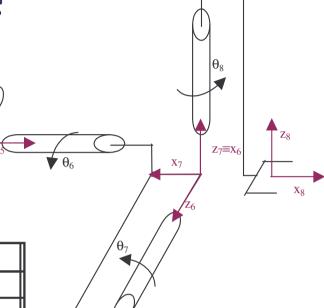
Link 1, Axis 1

- Anthropomorphic redundant robot arm (8 d.o.f.s)
- Cable-actuated mechanical structure (the transmission system is through pulleys and steel cables)

Pros

- light mechanical structure
- safe and intrinsically compliant structure
- human-like physical aspect

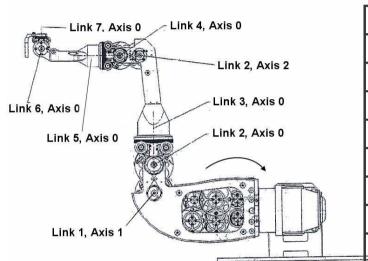

Cons


- sophisticated dynamics
- non-linear friction
- coupling in the degrees of freedom
- anthropomorphic distribution of the masses of the links

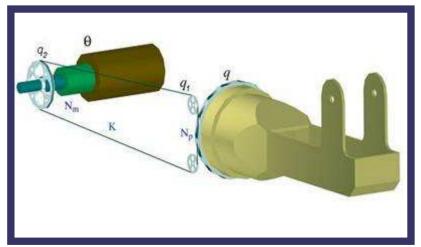
Dexter kinematic structure

joint	a _i [mm]	d _i [mm]	α _i [rad]	θ _i [rad]
1	0	0	π/2	θ_1
2	144	450	-π/2	θ_2
3	0	0	π/2	θ_3
4	-100	350	-π/2	θ_4
5	0	0	π/2	θ_5
6	-24	250	-π/2	θ_6
7	0	0	π/2	θ_7
8	100	0	0	θ_8

Denavit-Hartenberg parameters

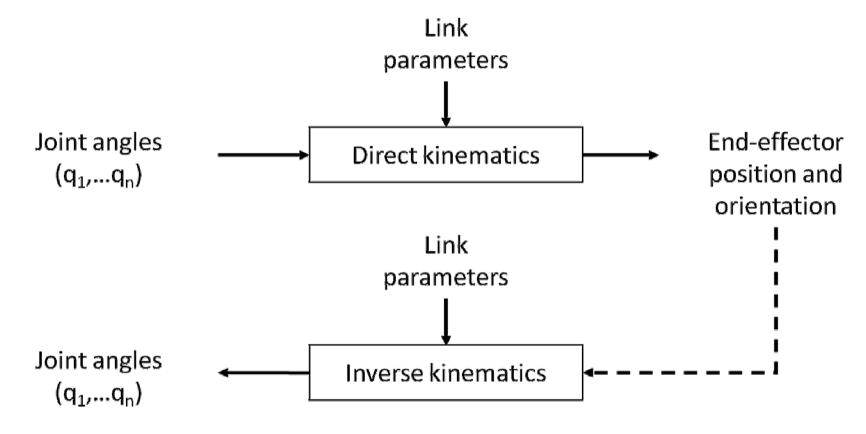

1		Workspace	Repeatability	Operating velocity	Payload	Overall dimensions	Weight
1	Dexter	1200mm x 350°	± 1mm	0.2m/s	2Kg	400mm x 400mm x 950mm	40Kg

Functional specifications



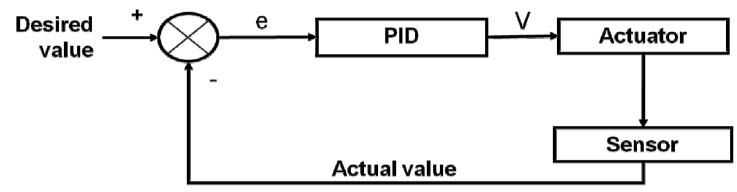
Dexter dynamics

	r _x [mm]	r _y [mm]	r _z [mm]	m [Kg]
Link 0	0	6.92	27.72	9.429
Link 1	-139.35	174.49	46.08	12.051
Link 2	0	-6.11	34.59	1.627
Link 3	90.72	133.77	-0.24	2.488
Link 4	0.01	-3.72	20.30	0.818
Link 5	-24.01	141.05	0.11	0.541
Link 6	-0.05	2.36	6.78	0.266
Link 7	20.35	1.81	33.26	0.095


975500	Joint 1	Joint 2	Joint 3	Joint 4
Stiffness			-001-11 41-404-4	
coefficient	10^{5}	10^{5}	$6.34 \cdot 10^3$	$3.60 \cdot 10^3$

	Joint 5	Joint 6	Joint 7	Joint 8
Stiffness		7,81		
coefficient	$2.69 \cdot 10^{3}$	$1.69 \cdot 10^{3}$	$1.23 \cdot 10^{2}$	$2.06 \cdot 10^{2}$

Direct and inverse kinematics

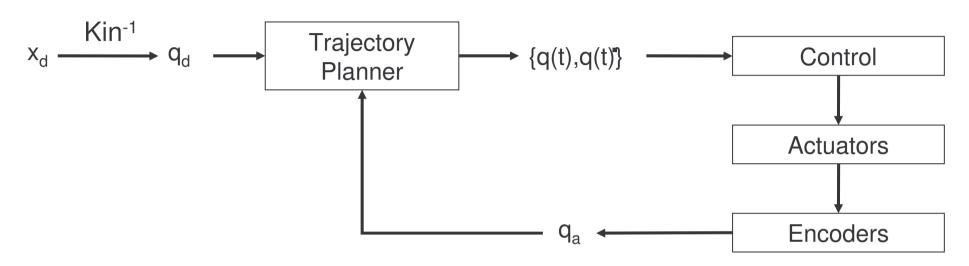

Direct kinematics
$$x = K(q)$$

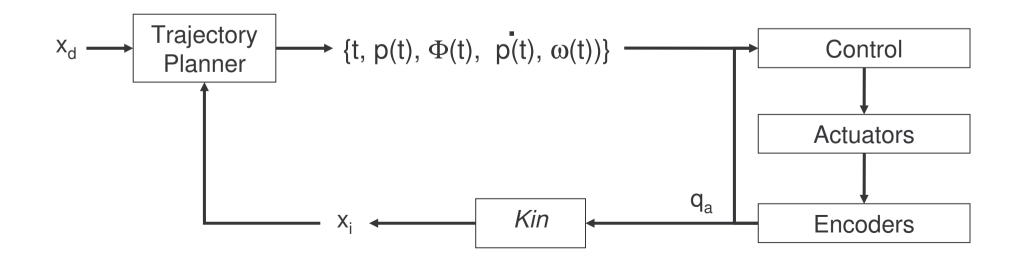
Inverse kinematics
$$q = K^{-1}(x)$$

Control of one joint motion (actuated by one motor)

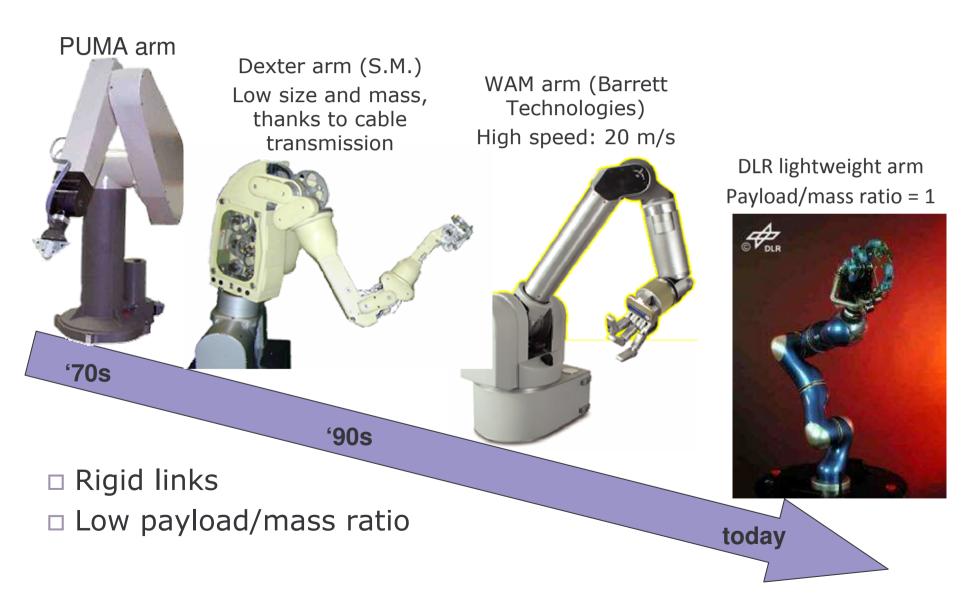
$$V = K_p e_q + K_d \dot{e}_q + K_i \int e_q(t) dt$$

$$e_q = q_d - q$$


$$\dot{e}_q = \frac{de_q}{dt}$$


- \blacksquare K_p is the *proportional* gain
- \blacksquare K_i is the *integrative* gain
- \blacksquare K_d is the *derivative* gain
- **e** is the error, i.e. the difference between desired and actual value

Control of the movement of a robot arm



Evolution of robot arms

Evolution of Robotics

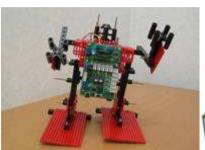
NEED for helpful machines

Industrial Robotics Industrial Automation

Service Applications

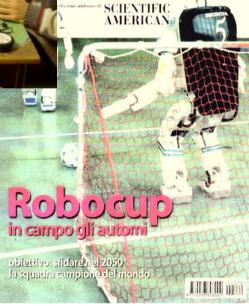
Service Robotics

Applicazioni domestiche



Robot per intrattenimento e

edutainment



environments

Robots ouside factories: Service Robotics

- Unstructured environment
- More important role of perception
- Reactive behaviour
- Sharing of the workspace with human beings

The DustCart robot for garbage collection

Definitions of Robotics

 A robot is a re-programmable, multi-functional manipulator designed to move material, parts, or specialized devices through variable programmed motions for the performance of a variety of tasks

Robotics Industry Association (~1980)

Jablonsky J., Posey J. 1985. "Robotics Terminology", in *Handbook of Industrial Robotics*, ed. S. Nof, J. Wiley, New York, pp.1271-1303

Robotics is the intelligent connection of perception to action

Brady, 1985

(M. Brady, 1985. "Artificial Intelligence and Robotics", Artificial Intelligence and Robotics, Vol.26, pp.79-121)

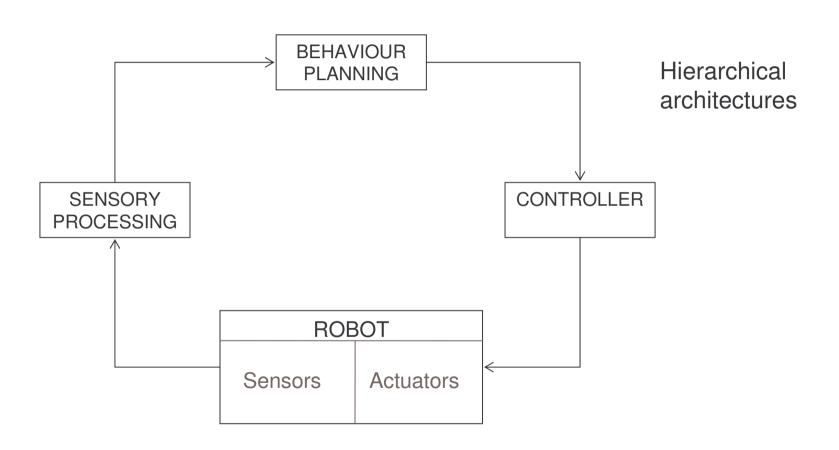
 An intelligent robot is a machine able to extract information from its environment and use knowledge about its world to move safely in a meaningful and purposeful manner

Arkin, 1999

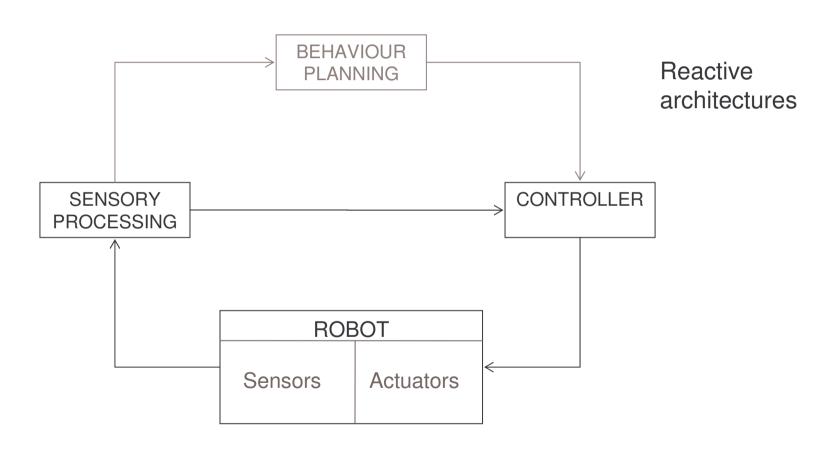
(Ronald Arkin, Behaviour-based Robotics, MIT Press, 1999)

The science and technology of the design of mechatronic systems capable of generating and controlling motion and force

Paolo Dario (~2000)


Definition of "intelligent robot" or "autonomous robot"

- An intelligent robot is a mechanical creature which can function autonomously
- Autonomous robot: a machine that can accept and execute autonomously commands or missions in unstructured environments without human intervention
- Problems:


dynamically planning robot behaviours in unknown and variable environments, according to a request for task execution

Robin Murphy, *Introduction to AI Robotics*, MIT Press, 2000

Basic scheme for robot behaviour control

Basic scheme for robot behaviour control

From hierarchical to reactive architectures

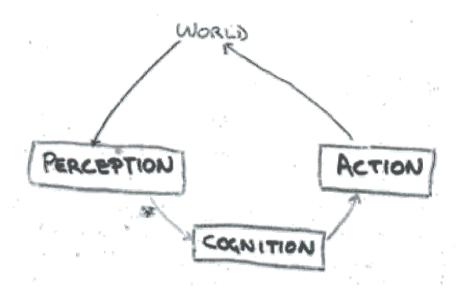


Figure 1: The traditional model where cognition mediates between perceptions and plans of actions.

deliberative, model-based

reactive, behavior-based

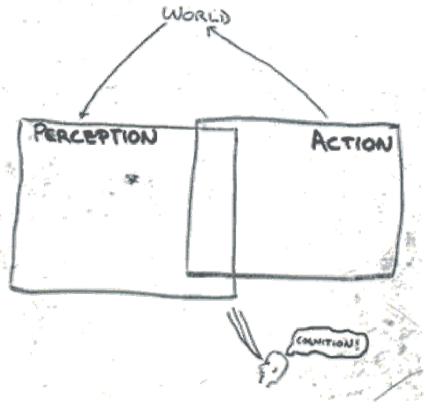
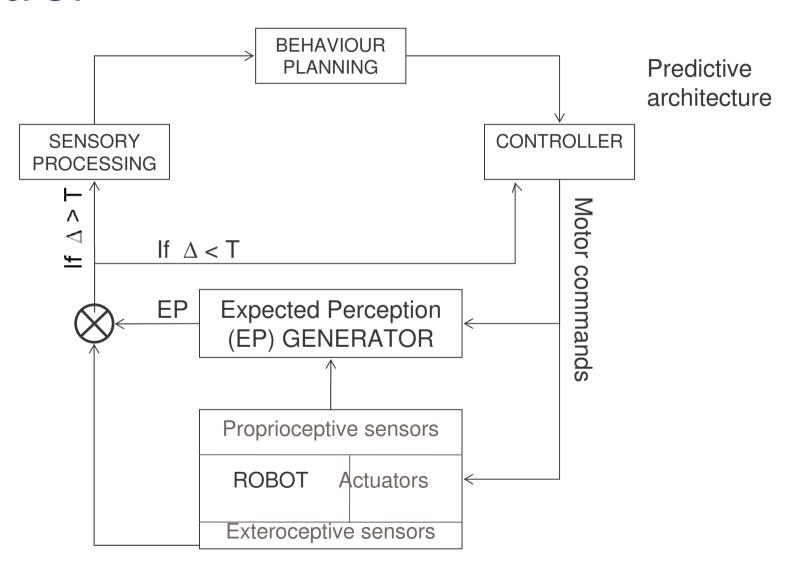



Figure 2: The new model, where the perceptual and action subsystems are all there really is. Cognition is only in the eye of an observer.

Basic scheme for robot behaviour control

Evolution of Robotics

NEED for helpful machines

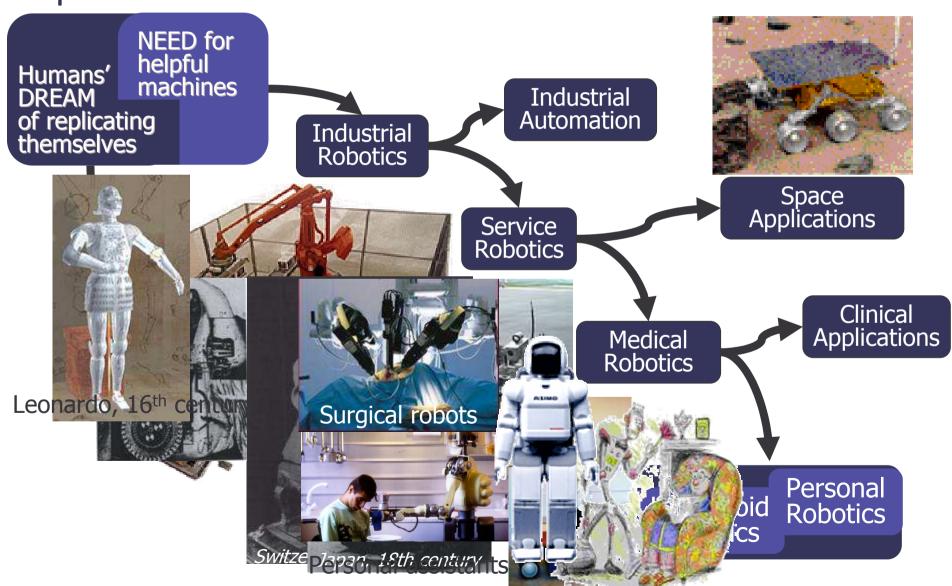
Industrial Robotics Industrial Automation

> Service Applications

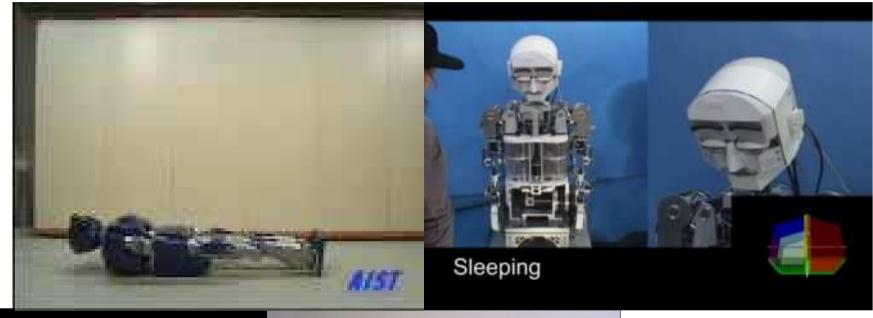
Service Robotics

Biomedical Robotics

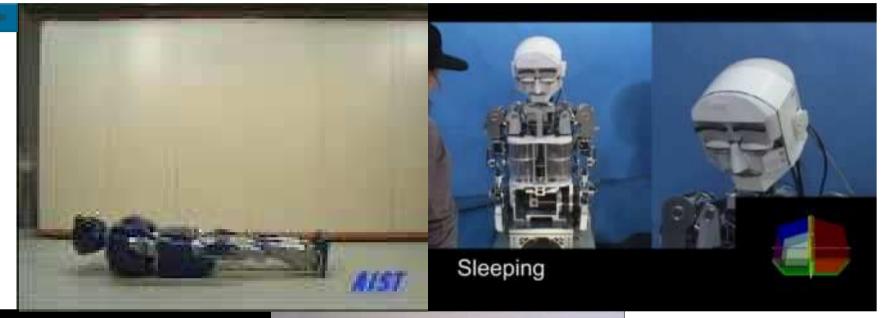
Personal Robotics



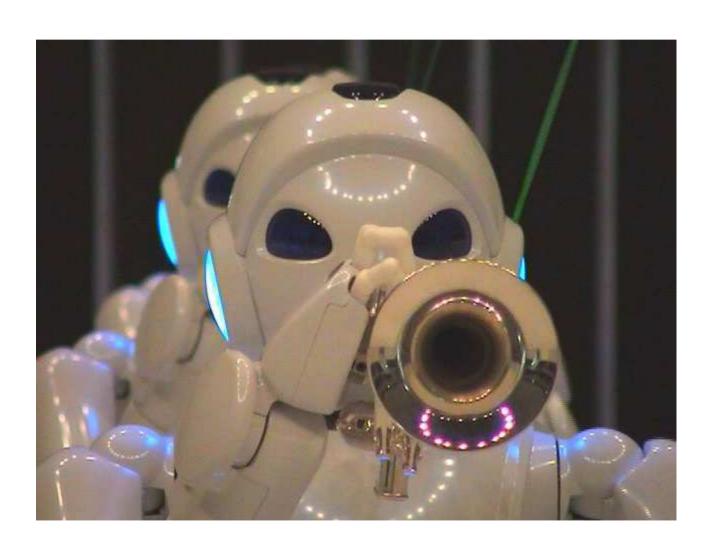
Personal assistants


The Evolution of the Concept and Implementation of Robotics

Few examples of today humanoid robotics



Few examples of humanoid robotics today

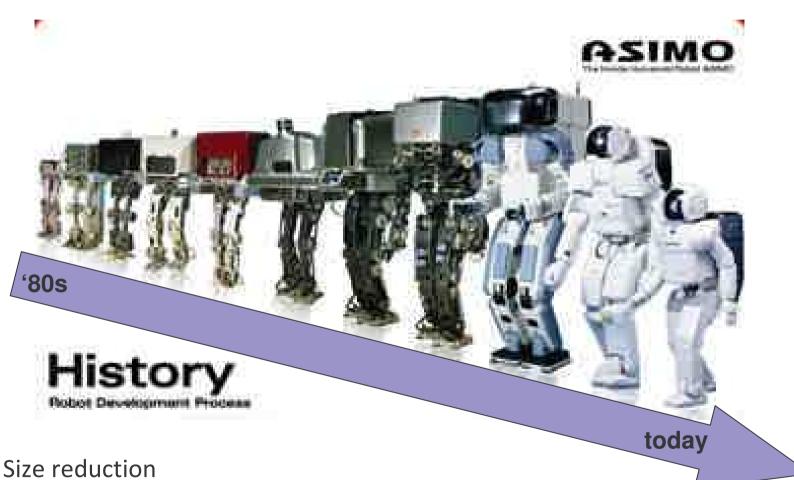


Toyota Partner Robot

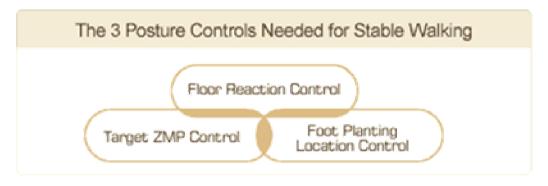
The current challenge of humanoid robotics

 A team of fully autonomous robots that can compete against the World Soccer Champion team by the year 2050

The evolution of walking abilities of humanoid robots at Waseda University, Tokyo


From early '70 to 2006

The evolution of Honda humanoid robot



- Improvement of walking capabilities
- Current challenge: running

Honda walking strategy

A Posture Controls to Achieve Stable Walking

Floor Reaction Control: Firm standing control of the soles

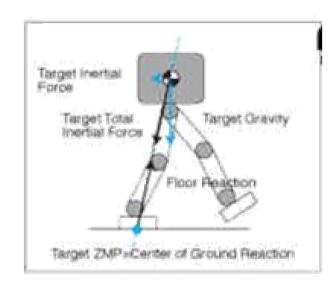
of the feet while absorbing floor

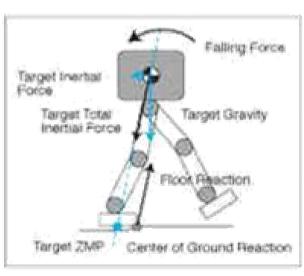
unevenness.

Target ZMP Control: Control to maintain position by

accelerating the upper torso in the direction in which it threatens to fall when the soles of the feet

cannot stand firmly.

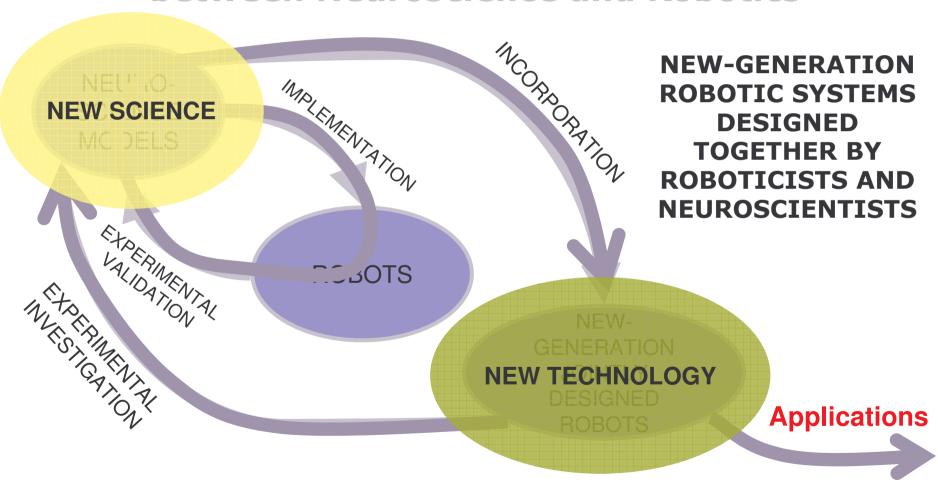

Foot Planting Location

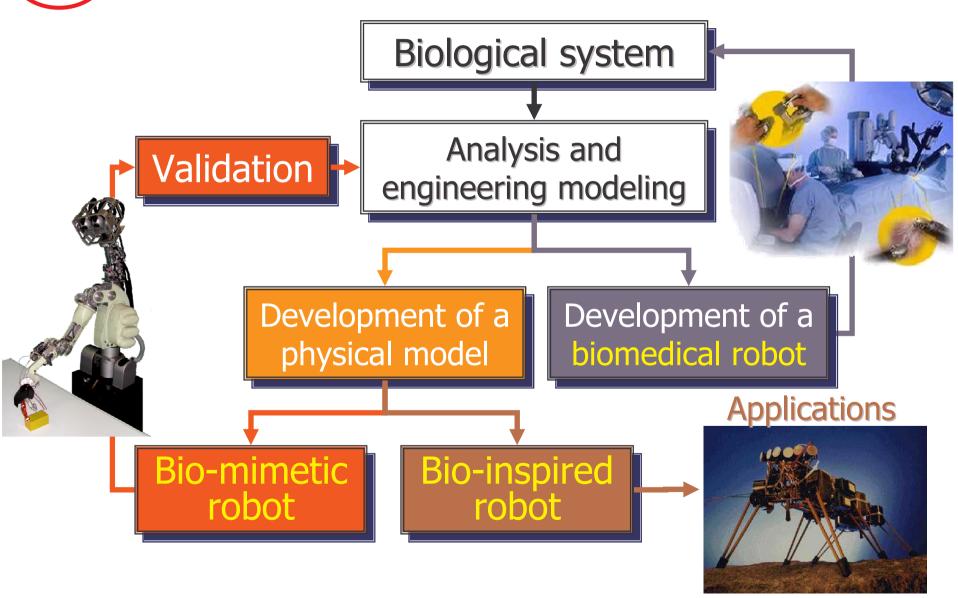

Control:

Control using side steps to adjust for irregularities in the upper torso

caused by target ZMP control.

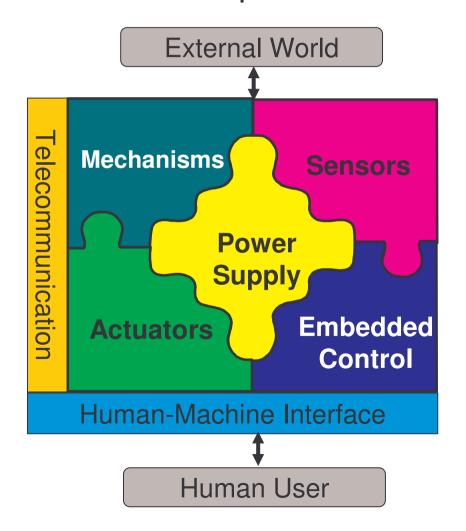
* ZMP = Zero Moment Point: The point when total inertial force is 0.

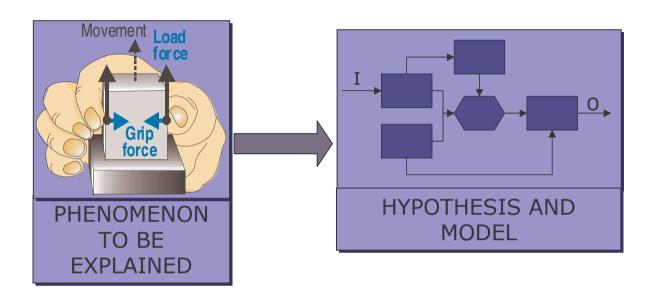

Walking is based on stability


Joint design of new-generation robotic systems

A step further in the two-way collaboration between Neuroscience and Robotics

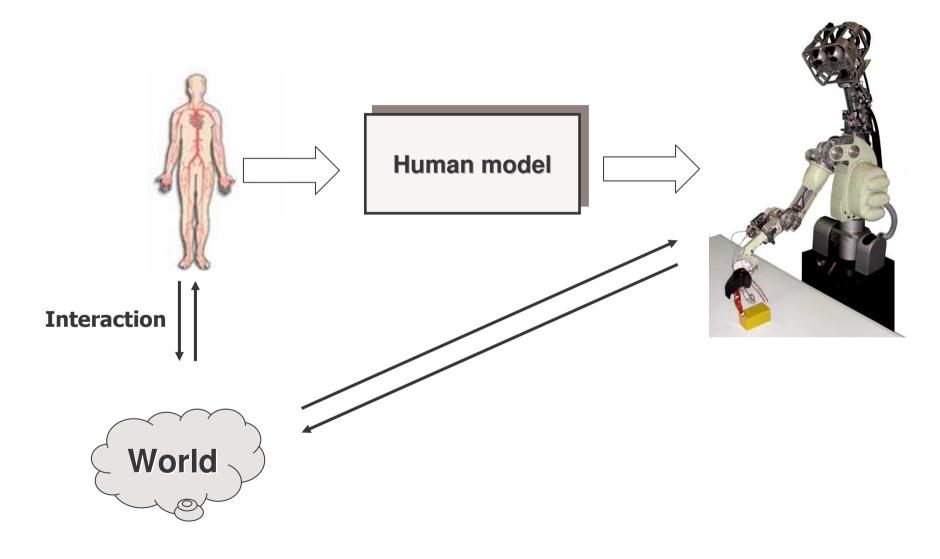
Biomechatronic design




Biomechatronic design

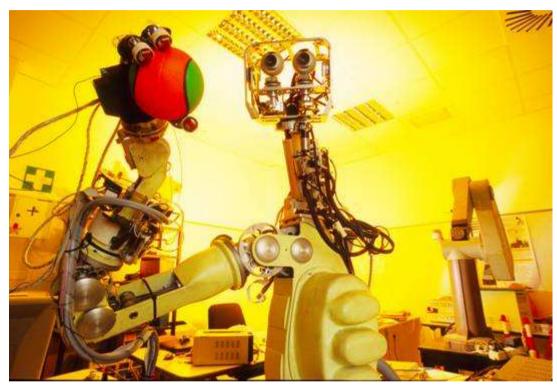
Joint design of the different components of the system

Biorobotics Science



Biorobotics vs. simulation and animal models

Biorobotics Science



A robotic platform for validating a model of development of sensory-motor grasp control

Objectives:

- To increase knowledge of brain connectivity (architecture) and brain activity (functioning) concerning sensory motor coordination for object manipulation in children
- To integrate an anthropomorphic robotic platform for grasping and manipulation to validate a neurophysiological model of the five learning phases of visuo-tactile-motor coordination in infants

P. Dario, M.C. Carrozza, E. Guglielmelli, C. Laschi, A. Menciassi, S. Micera, F. Vecchi, "Robotics as a "Future and Emerging Technology: biomimetics, cybernetics and neuro-robotics in European projects", *IEEE RAM*, Vol.12, No.2, June 2005, pp.29-43.

Building a humanoid to understand human

beings (human brain)

Retina-like vision system

Human-like head and neck:

7 degrees of freedom

7 proprioceptive sensors

Robot arm:

8 degrees of freedom 16 (8+8) proprio-

ceptive sensors

Degrees of freedom	25
Proprioceptive sensors	36
Tactile sensors	12
Visual sensors	2

Biomechatronic hand:

10 degrees of freedom

13 proprioceptive sensors

12 tactile sensors

Biorobotics epistemology

Proto-Cybernetics (J. Loeb 1905, 1912; H. S. Jennings 1906)

Mechanicism Vs. Functionalism for studying the behavior of living organisms

If a machine is implemented on the basis of a theory of behavior, and *it behaves* according to what this theory allows to predict, this test reinforces the proposed theory

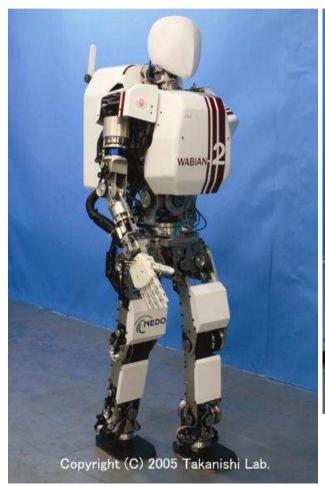
Cybernetics (Rosenblueth, Wiener, Bigelow 1943)

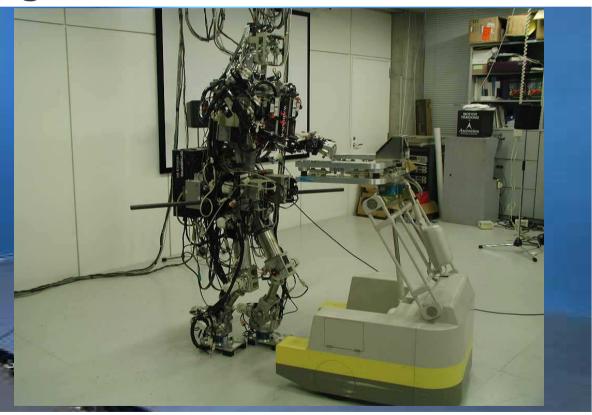
Unified approach to the study of living organisms and machines

Purposive adaptive behaviors (in animals and humans) are produced by feedback machines (teleology)

Machines as 'material models' useful for testing scientific hypotheses

Machines are used for SCIENCE





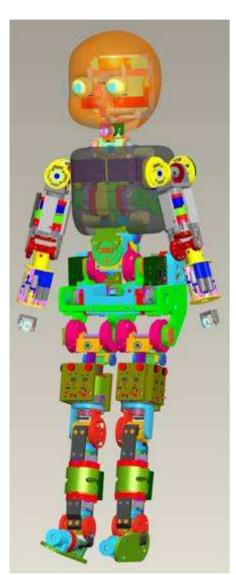
Un robot umanoide come modello del cammino umano

Walking robot Wabian-2R



WABIAN come simulatore dell'Uomo e strumento per la progettazione e la valutazione quantitativa di sipositivi di supporto alla deambulazione

Università di Genova



Capire come il cervello degli esserei viventi trasforma l'input sensoriale in capacità motorie e cognitive, implementando modelli fisici di comportamenti sensomotori

EU RobotCub Project

G. Metta, G. Sandini, "Embodiment and complex systems. A commentary on Barbara Webb: Can robots make good models of biological behavior?", *Behavioral and Brain Sciences* 24(6) pp. 1068-1069, 2001.

From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model

Auke Jan Ijspeert,1* Alessandro Crespi,1 Dimitri Ryczko,2,3 Jean-Marie Cabelguen2,3

The transition from aquatic to terrestrial locomotion was a key development in vertebrate evolution.

An amphibious salamander robot demonstrates how a primitive neural circuit for swimming can be extended by phylogenetically more recent limb oscillatory centers to explain the ability of salamanders to switch between swimming and walking.

The model suggests neural mechanisms for modulation of velocity, direction, and type of gait that are relevant for ALL tetrapods.

CPG Model and the Robot

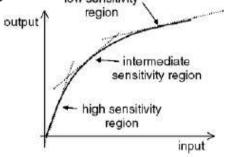
Unordered list of technological challenges in current robotics

- Flexibility of mechanical structures
- Compliance of joints
- Payload/mass ratio
- Miniaturization
- Distributed sensing
- Massive sensory processing
- Power supply
- User interfaces
- Human-robot interaction
- Cognitive capabilities
- Learning capabilities

(derived from draft EURON Roadmaps)

Organization of the survey on **sensors** and **actuators**

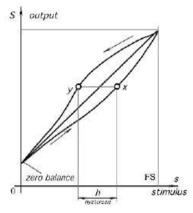
	SENSORS	ACTUATORS
SSSA	Inertial	EAP
IIT	Proprioceptive	Pneumatic SMA
UZH	Haptic	Piezoelectric
FORTH	Vision	



Fundamental characteristics of a sensor (1/3)

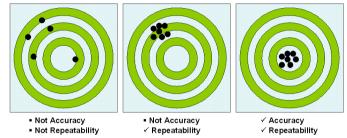
A sensor is a device that responds to a change of a physical phenomena (*stimulus* or *measurand*) and converts the physical quantity into an electric signal.

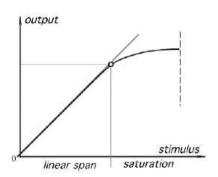
- Transfer function: the relationship between the input stimulus and its output response S = f(s)
- Range (or span): the difference between the minimum and maximum inputs that will give a valid output
- Resolution: the minimal variation of the stimulus value that can be measured
- Sensitivity: the ratio between the change in the output signal and the change in the input stimulus
 low sensitivity


 Calibration: process used to know the actual relationship between an output value and its corresponding input value

Fundamental characteristics of a sensor (2/3)

■ **Hysteresis:** the maximal difference between the two tracts (curve of increasing values and curve of decreasing values) of the hysteresis loop


- Error: the difference between a measured value and the true input value (systematic error vs. random error)
- Linearity: maximal difference between the hysteresis loop and the ideal straight line of linearity
- Repeatability: the sensor's capacity of responding with the same output to identical input values given, under the stated conditions
- Reliability: the capacity of a sensor to perform in a defined manner and know modality, under stated condition and for a stated period



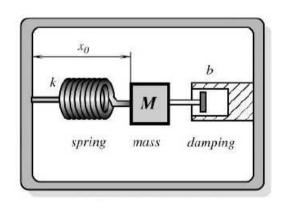
Fundamental characteristics of a sensor (3/3)

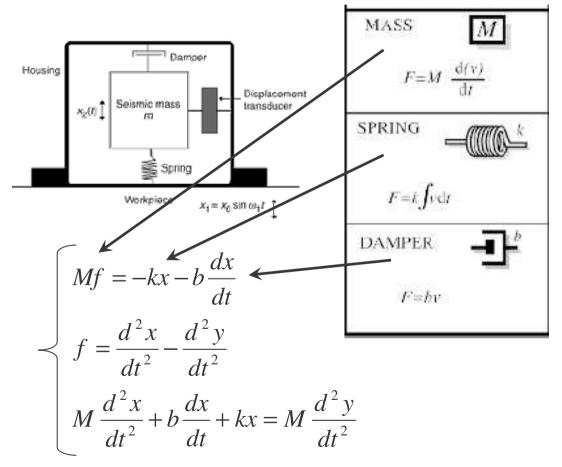
Accuracy: the sensor's maximal deviation value from the output value and the true value of the stimulus

■ Saturation: level limit, after that a further increase in stimulus doesn't generate an noticeable signal in output

- **Dead Band:** insensitivity range inside the total input signal range, where the output signal approximately has the same value (usually near zero) for the entire dead band zone
- **Dynamic characteristics:** all the time-dependent parameters: zero-shift error, sensibility drift, warm-up time...

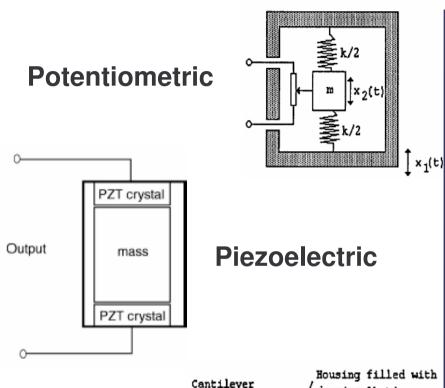
Organization of the survey on **sensors** and **actuators**

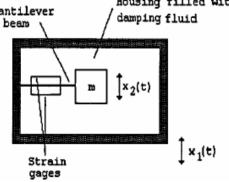

	SENSORS	ACTUATORS
SSSA	Inertial	EAP
IIT	Proprioceptive	Pneumatic SMA
UZH	Haptic	Piezoelectric
FORTH	Vision	

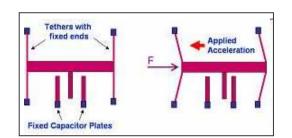


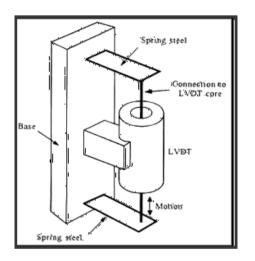
Inertial sensors: Accelerometers

A basic principle behind the transduction of velocity or acceleration is the measurement of the displacement of an object in respect to a reference system, which is usually integral part of the sensor itself.

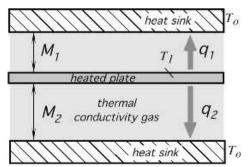





Principles of Accelerometers

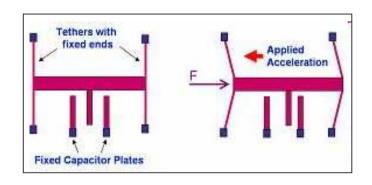


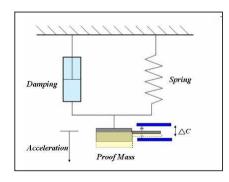
Piezoresistive


Capacitive

Inductive

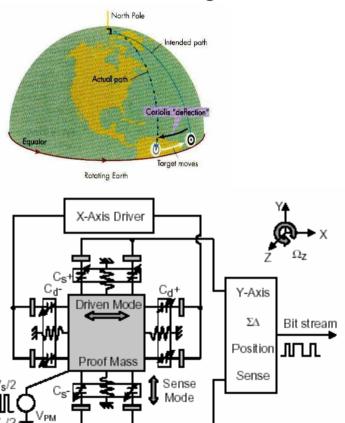
Thermal




Practical examples: Nintendo Wii

The Wii Remote has the ability to sense acceleration along three axes through the use of an ADXL330 accelerometer

The sensor is a polysilicon surface micromachined structure built on top of a silicon wafer. Polysilicon springs suspend the structure over the surface of the wafer and provide a resistance against acceleration forces. Deflection of the structure is measured using a differential capacitor that consists of independent fixed plates and plates attached to the moving mass. Acceleration deflects the moving mass and unbalances the differential capacitor resulting in a sensor output whose amplitude is proportional to acceleration.



Inertial sensors: Gyroscopes

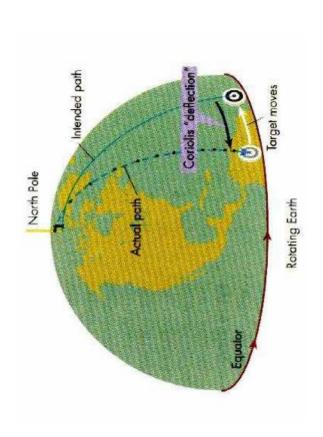
The basic principle of operation of such sensors is that the vibratory motion of part of the instrument creates an oscillatory linear velocity. If the sensor is rotated about an axis orthogonal to this velocity, a **Coriolis acceleration** is induced. This acceleration modifies the motion of the vibrating element and it will indicate the magnitude of the applied rotation.

Vibrating mass gyroscopes

A vibrating element (vibrating resonator) creates an oscillatory linear velocity

Sensor rotation about an axis orthogonal to its velocity

Coriolis force $F_C = -2m(\omega \times v)$



secondary vibration orthogonal to the original vibrating direction

detection of the rate of turn

Practical examples: xsens

The MTi is a miniature size and low weight 3DOF Attitude and Heading Reference System (AHRS).

- 3D Gyroscopes
- 3D Accelerometers
- 3D Magnetometers

The gyroscopes are used to calculate orientation. Integration drift is inevitable whilst using gyroscopes. To compensate for drift completely, the MTi corrects its orientation every sample using the gravity and the earth magnetic field as reference vectors.

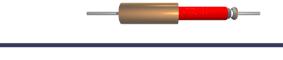
Miniature Attitude and Heading Reference System

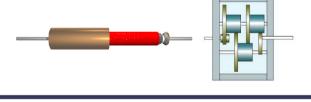
Practical examples

http://www.invensense.com/support/videolibrary.html

What is an Actuator?

Actuators can be seen as a system that establishes a flow of energy converting some form of input power (typically electrical power) into mechanical power.


Considering actuators merely from the point of view of their energy conversion principle can be misleading. The actuator is in fact a system, where motion conversion plays a central role. Three cases (SMA, PZT and Electromagnetic) are here considered as "Effectors", "Motors", "Autonomous Effectors" and "Autonomous Motors".


Actuator = "Effector"

Actuator = "Motor"

Actuator = "Autonomous Effector"

Actuator = "Autonomous Motor"

Fundamental characteristics of an actuator (1/2)

■ **Stress:** the typical force (*F*) per cross-sectional area (*A*) under which the actuator materials are tested

 $\sigma = \frac{F}{A}$ $\left[\frac{N}{m^2} = Pa\right]$

Strain: the displacement $(I_f - I_0)$ normalized by the original material length (I_0) in the direction of actuation

$$\varepsilon = \frac{l_f - l_0}{l_0} \qquad \left[\frac{m}{m}\right]$$

- Strain rate: is the average change in strain per unit time during an actuator stroke
- **Power density:** the power output (P_{out}) per unit volume (V) of actuator material and represents a measure of the rate of energy delivery at the mechanical port

$$P_V = \frac{P_{out}}{V} \qquad \left[\frac{W}{m^3}\right]$$

■ Work density: the amount of work generated in one actuator cycle (W_{out}) normalized by actuator volume (V)

$$W_V = \frac{W_{out}}{V} \qquad \left[\frac{W}{m^3}\right]$$

■ **Time constant:** the time taken for the output parameter of a first order system to reach 63.2% of its final value upon the application of a step input

Fundamental characteristics of an actuator (2/2)

■ Frequency bandwidth: the available bandwidth of an actuator defined by the "cutoff frequency", that is the frequency at which strain drops to half of its low frequency amplitude

 $f = \frac{1}{2\pi\tau} \quad [Hz]$

Efficiency: the transduction process of an actuator and is defined as the ratio of work generated (L_{ij}) to input energy expended (E_i)

$$\eta = \frac{L_U}{E_i} \quad \left[\frac{J}{J}\right]$$

- Cycle life: number of useful strokes that the material is known to be able to undergo
- **Elastic Modulus:** the material stiffness (K) multiplied by sample length (I_0) and divided by cross-sectional area (A), important as it determines the actuator's passive ability to reject load changes and disturbances

$$E = K \frac{l_0}{A} \quad \left[\frac{N}{m} \frac{m}{m^2} = \frac{N}{m^2} = Pa \right]$$

The Actuator as a system

Actuator = "Effector" = Energy transducer

	Stress (MPa)	Strain	Efficiency	Bandwidth (Hz)	Power (W/cm³)
Electromagnetic	0.02	0.5	90 %	20	0.1
SMA	200	0.1	3 %	3	30
Piezoelectric	35	0.002	50 %	5000	175

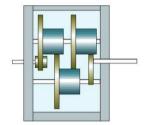
$$Power_{density,effector} = \frac{1}{2} \cdot \varepsilon \sigma \cdot BW$$

The Actuator as a system

Actuator = "<u>Autonomous</u> Effector": Energy transducer + supply

	Stress (MPa)	Strain	Efficiency	Bandwidth (Hz)	Power (W/cm ³)
Electromagnetic	0.02	0.5	90 %	20	0.08
SMA	200	0.1	3 %	3	0.01
Piezoelectric	35	0.002	50 %	5000	0.2

$$Power_{density,aut._effector} = \frac{power_{density,effector}}{1 + \frac{1}{\eta_{transducer}} \cdot \frac{power_{density,effector}}{power_{density,battery}}}$$

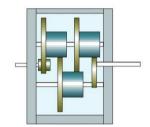


The Actuator as a system

Actuator = "Motor": Energy transducer + motion converter

	Motion converter bulk ratio	Motion converter efficiency	Power (W/cm³)
Electromagnetic	1	80 %	0.04
SMA	10	50 %	1.4
Piezoelectric	100	30 %	0.52

$$Power_{density,motor} = \frac{power_{density,effector}}{1 + BR} \cdot \eta$$



The Actuator as a system

Actuator = "Autonomous <u>Motor</u>": Energy transducer + supply + motion converter

	Motion converter bulk ratio	Motion converter efficiency	Power (W/cm³)
Electromagnetic	1	80 %	0.035
SMA	10	50 %	0.006
Piezoelectric	100	30 %	0.054

$$Power_{density,aut._motor} = \frac{power_{density,effector}}{1 + \frac{1}{\eta_{transducer}} \cdot \frac{power_{density,effector}}{power_{density,battery}} + BR} \cdot \eta$$

Transduction mechanism

- Fluid-mechanical transduction: convert the pressure of a fluid into mechanical energy, either rotational or translational
 - Pneumatic actuators
 - Hydraulic actuators
- Thermomechanical transduction: the input energy is in the thermal domain and the output energy in the mechanical domain
 - SMA
 - Thermal Active Polymers
- Magnetomechanical transduction: energy flow from the magnetic domain to the mechanical domain and vice versa
- Electromechanical transduction: the input electrical domain is transformed into mechanical energy
 - Piezoelectric actuators
 - SMA
 - EAP

Organization of the survey on **sensors** and **actuators**

	SENSORS	ACTUATORS
SSSA	Inertial	EAP
IIT	Proprioceptive	Pneumatic SMA
UZH	Haptic	Piezoelectric
FORTH	Vision	

ElectroActive Polymers (EAP)

Electro Active Polymers are an emergent class of materials that have the capability to modify their dimensions and shape when an electric stimulus is applied.

ELECTRIC (DRY) EAP

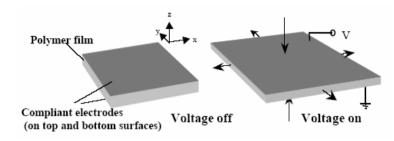
Materials that undergo to dimensional change in response to an electric field

Advantage	Disadvantage
Can operate in room conditions for long periods of time	Requires high voltages (~150 MV/m)
Rapid response time (mSec levels)	Requires compromise between strain and stress
Can hold strains under DC activation	Glass transition temperature is inadequate for low temperature
Induces relatively large actuation forces	actuation tasks

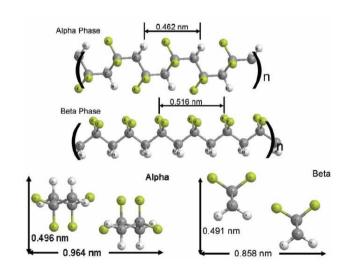
IONIC (WET) EAP

Materials that needs the presence and movement of ions to make actuation possible

Advantage	Disadvantage
Requires low voltage	Except for Conductive Polymers, Ionic EAPs don't hold strain under DC voltage
Provides predominately bending actuation (longitudinal mechanisms can be constructed)	Slow response (fraction of a second)
Exhibits large bending displacements	Bending EAPs induce a relatively low actuation force
	Except Conductive Polymers & Carbon Nanotubes, it is difficult to produce a consistent material (particularly Ionomeric Polymer- Metal Composites)
	In aqueous systems the material sustains hydrolysis at > 1.23V

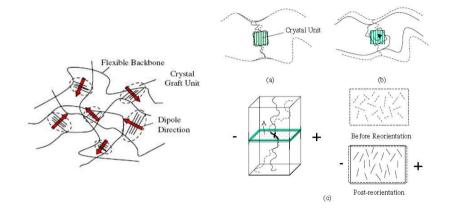

Electric EAP 1/2

Dielectric Elastomers


An electric field is applied across the sheet thickness through two compliant electrodes. The electrostatic interaction between the two electrodes with opposite electric charge causes a significant stress in the dielectric, known as Maxwell stress, which can compress and elongate the dielectric material at high strain rates

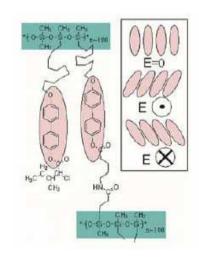
Ferroelectric materials, like ferromagnets, have dipoles that can be aligned producing permanent dimensional changes in response to an applied electric field (electrostrictive effect)

$$F = -\frac{dU}{dz} = \frac{\varepsilon_r \varepsilon_0 V^2}{z^2} A$$



Electric EAP 2/2

Electrostrictive Graft Elastomers

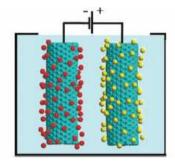

The flexible backbone chain and the crystal graft unit consist of polarized monomers, which contain atoms with electric partial charges, generating dipole moments. Upon application of an electric field to the polymer, force is applied to each partial charge, forming a force moment.

Liquid Crystal Elastomers

Liquid crystals are known to change phase and orientation under the influence of an electrostatic force.

By incorporating mesogens into a compliant polymer backbone or as side chains, fieldinduced changes in phase can be used to produce actuation

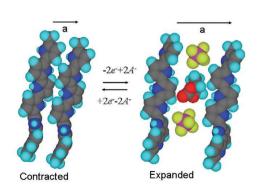
Ionic EAP 1/2


Carbon Nanotubes

The actuation principle of operation of CNTs is based on the use of these structures as electrodes in electrochemical supercapacitors.

A voltage applied between an actuating nanotube electrode and a counter electrode (usually another CNT), both dipped in an ion containing solution, leads to charging.

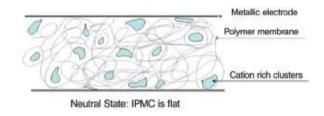
Electrostatic repulsive forces between like charges on the CNTs work against the stiff carbon-carbon nanotubes bonds to elongate and expand the nanotubes.

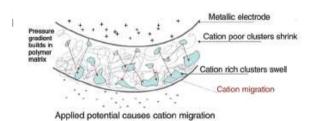


Conducting Polymers

The mechanism of actuation is based on the dimensional changes resulting from electrochemical uptake or expulsion of ions and solvent

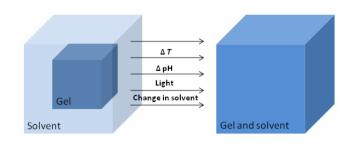
- Polypyrrole
- Polyanyline
- Polythiophene





Ionic EAP 2/2

Ionic Plymer-Metal Composite


This type of electrochemical artificial muscle employs a polyelectrolyte as an ion exchange membrane and metal thin layers as electrodes. The polyelectrolyte is sandwiched between the two flexible electrodes, which interpenetrate the polyelectrolyte. When a voltage is applied between the electrodes, the counterions tend to diffuse to the corresponding electrode, thus solvated mobile cations move toward the oppositely charged electrode, resulting in a migration that causes the deflection of the multi layered structure toward one of the metal electrode.

Active Gels

The presence of the solvent inside the polymer network determines the physical properties (stiffness, shape etc) of the gel. By electrical means, polymer gels are able to swell by the uptake of solvent within the polymer matrix

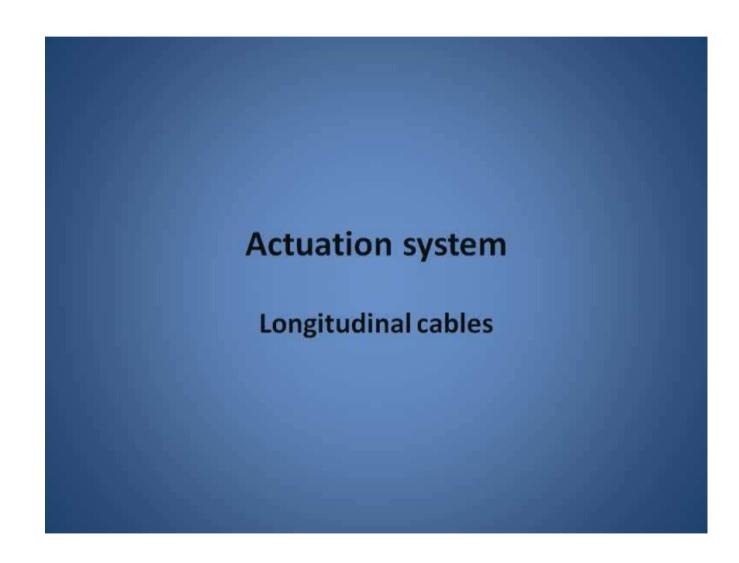
Actuator type	Strain (max) (%)	Stress (max) (MPa)	Work density (max) (J/cm³)	Specific power (max) (W/g)	Max strain rate (%/s)	Elastic module (MPa)	Max efficiency (%)
Skeletal Muscle	20 (40)	0.1 (0.35)	0.008	0.05	500	10 - 60	40
Dielectric Elastomers	25 (>300)	1.0 (7.0)	0.01 (3.4)	0.5	>450	0.1 – 10	80
Ferroelectric Polymer	3.5 (10)	20 (45)	0.32 (1)	NA	>2000	800	40
Electrostrictive Graft Elastomers	2.5	NA	0.5	NA	NA	600	NA
Liquid Crystal Elastomers	2 (4)	0.12 (0.45)	0.02	NA	1000	100	75
Carbon Nanotubes	<2	>10	1	0.01 (0.27)	19	1000 (sheet) 10000 (fibre)	<1
Conductive Polymers	2 (20)	5 (34)	0.1 (1.0)	(0.1)	10	800 – 3000	1
Ionic Polymer - Metal Composites	0.5 (3.3)	3 (30)	(0.006)	0.003	3.3	50 – 100	1.5 – 3
Active Gels	30	0.2 (1.2)	NA	0.001	NA	<10	NA

Actuator type	Strain (max) (%)	Stress (max) (MPa)	Work density (max) (J/cm ³)	Specific power (max) (W/g)	Max strain rate (%/s)	Elastic module (MPa)	Max efficiency (%)
Skeletal Muscle	20 (40)	0.1 (0.35)	0.008	0.05	500	10 - 60	40
Dielectric Elastomers	25 (>300)	1.0 (7.0)	0.01 (3.4)	0.5	>450	0.1 – 10	80
Ferroelectric Polymer	3.5 (10)	20 (45)	0.32 (1)	NA	>2000	800	40
Electrostrictive Graft Elastomers	2.5	NA	0.5	NA	NA	600	NA
Liquid Crystal Elastomers	2 (4)	0.12 (0.45)	0.02	NA	1000	100	75
Carbon Nanotubes	<2	>10	1	0.01 (0.27)	19	1000 (sheet) 10000 (fibre)	<1
Conductive Polymers	2 (20)	5 (34)	0.1 (1.0)	(0.1)	10	800 – 3000	1
Ionic Polymer - Metal Composites	0.5 (3.3)	3 (30)	(0.006)	0.003	3.3	50 – 100	1.5 – 3
Active Gels	30	0.2 (1.2)	NA	0.001	NA	<10	NA

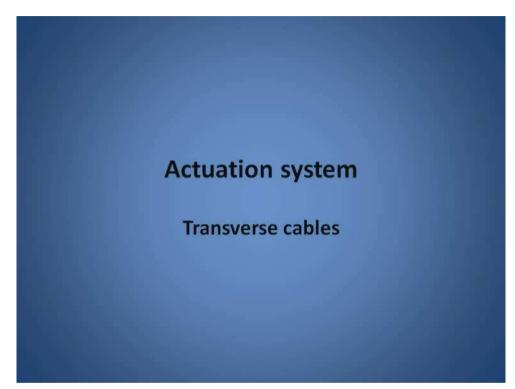
Actuator type	Strain (max) (%)	Stress (max) (MPa)	Work density (max) (J/cm ³)	Specific power (max) (W/g)	Max strain rate (%/s)	Elastic module (MPa)	Max efficiency (%)
Skeletal Muscle	20 (40)	0.1 (0.35)	0.008	0.05	500	10 - 60	40
Dielectric Elastomers	25 (>300)	1.0 (7.0)	0.01 (3.4)	0.5	>450	0.1 – 10	80
Ferroelectric Polymer	3.5 (10)	20 (45)	0.32 (1)	NA	>2000	800	40
Electrostrictive Graft Elastomers	2.5	NA	0.5	NA	NA	600	NA
Liquid Crystal Elastomers	2 (4)	0.12 (0.45)	0.02	NA	1000	100	75
Carbon Nanotubes	<2	>10	1	0.01 (0.27)	19	1000 (sheet) 10000 (fibre)	<1
Conductive Polymers	2 (20)	5 (34)	0.1 (1.0)	(0.1)	10	800 – 3000	1
Ionic Polymer - Metal Composites	0.5 (3.3)	3 (30)	(0.006)	0.003	3.3	50 – 100	1.5 – 3
Active Gels	30	0.2 (1.2)	NA	0.001	NA	<10	NA

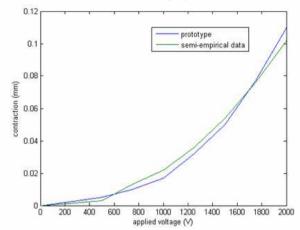
Actuator type	Strain (max) (%)	Stress (max) (MPa)	Work density (max) (J/cm ³)	Specific power (max) (W/g)	Max strain rate (%/s)	Elastic module (MPa)	Max efficiency (%)
Skeletal Muscle	20 (40)	0.1 (0.35)	0.008	0.05	500	10 - 60	40
Dielectric Elastomers	25 (>300)	1.0 (7.0)	0.01 (3.4)	0.5	>450	0.1 – 10	80
Ferroelectric Polymer	3.5 (10)	20 (45)	0.32 (1)	NA	>2000	800	40
Electrostrictive Graft Elastomers	2.5	NA	0.5	NA	NA	600	NA
Liquid Crystal Elastomers	2 (4)	0.12 (0.45)	0.02	NA	1000	100	75
Carbon Nanotubes	<2	>10	1	0.01 (0.27)	19	1000 (sheet) 10000 (fibre)	<1
Conductive Polymers	2 (20)	5 (34)	0.1 (1.0)	(0.1)	10	800 – 3000	1
Ionic Polymer - Metal Composites	0.5 (3.3)	3 (30)	(0.006)	0.003	3.3	50 – 100	1.5 – 3
Active Gels	30	0.2 (1.2)	NA	0.001	NA	<10	NA

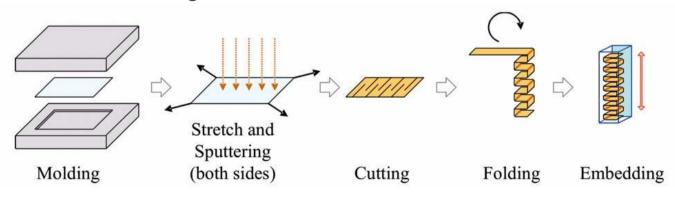
Actuator type	Strain (max) (%)	Stress (max) (MPa)	Work density (max) (J/cm ³)	Specific power (max) (W/g)	Max strain rate (%/s)	Elastic module (MPa)	Max efficiency (%)
Skeletal Muscle	20 (40)	0.1 (0.35)	0.008	0.05	500	10 - 60	40
Dielectric Elastomers	25 (>300)	1.0 (7.0)	0.01 (3.4)	0.5	>450	0.1 – 10	80
Ferroelectric Polymer	3.5 (10)	20 (45)	0.32 (1)	NA	>2000	800	40
Electrostrictive Graft Elastomers	2.5	NA	0.5	NA	NA	600	NA
Liquid Crystal Elastomers	2 (4)	0.12 (0.45)	0.02	NA	1000	100	75
Carbon Nanotubes	<2	>10	1	0.01 (0.27)	19	1000 (sheet) 10000 (fibre)	<1
Conductive Polymers	2 (20)	5 (34)	0.1 (1.0)	(0.1)	10	800 – 3000	1
Ionic Polymer - Metal Composites	0.5 (3.3)	3 (30)	(0.006)	0.003	3.3	50 – 100	1.5 – 3
Active Gels	30	0.2 (1.2)	NA	0.001	NA	<10	NA

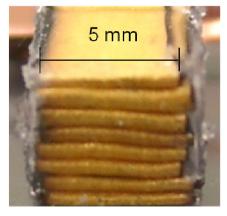


Actuator type	Strain (max) (%)	Stress (max) (MPa)	Work density (max) (J/cm ³)	Specific power (max) (W/g)	Max strain rate (%/s)	Elastic module (MPa)	Max efficiency (%)
Skeletal Muscle	20 (40)	0.1 (0.35)	0.008	0.05	500	10 - 60	40
Dielectric Elastomers	25 (>300)	1.0 (7.0)	0.01 (3.4)	0.5	>450	0.1 – 10	80
Ferroelectric Polymer	3.5 (10)	20 (45)	0.32 (1)	NA	>2000	800	40
Electrostrictive Graft Elastomers	2.5	NA	0.5	NA	NA	600	NA
Liquid Crystal Elastomers	2 (4)	0.12 (0.45)	0.02	NA	1000	100	75
Carbon Nanotubes	<2	>10	1	0.01 (0.27)	19	1000 (sheet) 10000 (fibre)	<1
Conductive Polymers	2 (20)	5 (34)	0.1 (1.0)	(0.1)	10	800 – 3000	1
Ionic Polymer - Metal Composites	0.5 (3.3)	3 (30)	(0.006)	0.003	3.3	50 – 100	1.5 – 3
Active Gels	30	0.2 (1.2)	NA	0.001	NA	<10	NA


Actuation system - Longitudinal




Experiemental evaluation of EAP technology



Target: 20% contraction

- 300 µm silicone film
- 90 nm gold electrodes
- Laser measurement of contraction
- Labview interface to control the applied voltage

