Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Deep learning analysis of imaging and metabolomic data to accelerate antibiotic discovery against antimicrobial resistance

Projektbeschreibung

Intelligente Technologie im Kampf gegen Superkeime

Die antimikrobielle Resistenz (AMR) stellt eine ernst zu nehmende Bedrohung für die Weltgesundheit dar, da nur wenige neue Antibiotika in Aussicht sind. Die gegenwärtigen Methoden zur Entwicklung von Arzneimitteln sind langsam und lassen oft wichtige Details über die Wirkungsweise neuer Antibiotika unberücksichtigt. In diesem Zusammenhang zielt das vom Europäischen Forschungsrat (ERC) geförderte Projekt AI4AMR darauf ab, diese Herausforderung durch die Integration von Mikrobiologie, Genetik, KI und fortschrittlichen Screening-Verfahren zu überwinden, um eine schnellere und effizientere Pipeline für die Entdeckung neuer Antibiotika zu schaffen. Durch den Einsatz von Deep Learning zur Analyse enormer Datensätze bakterieller Reaktionen kann AI4AMR in Rekordzeit Wirkstoffziele und Wirkmechanismen ermitteln. Dieser neuartige Ansatz verspricht die Entdeckung von neuen Antibiotika, auch aus komplexen Naturstoffen, was letztlich zu einer Beschleunigung im Kampf gegen die Antibiotikaresistenz führen und wirksamere Behandlungen für die Zukunft gewährleisten wird.

Ziel

Antimicrobial resistance (AMR) is one of the most pressing global health problems of our times. To counteract AMR, we urgently need new antibiotics, particularly with novel modes of action (MoA). However, while typical antibiotic screening pipelines can identify compounds that impair bacterial growth, they are unable to predict drug targets and MoA so must be followed up by time-consuming target identification steps. By synergizing our expertise in microbiology, genetics, advanced microscopy, metabolomics, medicinal chemistry, computational biology and artificial intelligence (AI), we propose to create a new pipeline at the forefront of the antibiotic discovery field that will be capable of informing simultaneously on the bioactivity and MoA of new antibiotic candidates. Working with seven pathogens, our improved acquisition strategies for both imaging-based high-content screening and metabolomics will generate a massive dataset of rich multidimensional phenotypes of libraries of genetic mutants and of bacteria exposed to a range of perturbants, at unprecedented scale. Deep learning analyses will then enable us to explore these massive datasets to correlate chemical-induced phenotypes to those from mutants, linking drugs to genes to elucidate the target/MoA of new drugs. This innovative pipeline will enable us to explore unique chemical spaces, including complex natural product extracts (without the need for isolation of individual components) and novel synthetic compounds. Promising candidates with novel MoA will be tested against drug-resistant clinical isolates and against a future pandemic 'pathogen X', demonstrating our pipeline as an AI-powered solution for achieving higher productivity in antibiotic discovery. AI4AMR will provide the community with a new pipeline to efficiently screen large compound libraries to identify novel antibiotics and define their MoA and target, helping directly to combat AMR.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC-SYG - HORIZON ERC Synergy Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2024-SyG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 2 421 120,00
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 2 421 120,00

Begünstigte (4)

Mein Booklet 0 0