Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Deep learning analysis of imaging and metabolomic data to accelerate antibiotic discovery against antimicrobial resistance

Descripción del proyecto

Tecnología inteligente para combatir las superbacterias

La resistencia a los antimicrobianos (RAM o AMR, por sus siglas en inglés) constituye una grave amenaza sanitaria mundial, y apenas hay nuevos antibióticos en desarrollo. Los métodos actuales de descubrimiento de fármacos son lentos y, con frecuencia, pasan por alto detalles clave sobre el funcionamiento de los nuevos antibióticos. En este contexto, el proyecto AI4AMR, financiado por el Consejo Europeo de Investigación, busca hacer frente a esta limitación mediante la combinación de la microbiología, la genética, la inteligencia artificial y las técnicas avanzadas de cribado, con el fin de crear un proceso más rápido y eficiente de descubrimiento de nuevos antibióticos. Gracias al uso del aprendizaje profundo para analizar grandes conjuntos de datos sobre la respuesta bacteriana, en AI4AMR se logrará identificar dianas farmacológicas y mecanismos de acción en tiempo récord. Este planteamiento innovador promete descubrir nuevos antibióticos, incluso a partir de productos naturales complejos, lo que permitirá acelerar la lucha contra RAM y garantizar tratamientos más eficaces de cara al futuro.

Objetivo

Antimicrobial resistance (AMR) is one of the most pressing global health problems of our times. To counteract AMR, we urgently need new antibiotics, particularly with novel modes of action (MoA). However, while typical antibiotic screening pipelines can identify compounds that impair bacterial growth, they are unable to predict drug targets and MoA so must be followed up by time-consuming target identification steps. By synergizing our expertise in microbiology, genetics, advanced microscopy, metabolomics, medicinal chemistry, computational biology and artificial intelligence (AI), we propose to create a new pipeline at the forefront of the antibiotic discovery field that will be capable of informing simultaneously on the bioactivity and MoA of new antibiotic candidates. Working with seven pathogens, our improved acquisition strategies for both imaging-based high-content screening and metabolomics will generate a massive dataset of rich multidimensional phenotypes of libraries of genetic mutants and of bacteria exposed to a range of perturbants, at unprecedented scale. Deep learning analyses will then enable us to explore these massive datasets to correlate chemical-induced phenotypes to those from mutants, linking drugs to genes to elucidate the target/MoA of new drugs. This innovative pipeline will enable us to explore unique chemical spaces, including complex natural product extracts (without the need for isolation of individual components) and novel synthetic compounds. Promising candidates with novel MoA will be tested against drug-resistant clinical isolates and against a future pandemic 'pathogen X', demonstrating our pipeline as an AI-powered solution for achieving higher productivity in antibiotic discovery. AI4AMR will provide the community with a new pipeline to efficiently screen large compound libraries to identify novel antibiotics and define their MoA and target, helping directly to combat AMR.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC-SYG - HORIZON ERC Synergy Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2024-SyG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 421 120,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 421 120,00

Beneficiarios (4)

Mi folleto 0 0