Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

HAlogen bonding for Lead-free LOW-dimensional Perovskite Light Emitting Diodes

Project description

New approach to design lead-free, stable and efficient perovskites

Lighting accounts for nearly 20 % of global electricity use and over 2 % of greenhouse gas emissions, rendering it crucial to find sustainable alternatives. Light-emitting diodes (LEDs) have revolutionised lighting with their energy efficiency and recyclability, while organic LEDs have advanced displays in smartphones and screens. However, the latter are costly to produce and struggle with precise colour-tuning. Halide perovskites have emerged as potential candidates for next-generation LEDs owing to their excellent properties and ease of manufacturing but challenges like lead toxicity and instability remain. With the support of the Marie Skłodowska-Curie Actions programme, the HALLOW-PeLEDs project will tackle issues related to the latter by using halogen bonds to design lead-free, stable halide perovskites. The proposed approach should help create more efficient, eco-friendly LEDs.

Objective

Lighting sector accounts for nearly ~ 20 % of the global electricity consumption, over 2 % of green-house emission and carbon footprint. With the growing demand of energy consumption, it is urgent to develop alternative technologies, that mitigate global warming. In this regard, light emitting diodes (LEDs) have revolutionized lighting technology, as they are recyclable, energy-efficient and require less power than traditional bulbs. In this regard, LEDs has been lighting our homes, industries ad even medical applications. Particularly, Organic-LEDs (OLEDs) containing organic/polymer molecules such as anthracenes, coumarin derivatives, biphenyl acetylene aryl derivatives etc have been successfully employed in our smartphones and screens. However, their application is limited by cost of manufacture and difficulty in color-tuning with high color-purity, especially over the visible and infra-red regions. Since 2009, a new class of semiconductors known as halide perovskites have emerged as potential candidates for next-generation LEDs owing to their feasibility in terms of processing and manufacturing and excellent opto-electronic properties. However, they possess lead toxicity and are unstable under ambient conditions. In this regard, replacement of lead with other alternatives and use of functional spacer cation has been adopted as a strategy to overcome these challenges. Specifically, designing a functional cation with halogen bond (XB) is rarely studied and can be useful in developing novel halide perovskites with improved structural stability (>1 year, ambient conditions) and improving luminescence properties for PeLEDs. Thus, with the help of MSCA-PF funding program, HALLOW-PeLEDs, attempts to combine the synergy of physical chemistry with supramolecular interactions for optoelectronic applications, by harnessing the virtues of halogen bonds (XB) to form ordered low-dimensional lead-free metal halide perovskites for obtaining efficient Perovskite LEDs (PeLEDs).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2024-PF-01

See all projects funded under this call

Coordinator

POLITECNICO DI MILANO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 209 483,28
Address
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0