Skip to main content
European Commission logo print header

Exploiting the saccharification potential of pathogenic microorganisms to improve biofuel production from plants

Objective

"FUEL-PATH aims at providing new knowledge on plant cell wall and innovative biotechnological solutions for biomass utilization. A key process for biomass utilization is the initial degradation of cell walls into fermentable sugars (saccharification); this is hindered by the wall recalcitrance to hydrolysis. We propose to improve the plant saccharification characteristics by mimicking a strategy successfully used by phytopathogenic microorganisms. These produce pectic enzymes before other cell wall-degrading enzymes (CWDEs) to weaken the linkages between the wall components and favour the maceration of the plant tissue. Homogalacturonan (HGA), a major component of pectin, is synthesized in a methylated form and is de-esterified in the wall by methylesterases (PMEs). De-esterified HGA interacts with calcium to form ""egg-box"" structures, which are critical for maintaining the integrity of the entire wall. We propose to improve saccharification by expression in plants of microbial polygalacturonases (PGs) hydrolizing HGA. Plants expressing a fungal PG have reduced levels of HGA and enhanced saccharification (unpublished preliminary data). Since PG activity in pianta affects normal growth, a technology of enzyme control through the use of specific protein inhibitors will be developed. A second strategy to be adopted for weakening the ""egg-box"" is the overexpression of PME inhibitors. This may cause not only an increased degradability but also an enhanced biomass production. FUEL-PATH will provide detailed information on the structure, function and construction of tailor-made enzymes and inhibitors suitable for the saccharification process. FUEL-PATH will also address the relationship between pectin composition and developmental responses mediated by hormones in PG-expressing plants. A genetic screen will be performed to isolate genes involved growth defects and increased cell wall degradability and these will be characterized for a possible biotechnological use."

Call for proposal

ERC-2008-AdG
See other projects for this call

Host institution

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
EU contribution
€ 2 099 600,00
Address
Piazzale Aldo Moro 5
00185 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Simone Ferrari (Dr.)
Principal investigator
Felice Cervone (Prof.)
Links
Total cost
No data

Beneficiaries (1)