Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

intelligent Water Treatment Technologies for water preservation combined with simultaneous energy production and material recovery in energy intensive industries

CORDIS fournit des liens vers les livrables publics et les publications des projets HORIZON.

Les liens vers les livrables et les publications des projets du 7e PC, ainsi que les liens vers certains types de résultats spécifiques tels que les jeux de données et les logiciels, sont récupérés dynamiquement sur OpenAIRE .

Livrables

Report on final Workshop. (s’ouvre dans une nouvelle fenêtre)

Proceedings of final Workshop scheduled to be held in Birmingham at 42 month

Report on the design and operation condition for demonstration units of WP5, WP6 and WP7 (s’ouvre dans une nouvelle fenêtre)

Conceptual design for the 3 pilot-scale systems

P&ID and functional description of the integrated RED and MD pilot unit (s’ouvre dans une nouvelle fenêtre)

Definition of the Process Flow Diagram PFD and subsequent Piping and Instrument Drawing PID plus functional description of the pilot unit Design documents for the construction of the pilot and programming of the control software

Sensors datasheets and features. (s’ouvre dans une nouvelle fenêtre)

For each sensor a datasheet will be drawn up containing communication protocol power supply full scale resolution precision linearity POLITO FUEL Techedge Especially for the PLC based controller a study will be contacted towards migrating the design to the cloud

Health and Safety assessment. (s’ouvre dans une nouvelle fenêtre)

Treatment of wastewater may pose risks to the health of WWT operators since wastewater is a rich substrate for several bacterial, fungal, viruses and contains a range of chemicals depending on the nature of the sewage. Wastewater treatment systems are moreover becoming increasingly important for the treatment and dispersal of the effluents. The aim here is to assess the potential risk associated with WWT with focus on the occupational exposure assessment in line with the risk assessment paradigm (Hazard identification, Dose-response assessment, Exposure assessment, Risk Characterization). Risk assessment will be estimated by applying modelling approach (e.g. online control banding and risk management tool) and using criteria of severity and probability of accident.The assessment of health and safety aspects will encompass the identification of all major internal and external health and safety factors that influence or potentially have impacts on the application of the new technologies in WWT.

Report on results of peration and fine tuning of the smart monitoring based on Machine learning (NCSRD, M42) (s’ouvre dans une nouvelle fenêtre)

Retrain system for the input-outputs of this application (Refrigeration tower) adapting neural networks of the algorithm to the requirements. The Reinforcement Learning algorithm will learn from the data provided by simulator and real time

Report on the operation of the lab scale MD/MCr process. (s’ouvre dans une nouvelle fenêtre)
Periodic Risk Monitoring Report (s’ouvre dans une nouvelle fenêtre)

This report will include the identification of new potential risks and the definition of mitigation measures as well as the monitoring of the implementation of such measures

Report on the water use for all the intelWATT's case studies applications (s’ouvre dans une nouvelle fenêtre)

In this task a complete physicochemical characterisation of every process and wastewater effluent will be performed Indicative analytical method that will be used include ICP AAS UVVis HPLC Ionic chromatography etcAdditionally the operating conditions will be analysed in detail in order to explore water preservation potentials in every intelWATTs application

Plan for the Exploitation and Dissemination of Results (PEDR). (s’ouvre dans une nouvelle fenêtre)

The main outcome of this deliverable will be the Plan for the Exploitation and Dissemination of Results PEDR

LCSA of case study 2, Integrated energy harvesting from mining brines. (s’ouvre dans une nouvelle fenêtre)

In this task the methodology defined in T8.1 will be applied to case study 2 (WP6) to get the Life Cycle Sustainability Assessment of the new technology. The assessment will be performed through the collection of primary data from the case study for environmental, economic, social and circularity aspects. Data will be elaborated with appropriate software sans models according to the methodology defined in T8.1. The final result of the task will be the Life Cycle Sustainability Assessment of the technology “Hybrid process for water recovery and energy harvesting from industrial brines”.

Report on scalability of AWC-NF membranes for nanofiltration. (s’ouvre dans une nouvelle fenêtre)

Report on scalability of AWCNF membranes for nanofiltration

LCSA of case study 1, CTBD treatment. (s’ouvre dans une nouvelle fenêtre)

In this task the methodology defined in T8.1 will be applied to case study 1 (WP5) to get the Life Cycle Sustainability Assessment of the new technology. The assessment will be performed through the collection of primary data from the case study for environmental, economic, social and circularity aspects. Data will be elaborated with appropriate software sans models according to the methodology defined in T8.1. The final result of the task will be the Life Cycle Sustainability Assessment of the technology “Fresh water preservation in combined cycle power plant”.

Report on the selection of membranes for Case Studies 1 and 2 (s’ouvre dans une nouvelle fenêtre)

Report on the selection of membranes for Case Studies 1 and 2 WP4 5

First report on synthesis and characterization of graphene-based membrane (POLITO, M6) (s’ouvre dans une nouvelle fenêtre)

Graphene oxide will be considered for the fabrication of ionically selective membrane Commercial GO powder will be used to fabricate labscale GO membrane by vacuum filtration of GObased water dispersion At the same time alternative membrane fabrication process will be investigated screen printing calendaring doctorblade spin coating as preliminary step for subsequent scaling up The GO membranes will be functionalized in order to obtain a selfpolarization of the membrane residual positive and negative charge for anion and cationexchange membranes respectively The GO membranes will be characterized both by SEM Raman XPS and TEM

Report on the evaluation of performance of the treatment unit. (s’ouvre dans une nouvelle fenêtre)

BIA supported by NI, UoB and THK will operate the prototype and asses its performance. The following parameters will be continuously evaluated:- long term water productivity and preservation- the automation response / machine learning behavior- operational stability and reliability (membranes, equipment and sensors-IoT)- metal recovery and reuse- maintenance needs, warning and possible failure investigations- mass and energy balances- any safety issues that may rise- corrosion and fouling/scaling phenomena- operational costs

Final report on synthesis and physical/chemical characterizations of nanomaterials for innovative membranes (s’ouvre dans une nouvelle fenêtre)

Scaling up of GO membrane production. Scale up of the GO membrane fabricationfrom 4.7 cm in diameter up to about 20 cm in diameter and tested in REDstack’s facilities.

Report on sensors requirements in order to achieve quantitative water analysis. (s’ouvre dans une nouvelle fenêtre)

The technical specifications of commercial water monitoring sensors will be studied such as colorimetric sensors portable spectrophotometric sensors electrical conductivity meter turbidity meter assessing their applicability and efficiency Politecnico di Torino will also investigate the development of MEMS type sensors which are particularly reliable and low energyconsuming combining high consistency and efficiency

Final LCSA Methodology. (s’ouvre dans une nouvelle fenêtre)

The LCA methodology will be validated during the project and finalized after the application to the case studies at the end of the project.

Initial LCSA Methodology for intelWATT. (s’ouvre dans une nouvelle fenêtre)

In this task the LCSA methodology will be defined. In particular, the methodologies for (environmental) LCA, LCC and Social LCA will be combined and harmonized along the four traditional Life Cycle Assessment phases (Goal&Scope definition, Life Cycle Inventory, Life Cycle Impact Assessment and Interpretation). A circularity index will be developed to evaluate the circularity level of the new WWT technologies. The results of environmental, economic, social and circularity assessment will be weighted and combined in a final sustainability assessment.

Training plan. (s’ouvre dans une nouvelle fenêtre)

The main outcome of this deliverable is a plan describing all the training activities that will contribute to professional development through advanced training of researchers and other key staff research managers industrial executives and potential users of knowledge generated by the project

Quality Assurance Plan. (s’ouvre dans une nouvelle fenêtre)

Quality Assurance Plan that will include rules for preparing the deliverables and the ways of verification

Report on the physicochemical properties for all feed and waste water streams and key quality monitoring parameters (s’ouvre dans une nouvelle fenêtre)

Determination of the physicochemical properties for all feed and waste water streams including chemical compositions temperatures and flow ratesDefinition of the most representative key quality parameters for on line monitoring

Lab scale assessment of highly selective artificial water channels membranes AWC-MD for membrane distillation (s’ouvre dans une nouvelle fenêtre)

Lab scale assessment of highly selective artificial water channels membranes AWCMD for membrane distillation

Report on fabrication of highly selective artificial water channels membranes AWC-NF for nanofiltration (s’ouvre dans une nouvelle fenêtre)

Report on fabrication of highly selective artificial water channels membranes AWCNF for nanofiltration

Study on the replication potential of intelWATT's technologies (s’ouvre dans une nouvelle fenêtre)

Study on the replication potential of intelWATT technological innovations in water stressed Mediterranean regions.

Report on optimizations and control of porosity and surface chemistry in graphene-based membrane (s’ouvre dans une nouvelle fenêtre)

The porous materials will be infiltrated with low cost IEM eg SPEEK SPES dissolved in a suitable solvent in order to get a compenetrated multilayer reducing the impedance associated to the thick membrane commonly used in membraneassisted processes maximizing the interface and allowing to higher energy conversion efficiency Additional infiltration can be obtained by ALD process in order to have atomiclayer thick metaloxides inside the GO channel Moreover interlayer distance will be controlled and partially tuned by acting on the drying state and exploiting functional link acting as spacers Other 2D materials such as MXenes will be considered for the fabrication of composite membranes

Report on intelWATT training schools. (s’ouvre dans une nouvelle fenêtre)

A report all the different training approaches will be adopted by intelWATT including among others a) Organisation of one or more training events (“intelWATT school”) integrated in existing curricula and modules for high-degree students and young researchers of the institutions involved (both academia and enterprises) with well-defined focus in line with the progress of activities, b) Staff exchange between partner’s institutions, especially of young researchers. This (short) mobility plan includes in particular personnel exchange between involved academia/research institutes and enterprises; this will facilitate extensive transfer of knowledge and technology transfer at later stages. This will open job opportunities for young trained students (PhD, post-docs) in the industry, c) Periodic technical meetings and d) Organization of a final workshop conference

Report on results from lab systems on fouling/scaling studies (s’ouvre dans une nouvelle fenêtre)

The fouling tendency of all the membranes that will be used in intelWATTs processes will be evaluated by first analyzing the relevant feedwater quality properties These parameters include a Biological organic indices Microbial ATP Bacterial growth potential BGP LCOCD Total Organic Carbon TOC Total Nitrogen TN and Orthophosphate b Particulate fouling indices SDI045 MFI045 MFI10 KDa and c Transparent exopolymer particles TEP10KDa Identification of fouling types will be performed based on the membrane autopsy of the fouled membrane Based on the results the best pretreatment options will be suggested

Report on scalability of ion exchange and MD/MCr membranes (s’ouvre dans une nouvelle fenêtre)

Polyvinylidenefluoride PVDF and the more hydrophobic copolymer Polyvinylidenefluoride Hexafluoropropylene PVDFHFP will be used for the fabrication of MDMCr membranes Drywet spinning and the wetspinning phase inversion methods will be applied for HF type membrane while dry casting will be employed for the flat sheet configuration The produced membranes will be characterized in terms of membrane distillation performance pore structure and fouling resistance In collaboration with THK and with support from CUT the appropriate modules for the application will be implemented

Data Lake Design Document. (s’ouvre dans une nouvelle fenêtre)

Data Lake Design Document

Report on the evaluation of performance of the CTBD demo unit (PPC, M42) (s’ouvre dans une nouvelle fenêtre)

During this period PPC supported by NI and NCSRD will operate the prototype and asses its performance.The following parameters will be continuously evaluated:- long term water productivity and preservation- the automation response / machine learning behavior- operational stability and reliability (membranes, equipment and sensors-IoT)- energy consumption and fluctuations- maintenance needs, warning and possible failure investigations- mass and energy balances- any safety issues that may rise- corrosion and fouling/scaling phenomena- operational costs

LCSA of case study 3, Hybrid system for the recovery of electrolytes and water preservation. (s’ouvre dans une nouvelle fenêtre)

In this task the methodology defined in T8.1 will be applied to case study 3 (WP7) to get the Life Cycle Sustainability Assessment of the new technology. The assessment will be performed through the collection of primary data from the case study for environmental, economic, social and circularity aspects. Data will be elaborated with appropriate software sans models according to the methodology defined in T8.1. The final result of the task will be the Life Cycle Sustainability Assessment of the technology “Tailor made membrane and ion exchange resin development and upscale”

Report on optimization and characterization of tubular pretreatment UF membrane (s’ouvre dans une nouvelle fenêtre)

The UF tubular membrane modules already used as standard at CUT are optimized based on the requirements of WP2 and findings of WP3 The corresponding improvements will include both the tubular nonwoven which serves as the membrane support and the actual membranes

Deep Learning system implementation. (s’ouvre dans une nouvelle fenêtre)

The Deep Learning algorithm will be developed using a DL framework tensorflowkeras or pytorch and will be specifically designed for general purpose process control

Deep Learning system design document. (s’ouvre dans une nouvelle fenêtre)

Deep Learning system design document

Smart Monitoring System Design document. (s’ouvre dans une nouvelle fenêtre)

Smart Monitoring System Design document

Set up of the project management collaborative tool (s’ouvre dans une nouvelle fenêtre)
IMPACT platform integrated. (s’ouvre dans une nouvelle fenêtre)

This platform will be able to implement the following tasks: a) manage sensors subscription southbound and b) Collect and interchange data using LWM2M, LWPA (NB-IoT), MQTT, TR-069 or other industrial protocols like MODBUS, apply security, data privacy and segregation policies for IoT applications and enterprises.

Functional cloud-based platform user interface dashboard (s’ouvre dans une nouvelle fenêtre)

Analysis on dashboard data and functionalities, optimization of integrated systems and redesign of sensors and final optimization of design based on performance, connectivity, edge computing functionality and power supply. Optimization and finalization of machine learning process based on testing of the pilot system.

NI Platform integrated. (s’ouvre dans une nouvelle fenêtre)

The integration between NI-Connect platform the PLCs and Impact platform will be analyzed. NI will undertake to design any modification needed in order to maintain compatibility with the other systems. The NI-Connect will be adapted and deployed in the landscape in order to be integrated with the other components of the smart control system

Sensor data ingestion system Implementation. (s’ouvre dans une nouvelle fenêtre)

Sensor data ingestion system Implementation

Membrane Simulator implemented (s’ouvre dans une nouvelle fenêtre)

The simulator component will be developed in order to provide input and output data to train the deep learning control system before the real scenario will be deployed. Simulator will model the membrane behavior (input and output data) through three different way; (1) mathematical models of current membranes, (2) mathematical models of membranes and (3) historical data of similar scenarios. This component will be able to score the fitting of each model and balance the contribution for the overall result of the simulation.

Dashboard Design Document. (s’ouvre dans une nouvelle fenêtre)

Dashboard Design Document

Integrated sensors platform design. (s’ouvre dans une nouvelle fenêtre)

The implementation of a modular general purposed system is envisaged for monitoring key process indicators This system will be able to integrate different types of sensors MEMS sensors traditional sensors laser sensors fiber optic sensors etc which will be customized in relation to the different application to which they are intended The great advantage of the proposed system will be to allow high efficiency dynamic monitoring capable of increasing the quantity and quality of data available in IoT perspective in order to evaluate the presence of analytes in the aqueous sample before and after treatment and to evaluate the process parameters

Engineering & automation detailed design for CTBD treatment protype (s’ouvre dans une nouvelle fenêtre)

NI will provide the detailed design and construct the unit in a compact form. The unit will operate with a capacity of 100 m3/day (3% of the actual CTBD discharge stream) aiming at significant reductions of water consumption (>99%) though a tailor-made decision-making design.

Design of Sensor data ingestion mechanism. (s’ouvre dans une nouvelle fenêtre)

Design of Sensor data ingestion mechanism

Data Lake System Implementation. (s’ouvre dans une nouvelle fenêtre)

The data lake will able to store the incoming data from the sensors and actuators in the three demonstration plants. The “data lake” will store the raw information as it is sent from the devices and provide a data processing pipeline that will validate, clean, homogenize, aggregate and transfer the data to a data storage that will serve as the data source for the digital twin and the representation dashboards, as well as, the Deep Learning algorithms. The data store will also provide a semantic data layer that will enrich the information with annotations to be used in the dashboard representations and the digital twins. This semantic data will be provided by the data processing pipeline and act as an abstraction layer between the raw data coming from the sensors and the representation layers, allowing to have a common representation model for the several processes involved.The data lake will be a common infrastructure to the three case studies and will be hosted in a public or private cloud environment accessible to all interested parties under high security provided by the IMPACT platform. Data processing will be carried by elastic infrastructure components based on big data techniques such as Spark and Hadoop and running on containerized workload management environments such as Kubernetes.

Engineering & automation detailed design for treatment prototype. (s’ouvre dans une nouvelle fenêtre)

Engineering & automation detailed design for HRRO/IX treatment prototype

Delivery of PVDF based membranes for MD/MCr (s’ouvre dans une nouvelle fenêtre)

Delivery of PVDF based membranes for MD/MCr (100 m2 with minimum water flux @ ΔT 60oC 20LMH and >99.5% salt rejection)

Lab scale RED/MD unit (s’ouvre dans une nouvelle fenêtre)

Lab scale development integration and optimization of the RED MD treatment process

Delivery of optimized tubular UF membrane modules (s’ouvre dans une nouvelle fenêtre)

The optimized Tubular UF modules will be delivered to CNR-ITM, NCSR and THK and for use in the case studies (WP’s 5, 6 and 7).

A fully operational TRL7 CTBD unit (s’ouvre dans une nouvelle fenêtre)

A fully operational TRL7 of 100m3/day capacity for the treatment of cooling tower water installed to the PPC Megalopolis power plant unit achieving >99% recovery at 0.30€/m3

Smart Monitoring System Integrate. (s’ouvre dans une nouvelle fenêtre)

Smart Monitoring System Integrated

Delivery of nanofiltration membranes (s’ouvre dans une nouvelle fenêtre)

Delivery of nanofiltration membranes achieving 50 LMH water flux and >98% salt rejection (2000 ppm MgSO4) at 5bar

Lab scale CTBD treatment unit (s’ouvre dans une nouvelle fenêtre)

Integration and evaluation of the conventional (pressure, temperature, conductivity, turbidity flowmeter etc), as well as, the customized (Fe2+, SO42+ and Cl-) sensors will be performed ensuring alignment with the KPI’s set in WP1. Using membranes (4-inch diameter) and modules provided by NI and CUT, along a dedicated pre-treatment testing system (CUT), process conditions and configurations of the CTBD lab unit will be optimized. Zero liquid discharge will be introduced though membrane distillation, crystallisation subprocess developed by NCSRD, THK & CUT.

Lab scale HRRO unit for integration with IX (s’ouvre dans une nouvelle fenêtre)

Lab scale HRRO unit approx 05 m3hr output for integration with IX

A fully operational TRL8 of 25m³/day capacity for the recovery and reuse of metals (copper, chromium and nickel and water from plastic electroplating wastewater (BIA GmbH, Solingen, Germany). (s’ouvre dans une nouvelle fenêtre)

NI will supervise the construction, installation and commissioning of the unit under the assistance of THK, UoB, BIA, NOKIA, Techedge and Fuelics. Fuelics, Techedge and NOKIA will be responsible for the online monitoring and data management subsystems of the unit developed in WP8 to ensure interconnectivity with machine learning software.

Fully operational integrated RED and MD pilot unit. (s’ouvre dans une nouvelle fenêtre)

Construction of the pilot unit according to the optimized design aspects at the pilot site in Castellgali. Integration of the RED units, manufactured and assembled by REDstack, and MD units, supplied by NCRSD, in the pilot. Programming of the control software by FUEL, to allow the development and testing of the smart process control. Commissioning of the pilot unit at the pilot site at Castelgalli. Start-up of the system.

Lab scale HRRO/IX unit (s’ouvre dans une nouvelle fenêtre)

Lab scale development, integration and optimization of the hybrid HRRO/IX treatment process for metal plating effluents

Dashboard System Implementation. (s’ouvre dans une nouvelle fenêtre)

The dashboard functionality will provide information about the signals, both of their status and their history and future trends, as well as allowing to analyse the state of the predictive model and its performance over time. On one hand, Techedge will create several dashboards that allow to visualize in a centralized way the current state of the input and output signals, from which it will be possible to validate the current state of each scenario under study and the possible incidents related to the different signs. Dashboard will be able to visualize the historical information of the signals and, through different analytical models, will be able to visualize the tendency of those signals in the future to be able to act preventively. The other scenario will allow analysing the effectiveness of predictive models over time and visualize how the actions carried out by deep learning models have influenced the system positively or negatively. From these dashboards, it will be possible to discover how the retraining performed by the system can improve the results, making the environment more and more efficient.

Open Research Data Pilot and Data management Plan (s’ouvre dans une nouvelle fenêtre)

Report on Open Research Data Pilot and Data management Plan Periodic updates along with the projects reporting periods

Project Website. (s’ouvre dans une nouvelle fenêtre)

Development of and regular updating of the intelWATT web site and social media presence including LinkedIn ResearchGate FB and Twitter

Project graphic identity (LOGO), leaflet and poster (s’ouvre dans une nouvelle fenêtre)

The specific deliverable includes among others the development of project public website intelWATT leaflet intelWATT posters as well as the creation of the project graphic identity Logo

Publications

A Batch Reverse Osmosis Process to Recover and Recycle Trivalent Chromium from Electroplating Wastewater (s’ouvre dans une nouvelle fenêtre)

Auteurs: Roxanne Engstler; Jan Reipert; Somayeh Karimi; Josipa Lisičar Vukušić; Felix Heinzler; Philip Davies; Mathias Ulbricht; Stéphan Barbe
Publié dans: Membranes; Volume 12; Numéro 9; Pages: 853, Numéro 1, 2022, Page(s) 853, ISSN 2077-0375
Éditeur: Molecular Diversity Preservation International
DOI: 10.3390/membranes12090853

Water Flow‐Induced Energy Harvesting Exploiting Stacked Graphene Oxide Membranes (s’ouvre dans une nouvelle fenêtre)

Auteurs: Antonio Lezzoche, Anna Aixalà‐Perelló, Alessandro Pedico, Marco Laurenti, Federico Raffone, Andrea Lamberti
Publié dans: Advanced Sustainable Systems, Numéro 7, 2023, ISSN 2366-7486
Éditeur: Wiley
DOI: 10.1002/adsu.202300046

Bridging the Implementation Gap between Pomace Waste and Large-Scale Baker’s Yeast Production (s’ouvre dans une nouvelle fenêtre)

Auteurs: Josipa Lisičar Vukušić, Thomas Millenautzki, Stéphan Barbe
Publié dans: AgriEngineering, Numéro 5, 2023, Page(s) 2238-2252, ISSN 2504-3900
Éditeur: MDPI
DOI: 10.3390/agriengineering5040137

Hybrid semi-batch/batch reverse osmosis (HSBRO) for use in zero liquid discharge (ZLD) applications (s’ouvre dans une nouvelle fenêtre)

Auteurs: Ebrahim Hosseinipour; Somayeh Karimi; Stéphan Barbe; Kiho Park; Philip A. Davies
Publié dans: Desalination, Numéro Volume 544, 15 December 2022, 116126, 2022, ISSN 0011-9164
Éditeur: Elsevier BV
DOI: 10.1016/j.desal.2022.116126

A robust high-pressure RO technology to overcome the barriers to full circularity in Cr(III) electroplating operations

Auteurs: R. Engstler, E Hosseinipour, S. Yilmaz, F. Heinzler, M. Wagner, M. Ulbrichtb, P. Davies, S. Barbe
Publié dans: ACS ES&T Water, 2024, ISSN 2690-0637
Éditeur: ACS

Artificial water channels-embedded PVDF membranes for direct contact membrane distillation and ultrafiltration (s’ouvre dans une nouvelle fenêtre)

Auteurs: Kelvinraj Nursiah, Valentina-Elena Musteata, Sophie Cerneaux, Mihail Barboiu
Publié dans: Frontiers in Membrane Science and Technology, Numéro 2, 2023, ISSN 2813-1010
Éditeur: Frontiers Media S.A / Frontiers in Membrane Science and Technology
DOI: 10.3389/frmst.2023.1241526

Turning mine-tailing streams into sources of water and mineral salts in a membrane-sustained circular scenario (s’ouvre dans une nouvelle fenêtre)

Auteurs: Enrica Fontananova, Elvira Pantuso, Laura Donato, Elisa Esposito, Rosanna Rizzi, Rocco Caliandro, Gianluca Di Profio
Publié dans: npj Clean Water, Numéro 7, 2024, ISSN 2059-7037
Éditeur: Springer Nature
DOI: 10.1038/s41545-024-00404-8

Energy duty in direct contact membrane distillation of hypersaline brines operating at the water-energy nexus (s’ouvre dans une nouvelle fenêtre)

Auteurs: Enrica Fontananova, Valentina Grosso, Elvira Pantuso, Laura Donato, Gianluca Di Profio
Publié dans: Journal of Membrane Science, Numéro Volume 676, 15 June 2023, 121585, 2023, ISSN 0376-7388
Éditeur: Elsevier BV
DOI: 10.1016/j.memsci.2023.121585

State-of-the-art review of porous polymer membrane formation characterization—How numerical and experimental approaches dovetail to drive innovation (s’ouvre dans une nouvelle fenêtre)

Auteurs: Bohr, Sven Johann; Wang, Fei; Metze, Michael; Vukušić, Josipa Lisičar; Sapalidis, Andreas; Ulbricht, Mathias; Nestler, Britta; Barbe, Stéphan
Publié dans: Frontiers in Sustainability, Numéro Volume 4,2023, 2023, ISSN 2673-4524
Éditeur: Frontiers Media S.A
DOI: 10.3389/frsus.2023.1093911

Superhydrophobic nanoparticle-coated PVDF–HFP membranes with enhanced flux, anti-fouling and anti-wetting performance for direct contact membrane distillation-based desalination (s’ouvre dans une nouvelle fenêtre)

Auteurs: Ioannis Tournis; Dimitris Tsiourvas; Zili Sideratou; Lamprini G. Boutsika; Aggeliki Papavasiliou; Nikos K. Boukos; Andreas A. Sapalidis
Publié dans: Environmental Science Water Research & Technology, Numéro 8, 2022, 2373, 2022, Page(s) 2373–2380, ISSN 2053-1419
Éditeur: Royal society of Chemistry
DOI: 10.1039/d2ew00407k

Well-established carbon nanomaterials: modification, characterization and dispersion in different solvents (s’ouvre dans une nouvelle fenêtre)

Auteurs: George V. Theodorakopoulos, Dionysios S. Karousos, Jan Benra, Stefan Forero, Ruben Hammerstein, Andreas A. Sapalidis, Fotios K. Katsaros, Tim Schubert, Evangelos P. Favvas
Publié dans: Journal of Materials Science, Numéro 59, 2024, Page(s) 3339-3362, ISSN 0022-2461
Éditeur: Kluwer Academic Publishers
DOI: 10.1007/s10853-024-09413-x

Advances in Water Resource Management: An In Situ Sensor Solution for Monitoring High Concentrations of Chromium in the Electroplating Industry (s’ouvre dans une nouvelle fenêtre)

Auteurs: Giulia Mossotti, Andrea Piscitelli, Felice Catania, Matilde Aronne, Giulio Galfré, Andrea Lamberti, Sergio Ferrero, Luciano Scaltrito, Valentina Bertana
Publié dans: Water, Numéro 16, 2024, Page(s) 1167, ISSN 2073-4441
Éditeur: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/w16081167

Computational fluid dynamics modelling and optimization of solar powered direct contact membrane distillation with localized heating for off-grid desalination (s’ouvre dans une nouvelle fenêtre)

Auteurs: Akbar Samadi, Shahla Samadi, Gianluca Di Profio, Shuaifei Zhao, Enrica Fontananova
Publié dans: Frontiers in Membrane Science and Technology, Numéro 3, 2024, ISSN 2813-1010
Éditeur: Frontiers
DOI: 10.3389/frmst.2024.1348874

Enhancing Surface Charge Density of Graphene Oxide Membranes through Al(OH)4- Anion Incorporation for Osmotic Energy Conversion (s’ouvre dans une nouvelle fenêtre)

Auteurs: Anna Aixalà-Perelló, Federico Raffone, Luisa Baudino, Alessandro Pedico, Mara Serrapede, Giancarlo Cicero, Andrea Lamberti
Publié dans: Advanced Energy and Sustainability Research, 2023, ISSN 2699-9412
Éditeur: WILEY
DOI: 10.22541/au.169762731.13130845/v1

A Robust High-Pressure RO Technology to Overcome the Barriers to Full Circularity in Cr(III) Electroplating Operations (s’ouvre dans une nouvelle fenêtre)

Auteurs: Roxanne Engstler, Ebrahim Hosseinipour, Seval Yilmaz, Felix Heinzler, Marvin Wagner, Mathias Ulbricht, Philip Davies, Stéphan Barbe
Publié dans: ACS ES&T Water, Numéro 4, 2024, Page(s) 5461-5472, ISSN 2690-0637
Éditeur: American Chemical Society
DOI: 10.1021/acsestwater.4c00556

Green Methods for the Fabrication of Graphene Oxide Membranes: From Graphite to Membranes (s’ouvre dans une nouvelle fenêtre)

Auteurs: Alessandro Pedico, Luisa Baudino, Anna Aixalà-Perelló, Andrea Lamberti
Publié dans: Membranes, Numéro 13, 2023, Page(s) 429, ISSN 2077-0375
Éditeur: Molecular Diversity Preservation International
DOI: 10.3390/membranes13040429

Direct experimental comparison of batch reverse osmosis (RO) technologies (s’ouvre dans une nouvelle fenêtre)

Auteurs: Ebrahim Hosseinipour, Philip A.Davies
Publié dans: Desalination, 2024, ISSN 0011-9164
Éditeur: Elsevier BV
DOI: 10.1016/j.desal.2024.117717

High-Pressure Batch Reverse Osmosis (Ro) for Zero Liquid Discharge (Zld) in a Cr(Iii) Electroplating Process (s’ouvre dans une nouvelle fenêtre)

Auteurs: Somayeh Karimi, Roxanne Engstler, Ebrahim Hosseinipour, Felix Heinzler, Marvin Wagner, Marc Piepenbrink, Stephan Barbe, Philip Davies
Publié dans: SSRN, 2023, ISSN 1875-6670
Éditeur: Elsevier
DOI: 10.2139/ssrn.4675842

Scalable and highly selective graphene-based ion-exchange membranes with tunable permselectivity (s’ouvre dans une nouvelle fenêtre)

Auteurs: Anna Aixalà-Perelló, Alessandro Pedico, Marco Laurenti, Enrica Fontananova, Sergio Bocchini, Ivan Vito Ferrari, Andrea Lamberti
Publié dans: npj 2D Materials and Applications, Numéro 7, 2023, ISSN 2397-7132
Éditeur: Nature
DOI: 10.1038/s41699-023-00399-9

Permselectivity and Ionic Conductivity Study of Na+ and Br− Ions in Graphene Oxide-Based Membranes for Redox Flow Batteries (s’ouvre dans une nouvelle fenêtre)

Auteurs: Raphael Flack, Anna Aixalà-Perelló, Alessandro Pedico, Kobby Saadi, Andrea Lamberti, David Zitoun
Publié dans: Membranes, Numéro 13, 2023, Page(s) 695, ISSN 2077-0375
Éditeur: Molecular Diversity Preservation International
DOI: 10.3390/membranes13080695

Batch-RO als Schlüsseltechnologie zur Überbrückung der Umsetzungslücke zwischen Abfällen der Lebensmittelherstellung und industriellen Bioprozessen (s’ouvre dans une nouvelle fenêtre)

Auteurs: S. Barbe, T. Millenautzki, J. Lisičar Vukušić, P. A. Davies
Publié dans: 2024
Éditeur: GDL-Kongress Lebensmitteltechnologie 2024
DOI: 10.13140/rg.2.2.13012.00649

Performance of a high-pressure, high recovery batch RO system

Auteurs: E. Hosseinipour, S. Karimi and P. A. Davies
Publié dans: Desalination for the Environment: Clean Water and Energy, 2023
Éditeur: European Desalination Society

Batch reverse osmosis technology for brine concentration and zero liquid discharge (ZLD)

Auteurs: P. A. Davies
Publié dans: 6th International Conference on Desalination using Membrane Technology, 2023
Éditeur: MDPI

Metal plating wastewater treatment using hybrid semi batch-batch reverse osmosis (HSBRO)

Auteurs: S. Karimi, R. Engstler, E. Hosseinipour, S. Barbe, P. A. Davies
Publié dans: Desalination for the Environment: Clean Water and Energy, 2023
Éditeur: European Desalination Society

PVDF membranes for membrane distillation prepared by VIPS – A combined study of artificial water channel effectiveness and membrane performance prediction (s’ouvre dans une nouvelle fenêtre)

Auteurs: Sven Johann Bohr, Kelvinraj Nursiah Loubna, Karfane Atfane, Sophie Cerneaux, Stéphan Barbe Mihail Barboiu
Publié dans: Open Research Europe, 2024, ISSN 2732-5121
Éditeur: F1000 Research Limited on behalf of the European Commission
DOI: 10.12688/openreseurope.17462.1

Recherche de données OpenAIRE...

Une erreur s’est produite lors de la recherche de données OpenAIRE

Aucun résultat disponible

Mon livret 0 0