Skip to main content
European Commission logo print header

Advanced Pylon Noise Reduction Design and Characterization through flight worthy PIV

Cel

It is proposed in this research programme to optimize the pylon shape of a Counter Rotating Open Rotor (CROR) propeller and its embedded flow control system, in order to reduce the noise emission through pylon wake attenuation, by means of advanced experimental methodology, such as 3CHD-PIV, adapted to in-flight tests.
It is proposed to decompose the project into subtasks of increasing complexity. Each task falls within the scope of either ISAE or AAE. Thus, ISAE and AAE offer to join their different skills to elaborate a work-plan based on well-defined responsibilities.
The subtasks are summarized below:
1.Optimization of the flow control device for the 2D pylon. 2.Detailed design and manufacturing of the 2D type pylon wind tunnel model and its instrumentation.
3.Low speed wind tunnel tests of the 2D pylon without open rotor, in a non vibrating environment, including parametric studies on the advanced flow control devices parameters and boundary layer transition effects.
4.Comparison between experimental results and numerical prediction. Analysis of the results, physical understanding and recommendation for further improvement of the concept.
5.Definition of vibration environment simulators (VES), in compliance with Airbus inputs from in flight tests.
6.Detailed definition and manufacturing of VES applicable to the different PIV subsystems (cameras, laser, laser sheet generation devices) as implemented in the wind tunnel.
7.Characterization of the limits of the vibration spectrum supported by the PIV subsystems, beyond which vibration-induced errors on PIV measurements impose corrections on raw data or on PIV subsystems attitude.
8.Definition of correction methodology to correct PIV measurements, through raw data manipulation or PIV subsystems vibration attenuation, in order to recover a non disturbed PIV measurement.
9.Validation of the correctiion methodology in wind tunnel by replicating subtask 3.

Zaproszenie do składania wniosków

SP1-JTI-CS-2011-02
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

INSTITUT SUPERIEUR DE L'AERONAUTIQUE ET DE L'ESPACE
Wkład UE
€ 361 860,00
Adres
AVENUE EDOUARD BELIN 10
31055 Toulouse
Francja

Zobacz na mapie

Region
Occitanie Midi-Pyrénées Haute-Garonne
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
Michel Tello (Mr.)
Linki
Koszt całkowity
Brak danych

Uczestnicy (1)