CORDIS provides links to public deliverables and publications of HORIZON projects.
Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .
Deliverables
D4.3 refers to task 4.6. The deliverable reports the verification of the outcomes from the pilot activities to formulate the roadmap for reaching the goal of low-carbon energy communities in Skanderborg Municipality, and also to present the effects of technical, socio-economic and institutional solutions implemented in the Stjr village for developing benchmark solutions and business models (tasks 4.7 and 8.7). Verified by conformance to the needs and energy goals set by municipality on green energy transition.
Optimal integration of different energy carriers (opens in new window)D2.4 refers to task 2.8. This deliverable describes the steady state and dynamic simulation analysis of the coordinated operation of the local multi-carrier energy systems in the pilot sites, by applying the developed distributed/hierarchical control, local DR schemes and smart energy management systems. It will elaborate the impact assessment on the local community grids for various operation and control scenarios while increasing the share of renewable energy. The developed models and approaches are verified using the field data and system performance from the test setups at the various demonstration sites
Development and deployment of renewable electricity and storage (opens in new window)D5.12 refers to Task 5.1. Under this deliverable, electricity generation system of different generation mix, including solar PV, wind, along with storage (primarily battery storage) will be demonstrated in the filed demonstration sites in India. This deliverable will be validated by successful demonstration of the renewable electricity system and storage.AAU is only formally lead beneficiary for this deliverable, but in practise IITB will be responsible.
Description of social, economic & regulatory factors (opens in new window)D3.1 refers to task 3.1. The aim of the deliverable is to present the analysis of the socio-economic, governance and regulatory obstacles that hinder the development and operation of autarkic local integrated energy systems in society. Verified based on identifying all relevant obstacles for creating energy communities.
DSO-energy community cooperation (opens in new window)D7.5 refers to tasks 7.4 and 7.7. The deliverable reports the business models, operational concepts and regulations to effect the cooperation between the local DSOs and the energy community for the active energy management of energy islands and possibility of providing grid support services based on the needs of the DSO. Its verified by the successful implementation of the collaboration and ownership models to efficiently operate and facilitate economic grid services from the integrated energy systems.
Energy transition results at the Dutch pilot sites (opens in new window)D6.4 refers to task 6.4. The aim of the deliverable is to elaborate the insights, benefits and lessons learned from the pilot site activities, further promotion and replication actions applied in Netherlands. It’s verified by conformance to the requirements, desired performance and impact from the local integrated energy systems.
Report on models and specification of different modii (opens in new window)D6.1 refers to task 6.1. The deliverable reports the different modeling concepts for energy management of autarkic local energy communities and effect to prolong the operation of micro-grids under energy-constrained conditions. It’s verified by the successful development of simulation models for the near autarkic operation of micro-grids under different operational conditions.
Creation of new energy communities and tool box as social innovation (opens in new window)D8.3 refers to task 8.6. The deliverable reports the impact assessment of social and technical innovations on the integrated energy system communities, citizens involvement, local economy and environment. It’s verified through the positive socio-economic and technical influence from the innovations that contributes to a successful autarkic local energy system.
Description of criteria for attractive and viable citizen-centered business models (opens in new window)D3.4 refers to task 3.3. The aim of the deliverable is to elaborate measures and conditions to form local economically attractive citizen-centered business models and cases for local investments in smart integrated energy systems. Verified by the successful development of conditions for citizen-centered business models.
Final Report on demonstration and replication activities at Voerladegaard and Doerup (opens in new window)D4.4 refers to task 4.7. The deliverable presents the accomplishments, benefits and lessons learned from the pilot sites and the replication activities in Skanderborg. It is verified in accordance to the needs, expected performance, and its effects from the local integrated energy systems.
Impacts on local-regional power system (opens in new window)Task 4.1 refers to task 4.5. The deliverable reports the impact assessment on local-regional power system from implementing RES based multi-carrier energy systems in the Danish pilot sites. Verified by the successful evaluation of grid impact studies.
Socio-economic, governance and regulatory conditions (opens in new window)D3.2 refers to task 3.2. The deliverable presents the details of the essential conditions for achieving socio-economic development and citizen engagement in more autarkic energy systems, and specifically for establishing new organizational configuration for the demonstrator sites. It’s verified based on clearly mapping the necessary socio-economic, regulatory and governance settings for creating local energy communities.
Comprehensive analytic framework (opens in new window)D3.3 refers to task 3.2. The deliverable aims to present the comprehensive analytic framework developed that includes all socio-economic criteria applicable for economically interesting citizen-centered autocratic integrated energy systems. It’s verified by mapping and meeting relevant socio-economic factors and criteria to form a more autarkic local energy system.
Models and controls for electric to heat systems (opens in new window)D2.2 refers to task 2.2. The aim of the deliverable is to describe the models, smart control, aggregation and scheduled operation of electricity to heat units (heat pumps, electric boilers) to provide energy flexibility taking into account storage management, local demand response and end-user preferences and comforts for increasing the self-consumption from renewables in the local grids. Verified by successful models and control scheme development for E2H systems.
Alignment of a fitting social configuration for technical innovations (opens in new window)D8.2 refers to task 8.4 and 8.5. The deliverable describes the business models that have been used in the different demonstrators, its role in the organisational configurations, and the assessment of collective decision-making in new energy communities. It’s verified by the successful evaluation of the applied business models and governance structures.
Roadmap and business models (Polish sites) (opens in new window)D7.6 refers to task 7.8. The aim of the deliverable is to elaborate the realization, benefits and lessons learned from the pilot site activities and replication actions applied in Poland. It’s verified by conformance to the requirements, desired performance and energy transition impact from the local integrated energy systems.
Effect of communication and exploitation of business plans, drivers and its replication (opens in new window)D9.5 refers to tasks 9.2, 9.3 and 9.4. The aim of deliverable is to report the impact of the various communication and exploitation strategies adopted in the project. It’s verified through conformance to the various key performance indicators (section 2.1.3), activities to measure progress and maturity of the innovation actions from the project
System framework and demand response schemes for different demonstrators (opens in new window)D21 refers to Task 21 The aim of the deliverable is to present a novel crossdomain system framework for integrated energy systems for establishing local energy communities based on the demonstrators in the four countries Based on this system architecture suitable use cases for the various pilot activities are defined for enabling suitable local demand response DSM schemes and system controls to unlock energy flexibility and energy storage to smarten the electricity grids to increase the hosting capacity of renewables Verification on conformance to the system design and requirements to meet the objectives of the energy communities of the various pilot sites
Local energy system infrastructure and demands (opens in new window)D71 refers to tasks 71 and 72 The deliverable reports the detailed information about the energy installations configurations data analytics and profiles of the various energy carriers and systems from the Polish pilot sites The deliverable is verified by the successful measurements and reporting of pilot site system infrastructures
System integration and replication in India (opens in new window)D5.17 refers to Task 5.5. This task will be focused on developing benchmarks for the local energy systems for its replication at similar locations. The benchmarking of such energy systems will consider sustainable business model, and effective & easy to implement procedure for replicating such energy systems with the involvement of local communities, relevant industries, regulators and policy makers and other stakeholders.AAU is only formally lead beneficiary for this deliverable, but in practise IITB will be responsible.
Categorization of types of consumers (opens in new window)D3.5 refers to task 3.4. The deliverable aims to describe the conditions for social acceptability and specifically on organizational structure and its governance in autocratic local integrated energy system setup. Verified by the successful development of the organizational configurations and strategies to enhance citizen involvement and their interests.
Clean cooking, heating, Cooling and drying solutions for energy communities (opens in new window)D5.14 refers to Task 5.4. This deliverable is aimed at replacing the firewood and cow dung based cooking practices in the remote villages in India and other developing countries, and provide cooling and drying options for drying farm products to increase their life and productivity. This deliverable will be validated by successful demonstration in the demonstration sites in India.AAU is only formally lead beneficiary for this deliverable, but in practise IITB will be responsible.
Models and control schemes for smart integration of energy carriers (opens in new window)D2.4 refers to task 2.3, 2.4 and 2.5. The deliverable presents the models and control schemes for the smart integration of EV charging, water pumping, wastewater management, solar PV-BESS systems etc. to harness energy flexibility from community energy systems and grids. Smart energy management for economic scheduling of resources and suitable distributed and hierarchical control schemes are applied for effecting voltage and frequency support services from different energy carriers in a local integrated framework (individual buildings and community-scale hybrid multi-energy systems/energy clusters). Verified by successful models and control scheme development for smart integration of multi-carrier energy units.AAU is only formally lead beneficiary for this deliverable, but in practise IITB will be responsible.
Benchmark models of technical and social innovations (opens in new window)D8.4 refers to task 8.7. The aim of the deliverable is to report the benchmark technical solutions and socio-economic business models for establishing citizen-centered energy systems, which can applied and replicated in other communities, regions and countries. It’s verified through the performance indicators and strategies to measures the impact of project innovations that are applied through WP9.
Grid impact of local energy systems (Polish site) (opens in new window)D7.4 refers to task 7.4. The aim of the deliverable reports the impact assessment on the local distribution system from smart multi-energy systems integration of the energy community in the Polish pilot sites. Verified by the successful evaluation of grid impact studies.
Approaches for more autarkic integrated citizen-centred local energy systems (opens in new window)D8.1 refers to task 8.3. The aim of the deliverable is to elaborate the analysis of the created energy communities and their role in the development and operation of the more autarkic local integrated energy systems. Verified by successful implementation of methods to evaluate the local integrated energy communities.
Recommendations and conclusions from exploitation and innovation actions (opens in new window)D9.5 refers to task 9.3. The aim of the deliverable is to report the recommendations from the projects coordination and innovation actions and the various exploitation activities. It will also elaborate on the conclusions, ideas and arrangements for internal and external cooperation for added commercialisation of the projects innovations and solutions. It is quantified through presentations as at least three European activities within BRIDGE, Clean Energy for EU Islands, EU networks, channel and clusters and for two Indian forums within relevant energy policy or regulatory agencies/boards, or technical exhibitions, industrial forums, technical boot camps, national and bilateral Indo-EU project consortiums. Finally, the deliverable report is verified by approval from the General Assembly.
D93 refers to task 94 The aim of the deliverable is to report the most important projects results and innovations based on the pilot activities and replication It is disseminated through print and online platforms targeted to the public and stakeholders The deliverable is verified through the indicators and measures listed in Table 24
SUSTENANCE press release- Final (opens in new window)D9.3 refers to task 9.4. The aim of the deliverable is to report the most important final projects results and innovations based on the pilot activities, and replication. It is disseminated through print and online platforms targeted to the public and stakeholders. The deliverable is verified through the indicators and measures listed in Table 2.4
SUSTENANCE website & social media presence (opens in new window)D92 refers to Task 91 The aim of the deliverable is to establish an attractive project website to the public that will report all nonconfidential and non IPsensitive results deliverables and accomplishments from the project For internal use the access and sharing of relevant resources and reports for the consortium members a private webspace is also created The communication channels through social media platforms are also initiated Verification of the deliverable are realised through the various measures and indicators listed in Table 24
Publications
Author(s):
Aditya Pappu, Gerwin Hoogsteen, Juan Camilo López, Johann L. Hurink
Published in:
CIRED Chicago Workshop 2024 Resilience of Electric Distribution Systems, 2024
Publisher:
CIRED
Author(s):
Himanshu Bhusan Sandhibigraha, Manas Palmal, Shiv Pratap Singh Rajawat, Gurunath Gurrala, Vishnu Mahadeva Iyer
Published in:
2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2024, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/pedes56012.2022.10080254
Author(s):
Pavani Ponnaganti, Jayakrishnan R Pillai, Birgitte Bak-Jensen
Published in:
2023 IEEE PES GTD International Conference and Exposition (GTD), 2023, Page(s) 11-15
Publisher:
IEEE
DOI:
10.1109/gtd49768.2023.00029
Author(s):
Amita Kumari, Zakir H. Rather, Payal Vyankat Dahiwale
Published in:
2023 IEEE 20th India Council International Conference (INDICON), 2024, Page(s) 1234-1239
Publisher:
IEEE
DOI:
10.1109/indicon59947.2023.10440896
Author(s):
Abhinav Arya, Abhishek Chanekar, Naveen Kumar Endla, Amit Verma, Sandeep Anand
Published in:
IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/iecon49645.2022.9968712
Author(s):
Himanshu Bhusan Sandhibigraha, Manas Palmal, Vishnu Mahadeva Iyer
Published in:
2022 IEEE Energy Conversion Congress and Exposition (ECCE), 2022, Page(s) 1-7
Publisher:
IEEE
DOI:
10.1109/ecce50734.2022.9948133
Author(s):
A. P. Nath, Z. H. Rather
Published in:
IET Conference Proceedings, Issue 2023, 2024, Page(s) 28-33, ISSN 2732-4494
Publisher:
IET
DOI:
10.1049/icp.2023.2682
Author(s):
Rakesh Sinha, Hessam Golmohamadi, Sanjay K. Chaudhary, Birgitte Bak-Jensen
Published in:
International Conference on Power System Technology (PowerCon), 2024
Publisher:
IEEE
Author(s):
Soudipan Maity, Zakir Hussain Rather, Suryanarayana Doolla
Published in:
2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2024, Page(s) 1-5
Publisher:
IEEE
DOI:
10.1109/isgteurope56780.2023.10408609
Author(s):
Chinmay Das, Subhendu Dutta
Published in:
2023 11th National Power Electronics Conference (NPEC), 2024, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/npec57805.2023.10384909
Author(s):
Pankaj Kumar, Abhinav Arya, Abhishek Chanekar, Pratik Deshmukh, Sandeep Anand
Published in:
2022 IEEE Energy Conversion Congress and Exposition (ECCE), 2022, Page(s) 1-8
Publisher:
IEEE
DOI:
10.1109/ecce50734.2022.9947879
Author(s):
Pavani Ponnaganti, Rakesh Sinha, Jayakrishnan R. Pillai, Birgitte Bak-Jensen
Published in:
Next Energy, 2023
Publisher:
Science Direct
DOI:
10.1016/j.nxener.2023.100022
Author(s):
Saurabh Singh, Naveen Endla, Abhinav Arya, Sandeep Anand, Kishore Chatterjee, Srinivas Gopalan, Sujay Sirur
Published in:
2023 IEEE Transportation Electrification Conference & Expo (ITEC), 2023, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/itec55900.2023.10186898
Author(s):
Soudipan Maity, Zakir Hussain Rather, Suryanarayana Doolla
Published in:
2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), 2023, Page(s) 165-169
Publisher:
IEEE
DOI:
10.1109/isgtasia54193.2022.10003623
Author(s):
Bahman Ahmadi; Aditya Pappu; Gerwin Hoogsteen; Johann L. Hurink
Published in:
2022 57th International Universities Power Engineering Conference (UPEC), 2022
Publisher:
IEEE
DOI:
10.1109/upec55022.2022.9917732
Author(s):
Angshu Plavan Nath, Zakir Hussain Rather
Published in:
2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2024, Page(s) 1-5
Publisher:
IEEE
DOI:
10.1109/isgteurope56780.2023.10408178
Author(s):
Payal Vyankat Dahiwale, Zakir H. Rather
Published in:
2023 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East (ISGT Middle East), 2024, Page(s) 1-5
Publisher:
IEEE
DOI:
10.1109/isgtmiddleeast56437.2023.10078604
Author(s):
Md Atiab Jobayer Purno, Rahul Bangar, Shubham Kaushal, M. Brindha, G. Saravana Ilango
Published in:
2024 First International Conference on Pioneering Developments in Computer Science & Digital Technologies (IC2SDT), 2024, Page(s) 522-527
Publisher:
IEEE
DOI:
10.1109/ic2sdt62152.2024.10696441
Author(s):
Deepika Chhetija, Zakir H. Rather, Suryanarayana Doolla
Published in:
2022 IEEE Industry Applications Society Annual Meeting (IAS), 2022, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/ias54023.2022.9940120
Author(s):
Aditya Pappu, Gerwin Hoogsteen, Johann L. Hurink
Published in:
2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Issue 3, 2022, Page(s) 1-5, ISBN 978-1-6654-8032-1
Publisher:
IEEE
DOI:
10.1109/isgt-europe54678.2022.9960572
Author(s):
Birgitte Bak-Jensen (1), Rakesh Sinha (1), Sanjay Chaaudhary (1), Hessam Golmohamadi (1), Gerwin Hoogsteen (2), Aditya Pappu (2), Bahman Ahmadi (2), Richard van Leeuwen (3), Javier F. Gonzales (3); Patryk Chaja (4), Weronika Radziszewska (4), Zakir Rather (5): (1) Aalborg University, Denmark; (2) University of Twente, The Netherlands; (3) Saxion university of applied science, The Netherlands; (4)
Published in:
7th European GRID SERVICE MARKET Symposium At: KKL Lucerne Switzerland, 2024
Publisher:
7th European GRID SERVICE MARKET Symposium
Author(s):
Saurabh Kamble, Pradyumn Chaturvedi, V.B. Borghate
Published in:
2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2024, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/pedes56012.2022.10079971
Author(s):
Diya Dev, Nagarjun Surulivel, Amal C Sunny, Dipankar Debnath
Published in:
2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON), 2023, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/oncon56984.2022.10126893
Author(s):
Aditya Pappu, Marco E. T. Gerards, Gerwin Hoogsteen, Johann L. Hurink
Published in:
2024 IEEE 8th Energy Conference (ENERGYCON), 2024, Page(s) 1-5
Publisher:
IEEE
DOI:
10.1109/energycon58629.2024.10488799
Author(s):
J Dhanuja Lekshmi, Zakir Hussain Rather, Bikash C Pal
Published in:
2022 22nd National Power Systems Conference (NPSC), 2024, Page(s) 602-607
Publisher:
IEEE
DOI:
10.1109/npsc57038.2022.10069861
Author(s):
Anjali Mohan, Surbhi Singh, Karthik Thirumala, G. Saravana Ilango
Published in:
2023 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), 2024, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/pesgre58662.2023.10405071
Author(s):
Edmund W. Schaefer, Gerwin Hoogsteen, Bart Nijenhuis, Johann L. Hurink, Richard P. van Leeuwen
Published in:
2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2023
Publisher:
IEEE
DOI:
10.1109/smartgridcomm57358.2023.10333880
Author(s):
Anjali Mohan, Aishwarya G P, Abhinay Shambharkar, S T Akshaya Shree, Tejaswi M, Karthik Thirumala
Published in:
2023 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), 2024, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/pesgre58662.2023.10404836
Author(s):
R. Sinha, P. Ponnaganti, B. Bak-Jensen, J. R. Pillai and C. Bojesen
Published in:
Publication in conference proceedings / workshop, 2023, Page(s) 1120-1124
Publisher:
IEEE
DOI:
10.1049/icp.2023.0657
Author(s):
Pratik P. Nachankar, Hiralal M. Suryawanshi, Pradyumn Chaturvedi, Dipesh Atkar, Ch. L. Narayana, D. Govind
Published in:
2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), 2023, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/sefet55524.2022.9908789
Author(s):
Neha Rajput, Himanshu Bhusan Sandhibigraha, Vishnu Mahadeva Iyer
Published in:
2024 IEEE Applied Power Electronics Conference and Exposition (APEC), 2024, Page(s) 854-860
Publisher:
IEEE
DOI:
10.1109/apec48139.2024.10509266
Author(s):
Himanshu Bhusan Sandhibigraha, Manas Palmal, Vishnu Mahadeva Iyer
Published in:
2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Issue 49, 2023, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/pedes56012.2022.10080051
Author(s):
Bart Nijenhuis, Jacco Reuling, Gerwin Hoogsteen, Johann L. Hurink
Published in:
2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2023
Publisher:
IEEE
DOI:
10.1109/smartgridcomm57358.2023.10333882
Author(s):
Arpan Kumar Samanta, V Gouri Prasant, Neil Samaddar, Dipankar Debnath
Published in:
2024 6th International Conference on Energy, Power and Environment (ICEPE), 2024, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/icepe63236.2024.10668858
Author(s):
Birgitte Bak-Jensen
Published in:
The Innovation Platform, Issue 20th edition, 2024, Page(s) 134-137
Publisher:
Innovation News Network
Author(s):
Birgitte Bak-Jensen, Aalborg University.
Published in:
The Innovation Platform, Issue 3, 2022
Publisher:
Innovation Platform
Author(s):
Birgitte Bak-Jensen, Frans Coenen, Rakesh Sinha, Gerwin Hoogsteen, Milind V. Rane, Ananthu Krishnan, Krzysztof Rafal, Javier F. Gonzalez
Published in:
The Innovation News Network, 2024
Publisher:
Innovation News Network
Author(s):
Juan Camilo Lpez, Aditya Pappu, Gerwin Hoogsteen, Johann L. Hurink, Marcos J. Rider
Published in:
International Journal of Electrical Power & Energy Systems, Issue 158, 2024, Page(s) 109973, ISSN 0142-0615
Publisher:
Elsevier BV
DOI:
10.1016/j.ijepes.2024.109973
Author(s):
Rakesh Sinha, Sanjay K. Chaudhary, Birgitte Bak-Jensen, Hessam Golmohamadi
Published in:
Energies, Issue 17, 2024, Page(s) 2986, ISSN 1996-1073
Publisher:
Multidisciplinary Digital Publishing Institute (MDPI)
DOI:
10.3390/en17122986
Author(s):
Hessam Golmohamadi, Saeed Golestan, Rakesh Sinha, Birgitte Bak-Jensen
Published in:
Energies, Issue 17, 2024, Page(s) 4670, ISSN 1996-1073
Publisher:
Multidisciplinary Digital Publishing Institute (MDPI)
DOI:
10.3390/en17184670
Author(s):
Pratik Pramod Nachankar, Hiralal M. Suryawanshi, Pradyumn Chaturvedi, Dipesh Atkar, Ch. L. Narayana, Devasuth Govind
Published in:
IEEE Transactions on Industry Applications, Issue 58, 2022, Page(s) 7432-7444, ISSN 0093-9994
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tia.2022.3195187
Author(s):
Deepika Chhetija, Zakir Hussain Rather, Suryanarayana Doolla
Published in:
IEEE Transactions on Instrumentation and Measurement, Issue 73, 2024, Page(s) 1-10, ISSN 0018-9456
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tim.2024.3457964
Author(s):
Muhammad M. Kabsha, Zakir Hussain Rather
Published in:
IEEE Transactions on Power Electronics, Issue 38, 2024, Page(s) 3981-3991, ISSN 0885-8993
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tpel.2022.3217712
Author(s):
Dipesh D. Atkar, Pradyumn Chaturvedi, Hiralal Murlidhar Suryawanshi, Pratik P. Nachankar, Dharmendra Yadeo, Sai Krishna Saketi
Published in:
IEEE Transactions on Industry Applications, Issue 58, 2024, Page(s) 5198-5213, ISSN 0093-9994
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tia.2022.3170285
Author(s):
Dhanuja Lekshmi J, Zakir H. Rather, Bikash C. Pal
Published in:
IEEE Transactions on Power Systems, Issue 39, 2024, Page(s) 1126-1137, ISSN 0885-8950
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tpwrs.2023.3267744
Author(s):
Manorath Prasad, Zakir Hussain Rather, Reza Razzaghi, Suryanarayana Doolla
Published in:
IEEE Transactions on Power Delivery, Issue 38, 2023, Page(s) 3531-3540, ISSN 0885-8977
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tpwrd.2023.3293791
Author(s):
Deepika Chhetija, Zakir Hussain Rather, Suryanarayana Doolla
Published in:
IEEE Transactions on Industry Applications, Issue 60, 2024, Page(s) 4921-4932, ISSN 0093-9994
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tia.2024.3353722
Author(s):
Soudipan Maity, Zakir Hussain Rather, Suryanarayana Doolla
Published in:
Renewable and Sustainable Energy Reviews, Issue 210, 2025, Page(s) 115133, ISSN 1364-0321
Publisher:
Elsevier BV
DOI:
10.1016/j.rser.2024.115133
Author(s):
Nyenshu Seb Rengma, Manohar Yadav, Nand Kishor
Published in:
Renewable Energy Focus, Issue 46, 2023, Page(s) 236-255, ISSN 1755-0084
Publisher:
Elsevier BV
DOI:
10.1016/j.ref.2023.07.001
Author(s):
Nyenshu Seb Rengma, Manohar Yadav
Published in:
Environmental Monitoring and Assessment, Issue 196, 2024, ISSN 0167-6369
Publisher:
Kluwer Academic Publishers
DOI:
10.1007/s10661-024-12856-z
Author(s):
Eyuel Debebe Ayele, Javier Ferreira Gonzalez, Wouter B. Teeuw
Published in:
Sensors, Issue 24, 2024, Page(s) 854, ISSN 1424-8220
Publisher:
Multidisciplinary Digital Publishing Institute (MDPI)
DOI:
10.3390/s24030854
Author(s):
Pijush Kanti Dhara, Zakir Hussain Rather
Published in:
IEEE Transactions on Sustainable Energy, Issue 14, 2024, Page(s) 864-875, ISSN 1949-3029
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tste.2022.3227603
Author(s):
Suman Mandal, Anshuman Shukla, Suryanarayana Doolla
Published in:
IEEE Transactions on Power Electronics, Issue 39, 2024, Page(s) 12170-12176, ISSN 0885-8993
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tpel.2024.3419049
Author(s):
Edmund W. Schaefer, Gerwin Hoogsteen, Johann L. Hurink, Richard P. van Leeuwen
Published in:
Journal of Energy Storage, Issue 97, 2024, Page(s) 112706, ISSN 2352-152X
Publisher:
Elsevier
DOI:
10.1016/j.est.2024.112706
Author(s):
Dharmendra Yadeo, Pradyumn Chaturvedi
Published in:
IEEE Transactions on Industry Applications, Issue 59, 2024, Page(s) 1877-1886, ISSN 0093-9994
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tia.2022.3218525
Author(s):
Imad Antoine Ibrahim, Franziska Baack, Ewert Aukes, Lisa Sanderink, Frans Coenen, Florian Helfrich, Athanasios Votsis, Thomas Hoppe
Published in:
Energy Research & Social Science, Issue 120, 2025, Page(s) 103920, ISSN 2214-6296
Publisher:
Elsevier Limited
DOI:
10.1016/j.erss.2025.103920
Author(s):
Nagarjun Surulivel, Amal C. Sunny, Diya Dev, Arpan K. Samanta, Dipankar Debnath
Published in:
IEEE Transactions on Circuits and Systems II: Express Briefs, Issue 71, 2024, Page(s) 4571-4575, ISSN 1549-7747
Publisher:
IEEE
DOI:
10.1109/tcsii.2024.3396175
Author(s):
Abhishek Chanekar, Nachiketa Deshmukh, Abhinav Arya, Sandeep Anand
Published in:
IEEE Transactions on Power Electronics, Issue 38, 2023, Page(s) 11531-11542, ISSN 0885-8993
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tpel.2023.3291808
Author(s):
Abhinav Arya, Abhishek Chanekar, Amit Verma, Sandeep Anand
Published in:
IEEE Journal of Emerging and Selected Topics in Power Electronics, Issue 11, 2023, Page(s) 3457-3467, ISSN 2168-6785
Publisher:
Institute of Electrical and Electronics Engineers Inc.
DOI:
10.1109/jestpe.2023.3239111
Searching for OpenAIRE data...
There was an error trying to search data from OpenAIRE
No results available