Project description
Invasive species paradox explained
Populations of invasive species usually have reduced genetic diversity, creating the so-called 'invasion paradox', because conventional wisdom considers high genetic variation to be crucial for rapid adaptation to novel environments. The EU-funded INVASOMICS project will address this paradox by investigating adaptive mechanisms that promote invasion success in widespread invasive freshwater vertebrate and invertebrate species. The research will study the phenotypic differentiation of wild populations of the eastern mosquitofish in a eutrophication gradient, complemented by laboratory ecotoxicology experiments, both in the native (Florida) and invasive (Spain) ranges of the model species. It will also study three sympatric freshwater amphipod species in Germany to assess potential competitive shifts in the invasive species stemming from higher tolerances to eutrophication.
Objective
Invasive species are a major constituent of global change, threaten local biodiversity, ecosystem services, and cause serious economic damage. Invasion science has tried to discern the factors that determine whether a non-native population will become invasive or not. Invasive populations are usually depleted in genetic diversity, creating the so-called 'invasion paradox' because traditional perspectives consider high genetic variation to be crucial for rapid adaptation to novel environments. Recent theoretical advances trying to solve this paradox propose that contemporary pre-adaptation to human-altered habitats within the native range or during the transport stage in the introduction can promote invasions. If this is true, introduced populations will exhibit increased adaptive tolerance to a stressor associated with transport, e.g. eutrophication, contributing to their success in the recipient environment. The aim of this project is to understand adaptive mechanisms that promote invasion success in widespread invasive freshwater vertebrate and invertebrate species. I will study the phenotypic differentiation of wild populations of the eastern mosquitofish in an eutrophication gradient, complemented with laboratory ecotoxicology experiments, both in the native (Florida) and invasive (Spain) ranges of the model species. This intraspecific comparison will be supported by the interspecific study of 3 sympatric freshwater amphipod species in Germany to assess potential competitive shifts in the invasive ones stemming from higher tolerances to eutrophication. Including natural populations with such particularly well described invasion histories will show why some populations become invaders and others do not. Current developments in molecular genetics , e.g. ‘-omics’, give an excellent precise tool to investigate the links between the disciplines of evolutionary biology, ecotoxicology, and invasions science and help elucidate the paradox.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences health sciences public health
- humanities history and archaeology history
- natural sciences biological sciences ecology ecosystems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
60323 FRANKFURT AM MAIN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.