Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

ASSESSMENT AND ENGINEERING OF EQUITABLE, UNBIASED, IMPARTIAL AND TRUSTWORTHY AI SYSTEMS

Description du projet

Terrain d’expérimentation pour évaluer et réparer les biais sur l’IA

L’intelligence artificielle (IA) est largement utilisée dans un grand nombre de secteurs en raison des avantages de l’automatisation et de l’optimisation. Toutefois, l’IA peut également être une source de biais et de discrimination qui doit être contrôlée, mesurée et évitée. En outre, les connaissances permettant la réparation et l’évaluation des biais dans les systèmes d’IA existants et la conception de nouveaux outils d’IA sans biais sont lacunaires. Le projet AEQUITAS, financé par l’UE, y remédiera en développant un environnement d’expérimentation contrôlé pour aider les producteurs d’IA à accroître la sensibilisation aux biais produits par les systèmes d’IA et à évaluer et (éventuellement) réparer les systèmes d’IA existants. Il fournira également des directives pour des systèmes d’IA de conception équitable et sensibilisera aux risques de l’IA s’ils ne sont pas traités et gérés de manière adéquate.

Objectif

AI-based decision support systems are increasingly deployed in industry, in the public and private sectors, and in policy-making. As our society is facing a dramatic increase in inequalities and intersectional discrimination, we need to prevent AI systems to amplify this phenomenon but rather mitigate it. To trust these systems, domain experts and stakeholders need to trust the decisions.
Fairness stands as one of the main principles of Trustworthy AI promoted at EU level. How these principles, in particular fairness, translate into technical, functional social, and lawful requirements in the AI system design is still an open question. Similarly we don’t know how to test if a system is compliant with these principles and repair it in case it is not.
AEQUITAS proposes the design of a controlled experimentation environment for developers and users to create controlled experiments for
- assessing the bias in AI systems, e.g. identifying potential causes of bias in data, algorithms, and interpretation of results,
- providing, when possible, effective methods and engineering guidelines to repair, remove, and mitigate bias,
- provide fairness-by-design guidelines, methodologies, and software engineering techniques to design new bias-free systems
The experimentation environment generates synthetic data sets with different features influencing fairness for a test in laboratories. Real use cases in health care, human resources and social disadvantaged group challenges further test the experimentation platform showcasing the effectiveness of the solution proposed. The experimentation playground will be integrated on the AI-on-demand platform to boost its uptake, but a stand-alone release will enable on-premise privacy-preserving test of AI-systems fairness.
AEQUITAS relies on a strong consortium featuring AI experts, domain experts in the use case sectors as well as social scientists and associations defending rights of minorities and discriminated groups.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
La classification de ce projet a été validée par l'équipe qui en a la charge.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-RIA - HORIZON Research and Innovation Actions

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-CL4-2021-HUMAN-01

Voir tous les projets financés au titre de cet appel

Coordinateur

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 556 379,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 556 379,00

Participants (18)

Mon livret 0 0