Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Chirality and spin selectivity in electron transfer processes: from quantum detection to quantum enabled technologies

Project description

Study investigates how chiral molecules could benefit quantum applications

Distinguishing between the left- and right-handed forms of chiral molecules (enantiomers) is crucial in chemistry and biology. Depending on their handedness, these mirror image molecules can exhibit entirely different chemical or biological properties. Recent observations have shown that even at room temperature electrons exhibit a preferred direction of their spin after propagating through chiral organic or inorganic materials placed between two electrodes. This effect of spin polarisation is called chirality-induced spin selectivity (CISS). Funded by the European Research Council, the CASTLE project aims to leverage the CISS effect in quantum applications, such as quantum computers and quantum sensors. Project findings will also have important implications for catalysis, light harvesting and nuclear magnetic resonance applications.

Objective

Chirality is a key property of molecules important in many chemical and nearly all biological processes. Recent observations have shown that electron transport through chiral molecules attached to solid electrodes can induce high spin polarization even at room temperature. Electrons with their spin aligned parallel or antiparallel to the electron transfer displacement vector are preferentially transmitted depending on the chirality of the molecular system resulting in Chirality-Induced Spin Selectivity (CISS). The long-term vision of the CASTLE project is to transform the CISS effect into an enabling technology for quantum applications. This will be accomplished by achieving four key objectives. 1) The occurrence of CISS will be studied at the intramolecular level by photo-inducing rapid electron transfer within covalent donor-chiral spacer-acceptor molecules to generate long-lived radical pairs (RPs). 2) Direct detection of RP spin polarization will be performed using time-resolved and pulsed electron and nuclear magnetic resonance techniques. In addition, polarization transfer from one of the radicals comprising the spin-polarized RP to a stable molecular spin (Q) will be used to initialize the quantum state of Q, making it a good qubit for quantum applications, particularly sensing. 3) Quantum mechanical studies of the CISS effect will provide predictive models for molecular qubit design. 4) The CISS effect will be used to control, readout, and transfer information in prototypical devices embedding hybrid interfaces based on semiconducting or conducting substrates, thus dramatically advancing the use of molecular spins in quantum information technologies targeting high-temperature operation. These devices will be used also to prove molecule-based Quantum Error Correction. The knowledge acquired with CASTLE will impact a wide range of fields, including magnetless spintronics, dynamic nuclear polarization for NMR signal enhancement, catalysis, and light harvesting.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-SYG - HORIZON ERC Synergy Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-SYG

See all projects funded under this call

Host institution

UNIVERSITA DEGLI STUDI DI FIRENZE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 075 000,00
Address
Piazza San Marco 4
50121 Florence
Italy

See on map

Region
Centro (IT) Toscana Firenze
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 075 000,00

Beneficiaries (7)

My booklet 0 0