Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Malaria Transmission Blocking by Vaccines, Drugs and Immune Mosquitoes: Efficacy Assessment and Targets

Objective

Malaria is a complex disease, dependent on multiple host/parasite/vector interactions. This tripartite system offers numerous opportunities for disease-preventing interventions, but also creates robustness that undercuts ‘magic bullet’ expectations. Our interdisciplinary TransMalariaBloc will approach the challenge of malaria control in the field from this perspective. It utilizes the enormous recent advances in our molecular understanding of the three implicated organisms without prejudicing which targets or process will prove most suitable to transmission blocking (TB). In a feedback loop of experimentation and modeling, we will address the potential and actual impact of TB drugs and remedies which supplied to human hosts, can block transmission from an infected bloodmeal; TB vaccines which elicit human antibodies to antigens essential for transmission; and immune mosquitoes, genetically modified (GM) to achieve natural or synthetic refractoriness. Recent studies suggest that vector/parasite genotypic interactions determine the success or failure of Plasmodium falciparum to infect mosquitoes. In this perspective, we will assay genome-wide polymorphisms in both parasites and vectors to dissect important genotype*genotype interactions, thus guiding the development of effective TB vaccines, drugs and remedies, and GM mosquitoes. Effectiveness of TB interventions, especially via use of GM mosquitoes, depends on the balance of infection and resistance costs. Components of this balance will be explored, to foresee the dynamics of vectorial competence in mosquito populations and assess the efficacy of TB strategies, as well as guide the development of new targets. Again, interaction between modeling and experimentation will be a powerful combination. This proposal represents an ambitious, but feasible approach, spanning from molecular to population and environmental levels, to optimizing TB interventions for malaria control in endemic areas.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-HEALTH-2007-B
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 1 190 802,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0