Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Simulation Based Solutions for Industrial Manufacture of Large Infusion Composite Parts

Objective

Today, advanced composites use either layers of plies impregnated with resin (pre-pregs) to form a laminate, or Liquid Composites Moulding (e.g. RTM) of dry textiles. Prepreg composites give superior mechanical properties due to toughened resins and high fibre content, but suffer from high material costs, limited shapeability, complex, expensive and time consuming manufacturing, and limited materials shelf life. Infusion technologies can overcome these limitations, but are not fully industrialised and rely on costly prototype testing due to the lack of simulation tools. Current infusion simulation technologies are approximate and really only suited to small scale components based on adaptations of Resin Transfer Moulding simulation; they are not accurate for large, thick and complex aerospace composites, where one sided tooling and vacuum membranes cause complex 3D heat/flow processes. The INFUCOMP project will develop the full simulation chain from preform design to manufacture (infusion), process/part optimisation and final part defects/mechanical performance prediction with a focus on the infusion step. The project covers all popular Liquid Resin Infusion (LRI) methods currently used in the Aerospace industry. Although focus is on aerospace applications, the work will be very relevant to other industries. The proposed technologies will allow economical manufacture of high performance, integrated, large scale composite structures; thus, positively contributing to their increased use. Benefits include lower cost, improved performance, greater payloads and fuel/emissions reductions. A team of two aircraft manufacturers, two tier one suppliers, a material manufacturer, university and industry researchers, and commercial software specialists; all with a recognised track record in this field have been selected from eight different CEC countries; one partner is an SME.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-AAT-2008-RTD-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

ENGINEERING SYSTEM INTERNATIONAL GMBH
EU contribution
€ 301 500,00
Address
SIEMENSSTRASSE 12
63263 NEU-ISENBURG
Germany

See on map

Region
Hessen Darmstadt Offenbach, Landkreis
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (13)

My booklet 0 0