Skip to main content
European Commission logo print header

The Origin, Accretion and Differentiation of Extreme Volatiles in Terrestrial Planets

Objetivo

Identifying the processes by which the terrestrial planets acquired, retained and redistributed extreme volatile elements remains a fundamental science question. Although the halogens, Br, Cl and I, represent a powerful potential tracer, the concentrations of Br and I within most samples is too low for most laboratories - and the halogens have been ignored. We detail a Manchester innovation which enables halogens in these samples to be readily analysed.

We propose to: 1) Make the first direct experimental measurements of the partitioning behaviour of the halogens relevant to terrestrial mantle melting and planetesimal differentiation; 2) Establish the character of halogens available for accretion from chondrites; 3) Investigate the effect of planetesimal differentiation on the halogens from evolved meteorite glass/mineral systems; 4) Identify the role of massive impactors from lunar volcanic glasses; and 5) Identify the effect of planetary surface processes in the absence of life from alteration products in Martian meteorites.

On the Earth we will establish the first halogen mid ocean ridge and ocean island basalt halogen data base. This will enable us to: 1) Characterise the respective mantle source halogen-noble gases; 2) Test models of volatile element recycling into the mantle by exploiting the high I/Cl of the ocean sediments caused by organic sequestration; 3) Identify whether the relationship between halogens and noble gases in subducted fluids (pilot data) is preserved in the mantle; 4) Use the mantle iodine concentration together with 129Xe as a tool to quantify the mass of dead iodine recycled into the respective reservoirs. 5) Identify or devise mantle convection and primordial reservoir source models compatible with the new data set.

Convocatoria de propuestas

ERC-2010-AdG_20100224
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación de la UE
€ 1 365 706,71
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Christopher John Ballentine (Prof.)
Contacto administrativo
Gill Wells (Ms.)
Enlaces
Coste total
Sin datos

Beneficiarios (2)