Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Intensity and timing encoding of naturalistic sounds in auditory brainstem neurons of cats and owls

Objective

Mammals and birds rely heavily on audition to localize prey or escape predator. Many studies demonstrated the high degree of precision the auditory system achieves in encoding sound properties present at both ears, and proposed explanations for underlying mechanisms. For instance, brainstem neurons are sensitive to certain stimulus properties, such as the interaural time difference present at both ears (ITD), or to the phase of the input sound. In order to assess this neural sensitivity, such experiments involves the variation of one stimulus parameter, while keeping the others fixed. Our acoustical inputs are nevertheless mutli-dimensional, e.g. a sound with a certain ITD can have different intensities, with the consequence that neural sensitivity to a certain property does not equate with the information contained about this property.

In this project, we propose to study whether the sound encoding capacity of brainstem monaural neurons is robust against changes in stimulus parameters, such as overall intensity and modulation depth. While the few results available on the topic used stationary stimuli, we propose to record and analysis neural responses to non-stationary sounds, both artificial and natural. The use of such non-stationary sounds is crucial for the long-term goal of understanding auditory processing in realistic environments, as they introduce additional constraints for efficient sound encoding. To complement this experimental approach, modeling is used to investigate necessary mechanisms, e.g. dynamical neural threshold, needed to exhibit such invariance of responses to certain input parameters. The outputs of this project will have important consequences, both fundamental and practical, as, for instance, a better understanding of auditory processing of naturalistic stimuli allows refining encoding strategies for auditory prosthetic devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
EU contribution
€ 207 867,60
Address
OUDE MARKT 13
3000 Leuven
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0