Skip to main content
European Commission logo print header

Novel Nanoscale Devices based on functional Oxide Interfaces

Objective

The Nanoxide project aims to investigate, control and exploit the properties of interfaces between iso-structural functional oxides for the realization of new nanosized electronic and opto-electronic devices. The project will study interfaces between transition metal oxides with perovskite type structure. Most perovskite oxides are correlated electronic systems, which offer a rich spectrum of physical properties such as superconductivity, ferromagnetism, ferroelectricity, semi-conducting or metallic behaviour. Such properties are present in compounds with the same crystal structure, allowing the engineering of new epitaxial multifunctional devices. Interfaces in such highly correlated systems are very complex due to the collective nature of electronic behaviour and offer new application possibilities with respect to conventional semiconductors.

The project will be focused on selected interfaces in bi-layers and hetero-structures made of oxides with different functional properties, such as dielectric and superconductors, magnetic and metallic oxides. Interfaces will be realized by epitaxial thin films deposition in state-of-the-art systems that permit to control of the growth at atomic level. The structural, chemical and physical properties of such interfaces will be characterized and modelled.

The functional properties of interfaces originating by the proximity of layers with different physical properties will be thoroughly studied. Charge and spin transport across the interfaces as well as induction of charge and strain near the interfaces will be investigated in details. Deliverables of the project will be strain gated and a field effect device whose performances can be tuned by tailoring interfaces as actual realization of selected demonstrators, and, furthermore, advances in knowledge and control of oxide interfaces properties. Nanoscale reduction of these devices will be addressed to open the way to novel technological outcomes.

Keywords

Call for proposal

FP6-2004-NMP-TI-4
See other projects for this call

Coordinator

CONSIGLIO NAZIONALE DELLE RICERCHE
EU contribution
No data
Address
Piazzale Aldo Moro 7
ROMA
Italy

See on map

Links
Total cost
No data

Participants (10)