Objective
Electronic spectroscopy is one among several types of spectroscopy employed to study molecules in stellar objects. Strong magnetic fields, as in white-dwarfs and neutron stars, can severely distort these spectra. To accurately interpret the data, we must understand the forces shaping the spectra in situations so far removed from terrestrial conditions. Such strong fields also imply a breakdown of the perturbative mechanism commonly used for studying magnetic phenomena in the pertinent regimes on earth. We shall focus on the intermediate regime of field strengths (~10^5 T), where, neither the magnetic field nor the inter-particle interaction can be treated as a perturbation leading to novel physics and chemistry, that remains little explored for molecules. This project seeks to develop the methodology to compute excitation energies and potential energy surfaces in the presence of strong uniform and non-uniform magnetic fields, included non-perturbatively, at varying levels of theoretical complexity (Hartree-Fock, Density Functional Theory, Random Phase Approximation, SRCC and MRCC) and study the distortion of these spectra across a range of magnetic field strengths. We shall focus on analysing the source of these distortions at the microscopic level, ie. which of orbital effects, spin effects, correlation effects and relativistic effects play the determining role. This project is multidisciplinary using principles of quantum chemistry in tackling astrochemical problems. The study is fundamental and is expected to reveal interesting results relevant even for the weaker fields on earth. The benchmarking of the standard DFT exchange-correlation functionals against CC in the regime of strong magnetic fields will have a long-term impact as most existing DFT approximations have been formulated within DFT or collinear spin DFT (SDFT); practical DFT functionals to describe molecules in magnetic fields (e.g. at the CDFT or non-collinear SDFT level) are much less developed.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences astronomy stellar astronomy neutron stars
- natural sciences chemical sciences physical chemistry quantum chemistry
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
0313 Oslo
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.