Skip to main content
European Commission logo print header

Mechanics with Molecules

Ziel

In this project, single molecule-machines will be constructed and tested on a surface and one at a time, controlling the rotation and the work delivered by a single molecule-motor directly at the atomic scale. The molecule motors and gears, designed and tested by MEMO, will be further adapted to applications requiring collective and synchronous motion.
The MEMO partners will design molecular motors and gears able to perform collective and synchronous motion. They will test the rotation of such molecule-gears step-by-step according to their chemical composition, the structure of their teeth, their rotational axle, and the supporting surface. MEMO will design molecule-motors adapted to transmit single molecule motion from the atomic scale to the mesoscale (and beyond).
In MEMO, low-temperature UHV experimental methods including scanning tunneling microscope and four independent scanning probe microscopes on the same surface will be used, as well as atomic force microscope in solution. MEMO will explore how a molecule-gear with ~1 nm diameter can mechanically match a nanofabricated solid-state nano-gear with ~30 nm diameter, produced using e-beam nanolithography and He beam microscope.
MEMO will create the first miniaturization roadmap for mechanical machinery down to the atomic scale. This roadmap will be explored node by node along the MEMO project, fabricating, micro-fabricating, and nano-fabricating a planar mechanical calculator down to the atomic scale. The last node of the roadmap, using all the molecular machinery results obtained by the MEMO partners during the project, will lead to the design of a molecular Pascaline.
To disseminate the single molecule-mechanics results to industry, MEMO will organize regular Academy-Industry days with high-tech SMEs. General public dissemination will include the organization of the first and second international molecule-car race.

Aufforderung zur Vorschlagseinreichung

H2020-FETOPEN-2016-2017

Andere Projekte für diesen Aufruf anzeigen

Unterauftrag

H2020-FETOPEN-1-2016-2017

Koordinator

TECHNISCHE UNIVERSITAET DRESDEN
Netto-EU-Beitrag
€ 1 032 750,00
Adresse
HELMHOLTZSTRASSE 10
01069 Dresden
Deutschland

Auf der Karte ansehen

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 032 750,00

Beteiligte (6)