Project description
Advanced technology against BGP prefix hijacking attacks
The Border Gateway Protocol (BGP) supports the functioning of the internet by facilitating routing information exchange among independent networks. However, BGP’s outdated design makes it susceptible to hijacking attacks, leading to widespread network inaccessibility. Existing defence methods are not only expensive but offer limited immediate benefits. They also rely on imprecise detection mechanisms that generate numerous false alerts, coupled with manual and slow mitigation processes. The EU-funded PHILOS project proposes an innovative strategy centred on real-time detection and automated mitigation. It aims to develop a proof of concept implementation for deployment within potential future customer networks and devise a business plan to secure the first commercial customer.
Objective
The Internet, with its unprecedented success and global scale as a network of networks, depends heavily on few fundamental technologies. One of these technologies is the Border Gateway Protocol (BGP), which glues together the independent networks of the Internet. BGP, based on a three-decade old design, is highly susceptible to BGP prefix hijacking attacks. These attacks, which have been repeatedly covered in the news due to their critical impact in several prominent cases, persistently pest network operators and users accessing their services, as they have the capability to render entire networks (and their services) unreachable. The resulting network outages, lasting from several hours to days, cost millions of dollars. BGP prefix hijacking events result usually from human error, but can also be malicious. Offenders can impersonate victim networks, steal sensitive information, or stealthily intercept and manipulate traffic destined to legitimate destinations.
Current approaches to defend against hijacking attacks (a) are poorly adopted, due to their high cost and low immediate benefit, or (b) rely on inaccurate detection mechanisms that generate numerous false alerts, while lacking automation. The latter results in manual and slow mitigation processes, which is presently the norm.
PHILOS is a new approach to defend against BGP prefix hijacking attacks. It focuses on real-time detection and automated mitigation, relies on novel detection algorithms, and employs new technologies in order to reduce the duration of the detection/mitigation cycle from hours and days, down to a few seconds. It therefore greatly reduces the cost of outages.
The goal of this project is twofold. First, it aims to create a Proof of Concept implementation of PHILOS that can be deployed within the network of potential future customers. Second, it will form a business plan aiming to establish the necessary environment for finding the first commercial customer of PHILOS.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences internet
- social sciences sociology industrial relations automation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
70 013 IRAKLEIO
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.