Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Respecting safe operating spaces: opportunities to meet future food demand with sustainable use of water and land resources

Periodic Reporting for period 4 - SOS.aquaterra (Respecting safe operating spaces: opportunities to meet future food demand with sustainable use of water and land resources)

Période du rapport: 2023-12-01 au 2025-02-28

Although the human population has quadrupled over the past century, per capita food availability is now higher than ever globally—achieved at considerable environmental expense. The methods by which we currently produce and consume food largely depend on practices that are environmentally unsustainable and are a primary cause of significant transgressions of planetary boundaries. These boundaries define limits across nine interacting Earth system processes that must be respected to prevent our planet from being pushed outside a safe operating space for humanity. Projected population growth and climate change will further exacerbate the challenge of feeding the planet sustainably.

SOS.aquaterra addresses this challenge by identifying socio-economically feasible measures to meet future food demand while respecting the key planetary boundaries for food production: water, land, nutrients, and biosphere integrity. We are developing a novel integrated modelling framework and data analysis methods that leverage the rapidly expanding open global spatiotemporal datasets along with outputs from global agronomical and hydrological models.

The overall objectives of the project are:
1. To develop a comprehensive and integrated model to estimate local thresholds for water-land-nutrient-biosphere integrity planetary boundaries and to quantify the safe operating space under future conditions.
2. To quantitatively assess the combined potential of innovative and conventional food opportunities within the safe operating space defined by the planetary boundaries.
3. To evaluate the feasibility of future food opportunities by using historical information on food solutions.

Rather than assessing planetary boundaries (PBs) individually, our approach acknowledges the interactions, feedbacks, and potential trade-offs between the PB processes. A second novel aspect of the SOS.aquaterra project is its integrated food system model, which aims to provide a systemic understanding of the entire global food system, including trade. With our integrated modelling system, we will estimate, for the first time, the combined potential of conventional measures (diet change, food loss reduction, yield gap closure, and trade) and future innovations (such as vertical farming and alternative protein sources) to sustainably meet future food demand at the sub-national level.
Throughout the project, we focused on innovative methodologies and expanding knowledge in key areas. Notable achievements include:

Increased understanding of human impact on global water resources: Our research reveals how human activities violate environmental flow standards, contributing to the global water crisis (https://doi.org/10.5194/hess-26-3315-2022(s’ouvre dans une nouvelle fenêtre)). We developed a theoretical framework for the water planetary boundary (https://doi.org/10.1029/2019WR024957(s’ouvre dans une nouvelle fenêtre)) and led efforts to revise the freshwater planetary boundary, informing the most recent update (https://doi.org/10.1038/s44221-024-00208-7(s’ouvre dans une nouvelle fenêtre) https://doi.org/10.1126/sciadv.adh2458(s’ouvre dans une nouvelle fenêtre)).

Safe climatic space for food production: High emission scenarios could compromise food crop and livestock production beyond safe climatic conditions (https://doi.org/10.1016/j.oneear.2021.04.017(s’ouvre dans une nouvelle fenêtre)). Examining impacts on food crop diversity is crucial for resilience, especially in tropical regions (https://doi.org/10.1038/s43016-025-01135-w(s’ouvre dans une nouvelle fenêtre)).

Solutions for sustainable use of natural resources: We identified strategies for efficient resource use, exploring carbon sequestration opportunities in livestock production (https://doi.org/10.1073/pnas.2405758121(s’ouvre dans une nouvelle fenêtre)) and changes in global grasslands' carrying capacity (https://doi.org/10.1111/gcb.16174(s’ouvre dans une nouvelle fenêtre)). Insights into circular food systems (https://doi.org/10.1038/s43016-022-00589-6(s’ouvre dans une nouvelle fenêtre)) and incorporating novel foods offer sustainability pathways (https://doi.org/10.1038/s43016-022-00489-9(s’ouvre dans une nouvelle fenêtre)).

Integrated food system modelling: Our dynamic models simulate food system interactions to enhance understanding of global security under various scenarios. Aalto OptoFood facilitates evaluation of dietary transitions and resource use, demonstrating water savings from reduced animal protein consumption (https://doi.org/10.21203/rs.3.rs-1258536/v1(s’ouvre dans une nouvelle fenêtre)).

Socio-economics integrated with earth systems: We explored socio-economic pathways for sustainable food systems (https://doi.org/10.21203/rs.3.rs-4304589/v1(s’ouvre dans une nouvelle fenêtre)) and assessed factors influencing food loss (https://doi.org/10.1186/s40066-023-00426-4(s’ouvre dans une nouvelle fenêtre)) and crop yield variability using the XGBoost algorithm (https://doi.org/10.1029/2021EF002420(s’ouvre dans une nouvelle fenêtre)).

Global socio-economic datasets: We published novel global subnational datasets, including GDP (https://doi.org/10.1038/s41597-025-04487-x(s’ouvre dans une nouvelle fenêtre)) GNI, income inequality (https://doi.org/10.21203/rs.3.rs-5548291/v1(s’ouvre dans une nouvelle fenêtre)) and gridded Human net-migration (https://doi.org/10.1038/s41562-023-01689-4(s’ouvre dans une nouvelle fenêtre)).

The project has resulted in 68 articles (64 peer-reviewed, 4 preprints), with 20 in top journals (Nature, Science, PNAS families) and over 15 in leading journals of our field. Two PhD researchers completed their doctorates through the project. Over 1250 media mentions reached an estimated audience of 35 million people.
Human impact on freshwater systems: Using a multi-model ensemble, we've quantified anthropogenic changes in streamflow and soil moisture over a 145-year industrial period (https://doi.org/10.1038/s44221-024-00208-7(s’ouvre dans une nouvelle fenêtre)). This marks the first comprehensive assessment of freshwater cycle deviations from pre-industrial baselines, revealing planetary boundary transgressions, and emphasizing sustainable water management.

Safe climatic space for agriculture: Our concept marks a major advancement in understanding climate change impacts on food systems by evaluating precipitation, temperature, and aridity to identify regions at risk of losing safe climatic conditions (https://doi.org/10.1016/j.oneear.2021.04.017(s’ouvre dans une nouvelle fenêtre) https://doi.org/10.1038/s43016-025-01135-w(s’ouvre dans une nouvelle fenêtre)). This emphasizes the importance of climate adaptation strategies and low-emission paths.

Circular food systems and resource optimization: We demonstrated that integrating food system by-products can substantially reduce feedstock competition with human foods (https://doi.org/10.1038/s43016-022-00589-6(s’ouvre dans une nouvelle fenêtre)) offering pathways for improving global food supply through innovative practices.

Integrated solutions for sustainable food systems: We estimated food production within planetary boundaries and created models to evaluate dietary transition impacts, showcasing water savings through reduced animal protein consumption (https://doi.org/10.1038/s41893-019-0465-1(s’ouvre dans une nouvelle fenêtre) https://doi.org/10.21203/rs.3.rs-1258536/v1(s’ouvre dans une nouvelle fenêtre)).

Sustainable global livestock grazing: We explored carbon sequestration opportunities in livestock production (https://doi.org/10.1073/pnas.2405758121(s’ouvre dans une nouvelle fenêtre)) and assessed changes in grassland carrying capacity (https://doi.org/10.1111/gcb.16174(s’ouvre dans une nouvelle fenêtre)).

Novel socio-economic datasets: We've published several global socio-economic datasets, including GDP per capita (https://doi.org/10.1038/s41597-025-04487-x(s’ouvre dans une nouvelle fenêtre)) GNI per capita, and income inequality (https://doi.org/10.21203/rs.3.rs-5548291/v1(s’ouvre dans une nouvelle fenêtre)) as well as gridded Human net-migration data (https://doi.org/10.1038/s41562-023-01689-4(s’ouvre dans une nouvelle fenêtre)). These datasets provide resources for integrating earth system analyses with socio-economic dynamics.
Project overall structure and aims
Mon livret 0 0