Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Deep-Learning and HPC to Boost Biomedical Applications for Health

Description du projet

Supercalcul et mégadonnées pour les applications biomédicales

Le «quatrième paradigme de la science» est basé sur les environnements unifiés des calculs à haute performance (CHP) et de l’analyse des mégadonnées. Il devrait faire considérablement progresser la recherche et l’innovation dans le domaine des sciences de la santé. Le projet DeepHealth, financé par l’UE, mettra la puissance des CHP au service d’applications biomédicales et appliquera des techniques d’apprentissage profond (DL pour «deep learning») à de vastes ensembles de données biomédicales composées, dans le but d’étayer de nouvelles méthodes plus efficaces de diagnostic, de suivi et de traitement des maladies. Le projet développera une structure résiliente et évolutive pour l’environnement des CHP et des mégadonnées qui s’appuiera sur deux nouvelles bibliothèques: la bibliothèque européenne d’apprentissage profond distribué (EDDLL pour «European Distributed Deep Learning Library») et la bibliothèque européenne de vision par ordinateur (ECVL pour «European Computer Vision Library»). La structure, une fois validée, permettra la formation de modèles et fournira des données de formation issues de différents domaines médicaux.

Objectif

Health scientific discovery and innovation are expected to quickly move forward under the so called “fourth paradigm of science”, which relies on unifying the traditionally separated and heterogeneous high-performance computing and big data analytics environments.
Under this paradigm, the DeepHealth project will provide HPC computing power at the service of biomedical applications; and apply Deep Learning (DL) techniques on large and complex biomedical datasets to support new and more efficient ways of diagnosis, monitoring and treatment of diseases.
DeepHealth will develop a flexible and scalable framework for the HPC + Big Data environment, based on two new libraries: the European Distributed Deep Learning Library (EDDLL) and the European Computer Vision Library (ECVL). The framework will be validated in 14 use cases which will allow to train models and provide training data from different medical areas (migraine, dementia, depression, etc.). The resulting trained models, and the libraries, will be integrated and validated in 7 existing biomedical software platforms, which include: a) commercial platforms (e.g. PHILIPS Clinical Decision Support System from or THALES SIX PIAF; and b) research oriented platforms (e.g. CEA`s ExpressIF™ or CRS4`s Digital Pathology). Impact is measured by tracking the time-to-model-in-production (ttmip).
Through this approach, DeepHealth will also standardise HPC resources to the needs of DL applications, and underpin the compatibility and uniformity on the set of tools used by medical staff and expert users. The final DeepHealth solution will be compatible with HPC infrastructures ranging from the ones in supercomputing centers to the ones in hospitals.
DeepHealth involves 21 partners from 9 European Countries, gathering a multidisciplinary group from research organisations (9), health organisations (4) as well as (4) large and (4) SME industrial partners, with strong commitment towards innovation, exploitation and sustainability.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

IA - Innovation action

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-ICT-2018-20

Voir tous les projets financés au titre de cet appel

Coordinateur

NTT DATA SPAIN, SL
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 314 980,14
Adresse
CAMINO FUENTE DE LA MORA 1
28050 Madrid
Espagne

Voir sur la carte

Région
Comunidad de Madrid Comunidad de Madrid Madrid
Type d’activité
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 059 567,48

Participants (24)

Mon livret 0 0