Description du projet
Un nouveau système intelligent à l’appui des contrôleurs aériens
Le recours accru à l’IA et à l’automatisation de l’apprentissage automatique (ML) permet d’améliorer les performances, les résultats, l’efficacité en matière de résolution des problèmes, la sécurité et le contrôle des processus. La technologie qui remplace l’activité humaine pourrait être source de problèmes si ses processus ne sont pas compréhensibles pour l’homme. Le projet MAHALO, financé par l’UE, vise à concevoir un système explicable et automatisé basé sur l’IA, l’apprentissage automatique et l’apprentissage neuronal profond, afin de résoudre les problèmes entre les équipages et les contrôleurs aériens. Formée par l’opérateur, la machine pourra l’informer de ce qu’elle a appris. Cette fonctionnalité augmentera sa capacité, ses performances et sa sécurité. En particulier, MAHALO étudiera l’incidence de la transparence (la capacité de l’IA à expliquer la raison des décisions qu’elle prend) et de la conformité (le degré de similarité entre la décision prise par l’IA et celle qu’un contrôleur prendrait en pareille situation). Le projet sera évalué dans le cadre de simulations en temps réel qui recréent les difficultés du trafic, la confiance, l’acceptation et la compréhension des contrôleurs. Le cadre de MAHALO servira de modèle pour de futurs systèmes d’IA.
Objectif
MAHALO asks a simple but profound question: in the emerging age of Machine Learning (ML), should we be developing automation that matches human behavior (i.e. conformal), or automation that is understandable to the human (i.e. transparent)? Further, what tradeoffs exist, in terms of controller trust, acceptance, and performance? To answer these questions, MAHALO will:
• Develop an individually-tuned ML system comprised of layered deep learning and reinforcement models, trained on controller performance (context-specific solutions), strategies (eye tracking), and physiological data, which learns to solve ATC conflicts;
• Couple this to an enhanced en-route CD&R prototype display to present machine rationale with regards to ML output;
• Evaluate in realtime simulations the relative impact of ML conformance, transparency, and traffic complexity, on controller understanding, trust, acceptance, workload, and performance; and
• Define a framework to guide design of future AI systems, including guidance on the effects of conformance, transparency, complexity, and non-nominal conditions.
Building on the collective experience within the team, past research, and recent advances in the areas of ML and ecological interface design (EID), MAHALO will take a bold step forward: to create a system that learns from the individual operator, but also provides the operator insight into what the machine has learnt. Several models will be trained and evaluated to reflect a continuum from individually-matched to group-average. Most recent work in areas of automation transparency, Explainable AI (XAI) and ML interpretability will be explored to afford understanding of ML advisories. The user interface will present ML outputs, in terms of: current and future (what-if) traffic patterns; intended resolution maneuvers; and rule-based rationale. The project’s output will add knowledge and design principles on how AI and transparency can be used to improve ATM performance, capacity, and safety.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences sociales sociologie relations industrielles automatisation
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique apprentissage profond
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.3.4.7. - SESAR JU
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
RIA - Research and Innovation action
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-SESAR-2019-2
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
00185 ROMA
Italie
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.