Objective
The objective of the project is the development of a new Na/S battery technology for high power stationary applications. In contrast to the Japanese technical orientation towards energy storage plants for low-power load-levelling, which have now reached their technical maturity and are currently being commercialised, this project aims at modular high-power batteries for spinning reserve and standby applications such as for air conditioners, domestic and bureau appliances and other electric utilities. Related fields of application for this new type of high power battery are uninterrupted power supply systems and load-levelling in connection with decentralised, selfsufficient energy generation with renewable energies, e.g. solar energy. The conventional energy storage technology works with Pb-Acid- or Ni/Cd-batteries. Comparing the Na/S- and the advanced Pb-Acid- and Ni/Cd-battry technology, the paramount disadvantages of the latter are a much smaller energy density and power density, the requirement of constant supervision, control and maintenance by specially trained personnel, and the polluting partial recycling and removal respectively. In contrast the proposed modular stationary Na/S battery works maintenance free, is safe by design and friendly to the environment. The shortcoming in the technologies of the European manufacturers of Na/S-batteries for electric vehicle applications was mainly due to the single electrolyte-single cell concept. Under heavy duty operations this concept proved inadequate. The overall cell resistance due to the single cylindrical design of the ceramic electrolyte proved to be too high because of the restricted surface area of the ceramic electrolyte. High power demands, e.g. during vehicle acceleration, led to high current densities in the electrolytes and caused an increase in cell temperature well beyond specified limits. To address the high power demands of frequency control and standby applications, it is proposed to develop and demonstrate a new design of modular battery composed of a number of subassembly structures. In comparison to the single cell design an overall increase in power by a factor of 10-15 is possible.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering electric energy
- engineering and technology environmental engineering waste management waste treatment processes recycling
- natural sciences chemical sciences electrochemistry electric batteries
- social sciences social geography transport electric vehicles
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
WA7 1TQ Runcorn
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.