Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

EXPLAINABLE AI PIPELINES FOR BIG COPERNICUS DATA

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Creation of training datasets, data cubes & ontologies - v2 (se abrirá en una nueva ventana)

This is an update scaleup of the v1 deliverable

DeepCube Platform - v1 (se abrirá en una nueva ventana)

Platform integration and system

DeepCube Platform - v2 (se abrirá en una nueva ventana)

Updated version of based on changes made to DeepCube’s platform. In addition, this deliverable includes the user manual and documentation of the platform.

Analytics and DL architectures for fire risk assessment UC-v1 (se abrirá en una nueva ventana)

Report containing a consolidate version of all DL architectures that DeepCubes pilots will implement

Analytics and DL architectures for the droughts UC- v1 (se abrirá en una nueva ventana)

Report containing a consolidate version of all DL architectures that DeepCubes pilots will implement

Final dissemination and communication report (se abrirá en una nueva ventana)

Detailed report of all activities (M01-M36) that took place during the course of the project.

Project Management & Quality plan (se abrirá en una nueva ventana)

Guidelines to ensure high quality research development and reporting along with a project time plan

DeepCube platform requirements, specs and architecture-v2 (se abrirá en una nueva ventana)

Updated version of the technical requirements deliverable based on any updates from 1st Use Case implementation and evaluation cycle

EO and non-EO data ingestion report - v2 (se abrirá en una nueva ventana)

This is an update of the v1 deliverable.

DeepCube technical components-v1 (se abrirá en una nueva ventana)

Inputs on developments adjustments finetuning of the technological components

DeepCube technical components - v2 (se abrirá en una nueva ventana)

Updates from 1st Use Case implementation and evaluation cycle This deliverable also includes user manuals and documentations for the individual components

Status of Liaison activities v2 (se abrirá en una nueva ventana)

Updates on liaison activities

Initial Communication and Dissemination plan (se abrirá en una nueva ventana)

At the early stage of the proposal to update communication plan and dissemination plan identifying target audiences key messages channels tools and metrics

DeepCube platform requirements, specs and architecture-v1 (se abrirá en una nueva ventana)

Technical specifications and the architectural design of the DeepCube platform

EO and non-EO data ingestion report - v1 (se abrirá en una nueva ventana)

Information on all data ingested along with precise information on data origin

Mid-term dissemination plan (se abrirá en una nueva ventana)

Report updates on dissemination and communication plan for the next period M18M36 including also a detailed summary of the main activities that took place during the first 18 months

Status of Liaison activities v1 (se abrirá en una nueva ventana)

Provision of tangible liaison activities with other projects

Creation of training datasets, data cubes & ontologies-v1 (se abrirá en una nueva ventana)

Describe in detail both the process and the generated trained datasets. Report all technical specifications and stored datasets stored on all Data Cubes. This report provides the ontologies and mappings to be used for realizing the DeepCube Semantic Cube. The deliverable provides the data cubes with ARD per se, to allow further exploitation.

Website & Material (se abrirá en una nueva ventana)

Website up and running along with any other material will support outreach activities brochures leaflets video newsletter etc

Publicaciones

Pluto: A global volcanic activity early warning system powered by large scale self-supervised deep learning on InSAR data (se abrirá en una nueva ventana)

Autores: Nikolaos Ioannis Bountos, Dimitrios Michail, Themistocles Herekakis, Angeliki Thanasou, Ioannis Papoutsis
Publicado en: EGU General Assembly 2023, 2023
Editor: European Geosciences Union
DOI: 10.5194/egusphere-egu23-5913

Learning drivers of climate-induced human migrations with Gaussian processes

Autores: Jose M. Tarraga, Maria Piles, Gustau Camps-Valls
Publicado en: NeurIPS 2020 Workshop on Machine Learning for the Developing World, 2020
Editor: NeurIPS 2020 Workshop on Machine Learning for the Developing World

Sen4AgriNet: A Harmonized Multi-Country, Multi-Temporal Benchmark Dataset for Agricultural Earth Observation Machine Learning Applications (se abrirá en una nueva ventana)

Autores: D. Sykas, I. Papoutsis, D. Zografakis
Publicado en: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Edición 12 October 2021, 2021, Página(s) 5830-5833
Editor: IEEE
DOI: 10.1109/igarss47720.2021.9553603

Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in the Mediterranean (se abrirá en una nueva ventana)

Autores: Spyros Kondylatos, Ioannis Prapas, Gustau Camps-Valls, Ioannis Papoutsis
Publicado en: 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks, 2023
Editor: NeurIPS
DOI: 10.48550/arxiv.2306.05144

Deep Learning Methods for Daily Wildfire Danger Forecasting (se abrirá en una nueva ventana)

Autores: Ioannis Prapas, Spyros Kondylatos, Ioannis Papoutsis, Gustau Camps-Valls, Michele Ronco, Miguel-Ángel Fernández-Torres, Maria Piles Guillem, Nuno Carvalhais
Publicado en: Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response, 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Edición 4 November 2021, 2021
Editor: NeurIPS
DOI: 10.48550/arxiv.2111.02736

Inspecting the link between climate and human displacement with Explainable AI and Causal inference (se abrirá en una nueva ventana)

Autores: José María Tárraga Habas, Michele Ronco, Maria Teresa Miranda, Eva Sevillano Marco, Qiang Wang, María Piles, Jordi Muñoz, and Gustau Camps-Valls
Publicado en: EGU General Assembly 2022, 2022
Editor: EGU22-11200
DOI: 10.5194/egusphere-egu22-11200

Explainable deep learning for wildfire danger estimation (se abrirá en una nueva ventana)

Autores: Ronco, M., Prapas, I., Kondylatos, S., Papoutsis, I., Camps-Valls, G., Fernández-Torres, M.-Á., Piles Guillem, M., and Carvalhais, N.
Publicado en: EGU General Assembly 2022, 2022
Editor: EGU22-11787
DOI: 10.5194/egusphere-egu22-11787

AutoAblation: Automated Parallel Ablation Studies for Deep Learning (se abrirá en una nueva ventana)

Autores: Sina Sheikholeslami, Moritz Meister, Tianze Wang, Amir H. Payberah, Vladimir Vlassov, Jim Dowling
Publicado en: EuroMLSys '21: Proceedings of the 1st Workshop on Machine Learning and Systems, 2021, Página(s) 55-61
Editor: ACM
DOI: 10.1145/3437984.3458834

DEEPCUBE: EXPLAINABLE AI PIPELINES FOR BIG COPERNICUS DATA

Autores: Ioannis Papoutsis, Alkyoni Baglatzi, Souzana Touloumtzi, Markus Reichstein, Nuno Carvalhais, Fabian Gans, Gustau Camps-Valls, Maria Piles, Theofilos Kakantousis, Jim Dowling, Manolis Koubarakis, Dimitris Bilidas, Despina-Athanasia Pantazi, George Stamoulis, Christophe Demange, Leo-Gad Journel, Marco Bianchi, Chiara Gervasi, Alessio Rucci, Ioannis Tsampoulatidis, Eleni Kamateri, Tarek Habib, Alejan
Publicado en: Proceedings of the 2021 conference on Big Data from Space (BiDS’21), 2021
Editor: Proceedings of the 2021 conference on Big Data from Space (BiDS’21)

Hephaestus: A large scale multitask dataset towards InSAR understanding (se abrirá en una nueva ventana)

Autores: N.I. Bountos, I. Papoutsis, D. Michail, A. Karavias, P. Elias, I. Parcharidis
Publicado en: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022
Editor: IEEE
DOI: 10.48550/arxiv.2204.09435

Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs (se abrirá en una nueva ventana)

Autores: Claire Robin, Christian Requena-Mesa, Vitus Benson, Lazaro Alonso, Jeran Poehls, Nuno Carvalhais, Markus Reichstein
Publicado en: Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022, 2022
Editor: NeurIPS 2022
DOI: 10.48550/arxiv.2210.13648

Assessing the Added Value of Sentinel-1 PolSAR Data for Crop Classification (se abrirá en una nueva ventana)

Autores: Maria Ioannidou; Alkiviadis Koukos; Vasileios Sitokonstantinou; Ioannis Papoutsis; Charalampos Kontoes
Publicado en: Remote Sensing; Volume 14; Edición 22; Pages: 5739, Edición 13 November 2022, 2022, ISSN 2072-4292
Editor: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/rs14225739

Integration of a Deep-Learning-Based Fire Model Into a Global Land Surface Model (se abrirá en una nueva ventana)

Autores: Rackhun Son, Tobias Stacke, Veronika Gayler, Julia E. M. S. Nabel, Reiner Schnur, Lazaro Alonso, Christian Requena-Mesa, Alexander J. Winkler, Stijn Hantson, Sönke Zaehle, Ulrich Weber, Nuno Carvalhais
Publicado en: Journal of Advances in Modeling Earth Systems, Edición Volume 16, Edición1, 2024, ISSN 1942-2466
Editor: American Geophysical Union
DOI: 10.1029/2023ms003710

Self-supervised Contrastive Learning for Volcanic Unrest Detection (se abrirá en una nueva ventana)

Autores: Nikolaos Ioannis Bountos, Ioannis Papoutsis, Dimitrios Michail, Nantheera Anantrasirichai
Publicado en: IEEE Geoscience and Remote Sensing Letters, Edición Volume 19, 2021, Página(s) 1-5, ISSN 1558-0571
Editor: IEEE
DOI: 10.1109/lgrs.2021.3104506

A Sentinel-2 Multiyear, Multicountry Benchmark Dataset for Crop Classification and Segmentation With Deep Learning (se abrirá en una nueva ventana)

Autores: Dimitrios Sykas; Maria Sdraka; Dimitrios Zografakis; Ioannis Papoutsis
Publicado en: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Edición Volume 15, 2022, ISSN 2151-1535
Editor: IEEE
DOI: 10.1109/jstars.2022.3164771

Toward Robust Parameterizations in Ecosystem-Level Photosynthesis Models (se abrirá en una nueva ventana)

Autores: Shanning Bao, Lazaro Alonso, Siyuan Wang, Johannes Gensheimer, Ranit De, Nuno Carvalhais
Publicado en: Journal of Advances in Modeling Earth Systems, Edición Volume 15, Edición 8, 2023, ISSN 1942-2466
Editor: American Geophysical Union
DOI: 10.1029/2022ms003464

Exploring interactions between socioeconomic context and natural hazards on human population displacement (se abrirá en una nueva ventana)

Autores: Michele Ronco, José María Tárraga, Jordi Muñoz, María Piles, Eva Sevillano Marco, Qiang Wang, Maria Teresa Miranda Espinosa, Sylvain Ponserre, Gustau Camps-Valls
Publicado en: Nature Communications, Edición 14, 2023, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-023-43809-8

Role of locality, fidelity and symmetry regularization in learning explainable representations (se abrirá en una nueva ventana)

Autores: Michele Ronco, Gustau Camps-Valls
Publicado en: Neurocomputing, Edición Volume 562, 2023, ISSN 0925-2312
Editor: Elsevier BV
DOI: 10.1016/j.neucom.2023.126884

Wildfire Danger Prediction and Understanding With Deep Learning (se abrirá en una nueva ventana)

Autores: S. Kondylatos, I. Prapas, M. Ronco, I. Papoutsis, G. Camps-Valls, M. Piles, M. Fernández-Torres, N. Carvalhais
Publicado en: Geophysical Research Letters, Edición Volume 49, Edición17, 2022, ISSN 1944-8007
Editor: American Geophysical Union
DOI: 10.1029/2022gl099368

Learning From Synthetic InSAR With Vision Transformers: The Case of Volcanic Unrest Detection (se abrirá en una nueva ventana)

Autores: Nikolaos Ioannis Bountos; Dimitrios Michail; Ioannis Papoutsis
Publicado en: IEEE Transactions on Geoscience and Remote Sensing (Volume 60), Edición 08 June 2022, 2022, ISSN 1558-0644
Editor: IEEE
DOI: 10.1109/tgrs.2022.3180891

Benchmarking and scaling of deep learning models for land cover image classification (se abrirá en una nueva ventana)

Autores: Ioannis Papoutsis, Nikolaos Ioannis Bountos, Angelos Zavras, Dimitrios Michail, Christos Tryfonopoulos
Publicado en: ISPRS Journal of Photogrammetry and Remote Sensing, Edición Volume 195, January 2023, 2023, ISSN 1872-8235
Editor: Elsevier
DOI: 10.1016/j.isprsjprs.2022.11.012

Learning class prototypes from Synthetic InSAR with Vision Transformers (se abrirá en una nueva ventana)

Autores: Nikolaos Ioannis Bountos, Dimitrios Michail, Ioannis Papoutsis
Publicado en: 2022
Editor: arXiv
DOI: 10.48550/arxiv.2201.03016

Efficient deep learning models for land cover image classification

Autores: Ioannis Papoutsis, Nikolaos-Ioannis Bountos, Angelos Zavras, Dimitrios Michail, Christos Tryfonopoulos
Publicado en: 2021
Editor: arXiv

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0