Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Mitigating Diversity Biases of AI in the Labor Market

Descrizione del progetto

Mitigazione dei modelli distorti basati sull’IA nel mercato del lavoro

Un recente studio Sage suggerisce che il 24 % delle aziende ha utilizzato l’Elaborazione del linguaggio naturale in applicazioni impiegate dalla Gestione delle risorse umane. L’Elaborazione del linguaggio naturale si basa tuttavia su modelli parziali. In un contesto occupazionale, ciò potrebbe portare a decisioni parziali contrarie agli obiettivi del Pilastro europeo dei diritti sociali e degli Obiettivi di sviluppo sostenibile delle Nazioni Unite. Il progetto BIAS, finanziato dall’UE, indagherà e mitigherà i pregiudizi sulla diversità dell’IA nel mercato del lavoro. Il progetto svilupperà una prova di concetto per una tecnologia innovativa fondata sull’Elaborazione del linguaggio naturale e sul Ragionamento basato sui casi da utilizzare in un caso d’uso di selezione delle risorse umane.

Obiettivo

Artificial Intelligence (AI) is increasingly used in the employment sector to manage and control individual workers. One type of AI is Natural Language Processing (NLP) based tools that can analyze text to make inferences or decisions. A recent Sage study found that 24% of companies used AI for hiring purposes. In an employment context, this can involve analyzing text created by an employee or recruitment candidate in order to assist management in deciding to invite a candidate for an interview, to training and employee engagement, or to monitor for infractions that could lead to disciplinary proceedings. However, the models that NLP-based systems are based on are biased. Additionally, it has been shown that bias in an underlying AI model is reproduced in applications based on that model). This can lead to biased decisions that run contrary to the goals of the European Pillar of Social Rights in relationship to work and employment, specifically Pillar 2 (Gender Equality), Pillar 3 (Equal Opportunity), Pillar 5 (Secure and Adaptable Employment) and the United Nations’ (UN) Sustainable Development Goals (SDGs), specifically SDG 5 (Gender Equality), SDG 8 (Decent Work and Economic Growth). It is therefore necessary to identify and mitigate biases that occur in applications used in a Human Resources Management (HRM) context. Addressing such concerns in an employment context is especially relevant, as most existing European studies on employment discrimination have indeed found that discrimination exists, both when considering individual diversity criteria and multiple criteria in intersectional analyses. In order to investigate and mitigate these biases, we apply this “BIAS”-project, for mitigating diversity biases of AI in the labor market. The chief technical objective of BIAS is the development of a proof-of-concept for an innovative technology based on Natural Language Processing (NLP) and Case Based Reasoning (CBR) for use in an HR recruitment use case.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-RIA - HORIZON Research and Innovation Actions

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-CL4-2021-HUMAN-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 110 924,00
Indirizzo
HOGSKOLERINGEN 1
7491 Trondheim
Norvegia

Mostra sulla mappa

Regione
Norge Trøndelag Trøndelag
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 408 463,75

Partecipanti (7)

Partner (1)

Il mio fascicolo 0 0