Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models

Descrizione del progetto

Un nuovo punto di vista sulle previsioni dei cambiamenti climatici

La progressione del riscaldamento globale pone delle sfide che richiedono soluzioni urgenti e di tipo scientifico. I modelli del sistema Terra (ESM, Earth system model), fondamentali per la previsione dei cambiamenti climatici, presentano incertezze intrinseche nelle loro previsioni. L’obiettivo principale del progetto AI4PEX, finanziato dall’UE, è quello di affrontare queste incertezze migliorando gli ESM. Il progetto affronterà i principali fattori che contribuiscono alle incertezze utilizzando l’apprendimento automatico avanzato e l’IA. Fondendo le osservazioni con queste tecnologie all’avanguardia, AI4PEX cerca di «apprendere» e modellare accuratamente i processi complessi che riducono la nostra fiducia nelle previsioni climatiche. Utilizzando un approccio multidisciplinare, il progetto mira a una svolta nell’accuratezza dei modelli del sistema terrestre, fondamentale per anticipare i futuri fenomeni climatici estremi e il loro impatto sulla società.

Obiettivo

Global warming continues at an alarming rate, presenting unprecedented challenges to society that require urgent, science-led mitigation and adaptation. Earth system models (ESMs) are essential tools for projecting climate change, providing important information to decision makers. However, confidence in predicted climate change is undermined by a number of uncertainties; (i) ESMs disagree on how much the Earth will warm for a given increase in atmospheric carbon dioxide (CO2) (Earth’s equilibrium climate sensitivity); (ii) how much emitted CO2 will stay in the atmosphere to warm the planet (half the CO2 emitted by humans has been absorbed by the land and ocean) and (iii) how much excess heat in the Earth system will enter the ocean interior, delaying surface warming (~90 % of the heat in the Earth system goes into the ocean). Central to these uncertainties are poorly understood, and poorly modelled, Earth system feedbacks, in particular cloud feedbacks, carbon cycle feedbacks and ocean heat uptake. Poor representation of these phenomena degrades the accuracy of ESM projections, with implications for anticipating future climate extremes and societal impacts. We aim to improve the representation of these feedbacks in ESMs, reducing uncertainty in global warming projections. We propose a multidisciplinary approach, focused on “learning” how to accurately describe processes underpinning these feedbacks, through a fusion of observations with advanced machine learning (ML) and artificial intelligence (AI). Such data and approaches, constrained by the laws of physics, will deliver a step change in the accuracy of Earth system models.
AI4PEX will place Europe at the forefront of a revolution in Earth system modelling, leading to increased accuracy of climate change projections and superior support for implementation of the Paris Climate Agreement and the European Green Deal.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-RIA - HORIZON Research and Innovation Actions

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-CL5-2023-D1-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 774 131,25
Indirizzo
HOFGARTENSTRASSE 8
80539 Munchen
Germania

Mostra sulla mappa

Regione
Bayern Oberbayern München, Kreisfreie Stadt
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partecipanti (13)

Partner (5)

Il mio fascicolo 0 0