Objective
AgII-containing phases of the form A2AgF4 or AAgF3 (A = K, Rb, Cs) have previously been synthesized via solid state reaction by us and others; Cs2AgF4 is structurally related to K2NiF4 and shares structural similarities with other strongly correlated structures, including the high Tc cuprates. The magnetic behavior of these materials shows that the spins associated with the 4d9 AgII ions are strongly correlated in the case of Rb and Cs. There is a clear structural fluoride-oxide analogy between the fluoride 214 phases and the oxide based 214 phases that form the cuprate superconductors. More generally, perovskite crystal systems often display strongly correlated properties, including ferroelectric and magnetic behavior. In particular, the tolerance of the perovskite crystal system to other cations is high, leading to a rich structural chemistry and often, macroscopic properties that are tunable. We therefore propose to dope these phases in order to explore the magnetic behavior of the defected lattice. Through incorporation of an ion of similar size to the alkali metal but with a higher charge, we will force the Ag ions to adjust their charge to form an electroneutral lattice. Using a combination of exploratory synthesis, elastic and inelastic neutron scattering, bulk magnetic measurements and MuSR, we will determine a comprehensive model of the magnetostructural disposition of these systems, illuminating the associated physics and chemistry of the AgII ion. Extensions of this work to other transition metal-containing systems will provide magnetostructural information on systems that are synthetically challenging and rare, which will, in turn, enable the development of stronger theoretical models of low dimensional, strongly correlated systems in which the interplay of electronic and magnetic properties are necessarily vital to the understanding of the bulk properties.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2007-4-3-IRG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
BN1 9RH Brighton
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.