Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Detecting and Eliminating Bacteria UsinG Information Technologies

Description du projet


Advanced ICT for Risk Assessment and Patient Safety
For infectious diseases DebugIT detects patient safety related patterns and trends, acquires knowledge and uses this for better quality healthcare
In about half a century of antibiotic use, unexpected new challenges have come to light: fast emer-gence of resistances among pathogens, misuse and overuse of antibiotics; direct and indirect re-lated costs. Antimicrobial resistance results in escalating healthcare costs, increased morbidity and mortality and the emergence or reemergence of potentially untreatable pathogens. In this context of infectious diseases we will (1) detect patient safety issues, (2) learn how to prevent them and (3) actually prevent them in clinical cases. We will detect harmful patterns and trends using clinical and operational information from Clinical Information Systems (CIS). This will be
done through the ‘view’ of a virtualized Clinical Data Re-pository (CDR), featuring, transparent access to the original CIS and/or collection and aggregation of data in a local store. Text, image and structured data mining on individual patients as well as on populations will learn us informational and temporal patterns of patient harm. This knowledge will be fed into a Medical Knowledge Repository and mixed with knowledge coming from external sources (for example guidelines and evidences). After editing and validating, this knowledge will be used by a decision support and monitoring tool in the clinical environment to prevent patient safety issues and report on it.
Outcomes and benefits, both clinical and economical will be measured and reported on. Innovation within this project lays in the virtualization of Clinical Data Repository through ontology mediation, the advanced mining techniques, the reasoning engine and the consolidation of all these techniques in a comprehensive but open framework. This framework will be implemented, focused on infectious diseases, but will be applicable for all sorts of clinical cases in the future.

In about half a century of antibiotic use, unexpected new challenges have come to light: fast emer-gence of resistances among pathogens, misuse and overuse of antibiotics; direct and indirect re-lated costs. Antimicrobial resistance results in escalating healthcare costs, increased morbidity and mortality and the emergence or reemergence of potentially untreatable pathogens. In this context of infectious diseases we will (1) detect patient safety issues, (2) learn how to prevent them and (3) actually prevent them in clinical cases. We will detect harmful patterns and trends using clinical and operational information from Clinical Information Systems (CIS). This will bedone through the 'view' of a virtualized Clinical Data Re-pository (CDR), featuring, transparent access to the original CIS and/or collection and aggregation of data in a local store. Text, image and structured data mining on individual patients as well as on populations will learn us informational and temporal patterns of patient harm. This knowledge will be fed into a Medical Knowledge Repository and mixed with knowledge coming from external sources (for example guidelines and evidences). After editing and validating, this knowledge will be used by adecision support and monitoring tool in the clinical environment to prevent patient safety issues and report on it.Outcomes and benefits, both clinical and economical will be measured and reported on. Innovation within this project lays in the virtualization of Clinical Data Repository through ontology mediation, the advanced mining techniques, the reasoning engine and the consolidation of all these techniques in a comprehensive but open framework. This framework will be implemented, focused on infectious diseases, but will be applicable for all sorts of clinical cases in the future.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-ICT-2007-1
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

CP - Collaborative project (generic)

Coordinateur

AGFA HEALTHCARE N.V.
Contribution de l’UE
€ 1 553 339,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (14)

Mon livret 0 0